




Figure 4. Observed model accuracy of simulated data. Light blue indicates improved model accuracy,
with parameter combinations resulting in better than 50% accuracy are outlined with green lines. Grey
tiles represent parameter combinations that were not sampled.

metagenomics assembly requires an alternative, automated approach to damage estimation.252

Here, we have presented PyDamage as a tool to rapidly assess aDNA damage patterns for numerous253

reference sequences in parallel, allowing damage profiling of metagenome assembled contigs. To254

evaluate the performance of PyDamage model fitting and statistical testing, we benchmarked the tool255

using simulated assembly data of known coverage, length, GC content, read length, and damage level.256

While GC content and read length were not a major driver of the accuracy of PyDamage’s predictions,257

reference length, coverage, and damage level each played major roles. Taken together, this three parameter258

combination greatly influenced the ability of PyDamage to make a accurate damage assessments for a259

given contig. Overall, PyDamage has highly reliable damage prediction accuracy for contigs with high260

coverage, long lengths, and high damage, but the tool’s power to assess damage is reduced for lower261

coverage, shorter contigs length, and lower deamination damaged contigs. Although aDNA damage262

levels (cytosine deamination and fragmentation) are features of the DNA itself and out of the researcher’s263

control, we show that researchers can generally improve model accuracy through deeper sequencing.264

When comparing the parameter range of our simulated data to real world de novo assembly data,265

we find that some of PyDamage prediction accuracy limitations are mitigated by the assembly process266

itself: de novo assemblers usually need a minimum of approximately 5X coverage to assemble contigs267

(Figure 8) (Wibowo et al., 2021), and it is common practice to discard short contigs (<1000 bp) before268

further processing steps in a classical metagenomic de novo assembly analysis process. Nevertheless,269

low coverage, low damage, short contigs will remain a marginal challenge for damage characterization,270

even with further manual inspection. For example, for a 10,000 bp de novo assembled contig with 10%271

damage, PyDamage will only start to make reliable predictions once a coverage of 16X is reached (Figure272

3). For a similar contig with 20% damage, model accuracy is high even from 1X coverage. Overall, we273

find that PyDamage generally performs well on ancient metagenomic data with >5% damage, but contig274

length and coverage are also essential factors in determining the model accuracy for a given contig.275

Although we used the kneedle method (Satopaa et al., 2011) to select the prediction accuracy threshold276
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Figure 5. Number of ZSM028 contigs filtered by PyDamage with a q-value ≤ 0.05 as a function of the
predicted prediction accuracy. In total, 12,271 of the 17,061 contigs were assigned q-value ≤ 0.05.

Figure 6. Taxonomic assignation by Kraken2 of the contigs filtered by PyDamage with q-value≤ 0.05,
p j

d ≤ 0.6, and prediction accuracy ≥ 0.67

for paleofeces sample ZSM028, users can adjust the selected prediction accuracy threshold according to277

the needs of their research question. For example, for some research questions where high accuracy in278

verifying damage is paramount, more stringent thresholds can be applied to minimize false positives, even279

though this increases false negatives. For other questions and where additional authentication criteria280

are available (such as taxonomic information or metagenomic bins), lower thresholds may be applied to281

reduce the number of false negatives due to insufficient coverage or contig length.282

PyDamage is designed to estimate accumulated DNA damage in de novo assembled metagenomic283

sequences. However, although DNA damage can be used to authenticate DNA as ancient, it is important to284
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Figure 7. Damage profile of PyDamage filtered contigs of ZSM028. The center line is the mean, the
shaded area is ± one standard-deviation around the mean

Figure 8. Distribution of the coverage for ZSM028 contigs > 1,000 bp assembled by metaSPAdes.

note that it is not necessarily an indicator of intra vitam endogeneity. DNA within ancient remains typically285

consists of both an endogenous fraction present during life and an exogenous fraction accumulated286
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contig name contig length (bp) coverage product

NODE 2446 3232 64.3 Arsenical-resistance protein Acr3
NODE 45 28638 26.0 Bifunctional polymyxin resistance protein ArnA
NODE 832 6259 46.3 Cobalt-zinc-cadmium resistance protein CzcA
NODE 832 6259 46.3 Cobalt-zinc-cadmium resistance protein CzcB

NODE 2661 3058 91.5 Colistin resistance protein EmrA
NODE 2661 3058 91.5 Colistin resistance protein EmrA
NODE 215 13020 27.0 Daunorubicin/doxorubicin resistance ATP-binding protein DrrA
NODE 136 16294 26.0 Daunorubicin/doxorubicin resistance ATP-binding protein DrrA

NODE 1676 4090 81.3 Fosmidomycin resistance protein
NODE 8410 1542 77.3 Linearmycin resistance ATP-binding protein LnrL
NODE 29 35207 27.8 Multidrug resistance ABC transporter ATP-binding and permease protein
NODE 232 12485 31.9 Multidrug resistance protein MdtA
NODE 97 19553 27.4 Multidrug resistance protein MdtA
NODE 12 45672 45.6 Multidrug resistance protein MdtA
NODE 10 46280 59.8 Multidrug resistance protein MdtA
NODE 97 19553 27.4 Multidrug resistance protein MdtB
NODE 97 19553 27.4 Multidrug resistance protein MdtB
NODE 12 45672 45.6 Multidrug resistance protein MdtC
NODE 10 46280 59.8 Multidrug resistance protein MdtC
NODE 232 12485 31.9 Multidrug resistance protein MdtC
NODE 17 41269 29.9 Multidrug resistance protein MdtK
NODE 465 8695 37.5 Tetracycline resistance protein TetO
NODE 204 13262 44.9 Tetracycline resistance protein, class C

Table 2. Contigs assembled by metaSPAdes, identified by PyDamage as carrying damage, and annotated
as carrying resistance genes by Prokka

after death. For skeletal remains, the endogenous fraction typically consists of host DNA, as well287

as possibly pathogen DNA if the host was infected at the time of death. For paleofeces or dental288

calculus, the endogenous fraction typically consists of microbiome DNA, as well as trace amounts of289

host, parasite, and dietary DNA. In both cases, the endogenous fraction of DNA is expected to carry DNA290

damage accumulated since the death (skeletal remains, dental calculus) or defecation (paleofeces) of291

the individual. Within the exogenous fraction, however, the DNA may span a range of ages. Nearly all292

ancient remains undergo some degree of degradation and decomposition, during which either endogenous293

(thanatomicrobiome) or exogenous (necrobiome) bacteria invade the remains and grow (Hyde et al.,294

2017; Harrison et al., 2020; Dash and Das, 2020). DNA from bacteria that participated early in this295

process (shortly after death or defecation), will carry similar levels of damage as the endogenous DNA296

because they are of similar age. In contrast, more recent necrobiome activity will carry progressively less297

age-related damage, and very recent sources of contamination from excavation, storage, curation, and298

laboratory handling are expected to carry little to no DNA damage.299

To demonstrate the utility of PyDamage on ancient metagenomic data, we applied PyDamage to300

paleofeces ZSM028, a ca. 1300-year-old specimen of feces from a dry rockshelter site in Mexico that301

was previously shown to have excellent preservation of endogenous gut microbiome DNA and low302

levels of environmental contamination (Borry et al., 2020). Using PyDamage, we assessed the damage303

profiles of contigs with lengths >1,000 bp, and authenticated nearly 2,000 contigs as carrying damage304

patterns consistent with ancient DNA. The overwhelming majority of these contigs were consistent with305

bacterial members of the human gut microbiome, as well as expected host and dietary components, but306

a small fraction of authenticated contigs were assigned to environmental bacteria and fungi, including307

the exogenous soil bacteria Clostridium botulinum (22 contigs) and Clostridium perfringens (38 contigs).308

These taxa are known to be important early decomposers in the necrobiome (Harrison et al., 2020), and309

the damage they carry suggests that they likely participated in the early degradation of the paleofeces310

before decomposition was arrested by the extreme aridity of the rockshelter.311

Among the PyDamage authenticated contigs assigned to gut-associated taxa, NODE 10, NODE 12,312

and NODE 97 are of particular interest. These contigs encode a multidrug resistant ABC (MdtABC)313

transporter associated with bile salt resistance in the bacterium T. succinifaciens. T. succinifaciens is a314

human-associated gut species that is today only found in the gut microbiomes of individuals engaging315

in traditional forms of dietary subsistence (Obregon-Tito et al., 2015; Schnorr et al., 2014; Angelakis316
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et al., 2019). It is not found in the gut microbiomes of members of industrialized societies, and is believed317

extinct in these groups (Schnorr et al., 2016). Its identification within paleofeces provides insights into318

the evolutionary history of this enigmatic microorganism and its functional adaptation to the human gut319

(Schnorr et al., 2019). The additional identification of other resistance genes among the authenticated320

contigs provides further evidence regarding the evolution of antimicrobial resistance in human-associated321

microbes.322

As the fields of microbiology and evolutionary biology increasingly turn to the archaeological record323

to investigate the rich and dynamic evolutionary history of ancient microbial communities, it has become324

vital to develop tools for assembling and authenticating ancient metagenomic DNA. Coupled with aDNA325

de novo assembly, PyDamage opens up new doors to explore and understand the functional diversity of326

ancient metagenomes.327

Code and Data availability328

• Genetic data for ZSM028 is available on the European Nucleotide Archive (ENA) under accession329

PRJEB33577.330

• PyDamage Software and source code available from: github.com/maxibor/pydamage, license:331

GPLv3332

• The code to replicate the simulation of reads and contigs, and the figures is available in the following333

citable GitHub repository: DOI: 10.5281/zenodo.4630383 - github.com/maxibor/pydamage-article334
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Mann, A. E., Sabin, S., Ziesemer, K., Vågene, Å. J., Schroeder, H., Ozga, A. T., Sankaranarayanan,412

K., Hofman, C. A., Yates, J. A. F., Salazar-Garcı́a, D. C., et al. (2018). Differential preservation of413

endogenous human and microbial dna in dental calculus and dentin. Scientific reports, 8(1):1–15.414

Meyer, M., Kircher, M., Gansauge, M.-T., Li, H., Racimo, F., Mallick, S., Schraiber, J. G., Jay, F.,415
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