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Abstract20

An evolutionary process is reflected in the sequence of changes of any trait (e.g. mor-21

phological, molecular) through time . Yet, a better understanding of evolution would be22

procured by characterizing correlated evolution, or when two or more evolutionary pro-23

cesses interact. Many previously developed parametric methods often require significant24

computing time as they rely on the estimation of many parameters. Here we propose25

a minimal likelihood framework modelling the joint evolution of two traits on a known26

phylogenetic tree. The type and strength of correlated evolution is characterized by27

few parameters tuning mutation rates of each trait and interdependencies between these28

rates. The framework can be applied to study any discrete trait or character ranging29

from nucleotide substitution to gain or loss of a biological function. More specifically,30

it can be used to 1) test for independence between two evolutionary processes, 2) iden-31

tify the type of interaction between them and 3) estimate parameter values of the most32

likely model of interaction. In its current implementation, the method takes as input33

a phylogenetic tree together with mapped discrete evolutionary events on it and then34

maximizes the likelihood for one or several chosen scenarios. The strengths and limits35

of the method, as well as its relative power when compared to a few other methods, are36

assessed using both simulations and data from 16S rRNA sequences in a sample of 5437

γ-enterobacteria. We show that even with datasets of fewer than 100 species, the method38

performs well in parameter estimation and in the selection of evolutionary scenario.39

Keywords: correlated evolution, maximum likelihood, model40

Introduction41

Evolutionary processes are often interdependent at all levels of organization, from molecules42

(Shindyalov et al., 1994) to ecosystems (Van Valen, 1973). Correlated evolution is the43

lack of independence in the evolution of multiple traits of the same living entity such as44

an individual, a sequence or a species (Achaz and Dutheil, 2021). Here, we define trait45

as any morphological or life history trait, or any molecular character. In many cases, one46

mutation in one trait impacts the evolution of other traits. Patterns of correlated evolu-47

tion naturally emerges when comparing morphological traits (e.g., size and body mass)48

or when comparing molecular traits (e.g., residues of the same protein). Nevertheless,49

correlated evolution might also be observed through functional constraints in metabolic50
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or regulation networks, without any physical interactions between the partners (Fraser51

et al., 2004).52

The nature of biological interactions explains the different patterns of correlated evo-53

lution. For example, synergistic effects result in positive correlation whereas antagonistic54

ones cause negative correlations. At the molecular level, genetic interactions are named55

epistasis (Phillips, 2008), which refers to the influence of a genetic background on the56

effect of mutations. Multiple mutations may have additive or diminishing fitness effects,57

and all combinations are summarized in a fitness landscape. A fitness landscape is then58

the catalog of fitness values of all possible combinations of mutations (Wright, 1932), and59

its structure is highly predictive of the expected pattern of correlated evolution (Achaz60

and Dutheil, 2021). Fitness landscapes are an object of still important work nowadays61

(Achaz et al., 2014; Visser and Krug, 2014; Yi and Dean, 2019).62

In this study, we restrict ourselves to the simple case of only two evolutionary pro-63

cesses. Compensated Pathogenic Deviations (CPDs) constitute an illuminating example64

of correlated evolution. CPDs are instances of the more general Bateson-Dobzhansky-65

Muller incompatibilities (Bateson, 1909; Dobzhansky, 1934; Muller, 1942; Orr, 1996;66

Welch, 2004). CPDs are highly deleterious alleles in a focal species but wild type in67

one or several other species. The deleterious effect of the mutated allele must then be68

balanced by one or more compensatory mutations, assuming that the effect is not simply69

due to environmental effects. CPDs have been reported for humans (Kondrashov et al.,70

2002) and insects (Kulathinal et al., 2004), and they can be as common as 10% of the71

deleterious amino acid substitutions. Depending on the exact nature of the epistasis72

between the two mutations, different mutational histories will have different likelihoods.73

If the first mutation to occur is the deleterious one, then the occurrence of the com-74

pensatory mutation must follow very quickly or even co-occur with the first one. When75

the compensatory mutation occurs first, the second one, that is no longer deleterious,76

can occur with some time lag. Both possible scenarios can be re-expressed in terms of77

induction of one event onto the other; the induction represents the intensity in which the78

triggering event favors the other. The inferred strength of the induction will be however79

different for both scenarios: for example, a strong induction in the first case and only a80

mild induction in the second one.81

Although direct interactions cause patterns of correlated evolution, the reciprocal is82

not true, for at least two reasons.83

First, an observed pattern of correlation can result from indirect interactions between84

the two focal traits. As always, correlation does not imply causation. For example, two85

morphological traits can jointly respond to changes of a hidden environmental variable86
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without having direct interaction. Similarly, two residues in proteins can show patterns87

of correlated evolution because they both interact with a third residue. To overcome this88

issue, the popular Direct Coupling Analysis (DCA) has been developed, which prevents89

indirect coupling and allows only pairwise interactions (Weigt et al., 2009; Morcos et al.,90

2011). In particular, DCA models the abundance of sequences in nature by probabilities91

of presence in a Potts model. In such a model, the distribution of sequence abundance92

depends not only on marginal frequencies at each site (local abundance) but also on93

joint frequencies for all pairs of sites (pairwise epistasis). The underlying assumption94

is that deleterious combinations of residues should be rare enough such that we do95

not see them in the wild. The main challenge of DCA is to infer the parameters of a96

highly parameterized model. Several methods have been developed to infer correctly and97

efficiently the model parameters but they are computationally demanding (Weigt et al.,98

2009; Morcos et al., 2011; Baldassi et al., 2014; Ekeberg et al., 2013). The advantage of99

DCA is the excellent predictive power of amino acid contacts in 3D structures (Marks100

et al., 2011) in comparison to simple correlation metrics such as Mutual Information101

(MI) (Chiu and Kolodziejczak, 1991; Martin et al., 2005). Nonetheless, MI methods are102

decent indicators of interactions and are so fast to compute that they can be measured103

for all pairs of sites on alignments of complete bacterial genomes (Bitbol, 2018; Pensar104

et al., 2019).105

Second, patterns of apparent correlated evolution can be due to phylogenetic inertia106

(Harvey and Pagel, 1991). More specifically, species, sequences or individuals cannot107

be regarded as statistically independent samples because they partially share a history.108

This shared history is often represented by a phylogenetic tree. Species closer in the109

tree have traits that are closer in value and this extends to pairs of traits. Hence,110

the variable phylogenetic proximity between species create patterns of correlation for111

traits that are not biologically interacting. In this regard, phylogeny can be seen as a112

hidden variable. For continuous traits, the development of the statistically independent113

contrasts led to take into account phylogenetic inertia (Felsenstein, 1985). For discrete114

traits, an extension of the phylogenetic logistic regression for binary dependent variables115

was recently developed (Ives and Garland, 2010).116

In this article, we are interested in quantifying correlated evolution between discrete117

traits. We will restrict the term evolutionary process to describe any process that results118

in discrete evolutionary events on a phylogenetic tree. Discrete events abstract muta-119

tions at the molecular level, but more generally can be applied to any change, gain, or120

loss of any biological function, of any morphological trait or of any life history trait.121

These events can be mapped on the phylogenetic tree using ancestral character recon-122
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struction (Shindyalov et al., 1994). Once the events are mapped, one can then test for123

the independence between the evolutionary paths of the two traits and whether both124

traits tend to show co-variation in the same branches of the tree (Tufféry and Darlu,125

2000; Dutheil et al., 2005; Dutheil and Galtier, 2007) or whether one type of event tends126

to precede the other (Kryazhimskiy et al., 2011; Behdenna et al., 2016). For cases where127

events are placed (ignoring reconstruction uncertainties), p-values can be computed an-128

alytically for any type of correlated evolution (one event precedes the other, both events129

co-occur, one event prohibits the other, etc.) using matrix formalism (Behdenna et al.,130

2016).131

The null model of independence assumes that evolutionary events follow a Pois-132

son process, such that they occur uniformly on the tree. More generally, evolutionary133

processes can be modeled by time-continuous Markov processes (Felsenstein, 1981). It134

is then possible to generalize the model for two evolutionary processes that explicitly135

depend on one another (Pagel, 1994; Milligan, 1994). The model of independence corre-136

sponding to a sub-space of parameter values of the general model makes it possible to test137

whether the two evolutionary processes are independent (or not) using likelihood-ratio138

tests (LRT). Based on this idea, multiple likelihood-based approaches were proposed,139

although they are generally computationally demanding (Pagel, 1994; Milligan, 1994;140

Schöniger and von Haeseler, 1994; Tillier and Collins, 1995; Pollock et al., 1999; Baum141

and Donoghue, 2001; Pagel and Meade, 2006; Yeang et al., 2007; Dib et al., 2014). The142

methods involve exploring or maximizing over a likelihood surface that has as many143

dimensions as the number of parameters. For two binary traits, there are 4 possible144

states for the two traits (00, 01, 10, 11). When the two processes are independent, there145

are four transition rates (two for each trait in both directions) but there is a 4-by-4 rate146

matrix describing the complete process. The rate matrix is defined by 12 parameters, or147

8 when double mutations are forbidden. More complex models, like 2 sites with 20 amino148

acids each, depend on more parameters (on the order of a few hundred). Consequently,149

these methods need larger datasets and expensive computation time.150

Here, we propose a likelihood framework that is based on a minimal model of corre-151

lated evolution. The framework generates a series of nested models with 2 to 8 param-152

eters that correspond to the mutation rates of each process and interactions between153

them. We show that these parameters are core values that characterize patterns of cor-154

related evolution. The current implementation of the method assumes that the tree is155

correctly inferred and that the events are correctly placed on the tree. Using maximum156

likelihood, the method can (i) test for independence between two evolutionary processes,157

(ii) find the most likely type of correlated evolution between them (obligate or prefer-158
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ential sequential order, reciprocal synergy, incompatibility, etc.) and (iii) estimate the159

strength of the interaction.160

Materials and Methods161

Model162

A minimal model of correlated evolution163

The following model details the joint distribution of two processes describing sequences164

of evolutionary events E1 and E2 respectively, on a given tree T .165

We assume that events Ei, i ∈ {1, 2} occur on the branches of tree T according to166

a Poisson process with intensity mi hereafter called occurrence rate. The originality of167

our model is that the value of mi can change as a function of the realization of events168

Ei and Ej on the tree, as we now describe.169

For each event Ei, its occurrence rate mi can take 4 values µi, µ
∗
i , νi or ν∗i . The idea170

is that the trait modeled by process i can take two values, e.g. A or a for process 1 and171

B or b for process 2. Additionally, traits can be in a basal state or in an excited state,172

resulting in four states, e.g. for process 1: A, A∗, a, a∗, as depicted in Figure 1a:173

• The two basal rates µi and νi are meant to represent natural rates of occurrence174

of the event Ei, when trait i is in its basal state (non-starred), e.g. for process 1:175

A mutates to a at rate µ1 and a mutates to A at rate ν1.176

• The starred rates µ∗i and ν∗i are meant to model excited rates of occurrence of177

the event Ei, when trait i is in its excited state (starred), e.g. for process 1: A∗178

mutates to a at rate µ∗1 and a∗ mutates to A at rate ν∗1 . Note that a trait in its179

excited state returns to a basal state upon mutation.180

• Last, a trait i can jump from the basal state to the excited state, e.g. for process181

1, from A to A∗ or from a to a∗. These events are induced by occurrences of the182

other type of event, here Ej with j 6= i.183

Alternatively, the model can be fully specified by characterizing states with the rates184

at which the next event will occur and thanks to the following two rules (Figure 1):185

1. When an Ej event occurs at a non-starred rate (the process j was either at µj186

or νj), the mi rate of process i simultaneously switches to (or remains in) its187
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corresponding starred rate: from µi (or µ∗i ) to µ∗i , and similarly, from νi (or ν∗i )188

to ν∗i .189

2. When an Ei event occurs, mi switches from µi (or µ∗i ) to νi, and conversely, from190

νi (or ν∗i ) to µi, simultaneously losing its star if any.191

μ1μ2

ν1μ∗2
ν1μ∗2

μ1μ∗2

ν1ν2
ν1ν2

ν∗1μ2

a) State changes for process 1

b) Few state changes for both processes

c) A phylogenetic tree with events and rates

A

A

a

*

* a
m2

*

ν1

ν1μ1

*μ1

m2

(A,B)

(A∗,b)

(A∗,B)

(A∗,b)

(a,b)

(a∗,B)

(A,b∗)

*μ1

ν1

μ2 ν2

ν2

μ2

Figure 1: A minimal model of correlated evolution between two processes.

Process 1 can be in state A or a and process 2 can be in state B or b. Black disks

correspond to E1 events and grey disks correspond to E2 events. (a) State changes for

process 1. Illustration showing the switches between the hidden states of process 1 and

the associated occurrence rates indicated within the disks. The occurrence rates m2 can

be either µ2 or ν2. (b) Subset of hidden states and occurrence rate switches for the two

processes. (c) Illustration showing the occurrence rate switches on a mock phylogeny.

At the root, the initial rates are µ1 and µ2 and the hidden state is A, B.

The ratio λi = µ∗i /µi (potentially also λ′i = ν∗i /νi) can be thought of as an induction192

factor which measures the influence of an event on another. There is no order requirement193

between the rates: if λi > 1, the induction is positive (i.e. the intensity of the process194

i is increased after an event Ej) whereas it is negative when λi < 1. We assume that195

the interaction only concerns the next induced event, as it models the impact of an Ej196

event on the rate of occurrence of the next Ei event (and vice-versa). Framed in terms197

of compensatory events, the second event can be seen as compensating for the need198

created by the first one. In this sense, rule 2 also consumes the induction, as starred199
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rates switch back to non-starred ones. It is noteworthy to mention that, in this model,200

a second subsequent occurrence of Ej will not set back the rate of i to a basal one (the201

need remains); only an Ei event will do it. Finally, rule 2 also sets the back and forth202

transitions between the µ and ν rates.203

This framework can be used to evaluate many relevant biological scenarios, some of204

which will be detailed further in the methods.205

The likelihood framework206

Let E1 and E2 be two types of events whose occurrences are distributed on a tree T , for207

which the topology and branch lengths are known. We compute the likelihood function208

as the probability of the positions of the occurrences of both events on T , under the model209

previously described, conditioned on a set of parameters (µ1, µ
∗
1, ν1, ν

∗
1 , µ2, µ

∗
2, ν2, ν

∗
2). As210

described below, we can also estimate the rates of the process at the root as well as the211

order of all events in the tree.212

In our current implementation, we assume that no more than one event of each type213

can occur on a single branch. In the limit of small occurrence rates, this is an excellent214

approximation. The derivation of the likelihood for more than one event of each type215

on a branch becomes cumbersome otherwise. As a cautious measure, we calculate the216

probability that more than one event can occur on the longest branch using the highest217

basal mutation rate given by the ML estimates. The user is issued a warning whenever218

the probability is higher than 0.05.219

The likelihood on a single branch220

The likelihood of a branch B of the tree depends on (i) the branch length, (ii) the221

occurrence rates at the beginning of the branch and (iii) which event(s) occur on the222

branch. Considering an initial state of rates (m1,m2) and the possible occurrences of E1223

and/or E2 on the branch, we can determine the final state of rates of the current branch,224

which will be used as the initial rate for the daughter branches, when they exist. All225

transitions are deterministic and provided in the Appendix. It is noteworthy to mention226

that, in the model described here, both processes can never be at the same time in a227

starred rate.228

The likelihood of the branch B is calculated through the following cases (formula229

and derivations are detailed in the Appendix): (1) no event occurred on the branch, (2)230

one event of type i occurred on the branch, for i ∈ [1, 2] and finally (3) one event of231

each type (i followed by j or j followed by i) occurred on the branch. In the third case,232
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where E1 and E2 occurred on B, we cannot assume any order between them, as both233

orders (E1 → E2) and (E2 → E1) are possible a priori ; furthermore, the end rate of234

both processes after the branch depends on this order. We solve this issue by computing235

the likelihood of the branch for both possible orders (see below).236

The likelihood on the whole tree237

The initial rate state at the root is either (µ1, µ2), (µ∗1, µ2), or (µ1, µ
∗
2). All other pairs238

are either impossible (e.g. (µ∗1, µ
∗
2)) or are identical to a swap between µ with ν. Indeed,239

µ and ν can be swapped without any loss of generality (e.g. (µ1, ν
∗
2) is the same as240

(µ1, µ
∗
2) in the model). This remark is useful to limit the computing time, and has no241

consequence, since the µ rates and the ν rates play a completely symmetric role in our242

model. We calculate separately the likelihoods considering the 3 possible initial states,243

using the following algorithm:244

• We know the initial rates of both processes on a branch (i.e., inherited from the245

ancestor branch or given by initialization at the root edge).246

• We verify the occurrence of zero, one or both events on the branch concerned and247

calculate its likelihood and the rates of both processes at the end of the branch.248

If the branch has both types of events, we calculate separately the likelihood for249

the two sub-cases and propagate them in parallel with their two respective final250

rates.251

• If the branch is not terminal, we apply this algorithm to its daughter branches,252

transmitting the final rate. In the case of both events in the branch, we transmit253

both possible final rates separately to two different paths of the recursion.254

The likelihood of the whole tree is the product of the likelihoods of its branches. The255

number of full-tree likelihoods that must be computed scales with 2b2 , where b2 is the256

number of branches with both types of events. These two-event branches are the main257

limitation of the method in terms of computation time.258

Estimating the maximum likelihood259

The set of eight parameters (µ1, µ
∗
1, ν1, ν

∗
1 , µ2, µ

∗
2, ν2, ν

∗
2) maximizing the likelihood de-260

scribes the most likely scenario leading to the observed joint distribution of the oc-261

currences of E1 and E2 on the tree T under our model of correlated evolution. The262

maximum likelihood (ML) is searched by a dedicated implementation based on a mix of263
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(a) sequential unidimensional gradient ascent (each dimension is optimized successively),264

(b) multidimensional gradient ascent, both using golden section search and (c) a Newton-265

Raphson algorithm when possible (when the curvature is negative). The implementation266

has been optimized for the full model but also for each nested submodels.267

Each possible sequence of ordered events from the root to the leaves of the tree is268

evaluated and the most likely is returned. As an option, we also estimate which one of269

the three possible initial rates is more likely (maximizing the likelihood for each of them270

independently); by default we assume that it is (µ1, µ2). As a result, the method returns271

the ordered events, the initial rates (optionally) and the set of parameters maximizing272

the likelihood.273

A selection of scenarios274

Having two rate categories (µ/µ∗ and ν/ν∗) for the same process allows us to cover a275

wider range of scenarios. In this framework, constraining one or more parameters to a276

fixed value, or to be equal, can define a nested sequence of models, each being a particular277

case of a more general one (the most general having 8 free parameters). The likelihood278

can then be maximized for submodels, reducing the parameter space and shortening279

computation time : for example, setting µ1 = µ∗1 and ν1 = ν∗1 is equivalent to assuming280

that the occurrence rate of E1 is not influenced by the occurrences of E2. Cases of281

particular interest involve submodels without correlated evolution. There are at least282

two such models in our framework. The most simplistic one has only two parameters: µ1283

and µ2 (or even a single parameter µ = µ1 = µ2). A more flexible version of independence284

allows for intrinsic rate changes and is modeled by four parameters: µ1, µ2, ν1 and ν2,285

as we detail below.286

Scenario of independence (H0). In this model, each event has a single occur-

rence rate. Indeed, when two processes are independent, their intensities are constant

regardless of the position of the occurrences of each type of event on the tree. The model

therefore reduces to two parameters µ1 and µ2 (assuming that the ν rates equal the µ

rates):

µ1 = µ∗1 ; µ2 = µ∗2

The intensities of both processes are constant in the whole tree. When the two287

processes are independent but have more than one rate, a more relevant approach is to288

consider a model with four parameters, where starred rates are equal to non-starred ones289

but where µ rates differ from ν rates.290
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µ1 = µ∗1 ; µ2 = µ∗2

ν1 = ν∗1 ; ν2 = ν∗2

Interestingly, one can also test the relevance of intrinsic rate variations by compar-291

ing these two models of independence. Then, one can test for correlated evolution by292

measuring (and statistically testing) the likelihood improvement with extra parameters,293

letting the starred rates being different from the basal ones. Some scenarios that our294

model can calculate are scenarios of prohibition, asymmetric induction and reciprocal295

induction.296

Scenario of prohibition. This scenario models the case where E2 events are not

allowed unless they occur after an E1 event (i.e., E1 triggers the appearance of E2).

This would be the case of a strongly deleterious mutation that cannot occur without

being compensated upstream. If we assume a single rate (µ = ν), the model contains 3

parameters

µ1 = µ∗1 ; µ2 = 0 ; µ∗2 > 0

Again, by letting ν rates differ from µ rates, one can also expand the model to include297

two rates for each process.298

Scenario of asymmetric induction. E1 events have a constant rate while the rate299

of E2 is increased after an E1 event has occurred. This scenario models, for example, a300

compensatory mutation that follows the fixation of a slightly deleterious mutation. More301

generally, this 3-parameter model describes the process by which direct compensatory302

events occur.303

µ1 = µ∗1 ; µ2 ; µ∗2 = λµµ2

If one wants to include a second rate for both processes, it is possible to add two304

or three parameters (e.g. ν1 = ν∗1 ; ν2 ; ν∗2 = λνν2), depending on whether one wants305

to have λµ = λν or not. Interestingly, unless one is specifically interested in positive306

induction, there is no need to restrict λ(µ,ν) > 1, as λ(µ,ν) < 1 would result in a scenario307

where occurrences of E1 would slow down the second evolutionary process.308

Scenario of reciprocal induction. Here, we consider a symmetric interaction309

between both processes. E1 events enhance the occurrence rate of E2 events and, recip-310

rocally, E2 events enhance the rate of occurrence of E1 events. This scenario models the311
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reciprocal sign epistasis, where two mutations are beneficial only in the double mutant312

(Weinreich et al., 2005; Poelwijk et al., 2007).313

µ1 ; µ∗1 = λ1µ1 ; µ2 ; µ∗2 = λ2µ2

Several variants of this scenario also exist depending on whether λ1 = λ2, whether314

the λ are restricted to be larger or smaller than one, and finally whether the µ rates315

differ from the ν rates.316

We can then compare pairs of nested models using LRTs (Neyman and Pearson,317

1933). For example, when considering only two nested models, we can use the fact that318

twice the difference of their maximum log-likelihoods approximately follows a χ2 distri-319

bution with degrees of freedom (df) equal to the difference in numbers of parameters:320

2 ln(Lmax
a /Lmax

b ) ∼ χ2(a − b). Then by comparing 2 ln(Lmax
a /Lmax

b ) to the quantiles of321

χ2(a− b), we can decide to reject or not the model with more parameters. We have not322

yet come up with a generalist decision tree using a standard series LRT with a growing323

number of parameters. We therefore recommend to compute the ML for several scenar-324

ios and determine which parameters significantly improve the likelihood (as computation325

time is short enough). This exploration of the different scenarios that are embedded in326

the general framework (that has at most eight parameters) will provide an excellent327

guide to select which scenario is the most likely for the two evolutionary processes under328

study.329

Simulations330

To assess the performance of the method, we simulated different scenarios on a perfectly331

symmetric phylogenetic tree with six synchronized series of bifurcations and 64 leaves.332

All branches have the same length.333

Estimating the occurrence rates334

We first tested the accuracy of the method to retrieve occurrence rates that have been335

arbitrarily selected for a series of simulations. We simulated 10, 000 replicates of a336

scenario where µ1 = 5, µ2 = 4, µ∗1 = 20 and µ∗2 = 50 (all ν were equal to the µ). As337

rates are rescaled by total tree length, µ1 = 5 implies that there are on average five338

occurrences of E1 when the process is at its basal rate (i.e., not counting the ones that339

are triggered by occurrences of E2). We applied the ML method to each simulated340

replicate generating a mapping of events E1 and E2 on the tree, in order to estimate the341
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four rates (the ν were equal to the µ in these simulations). When more than one event342

of a kind occurred in the branch, only one was kept.343

Power to detect scenarios of induction344

To assess the power of LRTs to detect an induction of E1 on E2, we simulated two345

scenarios of induction.346

First, we simulated a scenario of asymmetric induction of E1 on E2 with three347

parameters: µ1 = µ2 = 5 and the induction rate λ2 increasing from 1 to 1000. All348

ν values are equal to the corresponding µ. We then estimate the ML values of three349

models: an independence model with two parameters (µ1, µ2; H0), the simulated model350

with three parameters (H1) and an overparametrized model with inductions in both351

directions (µ1, µ2, µ
∗
1, µ
∗
2; H2).352

The second scenario is a reciprocal induction with three parameters: µ1 = µ2 = 5353

and λ1 = λ2 increasing from 1 to 1000. We estimate the ML values of three models: the354

same independence model as above (H0), the simulated model with three parameters355

(H1) and an overparametrized model with inductions in both directions (H2).356

In both simulations setup, we compute the LRT of H0 vs H1 (LRT23, one degree of357

freedom) and H2 vs H1 (LRT24, two degrees of freedom). The p-values of significance358

are computed assuming a χ2 distribution of twice the logarithm of the ML ratios for359

their respective degrees of freedom. We compare the results of the LRT to our previous360

method based on counts of co-occurrences (epics-Id) and on counts of co-occurrences and361

subsequent occurrences (epicsS+Id) (Behdenna et al., 2016). Additionally, we added a362

standard analysis for the detection of correlated evolution implemented in BayesTraits363

Discrete (BTDiscrete) (Pagel, 1994). The last method computes the LRT between a364

scenario of independence with four parameters and a scenario of dependence with eight365

parameters. The p-value is thus calculated assuming a χ2 distribution with four degrees366

of freedom. We retain all pairs that are found to reject significantly the scenario of367

independence with a risk of five percent.368

Power to detect induction and/or irreversible loss369

We next designed three different scenarios to represent a mixture of intrinsic rate changes370

and interactions between the events. More specifically, we designed the following sce-371

narios, such that in every case E1 tends to precede E2:372

1. Induction: E1 events favors E2 events (λ2 > 1), while E2 events slow down E1373

events (λ1 < 1). This is a special case of asymmetric induction of E1 on E2.374
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2. Loss: E1 events have a higher rate of occurrence (µ1 > µ2) and both events can375

occur only once (ν1 = ν2 = 0). In this scenario, there is no interaction between376

the two processes. Therefore, the sequential pattern (E1 precedes E2) is only due377

to their respective intrinsic rates. A biological example would be the irreversible378

loss of two functions, one being lost faster.379

3. Induction+Loss: this scenario is a combination of irreversible loss (ν1 = ν2 = 0)380

plus asymmetric induction (λ1 < 1, λ2 > 1).381

The exact rates of the simulations are indicated in Table 1. For each scenario, we382

generate 1,000 replicates and we estimate the ML values for the three models above383

and a model of independence with two parameters µ1 and µ2 (H0). We then compute384

the LRTs between four pairs of nested submodels (Figure 4a). LRT1 and LRT4 test385

whether adding a single parameter λ2 = µ∗2/µ2 significantly improves the likelihood,386

demonstrating an induction of E1 on E2. LRT2 and LRT3 test whether the addition387

of two parameters (ν1 and ν2) significantly improves the likelihood, demonstrating that388

rate changes occur regardless of the interactions. When none of the LRTs is significant,389

a scenario of no induction+no loss (referred to as H0) is inferred. When LRT1 and LRT4390

are the only two significant ones, a scenario of induction+no loss is inferred. When LRT2391

and LRT3 are the only two significant ones, a scenario of loss+no-induction is inferred.392

When three LRTs are significant, a scenario of induction+loss is likely. Finally when all393

LRTs are significant, a scenario of induction+loss is inferred.394

µ1 µ∗1 µ2 µ∗2 ν

Induction 10 5 10 [5, 5000] µ

Loss [5, 5000] µ1 5 5 0

Induction+Loss 25 5 25 [5, 5000] 0

Table 1: Rates used for the simulations.

Analysis of correlated evolution between Watson-Crick pairs395

We applied our method to detect correlated evolution between Watson-Crick pairs of396

nucleotides in bacterial sequences of ribosomal ribonucleic acid sequences (rRNA). We397

downloaded 55 sequences of rRNA 16S from the SILVA rRNA database (Pruesse et al.,398

2007; Quast et al., 2013). Of those, 54 are sequences of gamma-enterobacteria and one399
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from a beta-enterobacteria, used as an outgroup. Next, we aligned the sequences with400

Muscle v3.6 (Edgar, 2004) and trimmed all poorly aligned positions using Gblocks v0.91b401

with the default parameter values (Castresana, 2000; Talavera and Castresana, 2007),402

resulting in 1,233 aligned nucleotides. We next inferred a phylogenetic tree using PhyML403

(Guindon et al., 2010) with a generalized time reversible substitution model. Finally,404

we inferred the ancestral states by ML with BayesTraits Multistate (Pagel et al., 2004).405

We assimilated any substitution on any branch of the tree as an evolutionary event,406

disregarding the exact nature of the substitution. The list of the 55 species, the filtered407

alignment and the input tree (with or without events) are provided as Supplementary408

Material (see also Figure S1 for the displayed phylogenetic tree).409

We evaluate the performance of two tests for independence. LRT23 compares the410

ML estimate of a 2-parameter model with no induction (µ1 and µ2) to a 3-parameter411

model with reciprocal induction (µ1, µ2 and λ = µ∗1/µ1 = µ∗2/µ2). On the other hand,412

LRT45 compares the ML estimate of a 4-parameter model of indepence (µ1, µ2, ν1 and413

ν2) to a 5-parameter model with reciprocal induction (µ1, µ2, ν1, ν2 and λ = µ∗1/µ1 =414

µ∗2/µ2 = ν∗1/ν1 = ν∗2/ν2).415

To compare our method to state-of-the-art tools to detect correlated evolution, we416

selected four additional methods to detect correlated evolution in the rRNA alignment:417

two methods based on counts of co-occurrences (epics-Id (Behdenna et al., 2016) and418

CoMap (Dutheil et al., 2005)), one method based on Mutual Information corrected for419

the phylogeny (MIp (Gloor et al., 2005)) and the ML method BTDiscrete. To compute420

the correlated evolution with BTDiscrete, the current available implementation allows to421

test only binary states. Therefore, in the alignment positions where we observed at least422

three states, we replaced the least represented nucleotide(s) by a gap (i.e., considered as423

undefined character in the program).424

For each of the tools, we ranked the 75 pairs that yielded the lowest p-values. To425

compute the distance in Å between each pair of nucleotides, we extracted the 3D position426

of the nucleotides in the crystal structure of the 16S ribosome (Korostelev et al., 2006)427

and used the barycenter as the reference position of each nucleotide.428

Implementation The inference program, epocs, has been implemented in C language429

and is available at http://bioinfo.mnhn.fr/abi/public/EpoCs/. Simulations were430

performed using a home made simulator written in Ocaml language, available at the431

same url.432
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Results433

Simulated data434

We first assessed the power of the method on simulated data. Simulations give an435

overview of the theoretical power and the limitations of the method. Through different436

controlled scenarios, we evaluate (a) to what extent the method correctly estimates the437

occurrence rates, (b) its power to reject independence and (c) its ability to find the438

strength and nature of the interactions between the two evolutionary processes.439

Estimating the occurrence rates440

We first tested the accuracy of the method to retrieve arbitrarily selected occurrence441

rates (µ1 = 5, µ2 = 4, µ∗1 = 20 and µ∗2 = 50) for 10,000 replicates. We observed that the442

distribution of all four rates shows a peak typically at the true values, demonstrating443

that our framework is indeed able to correctly estimate the rates (Figure 2). Notably,444

the basal rates are estimated with less bias (µ̄1 = 4.8 (sd = 2.4) and µ̄2 = 3.9 (sd = 2.1))445

compared to the excited rates (µ̄∗1 = 28.4 (sd = 58.2) and µ̄∗2 = 80.1 (sd = 74.0)). The446

dispersion of estimates around the true values mostly comes from the stochasticity of447

the simulations. Indeed, since the events are distributed according to Poisson processes,448

in some cases we can get more or fewer occurrences than expected. This also explains449

why we observe peaks at low rates that correspond to one or two occurrences. As the450

current implementation does not estimate rates larger than 1000, the last bin (1000+)451

includes all large rates.452

In addition, we found that the estimation of the lambda parameters approaches453

the expected values, where the estimation of the smaller λ1 is more accurate than the454

estimation of λ2 (Figure S2).455

Power to detect induction456

We further assessed the power of LRTs to detect an induction from E1 on E2 and457

compared them to the power of our previously published method based on counts in458

the phylogeny (Behdenna et al., 2016) and the ML method implemented in BayesTraits459

Discrete (Pagel, 1994). The power is estimated by the fraction of replicates that reject460

significantly the null model of independence with a p-value lower than 0.05.461

The first simulated scenario is an asymmetric induction of E1 on E2 with three462

distinct parameters: µ1, µ2 and µ∗2 and an induction rate (λ = µ∗2/µ2) varying from 1 (no463

induction) to 1000 (very strong induction); all ν values are equal to the corresponding µ.464
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Figure 2: Empirical distribution of 10,000 replicates of rate estimation by

maximum likelihood. For each replicate, we simulated on a perfectly symmetric tree

with 64 leaves, occurrences of events with the following rates: µ1 = 5, µ2 = 4, µ∗1 = 20

and µ∗2 = 50. The different peaks at low rates correspond to cases where the numbers

of realized events are small (1 or 2).

The two computed LRTs, one comparing an independence model with two parameters465

and the simulated model, and the second comparing the independence model to an466

overparametrized model, outperform our previous method and the BTDiscrete module467

(Figure 3a). In particular, for inductions of λ > 10, LRTs show a very good power468

(above 60%) that reaches 98% for inductions λ > 100. Furthermore, we observed that469

the LRT based on the overparametrized model is slightly less powerful than the LRT470

based on the simulated model, suggesting that our method is capable of identifying the471

correct mode of correlated evolution.472

The second scenario is a symmetric (reciprocal) induction between E1 and E2 with473

three distinct parameters: µ1, µ2 and λ = µ∗1/µ1 = µ∗2/µ2 and λ ∈ [1, 1000]. Similarly to474

the one-way induction, both LRTs outperform our previous method and the BTDiscrete475

module (Figure 3b). In this case of reciprocal induction, the power of LRTs reaches 95%476

already for inductions λ > 10.477

17

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2020.09.04.282954doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.04.282954
http://creativecommons.org/licenses/by-nc-nd/4.0/


epics-Id
epicsS+Id
LRT23
LRT24
BTDiscrete

Induction rate (λ2)

Po
we

r

Po
we

r

0
0.

2
0.

4
0.

6
0.

8
1

1 10 100 1000
Induction rate (λ)

0
0.

2
0.

4
0.

6
0.

8
1

1 10 100 1000

a) Asymmetric induction (E1 --> E2) b) Reciprocal induction (E1 <--> E2) 

Figure 3: Power of likelihood-ratio tests. We compare the power of epocs to the

power of our previous method, which computes exact p-values based on counts of co-

occurring events (epics-Id) or co-occurring and sequentially ordered events (epicsS+Id).

We also compute the result of BayesTraits Discrete (BTDiscrete). Increasing lambda

values represent greater induction of E1 events on E2 events. Two LRTs are computed:

LRT23 correspond to the LRT between H0 (2-parameter model) to H1 (3-parameter

model, identical to the parameters used in the simulations), and LRT24 correspond to

the LRT between H0 and H2 (overparametrized 4-parameter model). Thresholds of

the LRT are computed assuming a χ2 distribution with one or two degrees of freedom

accordingly. We retained p-values that are lower than 5% (a) Power to detect correlated

evolution on a simulated scenario of induction with the three parameters µ1 = 5, µ2 = 5

and λ = µ∗2/µ2, increasing from 1 to 1000. (b) Power to detect correlated evolution on a

simulated scenario of reciprocal induction tuned by λ = µ∗1/µ1 = µ∗2/µ2, increasing from

1 to 1000.

Power to detect induction and/or irreversible loss478

We next assessed the power of LRTs to discriminate the effect of interactions between the479

events (modeled by the induced rates µ∗) and intrinsic rate changes (modeled by the ν480

rates). More specifically, we designed three different scenarios where E1 events precede481

E2 events: (a) a scenario of induction, where E1 events favors E2 events, (b) a scenario482

of irreversible loss, where E1 events have a higher rate of occurrence and both events483

can occur only once, and (c) a mixed scenario of asymmetric induction and irreversible484

loss.485

The exact rates that we used in the simulations are indicated in Table 1.486
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Figure 4: Power to assess correctly whether there is an induction, a loss or

both. (a) Model selection and color code. All LRTs compare nested models with at least

two rates (µ1 and µ2) and optional induction (λ2 = µ∗2/µ2) and/or loss (ν1 = ν2 = 0).

Induction is inferred (blue area) when LRT1 and LRT4 are the only significant tests.

Loss is inferred (red area) when LRT2 and LRT3 are the only significant tests. Both

induction and loss are likely (dark grey area) when LRT1 and LRT2 are significant as

well as either LRT3 or LRT4. Both are inferred (black areas) when all four tests are

significant. White areas mark cases where no LRT is significant. All other cases are

represented by light grey areas. (b-d) Results for the simulated scenarios. For each

value of the x-axis, we simulated 1,000 replicates of one scenario. The y-axis indicates

the fraction of each scenario that is inferred. (b) Scenario of induction of E1 on E2,

with µ1 = µ2 = 10 and for increasing values of λ2; (c) Loss scenario, where ν1 = ν2 = 0,

for increasing values of µ1; (d) Induction+loss scenario, with µ1 = µ2 = 25 and for

increasing values of λ2.

To assess the presence of induction and/or loss, we computed four LRTs to compare487

four pairs of nested models (Figure 4a). In particular, we aim to demonstrate that our488

method correctly identify the likely scenario underpinning the evolution of the simulated489

traits: a scenario of induction, a scenario of loss, or both.490
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In a simulated scenario of asymmetric induction, the model of induction and no loss491

is correctly preferred, provided that λ2 is large enough (i.e., λ2 > 10) (Figure 4b). In a492

simulated scenario of loss and no induction, the correct scenario is inferred, provided that493

µ1 is large enough (Figure 4c). In other words, E1 events must occur rapidly and only494

once (followed by E2 events, that occur also once but later). Finally, we simulated a case495

with irreversible loss and induction. Evidence supporting both rate changes (intrinsic496

plus interaction) is higher as the induction of E1 on E2 gets larger (Figure 4d). When497

the induction is not very strong, the method only perceives the effect of loss.498

From this set of simulations, we conclude that model selection based on LRTs can499

be used to assess the presence of interactions between the two types of events as well as500

intrinsic rate changes that are independent of any interaction.501

Analysis of rRNA 16S nucleotides502

The ribosomal ribonucleic acid (rRNA) is a major component of the ribosome. The503

rRNA sequences are very well conserved, up until the last universal common ancestor.504

Hence, they have been used to show the diversity of living organisms, in particular the505

existence of the three kingdoms of life (Fox and Woese, 1975; Woese and Fox, 1977).506

The RNA 3D structure has been resolved experimentally (Doty et al., 1959; Leontis507

and Westhof, 2001), and its folding reveals physical interactions between nucleotides.508

In particular, the single-stranded structure of rRNA is in a large part determined by509

Watson-Crick pairs (hereafter WC pairs) that form stems. As the rRNA structure is510

strongly stabilized by stems of WC pairs, the mutation of one nucleotide involved in a511

WC pair is frequently deleterious and is typically only observed together with a second512

compensatory mutation on the paired nucleotide. WC pairs constitute a classical case513

of correlated evolution at the molecular level (Chiu and Kolodziejczak, 1991; Leontis514

and Westhof, 1998; Moore, 1999). Since both nucleotides of a WC pair are in strong515

interaction, we expect a very short time lag, if any, between the two mutations at paired516

bases.517

WC pairs show evidence of correlated evolution518

We used rRNA WC pairs as a positive control to evaluate the performance of two519

tests for independence: LRT23 compares the ML estimate of a 2-parameter model with520

no induction to a 3-parameter model with reciprocal induction. LRT45 compares the521

ML estimate of a 4-parameter model with no induction to a 5-parameter model with522

reciprocal induction. The rationale is to verify whether including switches of intrinsic523
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rates improves the performance of LRTs. We also report the performance of our previous524

method based on counts of co-occurring events (epics-Id) and three additional methods525

to detect correlated evolution. The comparison between the pairs that are significantly526

coevolving and the documented WC pairs shows an overall good overlap between them527

(Table 2). The stronger the evidence of correlated evolution (i.e., the smaller the p-528

values), the higher the enrichment of WC pairs. We observed that adding variable529

intrinsic rates (allowing ν rates to differ from µ rates) improves the specificity of LRTs530

(at the cost of only a marginal loss of sensitivity), so we only used the LRT45 in the531

following and simply refer to it as LRT. The lower performance of BTDiscrete might532

stem from partially masking alignment positions with at least three different nucleotides533

(i.e., only the two most frequent alleles are considered in such positions). We found 34534

WC pairs in these portions, hence decreasing the inference of correlated evolution for535

possible pairs.536

epics-Id LRT23 LRT45 CoMap MIp BTDiscrete

p-value N WC N WC N WC N WC N WC N WC

0.05 3,006 74 9,464 89 6,850 86 6,519 87 2,219 83 1,012 63

10−2 698 57 2,940 74 2,477 75 2,098 83 202 51 186 47

10−3 101 40 752 61 426 59 421 60 50 34 31 23

10−4 39 29 266 50 118 45 118 39 28 25 8 8

10−5 22 20 68 39 49 37 40 31 7 7 3 3

10−6 12 11 37 34 30 28 0 0 0 0 0 0

Table 2: Summary of the rRNA nucleotide pairs that evolve in a correlated manner for

different risk values. For each method, N indicates the number of pairs with evidence

of correlated evolution for the risk given in the first column; WC is the number of

Watson-Crick pairs among them.

However, we note that a large fraction of the 477 WC pairs show no evidence of537

correlated evolution, regardless of the method. At least two reasons can be put forward:538

the alignment filtering procedure and the monomorphic positions in the alignment. In-539

deed, out of the complete set of 477 WC pairs, only 349 WC pairs (0.05% of the 759,528540

unmasked possible nucleotide pairs) have both their positions unmasked after Gblocks.541

Furthermore, the alignment contains 422 polymorphic sites, reducing the dataset to a542

maximum of 106 WC pairs that could be detected among a total of 88,831 polymorphic543

possible nucleotide pairs. Most of the 106 WC pairs show evidence of correlated evolu-544

tion for a risk of 5%, but only ∼ 30 very strong evidence of correlated evolution (p-value545

< 10−6).546
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Figure 5: Induction rates of Watson-Crick pairs in 16S rRNA sequences of

54 enterobacteria. Assuming a model with five parameters (µ1, µ2, ν1, ν2 and λ =

µ∗i /µi = ν∗i /νi), we estimated the reciprocal induction rate of mutation of one site onto

the other. The rates are colored in black if there is statistical support for correlated

evolution (at a risk of 1%) from the comparison between the model with five parameters

to the model of independence with four parameters.

To better understand what type of WC pairs show a significant pattern of correlated547

evolution, we computed the induction rate λ of all 106 WC pairs, regardless of the548

significance of the LRT (Figure 5). Remarkably, we observed that the 75 WC pairs with549

decent support for correlated evolution (p-value < 1%) have stronger induction rate than550

the others. Any WC pair with an induction rate of λ > 100 has significant support for551

correlated evolution at this risk.552

What other nucleotide pairs show evidence for correlated evolution?553

We selected three additional methods to infer correlated evolution and compared the554

amount of WC pairs detected by each tool. For each method, we ranked the 75 best555

nucleotide pairs, i.e., the pairs that show the strongest statistical evidence for correlated556

evolution (disregarding the significance of p-values). We then used the 3D positions of557

the nucleotides in the crystal structure of the 16S ribosome to compute the distance558

between each pair of nucleotides. Each pair was then tagged depending on whether it559

was a WC pair, a non-WC pair with both nucleotides close in space (< 10Å) or a distant560

pair. We found that the LRT method is marginally more specific at detecting WC pairs561

(Figure 6a). In addition, epics-Id was also able to detect significant correlated evolution562

among close nucleotides that are not WC pairs.563

To further characterize the non-WC nucleotide pairs that show patterns of correlated564
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evolution, we mapped the nucleotide positions on the rRNA secondary structure: stems565

of WC pairs and associated loops. Several non-WC pairs close in space belong to the566

same stem and are either consecutive (positions k and k+ 1, i.e., stacked nucleotides) or567

shifted by one when compared to WC pairs (Figure 6b). This suggests that alternative568

non-WC interactions also constrain the evolution of the 16S rRNA.569

Discussion570

In this study, we have developed a likelihood framework based on a minimal model of571

correlated evolution between two evolutionary processes that generate discrete events572

on a given phylogenetic tree. This model depends on at most eight parameters, four for573

each process, that represent interactions between the two processes (the starred rates)574

and intrinsic rate switches (ν 6= µ). For a given tree with mapped evolutionary events,575

we estimate the parameters by maximum likelihood for any (sub)model defined with (a576

subset of) the eight parameters. Maximizing this probability is equivalent to searching577

for an optimal set of parameters describing the processes that led to the observed dis-578

tribution of the events on the tree. Nested models also permit the direct comparison of579

scenarios using likelihood ratio tests, in particular to assess the support for interaction580

and/or intrinsic rate switches.581

Using simulated controlled scenarios, we have shown that our method is accurate for582

estimating the occurrence rates and has good power to assess the presence of interactions583

despite the use of limited data (symmetric trees with only 64 leaves). Moreover, we584

show that the method can assess correctly which process can lead to ordered pairs of585

events: differential rates with irreversible loss or interaction between the two processes.586

Finally, based on an analysis of nucleotide pairs in an alignment of 16S rRNA sequences587

sampled in 54 enterobacteria, we show that the method detects correlated evolution in588

many polymorphic WC pairs, especially among the ones that exhibit strong reciprocal589

induction. In addition, we show that several pairs that are not WC but in the same590

stem also show evidence of correlated evolution. The comparison of performance with a591

selection of four previously existing methods demonstrates that the current framework is592

more specific at detecting WC pairs and can additionally estimate the strength of their593

reciprocal induction.594

As the model has a small number of parameters, the computation time of likelihood595

maximization is fast enough to analyze correlated evolution in a very large number of596

pairs. In the 16S analysis, we had to maximize 2,304,091 likelihood functions (finding597

all possible orders of events for all pairs). The total computation time on a 8Ghz laptop,598
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Figure 6: Analysis of the 75 best nucleotide pairs of 16S showing correlated

evolution. (a) We report the nature of the 75 best pairs (the ones with the lowest

probabilities) among all nucleotide pairs, according to five different methods: our previ-

ous method with co-occurrences (epics-Id), the LRT based method (see legend of Figure

5) using our likelihood framework, the CoMap method based on co-occurrences on the

tree,the MIp method based on Mutual Information, corrected for phylogeny, and the

BTDiscrete module . Pairs are colored in black when they are Watson-Crick, on dark

grey when they are closer than ten Å in the 3D structure and in light grey otherwise.

Below their rank, we also report their associated p-value. (b) Relative structural posi-

tions on the stems-loops for the nucleotides of the 75 best pairs, according to the five

methods.
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without any parallelization, is 11 minutes for the 2-parameter model of independence599

(µ1 and µ2), 71 minutes for the 4-parameter model of independence, and at most 240600

minutes for the full 8-parameter model (that was not used in the analysis above). This601

suggests that MCMC Bayesian surface exploration, that typically requires millions of602

likelihood estimations, could be run to analyze cases on a dataset of a reasonable size.603

Computation time remains, however, orders of magnitude larger than in the methods604

based on counts we have developed before (Behdenna et al., 2016), which takes only four605

seconds to compute correlated evolution from counts of co-occurrence.606

The framework described here relates to the one proposed by Pagel (1994), as they607

both rely on likelihood computation of an explicit continuous time Markov chain. In608

both frameworks, the independence model is nested in a subspace of the more general609

model of correlated evolution, allowing to use statistical tests such as LRT to assess the610

statistical support for independence. However, our minimal framework differs from the611

one of Pagel (1994) in several important aspects. On of the major difference is that our612

model has at most eight parameters, whereas Pagel (1994) computes the transition rates613

between all possible pairs of states for the two traits. In the case of two binary traits,614

Pagel (1994) has eight parameters but it has hundreds for sites with 20 amino acids.615

If we restrict our minimal framework to the 4-parameter model of independence (i.e.,616

the null model of Pagel (1994)) for binary traits, and the largest 8-parameter model (i.e.,617

the full model of Pagel (1994)), both frameworks are similar but not identical. Indeed,618

our model has twelve hidden states compared to four for Pagel (1994) and there is no619

bidirectional mapping between the transition rates.620

However, our minimal model is flexible enough that one can test for likelihood im-621

provement due to the addition of intrinsic rates changes (ν 6= µ) and/or addition of622

interaction between the processes (µ∗ 6= µ). Moreover, the time to maximize the like-623

lihood for BTDiscrete in the Watson-Crick analysis (240 minutes to compute 83,028624

pairwise site comparisons) is much higher than our implementation.625

More generally, our minimal model constitutes a fast and powerful tool to assess the626

statistical support for any scenario that is defined within the framework, ignoring extra627

unnecessary parameters. In addition, the comparison of the various rates of our minimal628

model is straightforward as they have an explicit biological interpretation (e.g., the λ629

values immediately categorizes the interaction as an induction or a repression).630

A drawback of our method is that it is not designed to infer correlated evolution631

for processes for which occurrence rates are tuned by more than two states, e.g., when632

multiple amino acid transitions occur with different rates in the phylogenetic tree at the633

same sites. Furthermore, as the method relies on a phylogenetic tree with mapped evo-634
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lutionary events, it will suffer from uncertainties in phylogenetic inference and ancestral635

state reconstruction. Indeed, the method exploits the branch lengths to estimate the636

rates of the evolutionary processes on the tree. As such, trees estimated on very close637

sequences or on very divergent ones should be handled with care. In addition, since deep638

branches are particularly subject to uncertainties, one has to be careful with the tree639

used as input. Furthermore, our method assumes that evolutionary events are correctly640

placed on the tree. We therefore recommend great care in the reconstruction of the641

ancestral states. When possible, likelihood-based methods, such as ML (Ishikawa et al.,642

2019; Pupko et al., 2000) or Bayesian methods (Bouckaert et al., 2014; Pagel et al., 2004)643

should be preferred over parsimony. Nonetheless, we note that when there are only few644

events on the tree, all methods will likely perform similarly. One possible extension of645

our framework would be to integrate over all possible ancestral reconstructions. Alto-646

gether, we suggest that the method presented here is best suited for phylogenies that647

are not too deep and where the evolutionary events of interest are sparsely located.648

One interesting feature of our framework is its inherent flexibility that allows the649

analysis of diverse types of data. Indeed, any discrete evolutionary event, regardless of650

its nature, that is mapped on a phylogenetic tree can be analyzed, whether it is molecular651

(e.g., substitution) or non-molecular (e.g., gain or loss of a character or of a biological652

function).653

As a concluding remark, we would like to mention that genome-wide association654

studies (GWAS) can be seen as computing correlated evolution between genomic vari-655

ants and a phenotypic trait of interest (Achaz and Dutheil, 2021). As any method of656

correlated evolution, GWAS also suffer from phylogenetic inertia due to stratification of657

the population into subpopulations (Price et al., 2006).658

For the special case of bacteria, the TreeWAS framework was recently developed659

to perform GWAS-like analyses on a phylogenetic tree (Collins and Didelot, 2018). In660

short, the TreeWAS method performs an association analysis between genetic variants661

and the phenotype of interest, both conditioned on a phylogenetic tree. This suggests662

that our framework presented here, that can assess and quantify correlated evolution663

between discrete traits mapped on a phylogeny, can also be used to perform studies664

similar to TreeWAS.665
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Appendix832

A Initial and final states833

The following tables sum up the final rate state corresponding to each initial rate state,834

for each possible case. Note that the states where both events have a starred occurrence835

rate are forbidden.836

No event on the branch837

In this particular case, the final state is always the same as the initial state.838

One occurrence of Ei only on the branch839

E1 E2

Initial state Final state Initial state Final state

(a1, a2) (b1, b2) (a1, a2) (b1, b2)

(µ1, µ2) (ν1, µ
∗
2) (µ1, µ2) (µ∗1, ν2)

(µ1, µ
∗
2) (ν1, µ

∗
2) (µ1, µ

∗
2) (µ1, ν2)

(µ1, ν2) (ν1, ν
∗
2) (µ1, ν2) (µ∗1, µ2)

(µ1, ν
∗
2) (ν1, ν

∗
2) (µ1, ν

∗
2) (µ1, µ2)

(µ∗1, µ2) (ν1, µ2) (µ∗1, µ2) (µ∗1, ν2)

(µ∗1, ν2) (ν1, ν2) (µ∗1, ν2) (µ∗1, µ2)

(ν1, µ2) (µ1, µ
∗
2) (ν1, µ2) (ν∗1 , ν2)

(ν1, µ
∗
2) (µ1, µ

∗
2) (ν1, µ

∗
2) (ν1, ν2)

(ν1, ν2) (µ1, ν
∗
2) (ν1, ν2) (ν∗1 , µ2)

(ν1, ν
∗
2) (µ1, ν

∗
2) (ν1, ν

∗
2) (ν1, µ2)

(ν∗1 , µ2) (µ1, µ2) (ν∗1 , µ2) (ν∗1 , ν2)

(ν∗1 , ν2) (µ1, ν2) (ν∗1 , ν2) (ν∗1 , µ2)
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Both events are present on the branch841

E1 → E2 E2 → E1

Initial state Intermediate state Final state Initial state Intermediate state Final state

(a1, a2) (b1, b2) (c1, c2) (a1, a2) (b1, b2) (c1, c2)

(µ1, µ2) (ν1, µ
∗
2) (ν1, ν2) (µ1, µ2) (µ∗1, ν2) (ν1, ν2)

(µ1, µ
∗
2) (ν1, µ

∗
2) (ν1, ν2) (µ1, µ

∗
2) (µ1, ν2) (ν1, ν

∗
2)

(µ1, ν2) (ν1, ν
∗
2) (ν1, µ2) (µ1, ν2) (µ∗1, µ2) (ν1, µ2)

(µ1, ν
∗
2) (ν1, ν

∗
2) (ν1, µ2) (µ1, ν

∗
2) (µ1, µ2) (ν1, µ

∗
2)

(µ∗1, µ2) (ν1, µ2) (ν∗1 , ν2) (µ∗1, µ2) (µ∗1, ν2) (ν1, ν2)

(µ∗1, ν2) (ν1, ν2) (ν∗1 , µ2) (µ∗1, ν2) (µ1, µ2) (ν1, µ2)

(ν1, µ2) (µ1, µ
∗
2) (µ1, ν2) (ν1, µ2) (ν∗1 , ν2) (µ1, ν2)

(ν1, µ
∗
2) (µ1, µ

∗
2) (µ1, ν2) (ν1, µ

∗
2) (ν1, ν2) (µ1, ν

∗
2)

(ν1, ν2) (µ1, ν
∗
2) (µ1, µ2) (ν1, ν2) (ν∗1 , µ2) (µ1, µ2)

(ν1, ν
∗
2) (µ1, ν

∗
2) (µ1, µ2) (ν1, ν

∗
2) (ν1, µ2) (µ1, µ

∗
2)

(ν∗1 , µ2) (µ1, µ2) (µ∗1, ν2) (ν∗1 , µ2) (ν∗1 , ν2) (µ1, ν2)

(ν∗1 , ν2) (µ1, ν2) (µ∗1, µ2) (ν∗1 , ν2) (ν1, µ2) (µ1, µ2)

842

B Likelihood function for a single branch843

Let T be a tree, and B a branch of this tree, of length l. We consider two events Ei,844

i ∈ {1, 2}, of respective occurrence rates (µi, µ
∗
i , νi, ν

∗
i ). Each event is assumed to occur845

at most once on B.846

We detail here the likelihood function for this single branch, the three possible cases847

being treated separately. Let fB be the likelihood for the branch B, given the parameter848

values.849

No event on the branch850

Let a1 (resp. a2) be the occurrence rate for E1 (resp. E2) on the branch.851

fB = e−l(a1+a2)852

One occurrence of Ei, i ∈ {1, 2} on the branch853

In this case, we define:854

• a1 (resp. a2) as the occurrence rate for E1 (resp. E2) before the occurrence of Ei855

on the branch856
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• b1 (resp. b2) as the occurrence rate for E1 (resp. E2) after the occurrence of Ei857

on the branch.858

Those parameters take different values depending on the initial states on the branch,859

and according to the model. We easily get860

fB =
∫ l
0 aie

−a1te−a2te−b1(l−t)e−b2(l−t)dt

= − ai
a1+a2−b1−b2 (e−l(a1+a2) − e−l(b1+b2))

861

When (a1 + a2 − b1 − b2)→ 0:862

fB → aile
−l(b1+b2)863

One occurrence of each event on the branch864

In this subsection, we assume that the occurrence of Ei precedes the occurrence of Ej865

on branch B ({i, j} ∈ {1, 2}, i 6= j).866

By analogy with the previous case, we define:867

• a1 (resp. a2) as the occurrence rate for E1 (resp. E2) before the occurrence of Ei868

on the branch869

• b1 (resp. b2) as the occurrence rate for E1 (resp. E2) after the occurrence of Ei870

and before the occurrence of Ej on the branch.871

• c1 (resp. c2) as the occurrence rate for E1 (resp. E2) after the occurrence of Ej872

on the branch.873

Those parameters take different values depending on the initial states on the branch,874

and according to the model. We easily get875

fB =
∫ l
0 aie

−a1te−a2t(
∫ l−t
0 bje

−b1xe−b2xe−c1(l−t−x)e−c2(l−t−x)dx)dt

=
aibj

c1+c2−b1−b2 ( e
−l(a1+a2)−e−l(b1+b2)

b1+b2−a1−a2 − e−l(a1+a2)−e−l(c1+c2)

c1+c2−a1−a2 )

876

If all three denominators tend to 0,877

fB → 1
2aibjl

2e−l(b1+b2)878

When c1 + c2 − b1 − b2 → 0,879
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fB → aibj
b1+b2−a1−a2 ( e

−l(a1+a2)−e−l(b1+b2)

b1+b2−a1−a2 − le−l(b1+b2))880

When b1 + b2 − a1 − a2 → 0,881

fB → aibj
c1+c2−b1−b2 (le−l(b1+b2) − e−l(b1+b2)−e−l(c1+c2)

c1+c2−b1−b2 )882

When a1 + a2 − c1 − c2 → 0,883

fB → aibj
c1+c2−b1−b2 ( e

−l(b1+b2)−e−l(c1+c2)

c1+c2−b1−b2 − le−l(c1+c2))884
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