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SUMMARY 

State-of-the-art Ca2+ imaging studies that monitor large-scale neural dynamics can produce 

video datasets ~10 terabytes or more in total size, roughly comparable to ~10,000 Hollywood 

films. Processing such data volumes requires automated, general-purpose and fast 

computational methods for cell identification that are robust to a wide variety of noise 

sources. We introduce EXTRACT, an algorithm that is based on robust estimation theory and 

uses graphical processing units (GPUs) to extract neural dynamics in computing times up to 

10-times faster than imaging durations. We validated EXTRACT on simulated and 

experimental data and processed 94 public datasets from the Allen Institute Brain 

Observatory in one day. Showcasing its superiority over past cell-sorting methods at 

removing noise contaminants, neural activity traces from EXTRACT allow more accurate 

decoding of animal behavior. Overall, EXTRACT provides neuroscientists with a powerful 

computational tool matched to the present challenges of neural Ca2+ imaging studies in 

behaving animals. 

INTRODUCTION  

State-of-the-art neural Ca2+ imaging experiments, such as those using fluorescence macroscopes1,2, 

can generate up to ~300 MB of imaging data per second, or >1 TB per hour of recording. Faced with 
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such data volumes, neuroscientists need computational tools that can quickly process extremely 

large datasets without resorting to analytic shortcuts that sacrifice the quality of results. A pivotal 

step in the analysis of many large-scale Ca2+ imaging studies is the extraction of individual cells and 

their activity traces from the raw video data. The quality of cell extraction is critical for subsequent 

analyses of neural activity patterns, and, as shown below, superior analytics for cell extraction lead 

to superior biological results and conclusions.   

Early methods for cell extraction identified neurons as regions-of-interest (ROIs) through 

manual3-7, semi-automated8 or automated image segmentation9,10, which in turn allowed Ca2+ activity 

in each ROI to be determined using either the identified spatial masks or multivariate regression. 

Other cell extraction methods, including independent components analysis (ICA), non-negative 

matrix factorization (NMF), and constrained non-negative matrix factorization (CNMF), 

simultaneously infer cells’ shapes and dynamics using a matrix factorization11-13. In these now widely 

used methods, the Ca2+ movie is treated as a three-dimensional matrix that can be approximated as 

the product of a two-dimensional (spatial) matrix and a one-dimensional (temporal) matrix, although 

the detailed assumptions about this factorization differ between the three approaches and influence 

their relative strengths and limitations. Together, extant cell extraction methods have enabled Ca2+ 

imaging studies with a wide variety of microscopy modalities and model species. 

Notwithstanding the many past successes of Ca2+ imaging, neuroscientists face important 

computational challenges as Ca2+ imaging technology continues to progress rapidly. Many datasets 

contain noise that is not Gaussian-distributed, including background Ca2+ signal contaminants from 

neuropil or neural processes, weakly labeled or out-of-focus cell bodies, and neurons that occupy 

overlapping sets of pixels. For simplicity, prior algorithms have typically used signal estimators to 

infer cellular Ca2+ traces by assuming Gaussian-distributed contamination9,11-15. Thus, these prior 

methods poorly handle the non-Gaussian contaminants found in real experimental situations, 

impeding detection of cells and inference of their Ca2+ activity patterns. Further, due to the alternating 

estimation technique used in matrix factorization-based approaches13-15, errors due to mismatches 
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between the data’s assumed and actual statistical properties can rise quickly with the number of 

alternating iterations. To mitigate these estimation errors, past research has applied image 

processing methods to process either the Ca2+ videos15 or the inferred cellular components13. 

However, a strict reliance on specific image processing routines can restrict a cell extraction 

algorithm’s utility to the specific imaging conditions or modalities for which these routines were 

designed. To date, no cell sorting algorithm has addressed the challenges of Ca2+ imaging within a 

single, generally applicable conceptual framework. 

Here we present a broadly applicable cell extraction method that addresses the experimental 

limitations of real Ca2+ imaging datasets while also avoiding assumptions that are specific to 

particular imaging modalities or fluorescence labeling patterns. Using the theoretical framework of 

robust estimation16,17, we introduce a minimally restrictive model of data generation and derive a 

statistically robust method to identify neurons and their fluorescence activity traces. Robust 

estimation is widely used in statistics, as it provides a potent means of analyzing data that suffers 

from contamination, such as outlier data points, whose statistical properties differ from those of an 

assumed noise model (typically Gaussian)18. Instead of modeling the contamination statistics, robust 

estimation provides statistical estimates that have quality guarantees even in the case of the worst 

possible contamination.  

One obtains these quality guarantees by constructing a statistical estimator that selectively 

downgrades the importance of contaminated, outlier observations. In the presence of Gaussian-

distributed noise plus non-Gaussian outliers, non-robust estimators can suffer enormous errors, 

whereas a suitable robust estimator can have negligible error17. In cell extraction, robust estimation 

allows us to incorporate non-Gaussian contaminants into the formulation and to infer neural activity 

with high fidelity without having to explicitly model the contaminants in Ca2+ imaging experiments. 

The result is a modality-agnostic approach that makes minimal assumptions about the data. We term 

the algorithm EXTRACT (for EXTRACT is a tractable and robust automated cell extraction 

technique), and the software is openly available (https://github.com/schnitzer-lab/EXTRACT-public). 
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EXTRACT performs quickly and accurately with Ca2+ movies up to hundreds of gigabytes in 

size, due in part to its native support for graphical processing units (GPUs). For a typical imaging 

study, processing times with EXTRACT are an order-of-magnitude briefer than the imaging session. 

Even with Ca2+ videos from recent fluorescence macroscopes, EXTRACT runtimes on a standard 8-

core microprocessor and one GPU are shorter than imaging durations.  

We first validated EXTRACT on simulated data incorporating challenging conditions. We then 

analyzed experimental data from conventional, multi-plane, and mesoscopic two-photon imaging 

studies in head-fixed behaving mice, one-photon miniaturized microscopy studies in freely behaving 

mice, and the Allen Brain Observatory two-photon Ca2+ imaging dataset19. When studying data from 

behaving animals, we focused on how EXTRACT led to superior biological results, due to the 

improved quality of the Ca2+ activity traces as compared to those from prior algorithms. Specifically, 

we show improved identification of anatomically clustered neural activity in the striatum, enhanced 

identification of place- and anxiety-encoding cell populations in the ventral hippocampus, and more 

accurate predictions of mouse location via decoding of hippocampal neural ensemble activity, all 

using Ca2+ activity traces from EXTRACT. 

RESULTS 

A defect of conventional cell sorting: L2 loss functions are optimal only for Gaussian noise. 

We first illustrate the substantial shortcomings of conventional cell sorting algorithms by using a toy 

model in which the Ca2+ movie, 𝑴, contains a single neuron, has a field-of-view ℎ	´	𝑤 pixels in size, 

and is 𝑛 frames in duration (Fig 1A; Fig. S1). Without loss of spatial information, we refer to the two 

spatial dimensions using a single scalar variable whose values have a 1:1 correspondence to points 

in the x-y plane. With this notation we can describe 𝑴 as an 𝑚	´	𝑛 array, where 𝑚 equals the total 

number of pixels, ℎ𝑤. Within this description the column vector 𝒔 (of size 𝑚) denotes the cell’s spatial 

profile, and the row vector 𝒕∗ (of size 𝑛) denotes its Ca2+ activity trace. Initially, 𝒕∗ is unknown. We 

seek an estimate, 𝒕*, such that the outer product, 𝒔𝒕*, well approximates 𝑴.  

Conventionally, one finds 𝒕* by considering the residual, 𝑹 = 𝑴–𝒔𝒕*, and choosing 𝒕* to 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436279doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436279
http://creativecommons.org/licenses/by/4.0/


 5 

minimize the sum of the squared elements of 𝑹 (Refs. 11,13). In other words, one places an L2 (i.e., 

quadratic) loss function on the residual and then minimizes this function with respect to 𝒕. This 

widespread method of estimating Ca2+ activity rests on an implicit assumption that 𝑹 is Gaussian-

distributed. Specifically, if 𝑴 contains the cell’s activity plus additive Gaussian noise that is 

independent for each pixel, this method is optimal in that it minimizes (𝒕∗ − 𝒕*)1, the mean-squared-

error (MSE) between the actual, 𝒕∗	,	and estimated, 𝒕*	 , activity traces18.	 	 In reality, however, Ca2+ 

imaging data are corrupted not just by Gaussian noise but also other contaminants, such as from 

neuropil Ca2+ activity, out-of-focus neurons, or cells with overlapping pixels. For instance, if one adds 

to our toy model with one cell a partially overlapping ‘distractor’ cell, this simple addition greatly 

impedes the estimation of Ca2+ signals from the first cell. Specifically, using an L2 loss function can 

lead to crosstalk from the distractor cell in the estimated trace, 𝒕*	 , for the first cell—even when 

regularization enforcing sparsity is used (Fig. 1B–D; Fig. S1A–D). 

Robust statistical estimation of neural Ca2+ dynamics 

We start our presentation of robust estimation by first relaxing the common assumption that noise is 

Gaussian-distributed. Signal contaminants may exist with spatially irregular and temporally non-

stationary properties, as can occur when neighboring cells occupy overlapping sets of pixels or when 

there are Ca2+ signals from neuropil or out of focus neurons. Especially when the cells of interest are 

quiet, such signal contaminants can greatly exceed the Ca2+ signals we aim to extract. Second, we 

note that since nearly all fluorescent Ca2+ reporters have a rectified dynamic range, positive-going 

[Ca2+] fluctuations are reported far more strongly than negative-going fluctuations of [Ca2+] or 

fluorescence levels below baseline values. Based on these points, we model the noise distribution 

as having two components (Fig. 1E,F). There is a Gaussian-distributed component that affects a 

fraction, 1 − 𝜖, of the pixel intensity measurements. The other component has an unknown 

distribution, 𝐻, and affects the remaining fraction, 𝜖, of the measurements. We assume nothing about 

𝐻, except that it yields non-negative measurement values, due to the rectification of the Ca2+ 

indicator. (More precisely, 𝐻 has support on [𝜅,¥), where 𝜅 is a positive number, typically on the 
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order of 1 s.d. or less of the baseline noise fluctuations that persist after pre-processing; see 

Methods for details).  

With this noise model, what is a suitable loss function for estimating cells’ Ca2+ signals? The 

lack of a prescribed noise distribution for 𝐻 prevents identification of an optimal loss function that 

minimizes the MSE of the estimated Ca2+ activity trace, (𝒕∗ − 𝒕*)1. However, by using the theory of 

robust statistics16,17,20, we can find a loss function that is optimal in a different sense, namely that it 

achieves the best MSE under the worst possible probability distribution that the unknown noise could 

ever assume (see Methods for proof). This loss function smoothly transitions  between a quadratic 

function and the identity function, with the transition occurring at the value, 𝜅, that should depend on 

the prevalence, 𝜖, of the unknown noise component (Fig. 1D–F; Fig. S1E). The simplest approach 

to robust estimation uses fixed values of 𝜖 and 𝜅, but one can also adaptively estimate values of 𝜖 

and 𝜅 for each time frame from the data itself (Fig. 1D; Fig. S1B,D,E); to do this one iteratively seeks 

better estimates of 𝜖 and 𝜅 in a closed loop, while simultaneously performing robust estimation with 

these parameters (Methods). In this way one can let the data dictate, frame-by-frame, the degree to 

which the loss function should differ from its conventional L2 form.  

Returning to our toy model with one cell of interest and one distractor cell, with our robust 

loss function we can estimate the first cell’s Ca2+ activity trace accurately, while ignoring signals from 

the distractor (Fig. 1C,D; Fig. S1B,D). By assuring that the MSE of the estimated Ca2+ activity trace, 

(𝒕∗ − 𝒕*)1, is optimal in worst-case scenarios, one also obtains mathematical bounds on the 

magnitude of the MSE in all possible cases. Although treating worst-case scenarios might seem 

unduly pessimistic, real Ca2+ imaging datasets do actually contain non-Gaussian noise. This is why 

a use of robust estimation to account for such noise can lead to more accurate biological findings.  

Cell extraction using robust estimation 

Using our loss function and robust estimation (Fig. 1E,F), we now treat real data by going beyond 

our toy model with one cell. We consider a Ca2+ movie, 𝑴, that is a linear combination of both 

background signal contaminants and Ca2+ signals from an unknown number of cells, each of which 
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contributes an activity trace given by the product of its spatial and temporal weights, 𝒔7𝒕7, where the 

index 𝑘 denotes the cell’s identity (Fig. 1E). As in prior work12,13, we accomplish cell extraction by 

first performing a simple (and optional) pre-processing of the movie frames, followed by two main 

computational stages (Fig. 2A). The pre-processing step applies a high-pass spatial filter to 𝑴 to 

reduce background fluorescence (which is common in one-photon Ca2+ movies) and then subtracts 

from each pixel value its baseline fluorescence level (Methods). The first main stage of computation, 

‘Robust cell finding’, identifies cells in the movie. The second main stage, ‘Cell refinement’, hones 

the estimates of cells’ spatial profiles and activity traces. As with the toy model above, for which an 

L2 loss function led to crosstalk from a distractor cell, robust estimation allows the proper isolation of 

individual neurons from real data, even when there is substantial spatial overlap in cells’ profiles and 

temporal overlap in their activity patterns.  

The cell-finding stage uses a simple, iterative procedure to find cells and applies robust 

estimation to determine each cell’s spatial profile and activity trace (Fig. 2A,C,E). At each iteration, 

the algorithm finds a seed pixel that attains the movie’s maximum fluorescence intensity, and it 

initializes a candidate cell image at the seed pixel (Methods). The algorithm then alternatively 

improves its determinations of the cell’s spatial profile and activity trace via robust estimation (Fig. 

2E). After the estimates of the spatial profile and activity trace stabilize, the cell’s inferred activity 

trace is subtracted from the movie, and in the next iteration the steps above repeat for another cell. 

The cell-finding procedure ends when the peak value for the activity trace of the seed pixel fails to 

reach a threshold value, which is set as a fixed multiple of the standard deviation of the background 

noise. 

After cell finding, the ‘Cell-refinement’ stage improves the estimates of cells’ spatial and 

temporal contributions to the movie data, by accounting concurrently for all the identified cells using 

multivariate robust estimation (Fig. 2F; Methods). This stage is also an iterative procedure, and 

each iteration has three steps. First, all fluorescence traces are simultaneously updated using robust 

estimation, while holding fixed the cells’ spatial profiles. Second, all spatial profiles are 
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simultaneously updated using robust estimation, while holding fixed the activity traces. Third, a 

validation procedure checks a set of predetermined metrics for every putative cell and removes any 

cell with metrics below user-set thresholds. This 3-step procedure repeats for a fixed number of 

iterations, and the algorithm outputs the final estimates of cells’ spatial profiles and activity traces.   

Crucially, to perform these computations efficiently, we created a fast solver for robust 

estimation problems that combines the computational cost of a first-order optimization algorithm with 

a convergence behavior approaching that of second-order optimization algorithm, such as Newton’s 

method (Methods). Our solver is expressly adapted for and benefits greatly from the computational 

acceleration provided by graphical processing units (GPUs) and parallel computation.  

EXTRACT allows high-fidelity cell extraction even with substantial signal contaminants 

To validate a use of robust estimation for cell extraction, we first created simulated datasets on which 

to evaluate different cell extraction methods. We generated artificial Ca2+ imaging data with varying 

numbers of spatially overlapping cells with two-dimensional Gaussian shapes and activity traces 

comprising a set of spikes that were Poisson-distributed in time and had exponentially decaying 

waveforms (Fig. 3A; Methods). The artificial movies also contained additive Gaussian-distributed 

noise, uncorrelated between pixels. Although we did not explicitly add non-Gaussian noise, as in real 

datasets the spatial overlap between cells induced non-Gaussian signal contaminants. We varied 

the level of this contamination by adjusting the number of overlapping cells within a fixed field-of-

view and by introducing temporal correlations in cells’ activity patterns (Fig. 3A; Methods).  

First, we qualitatively evaluated the benefits of using robust estimation within the cell-finding 

stage of EXTRACT, as compared to using a conventional L2 estimator (i.e., a quadratic loss function) 

within this stage. We studied an artificial dataset that had 3 overlapping neurons with statistically 

independent spiking patterns (Fig. 3B) and compared the results from robust estimation to those 

from L2 estimation. For the robust estimator, we allowed 𝜅 to vary frame-by-frame so as to minimize 

the difference between the reconstructed and actual movie data (Methods). After running the cell-

finding routine for 3 iterations in each case, robust estimation accurately identified all 3 cells, whereas 
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with L2 estimation the activity traces had substantial crosstalk between cells, which progressively 

accumulated across the 3 iterations. 

Next, we used multiple artificial datasets with varying densities of neurons to compare robust 

and non-robust estimation approaches using a variety of performance metrics (Fig. 3C–L). For each 

simulated Ca2+ video, we compared the results from EXTRACT using the robust loss function to 

those using the non-robust, L2 loss function. In both cases, we identified individual spikes in cells’ 

activity traces by applying a simple, threshold-based detection method to the Ca2+ traces (Methods). 

We computed precision-recall curves for spike detection by comparing the sets of detected and 

actual spikes over a range of spike detection thresholds, and we computed the mean area under the 

precision-recall curves (AUC) by averaging over all cells in each simulation. Notably, using robust 

estimation the cell-finding stage yielded substantially higher precision and recall values for spike 

detection than L2 estimation (Fig. 3C,D). In principle, the cell-refinement stage can correct errors 

incurred during cell-finding, since cell-refinement updates all the estimated cells concurrently, but in 

practice we found that robust estimation maintained its superiority after cell-refinement (Fig. 3C,D).  

Next, we compared EXTRACT to two widely used cell extraction methods, constrained non-

negative matrix factorization (CNMF)13 and the successive application of principal and independent 

components analyses (PCA/ICA)12 (Fig. 3E–L; Fig. S2). Like EXTRACT, CNMF is a two-stage 

method, but it uses regularized L2-estimation and tries to infer discrete Ca2+ events within the Ca2+ 

activity traces while simultaneously estimating cells’ spatial profiles and time-varying fluorescence 

intensities. The ICA-based approach first uses PCA to perform a dimensional reduction by identifying 

and then discarding principal components of the raw data whose time variations are consistent with 

Gaussian noise; by applying ICA to the reduced dataset, the method then un-mixes individual cells’ 

contributions to the fluorescence movie. Within EXTRACT, we allowed 𝜅 to vary adaptively during 

the cell finding stage, but for cell refinement we fixed 𝜅 = 1 s.d. of the estimated baseline noise. To 

evaluate the 3 methods, we tested their performances on simulations of cells that fired spikes either 

independently of each other, or in a temporally correlated manner, across a range of cell densities 
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and conditions of either high (Fig. 3E–L) or low (Fig. S2) values of the optical signal-to-noise ratio 

(SNR). 

Qualitative inspection of the estimated spatial profiles and activity traces revealed that, for 

cells spiking independently, both EXTRACT and ICA performed well, whereas activity traces from 

CNMF often suffered from crosstalk between neighboring cells (Fig. 3E). For cells with correlated 

spike trains, again EXTRACT performed well and CNMF produced traces with crosstalk but few 

instances of false negative spike detection; by comparison, ICA had reduced spike detection fidelity 

but almost no crosstalk, both due to the assumption in ICA of uncorrelated dynamics (Fig. 3F).  

Quantitative assessments of the 3 methods corroborated these observations (Fig. 3G–L; 

Fig. S2). We first used the area under the precision-recall curve (AUC) to assess spike detection. 

For independently spiking cells, EXTRACT and ICA attained high AUC values, whereas CNMF 

performed more poorly (Fig. 3G; Fig. S2A). With correlated spike trains, ICA suffered a substantial 

decline in the AUC metric, with values comparable to those from CNMF at high SNR (Fig. 3J) and 

below those from CNMF at low SNR (Fig. S2D). Especially at high densities of cells, EXTRACT 

notably outperformed the other 2 methods and had the highest AUC values (Fig. 3G,J; Fig. S2A,D). 

We also determined the Pearson correlation coefficients between cells’ inferred activity traces and 

spatial profiles and their ground truth values (Fig. 3H,K; Fig. S2B,E); in this assessment EXTRACT 

surpassed or matched the other methods across all conditions.  

To examine how well the different algorithms identified cells in the simulated movies, we 

computed precision and recall metrics for cell detection by comparing the cells found by the 3 

algorithms with the actual set of cells in the simulated datasets. EXTRACT had the highest precision 

for cell detection, with values close to unity (Fig. 3I,L; Fig. S2C,F), showing that nearly all cells found 

by EXTRACT were true positives. At some cell densities and high optical SNR, ICA had slightly 

higher recall values, but at a cost of much lower precision values (Fig. 3I,L). At low SNR, EXTRACT 

had the best recall values across all cell densities (Fig. S2C,F). Overall, EXTRACT and CNMF 

outperformed ICA at low SNR values, and EXTRACT outperformed CNMF in nearly all conditions.  
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A native implementation on GPUs enables fast runtimes 

EXTRACT’s main components are estimation algorithms that rely heavily on elementary matrix 

algebra. Thanks to several widely used software packages, such as the Intel Math Kernel Library, 

modern computers can perform matrix algebra operations in a highly optimized manner, which allows 

EXTRACT to achieve fast, computationally efficient cell extraction. Our software implementation of 

EXTRACT also has native support for computation on graphical processing units (GPUs), enabling 

even greater efficiency for matrix operations. To benchmark performance speed, we evaluated 

runtimes on simulated and real datasets of varying sizes. 

First, we extensively tested EXTRACT on simulated movies of neural activity across a wide 

range of movie durations, fields-of-view and cell densities (Fig. 4A–C). We used a MATLAB 

implementation of EXTRACT and compared runtimes with and without GPU acceleration (Methods). 

For simplicity, we fixed 𝜅 = 1 s.d. for these tests. Runtimes increased close to linearly as a function 

of cell density and movie duration (Fig. 4A,C). When we varied the field-of-view (FOV) area while 

keeping the cell density constant, runtimes also rose linearly with the area (Fig. 4B). We note that, 

with the number of cells held constant, merely increasing the FOV does not necessarily increase the 

runtime, because EXTRACT only applies its estimation routines to image regions with identified cells; 

this minimizes computational overhead from empty regions of the FOV. 

With GPU acceleration, runtimes were faster than those of the strict CPU implementation by 

a factor of 3 or more. On larger movies with wider fields-of-view or more image frames, the speed-

up from GPUs was more pronounced, as the built-in parallelization from GPUs generally allows 

greater performance gains with larger data structures (Fig. 4C). Both the CPU and GPU versions of 

EXTRACT yielded processing times comparable to or shorter than the movie durations, and the GPU 

version often had runtimes an order of magnitude faster than the movie durations (Fig. 4C). 

To assess runtimes on real Ca2+ imaging data, we applied EXTRACT to large-scale Ca2+ 

movies acquired on a two-photon mesoscope1 with a 4-mm2 field-of-view (Fig. 4D; ~10 min movie 

durations; 17.5 Hz frame rate). We tested CNMF on the same data, which allowed us to compare 
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the CPU and GPU versions of EXTRACT to this widely used, state-of-the-art cell extraction 

algorithm. We chose the parameters of EXTRACT and CNMF so as to obtain comparable output 

from both methods (Fig. 4E; Methods). Both versions of EXTRACT performed cell extraction more 

quickly than CNMF (Fig. 4E). With GPU acceleration, EXTRACT had a mean runtime of ~1.5 times 

the movie duration, about ~7 times faster than CNMF (Fig. 4E). 

Fast, comprehensive cell extraction from the Allen Brain Observatory data repository 

After validating EXTRACT on both artificial data and real data taken by two-photon imaging, we 

tested how well EXTRACT could process a substantial repository of Ca2+ imaging data. To perform 

this test at a large scale, we applied EXTRACT to the publicly available Ca2+ imaging data repository 

from the Allen Institute Brain Observatory19,21 (Fig. 5A–K). This data library comprises 628 sessions 

of in vivo two-photon Ca2+ imaging data acquired in GCaMP6-expressing cells across different visual 

cortical areas of behaving mice. The repository’s software development kit (SDK) has estimated 

spatial profiles and Ca2+ activity traces for cells from each of the movies. The spatial profiles are 

regions-of-interest (ROI) estimates for each cell based on its morphology. Each cell’s Ca2+ trace 

comes from a linear regression of the Ca2+ movie onto the cell’s ROI, after subtracting an estimate 

of background Ca2+ activity within the neuropil. We used these results from the SDK as a comparator 

for our assessments of EXTRACT.  

We ran EXTRACT on 94 movies from the repository, using identical input parameters in all 

cases, and 𝜅 = 1 s.d. Visual inspections of the estimated Ca2+ traces revealed that those from 

EXTRACT had higher SNR values than those from the Allen Institute SDK, for the very same neurons 

(Fig. 5A–C). To confirm these observations quantitatively, we computed the SNR of the estimated 

Ca2+ traces from EXTRACT and the Allen Institute SDK, using sets of cells identified by both 

algorithms (Fig. 5H,I).  

We then compared the statistics of cell detection with the 2 algorithms, by identifying the 

neurons found by both approaches as well as those found by only one of the two methods. Across 

the 94 sessions, EXTRACT identified all but a small fraction (~1%) of the cells in the Allen SDK and 
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found many more cells not present in the Allen SDK (Fig. 5D–G). On average, EXTRACT detected 

over twice the number of cells (Fig. 5F). Notably, the cells identified by EXTRACT but missing from 

the Allen Institute SDK generally had Ca2+ traces with lower SNR values, suggesting that EXTRACT 

had greater sensitivity to cells with weaker optical Ca2+ signals (Fig. 5J). 

We also tabulated runtime statistics for EXTRACT across all 94 Ca2+ movies, each of which 

was a 30-Hz-video, about 1 h in duration, with 256 ´ 256 pixels. EXTRACT took 12.4 ± 3.2 min per 

movie average for cell extraction, or ~20% of each movie’s duration (Fig. 5K; Methods). These 

runtime determinations are conservative, in that some of the runtime was devoted to image pre-

processing, not cell extraction, and this could in principle be done beforehand.  

Spatiotemporally clustered Ca2+ activity in striatal spiny projection neurons of active mice 

As a first test of whether EXTRACT can yield superior biological results, we studied Ca2+ imaging 

data that we previously acquired in the dorsomedial striatum of freely behaving mice using a head-

mounted, epi-fluorescence miniature microscope22. Each dataset comprises a recording of neural 

Ca2+ activity, as reported using the fluorescent Ca2+ indicator GCaMP6m, in spiny projection neurons 

of either the direct or indirect pathway of the basal ganglia (dSPNs and iSPNs, respectively).  We 

compared results from EXTRACT to those from PCA/ICA and from a variant of CNMF called CNMF-e 

that is tailored for one-photon fluorescence Ca2+ imaging15 (Fig. 6A,B).  

When we inspected the neural Ca2+ activity traces from the 3 methods, our observations fit 

well with those from simulated datasets (Fig. 3E, F). Notably, activity traces from PCA/ICA 

sometimes omitted Ca2+ transients that were plainly visible by simple inspection of the raw movie 

data (Fig. 6C, blue dots). Further, Ca2+ activity traces from both PCA/ICA and CNMF-e exhibited 

crosstalk between the neighboring cells (Fig. 6C, red dots). We next investigated whether these 

types of errors during cell extraction could impact biological results and conclusions.  

Our prior study of striatal SPNs found that mouse locomotion led to activation of SPNs in a 

spatiotemporally clustered manner22. However, assessments of clustered activity are likely to be 

influenced by missing Ca2+ transients or crosstalk between spatially adjacent neurons. For instance, 
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crosstalk could elevate estimates of cells’ co-activation. Omitted Ca2+ transients might lead to 

underestimates of spatiotemporal clustering. To investigate, we used a spatial coordination metric 

(SCM), defined similarly to that in Ref. 22, to quantify the extent of spatially clustered activity in the 

striatum at each time frame (Methods). We compared the results obtained by analyzing the activity 

traces from EXTRACT, PCA/ICA and CNMF-e for a common set of cells.  

During periods of mouse inactivity, Ca2+ activity traces from CNMF-e and PCA/ICA exhibited 

greater levels of correlated activity and higher SCM values as compared to the traces from 

EXTRACT (Fig. 6D). During locomotor activity, the traces from PCA/ICA had lower SCM values than 

those from CNMF-e (Fig. 6D). Notably, the ratio of the mean SCM value during locomotion to that 

during rest was significantly higher for the traces from EXTRACT as compared to those from CNMF-

e or PCA/ICA (Fig. 6E). Perhaps most importantly, SCM values for the outputs of EXTRACT had 

significantly higher correlation coefficients with the mouse’s locomotor speed then the traces from 

either of the two other methods (Fig. 6F). We also confirmed that EXTRACT works well with two-

photon Ca2+ imaging studies of dSPNs and iSPNs (Fig. S3). Overall, our results show that superior 

cell extraction can lead to neurophysiological signatures that relate more precisely to animal 

behavior.  

EXTRACT detects dendrites and their Ca2+ activity 

Some past cell extraction algorithms often do not provide sensible results when applied to Ca2+ 

videos of dendritic activity. Thus, we tested EXTRACT on videos of dendritic Ca2+ activity in 

cerebellar Purkinje cells and neocortical pyramidal neurons in live mice (Fig. S4). Although the 

default mode of EXTRACT discards candidate cells whose spatial areas or eccentricities are 

uncharacteristic of cell bodies, the user can opt to retain candidate sources of Ca2+ activity without 

regard to their morphologies, thereby allowing EXTRACT to identify active dendrites. For example, 

in large-scale movies of Purkinje neuron dendritic Ca2+ spiking activity acquired with a two-photon 

mesoscope1, EXTRACT identified the dendritic trees of >500 cells per mouse, and the extracted 

spatial forms had the anisotropic shapes that are characteristic of these cells’ dendritic trees, which 
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are highly elongated in the rostral-caudal dimension12 (Fig. S4A,B). We also used EXTRACT to 

analyze videos of Ca2+ activity acquired by conventional two-photon microscopy in apical dendrites 

of layer 2/3 or layer 5 neocortical pyramidal cells in live mice (Fig. S4C,D). EXTRACT identified 

~850–900 dendritic segments per mouse, and, as expected, they had a wide variety of shapes and 

temporally sparse Ca2+ transients. For both cerebellar and neocortical neurons, we found no 

limitations to the dendrite shapes that EXTRACT could identify, and it readily detected large numbers 

of dendritic segments. 

EXTRACT improves identification of place- and anxiety-encoding cells in the ventral CA1 area 

As another test of whether EXTRACT can improve biological findings, we examined the Ca2+ activity 

of pyramidal neurons in the CA1 area of the ventral hippocampus (Fig. 7A). We tracked the dynamics 

of these cells in freely behaving mice that navigated a 4-arm elevated plus maze (EPM, Fig. 7B). 

The EPM had 2 enclosed and 2 open arms, arranged conventionally on the perpendicular linear 

paths of the plus maze. The EPM assay is based on rodents’ innate aversion to open, brightly lit 

spaces and has been used extensively to investigate anxiety-related behavior23. A subset of ventral 

CA1 neurons, termed ‘anxiety cells’, show enhanced activity when the mouse is within anxiogenic 

regions of the EPM, namely the open arms24-26. Here, we used EXTRACT to obtain Ca2+ activity 

traces of ventral CA1 neurons, and we compared their encoding of the open and closed arms to that 

in Ca2+ activity traces obtained by applying CNMF-e to the same datasets. 

In the activity traces from both EXTRACT and CNMF-e, a subset of ventral CA1 cells 

responded differentially when the mouse was in the open versus the closed arms (Fig. 7D). Namely, 

distinct subsets of cells were active when the mouse occupied the two different arm-types, in accord 

with past reports of anxiety-related coding by ventral CA1 cells24,25. However, Ca2+ activity traces 

from EXTRACT generally exhibited a purer form of coding, in that the traces were typically silent 

when the mouse was in one arm-type but had high activity levels in the other arm-type. By 

comparison, the traces from CNMF-e tended not to distinguish the two arm-types as clearly (Fig. 

7E). The traces from EXTRACT also corresponded more precisely to neural Ca2+ activation events 
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that were plainly apparent in the raw movie data (Fig. 7E, lower panels). 

To quantify these observations, we compared the arm-coding cells identified using the traces 

from the two different cell extraction algorithms. Notably, EXTRACT yielded significantly more arm-

coding cells than CNMF-e (Fig. 7F; Wilcoxon signed-rank test, p < 0.05). To assess how well the 

Ca2+ activity traces from the two algorithms reflected events in the raw Ca2+ video data, for each cell 

we computed the Pearson correlation coefficient between the image of the cell, as determined by 

each algorithm, and the frame of the Ca2+ video at the time of each detected Ca2+ transient event 

(Methods). Ca2+ events identified in the activity traces from EXTRACT had significantly greater 

correlation coefficients than those from CNMF-e (Fig. 7G,H; Wilcoxon rank-sum test, p < 6 ´ 10-4), 

showing that EXTRACT more accurately captured the Ca2+ dynamics in the raw movie data. 

Finally, we evaluated how well the sets of activity traces from the two algorithms allowed one 

to estimate the mouse’s behavior using decoders of neural ensemble activity. We divided the EPM 

into 5 spatial bins (Fig. 7I) and trained support vector machine (SVM) classifiers to predict the spatial 

bin occupied by the mouse based on the neural ensemble activity pattern at each time step 

(Methods). We compared the accuracies of the decoders using a separate subset of the data than 

that used to train the decoders.  Irrespective of the threshold used to detect Ca2+ events in the activity 

traces, activity traces from EXTRACT led to superior decoding than those from CNMF-e (Fig. 7J). 

Strikingly, for every mouse the best performing decoder based on traces from EXTRACT 

outperformed the best decoder based on traces from CNMF-e (Fig. 7K). 

DISCUSSION 

EXTRACT is a versatile method suited for analyzing a broad range of Ca2+ imaging datasets 

Here we have introduced the use of robust statistical analyses to systems neuroscience. As shown 

above, EXTRACT provides a superior means of analyzing somatic or dendritic Ca2+ data acquired 

with conventional, multi-plane or large-scale two-photon microscopes, or with head-mounted epi-

fluorescence microscopes (Figs. 4–7; Fig. S3). This broad applicability stems from one major factor, 
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namely that the theoretical framework on which EXTRACT is based makes minimal assumptions 

about the nature of the data.  

The robust estimation framework does not model noise sources; instead it aims to isolate 

cellular Ca2+ signals from contamination sources while staying agnostic to the latter’s exact form. 

This approach leads to great flexibility. For example, when the contamination approximates 

statistically independent, Gaussian-distributed noise at each image pixel, the loss function used in 

EXTRACT adapts itself to behave like a linear regression loss, and it thereby achieves the optimal 

statistical efficiency of a standard maximum likelihood estimator18. In an opposite extreme case, 

when the data suffer from large contaminants due to Ca2+ activity in overlapping cells or neuropil, 

the EXTRACT loss function modifies its robustness parameter so as to reject these contaminants. 

Further, EXTRACT makes no assumptions about cell morphology, and, unlike CNMF, makes no 

assumptions about the temporal waveforms of Ca2+ activity. Thus, EXTRACT can detect activity in 

either cell bodies or dendrites, whereas with CNMF detecting dendrites can be challenging.   

Several prior methods for cell sorting have sought to separate cellular Ca2+ activity from 

strong background contaminants. For instance, CNMF-e seeks to infer neural Ca2+ activity while 

modeling background activity as a linear combination of the residual activity within nearby pixels15. 

MIN1PIPE is also based on the CNMF method and, like CNMF-e, is mainly intended for analyses of 

one-photon Ca2+ imaging datasets14. It applies several image processing steps to the movie data, 

carefully initializes the cell locations, and then applies the CNMF method. Other authors have applied 

post hoc de-noising of Ca2+ activity traces, by taking a set of previously identified neurons and re-

estimating the Ca2+ activity traces in way that seeks to minimize crosstalk and contamination27. 

Common to all these prior approaches are efforts to either model the noise sources or to remove 

them, based on certain assumptions about the data. This general approach can lead to accurate 

results when the assumptions hold. However, due to the biases the assumptions introduce into the 

estimation process, this approach can also lead to unexpected, poor performance when the data 

diverges from the assumptions.   
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Based on this logic, EXTRACT makes few assumptions about the data and little use of image 

processing. Thus, while our robust estimation framework has not been fine-tuned to work optimally 

under specific statistical conditions, it is designed to yield high-fidelity results across a wide spectrum 

of data statistics. This allows EXTRACT to achieve excellent analytic performance on datasets from 

a variety of brain areas and Ca2+ imaging modalities.  

Nevertheless, our framework does have certain limitations. Under conditions with very low 

optical SNR, the estimator trades off robustness for fidelity, causing it to behave more like an L2 

estimator (Methods). Although EXTRACT applies spatial filtering during the pre-processing and cell 

finding steps to enhance the input SNR, movies with extremely low SNR lead to sub-optimal results. 

Nonetheless, the outputs from EXTRACT should still be sensible due to its model-agnostic nature. 

An efficient implementation for fast cell extraction that scales well to large datasets 

Owing to recent advances in optical technologies, such as fluorescence mesoscopes and multi-arm 

microscopes that can monitor multiple brain areas concurrently, Ca2+ imaging data is now routinely 

collected at a scale of several terabytes per publication1,2,19,22,28. Notably, time-lapse studies with 

multiple imaging sessions for each animal can readily produce datasets of this magnitude22,28,29. 

Such datasets are so large that the raw data from a single original research study typically cannot 

even be shared on the most commonly used public data repositories. Aside from issues of data 

sharing, the sheer volume of leading-edge datasets necessitates faster processing algorithms to 

avoid a major bottleneck in the pace of systems neuroscience research.  

To handle the most massive datasets, we developed EXTRACT and showed that it can 

process Ca2+ movies in times that are up to ~10-fold briefer than the movie durations. EXTRACT’s 

built-in GPU support substantially accelerates processing, allowing cell extraction from several 

gigabytes of data in a few minutes. On simulated datasets, EXTRACT performed quickly in all 

regimes, and the runtimes scaled gracefully as dataset sizes grew (Fig. 4B,C). On the Allen Institute 

Brain Observatory data, EXTRACT ran in only 20% of the time of a typical recording session; this 

enabled batch processing of ~9 terabytes of data (~100 h of recordings) in 18 h of processing (Fig. 
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5G). On two-photon mesoscope recordings with a 4 mm2 FOV, EXTRACT ran much faster than the 

popular CNMF method while providing similar output (Fig. 4E). With these recordings, EXTRACT 

runtimes were comparable to the movie durations, showing that EXTRACT can readily handle 

neuroscientists’ most ambitious ongoing experiments.  

The accelerated computation from EXTRACT’s use of GPUs does not require any special 

handling, such as explicit parallelization or algorithmic variations. EXTRACT runs the same code on 

CPUs and GPUs, if the latter are available to the user. With any suitable NVIDIA GPU installed on 

the analysis computer, one can readily use EXTRACT with GPU processing to achieve major speed-

ups over the CPU runtime. GPUs typically cost a fraction of the analysis computer, and nowadays 

most pre-configured computers include GPUs that have computing capability. In addition to faster 

runtimes, EXTRACT’s built-in GPU support implies that, since its computationally intensive tasks are 

run on the GPU, the user can run other CPU-demanding software at the same time.  

EXTRACT enables improved scientific results 

The identification of neurons from movie data is a crucial step in neuroscience experiments that rely 

on Ca2+ imaging techniques for large-scale recording of neural dynamics. The extraction of individual 

cells and their activity traces reduces the raw data to a set of time series, the accuracy of which is 

crucial for the success of all subsequent analyses. Thus, EXTRACT aims to achieve high-fidelity 

results by avoiding extraneous image processing as much as possible while also de-noising the 

inference of cellular activity through robust statistical estimation. Unlike some past approaches to 

cell detection, we found that EXTRACT works well with Ca2+ videos of dendritic activity, which often 

do not provide as many fluorescence photons as videos of somatic activity. Further, our results from 

two separate biological experiments, in striatum and hippocampus, demonstrate that the use of 

EXTRACT can lead to improved scientific results. 

First, we evaluated EXTRACT, CNMF-e, and PCA/ICA using Ca2+ imaging data taken  from 

striatal spiny projection neurons (SPNs) (Fig. 6), which exhibit spatially clustered activity patterns 

during animal locomotion22. When we analyzed these activity patterns, the Ca2+ traces from 
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EXTRACT revealed a greater contrast in the spatial clustering metric (SCM) between periods of 

locomotion and those of rest, as well as higher correlation coefficients between SCM values and 

locomotor speeds, as compared to the results obtained using traces from PCA/ICA or CNMF-e (Fig. 

6D–F). This fits with our observations that EXTRACT made the fewest mistakes during the cell 

extraction process, as seen by comparing the traces from all 3 algorithms to the raw data (Fig. 6C).  

Second, we characterized place- and anxiety-related representations in the ventral 

hippocampus of mice  behaving within an elevated plus-maze (Fig. 7). Using the neuronal Ca2+ 

traces from EXTRACT, we identified significantly more cells with anxiety-related coding than when 

we used the outputs of CNMF-e  (Fig. 7E,F). Moreover, the use of EXTRACT also led to superior 

decoding analyses (Fig. 7I–K), in that the traces from EXTRACT enabled better estimates than 

CNMF-e of the animals’ locomotor trajectories (Fig. 7K). These results confirm that accurate 

biological findings require accurate reconstructions of neuronal activity and show that EXTRACT 

improves the results from downstream computational analyses, especially when the raw data may 

have substantial noise or fluorescence contaminants.  

Outlook 

Ca2+ imaging technology continues to progress rapidly, with new tools arising for multi-color Ca2+ 

imaging of multiple cell types and three-dimensional Ca2+ imaging. Techniques for high-speed optical 

voltage imaging are also making rapid strides and provide direct access to neural membrane voltage 

dynamics. Because EXTRACT makes so few assumptions about the data statistics, future versions 

of the algorithm should be applicable to the data from these emerging imaging modalities with only 

straightforward modifications.  

Moreover, to increase the numbers of neurons that can be tracked simultaneously, new 

imaging approaches are arising in which cells from multiple planes in tissue are deliberately 

superposed in the raw video data30-33; the cells and their activity traces must then be disentangled 

through offline data analysis. EXTRACT’s capability for high-fidelity isolation of individual cells, even 

when cells substantially overlap one another in the raw data, should facilitate multi-plane imaging by 
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enabling a greater number of planes to be sampled concurrently while still being able to 

computationally extract the individual neurons from dense sets of overlapping cells. More broadly, 

we expect that the general framework of robust statistics will have broad applications throughout 

systems neuroscience for analyses of many types of recording data, both optical and 

electrophysiological. 
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Figure 1. A robust estimation framework for extracting cells from Ca2+ video datasets. 

(A) To showcase a fundamental limitation of standard L2 estimation for inferring Ca2+ activity, we 

simulated an example movie with one cell of interest and a distractor cell. Both cells had binary 

valued images. The value of ϵ	 characterizes the time-dependent severity with which fluorescence 

photons from the distractor cell are detected within movie pixels that overlap the image of the cell of 

interest. We analyzed the inference of Ca2+ activity in the presence of the distractor cell.  

(B) Examples of the actual, ground truth Ca2+ traces for both cells in A. 

(C) Example results showing that L2 estimation leads to inferred Ca2+ activity for the cell of interest 

that is contaminated by the activity of the distractor cell. The addition of  an L1 regularization penalty 

simply shrinks the inferred activity toward zero without mitigating the crosstalk. The proportion of 

shrinkage is uniform across all the time bins.  

(D) With robust estimation, the Ca2+ activity trace of the cell of interest is accurately reconstructed 

without explicit knowledge of either the existence or the spatiotemporal characteristics of the 

distractor. Further, robust estimation infers the time-dependent amplitude, 𝜖, of contamination from 

the distractor cell onto the image of the cell of interest.    

(E) Our computational model of a Ca2+ video dataset represents the detected photons as originating 

from spatially localized cellular sources with time-dependent emission intensities, plus noise. Top, A 

movie dataset is treated as a three-dimensional matrix, 𝑴, that can be decomposed into cells’ 

fluorescence emissions plus contributions from noise. The first component is the product of the set 

of the constituent cells’ spatial images, represented as a three-dimensional matrix, 𝑺, and the cells’ 

individual Ca2+ activity traces, represented as a two-dimensional matrix, 𝑻. The noise component, 𝚺, 

is additive but is not assumed to be Gaussian. Middle, A schematic representation of the problem 

of inferring the cells’ time-dependent Ca2+ emission amplitudes for a single time bin, i.e. one column 

of 𝑻, given 𝑴 and 𝑺. The activity of all cells is represented as the sum of the individual cell images, 

with each one weighted by the cell’s scalar-valued Ca2+ activity within the selected time bin. The full 
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image frame for that time bin is the sum of the contributions from all the cells, plus noise. Bottom, A 

simple application of the above model to a movie frame that contains one cell. Unlike conventional 

statistical approaches in which the noise is assumed to be normally distributed, we allow the noise 

to have an unknown, non-negative contamination component that is subject to no other assumptions. 

(F) Using a framework for robust statistical estimation, we identify a loss function, 𝜌,	that achieves 

optimal estimates with the least possible mean squared error (MSE) given the worst possible form 

for the unknown noise distribution with support on [𝜅,¥). 𝜌	has a quadratic dependence for negative 

arguments and for positive arguments below a threshold value, 𝜅.  For arguments greater than 𝜅, 

𝜌	rises linearly; this is what renders robust estimation relatively impervious to occasional but large 

non-negative noise contaminants, which typically skew conventional estimation procedures. Given 

the experimental data, 𝑴, and an estimate of either the spatial or temporal components, 𝑺 and 𝑻, 

estimating the other component simply involves minimizing 𝜌 as a function of the residuals between 

the estimated and actual movie data (see Methods for derivations). 
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Figure 2.  Automated identification of neurons and their Ca2+ activity traces with EXTRACT 

(A) The EXTRACT algorithm comprises an optional stage for preprocessing of the raw Ca2+ videos, 

followed by two primary stages of data analysis. The preprocessing stage filters fluorescence 

fluctuations at coarse spatial scales that arise from neuropil Ca2+ activity. The robust cell finding 

stage identifies and extracts individual neurons in a successive manner, using robust estimation to 

infer each cell’s spatial and temporal weights. In the cell refinement stage, these weights are updated 

through iterative, alternating refinement of first the spatial and then the temporal weights, again using 

robust estimation.  

(B) We simulated 20 neurons that had Gaussian-shaped images, left, and fluorescence traces with 

exponentially decaying Ca2+ transients, right.  Example traces are shown for 10 of the 20 cells. 

Dashed orange lines denote contours of each cell at 2 s.d. beneath its peak intensity.  

(C, D) Results from the cell finding and the cell refinement stages after running EXTRACT on the 

artificial dataset used in B. Estimated cell shapes, indicated by dashed lines, should be compared 

to the ground truth shapes in B. Estimated Ca2+ activity traces (green) are superposed on the ground 

truth traces (black). Results from the cell finding stage identifies closely approximate the ground 

truth, and those from the cell refinement stage resemble the ground truth with even higher fidelity.  

(E)  Robust cell finding is an iterative procedure that identifies individual cells in a successive manner. 

At each iteration, a seed pixel is chosen that attains the maximum fluorescence values among all 

the pixels, and a Gaussian-shaped cell image is initialized around it. Next, this image and the cell’s 

activity trace are iteratively updated via alternating applications of robust estimation. When this 

process converges, the cell’s estimated fluorescence contributions to the Ca2+ video are subtracted 

from the movie, and then the entire process repeats for another cell. This procedure continues until 

the identified seed pixel has a maximum instantaneous signal-to-noise ratio that falls below a 

minimum threshold, as determined by examining the s.d. of the pixel’s intensity fluctuations across 

the entire movie. 
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(F) Cell refinement is also an iterative procedure. At each iteration, the set of estimated Ca2+ traces 

are updated using robust estimation while holding fixed the cell images; the cell images are then 

updated using robust estimation while holding fixed the activity traces; a set of quality metrics is 

computed for each cell, and cells for which one or more of metric values is below a minimum 

threshold are eliminated from EXTRACT’s final output. 
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Figure 3. Evaluations of cell extraction using EXTRACT, CNMF and ICA on simulated data. 

(A) We simulated Ca2+ imaging datasets in which the neurons had varying degrees of spatial overlap, 

which we set by adjusting the number of cells within a fixed field-of-view (50 µm ´ 50 µm) and varying 

degrees of temporally correlated Ca2+ activity (Methods). Top, A map of 20 cells in an example 

simulated Ca2+ activity movie. Blue lines indicate the contours of each cell at 2 s.d. beneath its peak 

intensity. Color look-up table shows image intensity values. Bottom, Example raster plots of spikes 

fired by the 20 cells under conditions in which the cells’ dynamics were either independent or 

temporally correlated.  

(B) We compared robust estimation (left panels) to standard L2 (non-robust) estimation (right panels) 

as means for extracting individual neurons and their dynamics from simulated Ca2+ movies. In the 

example shown, we applied both methods to a simulated movie with 3 overlapping neurons (each 

outlined in a separate color) that had statistically independent Ca2+ dynamics. Colored traces show 

the ground truth Ca2+ activity patterns; black traces show inferred activity patterns. The left image in 

each pair is a maximum projection image of the movie at the start of each step, showing that with 

robust estimation the 3 cells were found and removed in successive steps, whereas this was not so 

with L2-estimation. The right image in each pair shows the estimated spatial weights for each 

identified cell; these images again highlight that robust estimation identified individual cells, whereas 

with L2-estimation the cross-talk between cells in the first step led to subsequent inaccuracies, 

including activity estimates that did not match well to the ground truth dynamics.  

(C, D) Using the algorithm outputs on data with correlated spikes, we used a simple thresholding 

method to detect discrete Ca2+ events within the inferred Ca2+ traces. We then compared these Ca2+ 

events to those in the ground truth data and thereby computed the precision-recall curves for spike 

detection (Methods). The area under the precision-recall curve (AUC) served as a metric of the 

fidelity of spike detection. We followed this procedure for output from EXTRACT that uses both the 

robust and the L2 estimator, and computed the curves both after cell finding and cell refinement. 

Panel C shows precision-recall curves for a representative Ca2+ movie with 30 neurons, after the cell 
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finding stage (AUC = 0.83 and 0.67 for robust and L2 estimation, respectively) and the cell refinement 

stage (AUC = 0.93 and 0.78 for robust and L2 estimation, respectively). Panel D shows mean ± 

s.e.m. AUC values (n = 40 simulated Ca2+ movies with the numbers of cells specified in the graph).  

(E, F) Comparisons of results from EXTRACT, CNMF and ICA, as applied to simulated data with 

either independent, E, or temporally correlated spikes, F. Top, Ground truth cell maps, plus those 

output by the 3 different algorithms, for example movies. Red dots mark 2 cells whose Ca2+ traces 

are analyzed in the bottom panels. Bottom, The corresponding sets of fluorescence traces and cell 

images for the 2 example cells marked above, each of which was found by all 3 cell extraction 

methods. The example cells’ true forms are indicated by the green outlines, and the white outlines 

encircle those of neighboring cells. Boxes and insets highlight portions of the traces in which the 

estimates from CNMF exhibited crosstalk or those from ICA had reduced signal fidelity. 

(G–L) We evaluated the 3 algorithms based on several metrics, computed across 20 different 

simulations with either independent spiking, G–I, or temporally correlated spikes, J–L. Panels G and 

J show plots of the area under the precision-recall curve, as computed using the set of detected 

spikes for each algorithm. Panels H and K show the Pearson correlation coefficients between the 

inferred cell maps and Ca2+ traces and the ground truth, averaged over all cells detected by each 

method. Panels I and L  show the precision and recall values obtained by matching the sets of 

extracted cells with the actual set of cells from each movie. All data points are mean ± s.e.m. values.  
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Figure 4.  A native GPU implementation of EXTRACT enables superior runtimes.  

(A–C) Using simulated Ca2+ video datasets, we measured EXTRACT runtimes, with GPU computing 

either enabled (GPU) or disabled (CPU), across a range of different cell densities, field-of-view (FOV) 

sizes and movie durations. Plots show mean ± s.d. runtimes, averaged over n = 10 different movies 

for each condition, reported either in minutes or normalized units in which the runtime is divided by 

the duration of the Ca2+ video. For movies with a 300 μm ´ 300 μm FOV area, A, increases in cell 

density led to GPU runtimes that increased linearly with cell density. When using CPUs, runtimes 

were several-fold longer. For movies with a fixed cell density of 2000 cells per mm2 , B, increasing 

the FOV size, while keeping the width and height of the imaging field equal to one another, led to 

runtimes that increased quadratically with the FOV width, i.e. a linear rise in runtime with the FOV 

area for a constant cell density. For simulated movies with a constant FOV size (300 μm ´ 300 μm) 

and cell density (2000 cells per mm2), C, runtimes (left) scaled linearly with movie duration, leading 

to normalized runtimes (ratios of runtime to movie duration) (right) that were largely independent of 

movie duration. Across most parameter regimes (A–C), EXTRACT runtimes on both CPUs and 

GPUs were comparable to or smaller than the durations of the simulated movies. The GPU 

implementation was generally faster than the CPU implementation by than a factor of three or more 

for all experiments and was up to an order of magnitude faster than the duration of the simulated 

Ca2+ movie. 

(D, E) To benchmark runtimes on state-of-the-art experimentally acquired Ca2+ imaging datasets, 

we applied EXTRACT to Ca2+ imaging datasets taken at a 17.5 Hz imaging frame rate in GCaMP6f-

tTA-dCre mice that express the Ca2+ indicator GCaMP6f in layer 2/3 cortical pyramidal neurons, 

using a recently published two-photon mesoscope1 with a 4 mm2 FOV. We also evaluated runtimes 

for CNMF, which is often applied to two-photon Ca2+ imaging data. We tuned the parameters of each 

algorithm so that they returned comparable numbers of cells when applied to the same Ca2+ movie 

(Methods). Panel D shows an example cell map, displaying 1371 cells, obtained by applying 

EXTRACT to Ca2+ imaging data from neocortical layer 2/3 pyramidal neurons, as taken with the 16-
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beam mesoscope. Panel E compares runtimes for CNMF and both the CPU and GPU 

implementations of EXTRACT, as applied to mesoscope movies of varying durations. Error bars are 

SEM for N = 3 movies. Both versions of EXTRACT were consistently faster than CNMF, and the 

GPU version of EXTRACT had superior speed to that of the CPU version.  
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Figure 5. Application of EXTRACT to the Allen Brain Observatory Ca2+ imaging data.  

(A) Cell maps obtained by the application of EXTRACT or the Allen Software Development Kit (SDK) 

to the data from an example imaging session from the Allen Institute Brain Observatory are shown 

overlaid. The 86 cells colored red are those found by the Allen SDK; EXTRACT also found all of 

these cells. The additional cells found by EXTRACT are colored blue; in total, EXTRACT identified 

250 neurons. The estimated traces of Ca2+ activity for the 10 neurons marked with numerals are 

shown in panels B, C.   

(B, C) The estimated Ca2+ activity traces for 10 example cells in A that were identified both by 

EXTRACT, B, and the Allen SDK, C. 

(D, E) Spatial images, D, and estimated Ca2+ activity traces, E, for 20 example cells that were 

identified by EXTRACT but not the Allen SDK. 

(F) A Venn diagram showing the total numbers of cells found by both EXTRACT and the Allen SDK, 

or by either algorithm alone, determined over 94 imaging datasets. Overall, EXTRACT found more 

than twice the number of cells detected by the Allen SDK. 

(G) Box-and-whisker plots providing a statistical characterization of cell extraction across the 94 

individual imaging sessions. In general, EXTRACT detected nearly all the cells found by the Allen 

SDK. Typically, EXTRACT identified more than twice the cells, but sometimes even 4–5 times the 

cells that were identified by the Allen SDK. We counted only those cells output by EXTRACT that 

surpassed threshold values for the cell size and trace quality metrics (Methods).  

(H) A scatter plot showing, for all individual cells found by both EXTRACT and the Allen SDK (black 

data points) across the 94 imaging sessions, the signal-to-noise ratio (SNR) values of the estimated 

Ca2+ activity traces. The red curve denotes the line y = x; that the vast majority of data points lie 

above this line highlights the superiority of the Ca2+ traces provided by EXTRACT. 

(I) The statistical distributions of the SNR values plotted in H for the Ca2+ activity traces.  
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(J) Statistical distributions of the Ca2+ activity trace SNR values for the cells found by EXTRACT that 

either were or were not also found by the Allen SDK. The two distributions substantially overlap, 

indicating that SNR alone cannot explain why the Allen SDK missed many of the cells identified by 

EXTRACT.  

(K) Box-and-whisker plots characterizing the runtime statistics for the GPU version of EXTRACT 

across the 94 imaging sessions. Typically, runtimes were 5 times faster than the duration of each 

imaging session. 

In the box-and-whisker plots of G and K, horizontal lines within the box plots indicate median values 

across the 94 sessions, boxes enclose the second and third quartiles, whiskers indicate 1.5 times 

the interquartile distance, and individual data points mark outliers.  
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Figure 6. Evaluations of EXTRACT, CNMF-e, and ICA for the analysis of Ca2+ imaging data 

from direct and indirect pathway striatal spiny projection neurons (dSPNs and iSPNs) of 

freely behaving mice. 

(A) Example maps of direct pathway spiny projection neurons (dSPNs) virally expressing 

GCaMP6m, as identified by EXTRACT, CNMF-e, and ICA from a representative mouse 20 example 

cells that were found by each of the algorithms are marked with numerals. Data are from Ref. (22). 

(B) The estimated Ca2+ activity traces for the 20 example cells marked in panel A.  

(C) Magnified views of the Ca2+ activity traces for an individual example cell, a dSPN, as determined 

by the 3 different algorithms, allowing detailed qualitative assessments of the outputs at specific time 

points. Instances of missed Ca2+ activity (MA), cross-talk from a nearby cell (CT) and correctly 

identified Ca2+ transients (OK) are highlighted on the traces; alongside are image frames from the 

Ca2+ videos at the relevant time points, with the cell of interest shown in green and its immediate 

neighbors shown in gray. A spatial bandpass filter was applied to the image frames to enhance 

visualization (Methods). Colored dots indicate mistakes in the estimated Ca2+ activity trace, whereas 

gray dots mark instances in which the Ca2+ activity trace is correct. Traces from ICA commonly 

exhibited missed Ca2+ transients. Traces from ICA and CNMF-e both had visible cross-talk from 

nearby cells.  

(D–F) As we did previously22, for each time point of the Ca2+ videos we determined a spatial 

coordination metric (SCM) that characterized the extent to which the neurons exhibited spatially 

clustered activity (Methods). All 3 cell extraction algorithms yielded SCM values that were elevated 

during periods of mouse locomotion as compared to periods of rest. Panel D shows the time-

dependent mean values of the SCM relative to locomotor onset and offset, as determined using the 

Ca2+ activity traces from all 3 algorithms. However, the Ca2+ activity traces from EXTRACT yielded 

significantly greater SCM values, E, and significantly greater correlation coefficients between the 

SCM values and locomotor speeds, F, (*p < 0.05, **p < 10-2, ***p < 10-3; Wilcoxon signed-rank tests). 
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Shading in D indicates SEM values, calculated over all onset and offset occurrences. Gray data 

points in E and F denote results from the imaging sessions of individual mice (N = 9 for dSPNs and 

N = 11 for iSPNs). 
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Figure 7. EXTRACT enables superior identification of anxiety-coding cells in ventral area CA1. 

(A) We used the integrated, miniature fluorescence microscope and an implanted microendoscope 

to image the somatic Ca2+ activity of pyramidal neurons expressing the Ca2+ indicator GCaMP6s in 

the ventral portion of the CA1 hippocampal subfield in freely behaving mice.  

(B) The mice navigated an elevated plus maze (EPM) consisting of two open arms and two arms 

enclosed with walls. 

(C, D) We analyzed the Ca2+ videos using either EXTRACT or CNMF-e, a variant of CNMF that is 

better suited for one-photon fluorescence Ca2+ imaging. Panel C shows a map of pyramidal neurons 

identified by one or both of the two algorithms. A majority of the detected cells were found by both 

algorithms, although EXTRACT identified a greater number of neurons. 20 example cells found by 

both methods are marked with numerals; panel D shows the Ca2+ activity traces for these cells, as 

estimated by EXTRACT and CNMF-e. 10 of the neurons (left) were preferentially active when the 

mouse was in one of the closed arms (periods marked with light green). The other 10 cells (right) 

were preferentially active when the mouse was in one of the open arms (periods marked with pink).  

(E) Many pyramidal neurons in ventral CA1 were preferentially active when the mouse was in either 

the closed or open arms of the maze, as illustrated throughout this panel for an example cell that 

was more active when the mouse was in a closed arm. Left, Maps of the EPM showing the mouse’s 

locations (black dots) at which the cell exhibited a Ca2+ transient, as detected using EXTRACT and 

CNMF-e. The area of each dot is proportional to the peak magnitude of the corresponding Ca2+ 

transient. Right, The cell’s traces of Ca2+ activity, as determined by the two cell extraction algorithms. 

The abbreviation ‘OK’ above the traces marks a Ca2+ transient (gray dots) that was correctly revealed 

by both methods. ‘CT’ marks instances of cross-talk in the trace from CNMF-(pink dots). The pink 

and light green shading respectively indicate periods when the mouse was in the open and closed 

arms of the maze. The images below the traces are from individual image frames and show the 

activity of the example cell (outlined in green) and its immediate neighbors (outlined in gray). Note 
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the false transients reported by CNMF-e when the mouse is in the open arm, yielding the incorrect 

impression that the cell is active on active on both closed and open arms.  

(F) We identified cells that encoded the arm-type of the EPM using the Ca2+ traces output by each 

algorithm for the recordings from 6 different imaging sessions (N = 3 mice) (Methods). EXTRACT 

yielded a greater proportion of cells that encoded the arm-type than CNMF-e, across all extracted 

cells and those cells found by both methods (Wilcoxon signed-rank test; *P < 0.05). Individual data 

points and lines denote data from the individual imaging sessions. 

(G, H) Cumulative distributions of the Pearson correlation coefficient, G, describing the similarity of 

the individual frames of the Ca2+ movie and the spatial form of individual detected neurons, for the 

times at which each neuron had a detected Ca2+ event (Methods). Among cells that were detected 

by both two methods, the mean Pearson correlation coefficient, H, averaged over all cells and 

determined for each cell by taking a weighted average over its Ca2+ events, was greater for 

EXTRACT (Wilcoxon signed-rank test, ***P < 10-10; N = 665 cells).  

(I–K) We divided the EPM into five bins (I) and used support vector machine classifiers to predict the 

mouse’s location using the detected Ca2+ events in the traces from either EXTRACT or CNMF-e. 

Panel I shows the locomotor trajectory of an example mouse, color-coded such that each of the 5 

spatial bins is shown in a different color. Panel J shows the accuracy of classifying the mouse’s 

location on a test dataset, as determined using each of the two cell extraction methods and across 

a range of Ca2+ event detection thresholds (normalized relative to each cell’s peak Ca2+ signal). 

Panel K shows the mean prediction accuracies, averaged over 6 sessions involving 3 different mice. 

EXTRACT led to superior classification of the mouse’s location (Wilcoxon signed-rank test, *P < 

0.05; N = 6 imaging sessions). Individual data points and lines denote results from individual imaging 

sessions.  
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Figure S1  |  Comparison of robust estimation versus L2-estimation with L1-regularization.  

(A) We simulated the same scenario as in Figure 1A, with one cell of interest and another overlapping 

‘distractor’ cell. We simulated ground truth Ca2+ activity traces for both cells under an assumption 

that their dynamics were independent and using an SNR value of 5 (Methods). 

(B) We inferred the Ca2+ activity trace for the cell of interest using robust estimation (left) and L2-

estimation with L1-regularization (right). For robust estimation, we varied 𝜅, the parameter that relates 

to the level of non-Gaussian contamination, between 0.2–100 (top 5 traces); we also performed 

robust estimation with adaptive variations of 𝜅 (bottom trace). Lower values of 𝜅 led to reduced 

amplitudes in the inferred activity trace; this effect was substantially more pronounced at times when 

the distractor cell was active. Consequently, reduced values of 𝜅 suppressed contamination from the 

distractor more than it suppressed the activity of the cell of interest. Varying 𝜅 in an adaptive manner 
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yielded the best result. For L1-regularized L2-estimation, we varied the regularization penalty, 𝜆 , 

between 0–0.3. Greater values of 𝜆 indiscriminately suppressed the contributions of both the 

distractor cell and the cell of interest to the inferred trace. 

(C, D) We repeated the analysis of (A,B) but with a less overlap between the two cells. L1-regularized 

L2-estimation again showed over-suppression of the cell’s activity. Robust estimation with adaptive 

variation of 𝜅 again yielded the best estimate of the cell’s activity, 

(E) A plot of the relationship between the level of non-Gaussian contamination, 𝜖, and the parameter, 

𝜅, in our robust estimation framework. When 𝜖 is near zero, 𝜅 is set to large values, making our 

robust loss function behave similarly to an L2-estimator. However, when 𝜖 is high (indicating high 

levels of contamination), 𝜅 is set to low values, skewing the loss function so as to reject positively 

valued contaminants. 
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Figure S2  |  EXTRACT outperforms ICA and CNMF under conditions of low SNR. 

(A–C) As in Figure 3G-L, we evaluated the three cell extraction algorithms using several quantitative 

metrics, which we determined over 20 different simulated movies, each with 5000 image frames, for 

each of the specified imaging conditions. Unlike with Figure 3G-L, the simulated Ca2+ traces here 

had an SNR of 2.5. The inferred Ca2+ traces from EXTRACT had the greatest values of the area 

under the spike precision-recall curve, A, as computed using the sets of Ca2+ transients detected by 

each algorithm. The results from EXTRACT also had the highest Pearson correlation coefficients 

between the inferred Ca2+ traces and inferred cell shapes and their actual forms, B, as well as the 

highest values of precision and recall determined by matching the sets of detected cells to the full 

set of cells within each simulated movie. All data are shown as mean ± S.E.M. (N = 20 movies). 

(D–F) We repeated the analyses of A–C but with simulated movies in which cells’ activity patterns 

were mutually correlated (Methods). 
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Figure S3. EXTRACT identifies spiny projection neurons in multi-plane two-photon imaging 

data acquired in dorsal striatum. 

(A) We re-analyzed previously published datasets in which we had used dual-color, multi-plane two-

photon imaging to track the Ca2+ dynamics of spiny projection neurons of the basal ganglia’s direct 

and indirect pathways (dSPNs and iSPNs) within the dorsomedial striatum of head-fixed mice at 

liberty to walk or run on a wheel22. Both neuron-types expressed GCaMP6m, but only dSPNs 

expressed an additional red fluorophore, tdTomato (Methods). Within each mouse we sampled SPN 

Ca2+ dynamics within four different optical focal planes spaced 15 μm apart in the axial dimension.  

(B) We ran EXTRACT on the Ca2+ imaging data acquired from each of the four different planes. 

Following cell extraction, we identified each neuron as either an iSPN or a dSPN according to 

whether the cell expressed tdTomato or not, in addition to GcaMP6m.  
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(C) An example cell identified in all four planes. After running EXTRACT, we merged multiple 

instances of single cells on different planes based on correlations among spatial and temporal 

components across planes. 

(D–F) The identified components of a representative set of 10 dSPNs and 10 iSPNs. D: Cell images 

for iSPNs (left) and dSPNs (right). E: Ca2+ traces of the 10 dSPNs. F: Ca2+ traces of the 10 iSPNs. 

(G–H) We used support vector classifiers in conjunction with regularized linear regression to detect 

movement and predict the locomotor speed simultaneously, using the detected events from the ΔF/F 

traces of the algorithm output. G: When we deployed this method for iSPNs and dSPNs separately, 

we observed that the estimated locomotor speed tracked very closely the actual speed on held-out 

test portions of the data. H: We quantitatively measured the prediction performance by computing 

the Pearson correlation coefficient between the predicted and the actual locomotor speed on 

randomly held-out test data over repeated runs. By using either iSPN or dSPN population activity, 

we could reach reasonably high correlation values, consistent with Ref. 22.  
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Figure S4. EXTRACT identifies dendritic Ca2+ activity in cerebellar Purkinje and neocortical 

pyramidal neurons in live mice.  

(A, B). Cell maps of cerebellar Purkinje neuron dendritic trees (left panels), along with the extracted 

1
2
3
4
5
6
7
8
9

10

5 s

200%
ΔF/F

1
2
3
4
5
6
7
8
9

10

5 s

200%
ΔF/F

A

B

C

D

0 1Amplitude

1

2

3

4
5

6

7

8

9

10

50 µm

1

2

3

4

5

6

7

8

9

10

30 µm

1

2
34

56 7

8 9

10

50 µm 1

2

3

4

5

6

7

8

9

10

30 µm

1
2

3

4
5

6
7

8

9
10

0

200 µm 1

2

3

4

5

6

7

8

9

10

75 µm

1

2

3

4

5

6

7

8

9

10

5 s

200%
ΔF/F

1

2
3

4

5

6
7

8

9

10

200 µm

1

2

3

4

5

6

7

8

9

10

75 µm

1
2
3
4
5
6
7
8
9

10

5 s

200%
ΔF/F

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436279doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436279
http://creativecommons.org/licenses/by/4.0/


 42 

spatial forms (middle panels) and corresponding Ca2+ traces (right panels) for 10 example cells in 

each of two mice, as obtained by applying EXTRACT to Ca2+ activity datasets acquired in live mice 

with a two-photon mesoscope1. EXTRACT found the dendritic trees of 507, A, and 646, B, Purkinje 

neurons in the two mice.  

(C, D) Analogous panels to those in A, B but for Ca2+ videos acquired with a conventional two-photon 

microscope in layer 1, apical dendrites of neocortical pyramidal neurons in live mice. EXTRACT 

found 860 dendritic segments, C, and 905, D, dendritic segments for layer 2/3 and layer 5 pyramidal 

neurons, respectively, in the two mice.  
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METHODS 

Mice.  All procedures were approved by the Stanford University Administrative Panel on Laboratory 

Animal Care (APLAC) in accordance with American Veterinary Medical Association guidelines. Ca2+ 

imaging studies in the ventral hippocampus used male double-transgenic CaMKII-GCaMP6s mice 

(tetO-GCaMP6s-2Niell/J: Camk2a-tTA-1Mmay/DboJ, Jackson Laboratory, stock #007004 and 

#024742 respectively) aged 12-16 weeks at the start of experimentation34.  

For Ca2+ imaging studies of cerebellar Purkinje neuron dendritic trees, we used mice that 

were a cross of PCP2-Cre driver mice with a Bl6-129 genetic background and Ai148 transgenic 

mice35; the resulting double transgenic mice (PCP2-cre/TIGRE-loxP-stop-loxP-CAG-tTA2-TRE-

GCaMP6f [Ai148]) expressed the GCaMP6f Ca2+ indicator selectively in Purkinje cells.  

EXTRACT ALGORITHM 

Mathematical variables 

We denote the size of the imaging field-of-view as ℎ ´ 𝑤, in units of pixels. We refer to the scalar 

product ℎ𝑤 as 𝑚. We use boldface characters for arrays and non-boldface characters for scalars. 

As in the main text, we denote the movie matrix as 𝑴 (flattened in space, so that 𝑴 is a two-

dimensional matrix), the matrix of spatial weights (cell images) as 𝑺, and the matrix of temporal 

weights (Ca2+ traces) as 𝑻. 

Definition of Signal-to-noise Ratio (SNR)  

We define the signal-to-noise ratio (SNR) for a given signal as the ratio of the maximum value of the 

signal divided by the s.d. of the noise. We computed the noise s.d by obtaining the power spectral 

density (PSD) of the signal using a Fourier transform, then taking the spectral power across the 

upper half of the frequency range, where most of the fluorescence dynamics comprise noise 

fluctuations, not high-frequency Ca2+ excitation, and extrapolating the power found there to the rest 

of the spectrum. We computed the SNR at an individual image pixel by considering the time-varying 

fluorescence from that pixel as the signal. 
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Theory of Robust Estimation in the Presence of Large Non-negative Contaminants 

Here, we introduce our signal estimation approach, based on the theory of robust M-estimation. This 

theory is well-developed for symmetric and certain asymmetric contamination regimes16,36-38. 

However, prior theoretical work does not readily suggest an optimal estimator that is suitable for use 

with the types of signals that arise in neural Ca2+ imaging studies. Thus, we first motivate and 

introduce a simple mathematical abstraction for treating such studies. We then derive a minimax 

optimal M-estimator. For simplicity, we present our treatment in the setting of univariate estimation, 

which generalizes in a straightforward way to multivariate regression. 

Given the nature of signal contaminants in Ca2+ imaging datasets, we create a noise model 

based on the observation that most fluctuations in the fluorescence background are well modeled as 

being Gaussian-distributed. This type of noise stems from the stochastic emission, propagation and 

detection of photons, which are all Poisson processes, implying that the numbers of detected 

photons are Gaussian-distributed when there are large numbers of photons. However, the 

fluorescence background also contains other sources of noise or contamination, such as from 

neuropil Ca2+ activity, out-of-focus cells, and residual activity of overlapping cells that are not 

detected and well accounted for by the cell extraction method. This latter category of contamination 

is very distinct from normally distributed noise; namely, it is non-negative (or above the signal 

baseline), its characteristics can be highly irregular, and it may take on large values. Therefore, we 

model the data generation process as having an additive noise source that is normally distributed a 

fraction 1 − 𝜖 of the time, but which is free to be any positive value greater than a threshold otherwise: 

𝑦A = 𝛽∗ + 𝜎A

𝜎A ∼ F
𝒩(0,1), 		with	probability		1 − 𝜖

𝐻T, 		with	probability		𝜖

𝐻T ∈ ℋT = {All	distributions	with	support	[𝛼,∞)}, 			𝛼 ≥ 0.
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Here, 𝑦A denotes an experimental observation, which deviates from 𝛽∗, the true value of the 

measured quantity, due to corruption with an additive noise term, 𝜎A. This noise term, 𝜎A	, is normally 

distributed with 1 − 𝜖 probability and distributed according to an unknown distribution, 𝐻T  , with 

probability 𝜖. For the sake of generality, we allow 𝐻T  to be any probability distribution with support 

over the range [𝛼,∞), for a fixed value 𝛼	³ 0. In particular, 𝐻T  can be nonzero over an arbitrarily large 

range of possible noise values. Therefore, 𝜖 can be interpreted as setting the extent or severity of 

‘gross contamination’. If 𝜖 is small, the noise will be close to Gaussian-distributed. On the other hand, 

as 𝜖 nears one, the noise distribution deviates from a normal distribution to an arbitrary extent. The 

parameter, 𝛼 , can be interpreted as the minimum observed value of the positive contamination; its 

exact value is insignificant outside the realm of our theoretical treatment. We denote the full 

distribution of the noise as 𝐹cd, subscripted by 𝐻T .  

Given a set of experimental observations {𝑦A}Aefg  , we form an estimate, �̂� , of the true 

parameter, 𝛽∗ , by considering an equivariant M-estimator: 

�̂� = argmin
k

l𝜌
g

Aef

(𝑦A − 𝛽). 

Typically, M-estimators are characterized by estimator functions,	𝜓, that are defined as the derivative 

of 𝜌, 𝜓 ≜ 𝜌′. Here we consider 𝜓’s with specific properties that enable efficient optimization and allow 

general theoretical guarantees.  

We define a set, 𝛹 = {𝜓 ∣ 𝜓	is	a	montonically	increasing	function}.		If we choose an 

estimator function, 𝜓 ∈ 𝛹, finding a point estimate, �̂� , is equivalent to solving the following first-order 

condition for �̂�: 

l𝜓
g

Aef

(𝑦A − �̂�) = 0. 
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This is simply because the members of 𝛹 correspond to convex loss functions. Our focus is on such 

functions, because they are typically easier to optimize and offer global optimality guarantees. We 

seek an M-estimator for our noise model that is robust to variations in the noise distribution (𝐻T  in 

particular), in the sense of minimizing the worst-case deviation from the true parameter, as measured 

by the mean squared error. We first introduce our proposed estimator and then show that it is exactly 

optimal in the aforementioned minimax sense.  

We define an estimator function, 𝜓u , as follows: 

𝜓u(𝑦, 𝜅) = v𝑦, 		if		𝑦 < 𝜅
𝜅, 		if		𝑦 ≥ 𝜅, 

where 𝜅 is defined in terms of the contamination level, 𝜖, according to 

𝛷(𝜅) +
𝜙(𝜅)
𝜅

=
1

(1 − 𝜖)
, 

in which 𝛷(⋅) and 𝜙(⋅) denote the distribution and the density functions for a standard normal 

variable. We refer to 𝜓u as the one-sided Huber function and denote its corresponding loss function 

as 𝜌u(⋅, 𝜅). Clearly, 𝜓u ∈ 𝛹, and therefore the loss function, 𝜌u	, is convex. Under our proposed data 

generation model, we can now state an asymptotic minimax result for 𝜓u: 

Proposition 1.  The one-sided Huber function, 𝜓u , yields an asymptotically unbiased M-estimator 

for ℱ = {(1 − 𝜖)𝛷 + 𝜖𝐻|}. Further, 𝜓u minimizes the worst-case asymptotic variance in ℱ, i.e. 

𝜓u = arg inf
}∈~

	sup
�∈ℱ

𝑉(𝜓, 𝐹). 

Proof: 

First, note that 𝐹 = (1 − 𝜖)𝛷 + 𝜖𝐻 yields an unbiased M-estimator for 𝜓u if and only if 
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0 = 𝔼�[𝜓u(𝑦)] = (1 − 𝜖)𝔼�[𝜓(𝑦)] + 𝜖𝔼c[𝜓u(𝑦)],

= (1 − 𝜖) �� 𝑦
|

��
𝜙(𝑦)𝑑𝑦 + 𝜅� 𝜙

�

|
(𝑦)𝑑𝑦� + 𝜖 �� 𝑦

|

��
ℎ(𝑦)𝑑𝑦 + 𝜅� ℎ

�

|
(𝑦)𝑑𝑦� ,

= (1 − 𝜖){−𝜙(𝜅) + 𝜅 − 𝜅𝛷(𝜅)} + 𝜖 �� 𝑦
|

��
ℎ(𝑦)𝑑𝑦 + 𝜅� ℎ

�

|
(𝑦)𝑑𝑦� .

 

Using 𝛷(𝜅) + 𝜙(𝜅)/𝜅 = 1/(1 − 𝜖) for the first term on the right-hand side, we obtain 

0 = � (
|

��
𝜅 − 𝑦)ℎ(𝑦)𝑑𝑦, 

which is satisfied if and only if the support of 𝐻 is [𝜅,∞). 

For the variance calculations, we use the fact that the one-sided Huber estimator of 𝜓u is 

unbiased for the class of distributions ℱ = (1 − 𝜖)𝛷 + 𝜖ℋ| . We calculate the variance for 𝜓u for some 

𝐹 ∈ ℱ using 𝔼�[𝜓u1]/𝔼[𝜓′u]1. The numerator can be written as 

𝔼�[𝜓u1] = (1 − 𝜖)𝔼�[𝜓u1] + 𝜖𝔼c[𝜓u1],

= (1 − 𝜖) �� 𝑦1
|

��
𝜙(𝑦)𝑑𝑦 + 𝜅1� 𝜙

�

|
(𝑦)𝑑𝑦� + 𝜖𝜅1,

= (1 − 𝜖){𝛷(𝜅) − 𝜅𝜙(𝜅) − 𝜅1𝛷(𝜅)} + 𝜅1,

= (1 − 𝜖)𝛷(𝜅).

 

Similarly, for the denominator, we write 

𝔼�[𝜓u′]1 = {(1 − 𝜖)𝔼�[𝜓u′] + 𝜖𝔼c[𝜓u′]}1,

= �(1 − 𝜖)	∫ 𝜙|
�� (𝑦)𝑑𝑦�

1
= (1 − 𝜖)1𝛷(𝜅)1.

  

Therefore, the asymptotic variance is given as 𝑉(𝜓u, 𝐹) = [(1 − 𝜖)𝛷(𝜅)]�f,	which is constant over 

the contamination class ℋ|. 

Now, define a distribution 𝐹u by its density 𝑓u satisfying the condition −𝑑log(𝑓u)/𝑑𝑡 = 𝜓u: 
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𝑓u(𝑦) = �

(1 − 𝜖)𝜙(𝑦), if		𝑦 < 𝜅

(1 − 𝜖)𝜙(𝜅)exp(−𝜅𝑦 + 𝜅1), if		𝑦 ≥ 𝜅

    . 

First, we need to check whether 𝐹u ∈ ℱ. It is easy to check that 𝑓u (and the corresponding 

contamination) is a distribution, i.e. it integrates to 1 by the condition 𝛷(𝜅) + 𝜙(𝜅)/𝜅 = 1/(1 − 𝜖). 

Then, ∀𝐹 ∈ ℱ, we have 

     𝑉(𝜓u, 𝐹) = 𝑉(𝜓u, 𝐹u).     (1) 

Moreover, a straightforward application of the Cauchy-Schwartz inequality yields 

𝑉(𝜓, 𝐹u) =
𝔼��[𝜓

1]
𝔼��[𝜓′]1

≥
1

𝐼(𝐹u)
 

with equality only if 𝜓 ∝ 𝑓′u/𝑓u, where 𝐼(𝐹u) = (1 − 𝜖)𝛷(𝜅) is the Fisher information governing the 

minimum possible asymptotic variance. Combining this with the previous result, we obtain 

sup
�∈ℱ

𝑉(𝜓u, 𝐹) = 𝑉(𝜓u, 𝐹u) = inf
}
	𝑉(𝜓, 𝐹u). 

Finally, note that the left equality is weaker than the statement in (1). This proof of Proposition 1 

establishes that the one-sided Huber estimator has zero bias as long as the non-zero contamination 

is sufficiently larger than zero, and it also achieves the best worst-case asymptotic variance.  

We now compare the one-sided Huber and some other popular M-estimators, such as the 

sample mean (ℓ1 loss), the sample median (ℓf loss), the Huber estimator, and the sample quantile. 

First of all, given our model of the noise, the sample mean, the sample median, and Huber estimators 

all have symmetric loss functions and therefore suffer from bias. This effect is particularly severe for 

the sample mean estimator and leads to an unbounded MSE when gross contamination takes on 

very large values. The bias problem may be eliminated using a quantile estimator whose quantile 

level is set according to 𝜖. However, this estimator has a higher asymptotic variance than the one-

sided Huber estimator. Although we have not encountered a prior study of a one-sided Huber 
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estimator, it is related to the technique in Ref. 39, in which samples are assumed to be non-negative, 

and in which the sample mean estimator summands are shrunk when they are above a certain 

threshold (this technique is called winsorizing). However, the model and application in Ref. 39 are 

both quite different than those we consider. 

We can now introduce the regression setting that we use for solving for the temporal and 

spatial weight matrices. We illustrate this for the simple case of solving one row in the spatial weights 

matrix, or one column in the temporal weights matrix. We observe {𝑦A, 𝐱A}Aefg , where 𝐱A ∈ ℝ� could 

be either fixed or random, and 𝑦A’s are generated according to 𝑦A = ⟨𝐱A, 𝛃∗⟩ + 𝜎A
� + 𝜎A�, where 𝛃∗ ∈

ℝ� is the true value of the parameter to be estimated, and 𝜎A is as previously defined. We estimate 

𝛃∗ with 

   �̂� = 𝑎𝑟𝑔𝑚𝑖𝑛	𝑓
𝛃

|(𝛃) ≔ ∑ 𝜌ug
Aef (𝑦A − ⟨𝐱A, 𝛃⟩, 𝜅).		      (2) 

Classical M-estimation theory establishes, under certain regularity conditions, that the minimax 

optimality in the univariate case carries over to multivariate regression; we refer the reader to Ref. 20 

for details. 

Solving the Robust Regression Problem with a Fast, Custom Method 

We seek to solve the robust regression problem of equation (2) in a large-scale setting, given the 

large field-of-view and duration of most neural Ca2+ videos. Hence, the solver for our problem should, 

ideally, be tractable for large 𝑛 and provide as accurate an output as possible. To this end, we 

propose a fast optimization method that has a step cost equal to that of gradient descent while 

making use of second-order information and exhibiting similar behavior to Newton’s method: 

 Algorithm 1: Fast robust solver 

 function robust_solve(𝐗, 𝐘, 𝜅, 𝛿)  //𝑋 = [𝑥f, … , 𝑥g]«, 𝑌 = [𝑦f,… , 𝑦g]« 

 Compute: 𝐗 = (𝐗«𝐗)�f𝐗«, 		𝛃®¯ = 𝐗𝐘  
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 Initialize 𝛃(u) at random, set 𝑡 = 0. 

 While ||𝛃±f − 𝛃±||1 ≥ 𝛿: 

a. 𝛃(±f) = 𝛃®¯ − 𝐗max(0, 𝐘 − 𝐗𝛃(±) − 𝜅) 

b. 𝑡 ← 𝑡 + 1.  

 Return 𝛃(±). 

Below we present the convergence result for our solver described in Algorithm 1. 

Proposition 2. Let 𝛽∗ be the fixed point of Algorithm 1 for the problem in equation (2), and let 𝜆³´µ 

and 𝜆³Ag > 0 denote the extreme eigenvalues of ∑ 𝑥Ag
Aef 𝑥A«, and let 𝑚𝑎𝑥A ∥ 𝑥A ∥≤ 𝑘. Assume that for 

a subset of indices 𝑠 ⊂ 	 {1, 2, . . . , 𝑛}, ∃𝛥¾ > 0 such that 𝑦A − ⟨𝑥A, 𝛽∗⟩ ≤ 𝜅 − 𝛥¾ , and denote the extreme 

eigenvalues of ∑ 𝑥AA∈¾ 𝑥A« by 𝛾³´µ and 𝛾³Ag > 0 satisfying 𝜆³´µ𝛾³´µ/𝜆³Ag1 < 2. If the initial point 𝛽u is 

close to the true minimizer, i.e., ∥ 𝛽u − 𝛽∗ ∥1≤ 𝑘/𝛥¾, then Algorithm 1 converges linearly, 

𝑓|(𝛽±) − 𝑓|(𝛽∗) ≤ À1 − 2
𝛾ÁÂÃ
𝜆ÁÄÅ

+
𝛾ÁÄÅ𝛾ÁÂÃ
𝜆ÁÂÃ1 Æ

±

[𝑓|(𝛽u) − 𝑓|(𝛽∗)]. 

Proof: 

We consider the following objective function 

𝛽∗ = argmin
k

𝑓(𝛃) ≔l𝜌u

g

Aef

(𝑦A − ⟨𝐱A, 𝛽⟩, 𝜅). 

Setting: 

• Assume that for some 𝑆 ⊂ [𝑛] and 𝛥¯ > 0 such that 𝑦A − ⟨𝐱A, 𝛃∗⟩ ≤ 𝜅 − 𝛥¯ for 𝑖 ∈ 𝑆 ⊂ [𝑛]. 

(Including more indices in 𝑆 results in smaller 𝛥¯). 

• Let maxA∥∥𝐱A∥∥1 ≤ 𝑘. 
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• ∑ 𝐱AA∈¯ 𝐱A« ≽ 𝜆¯𝐈. This assumption is reasonable when 𝑛 is large and consequently there are 

many samples in the quadratic regime. 

• 𝜆ÁÄÅ  and 𝜆ÁÂÃ are the largest and smallest eigenvalues of 𝑋«𝑋, respectively. 

For 𝛃 in the ball centered around 𝛃∗ with radius 𝛥¯/𝑘, we have for ∀𝑖 ∈ 𝑆,  

𝑦A − ⟨𝐱A, 𝛃⟩ = 𝑦A − ⟨𝐱A, 𝛃∗⟩ + ⟨𝐱A, 𝛃∗ − 𝛃⟩

≤ 𝜅 − 𝛥¯ + ∥∥𝑥A∥∥1∥∥𝛃
∗ − 𝛃∥∥1

≤ 𝜅.

 

Therefore, when the iterates 𝛃 get close to the true minimizer, ∀𝑖 ∈ 𝑆, the residual corresponding to 

sample 𝑖 falls into the quadratic region. This implies that the Hessian satisfies 

𝛁1𝑓(𝛃) = l 𝐱A𝐱A«

A	:	ÌÍ�⟨µÍ,𝛃⟩Î|

≽l𝐱A
A∈¯

𝐱A« ≽ 𝜆¯𝐈			, 

which says that in the ball 𝐵 = 	 {𝛃:	∥∥𝛃 − 𝛃∗∥∥1 ≤ 𝛥/𝑘}, the objective function 𝑓 is 𝜆¯-strongly convex. 

Strong convexity implies smoothness, i.e., 𝛁1𝑓 ≼ 𝛾¯𝐈 for ∀𝛃 ∈ 𝐵. In this regime, the following 

calculation is standard. 

Assuming that the current iterate is 𝛃, our approach takes a step of the following form: 

𝛃 = 𝛃 − (𝑋«𝑋)�f𝛻𝑓(𝛃). 

By 𝛾¯-smoothness, we can write: 
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𝑓(𝛃) ≤ 𝑓(𝛃) + ⟨𝛻𝑓(𝛃), 𝛃 − 𝛃⟩ +
𝛾¯
2 ∥
∥𝛃 − 𝛃∥∥1

1

≤ 𝑓(𝛃) − ⟨𝛻𝑓(𝛃), (𝑋«𝑋)�f𝛻𝑓(𝛃)⟩ +
𝛾¯
2 ∥
∥(𝑋«𝑋)�f𝛻𝑓(𝛃)∥∥1

1

≤ 𝑓(𝛃) −
1

𝜆ÁÄÅ
∥∥𝛻𝑓(𝛃)∥∥1

1 +
𝛾¯

2𝜆ÁÂÃ1 ∥∥𝛻𝑓(𝛃)∥∥1
1

= 𝑓(𝛃) − �
1

𝜆ÁÄÅ
−

𝛾¯
2𝜆ÁÂÃ1 � ∥∥𝛻𝑓(𝛃)∥∥1

1.

 

By 𝜆¯-strong convexity: 

𝑓(𝛃′) ≥ 𝑓(𝛃) + ⟨𝛻𝑓(𝛃), 𝛃′ − 𝛃⟩ +
𝜆¯
2 ∥
∥𝛃′ − 𝛃∥∥1

1

≥ 𝑓(𝛃) −
1
2𝜆¯

∥∥𝛻𝑓(𝛃)∥∥1
1.

 

The second inequality follows from setting 𝛃′ = 𝛃 − 1/𝜆ÁÂÃ𝛻𝑓(𝛃), which is the minimizer of the right-

hand side of the first line. Choosing 𝛃′ = 𝛃∗ above yields 

1
2𝜆¯

∥∥𝛻𝑓(𝛃)∥∥1
1 ≥ 𝑓(𝛃) − 𝑓(𝛃∗)			. 

Using this and the smoothness inequality, we write 

𝑓(𝛃) − 𝑓(𝛃∗) ≤ 𝑓(𝛃) − 𝑓(𝛃∗) − v
f

ÒÓÔÕ
− Ö×

1ÒÓØÙ
Ú Û ∥∥𝛻𝑓(𝛃)∥∥1

1

≤ 𝑓(𝛃) − 𝑓(𝛃∗) − 2𝜆¯ v
f

ÒÓÔÕ
− Ö×

1ÒÓØÙ
Ú Û (𝑓(𝛃) − 𝑓(𝛃∗))

= v1 − 2 Ò×
ÒÓÔÕ

+ Ö×Ò×
ÒÓØÙ
Ú Û (𝑓(𝛃) − 𝑓(𝛃∗))

    . 

This is linear convergence with coefficient 1 − 2 Ò×
ÒÓÔÕ

+ Ö×Ò×
ÒÓØÙ
Ú  and the following condition must hold: 

𝜆ÁÄÅ
𝜆ÁÂÃ1 <

2
𝛾¯
		 . 
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Relation between our fast solver and Newton’s method for the robust estimation problem 

For a convex function 𝑓:ℝ� → ℝ, unconstrained Newton update on the parameter 𝛃 ∈ ℝ� reads 

𝛃±f = 𝛃± − Ý𝛁𝛃1𝑓(𝛃±)Þ
�f
𝛻𝛃𝑓(𝛃±). 

In our algorithm,  

𝜵𝛃1𝑓(𝛃±) =
1
𝜅
l 𝐱A
A∈¯à

𝐱A«, 

 and 

𝛻𝛃𝑓(𝛃±) = −
1
𝜇
l 𝐱A
A∈¯à

(𝑦A − ⟨𝐱A, 𝛃±⟩) − l 𝐱A
A∈[g]\¯à

, 

where 𝑆± = {𝑖 ∈ [𝑛]:	𝑦A − 〈𝐱A, 𝛃±〉 ≤ 𝜅	}. 

Replacing the Hessian with 𝑋«𝑋 = ∑ 𝐱Ag
Aef 𝐱A«, we can write the update as  

𝛃±f = 𝛃± + [𝑋«𝑋]�fÝ∑ 𝐱AA∈¯à (𝑦A − ⟨𝐱A, 𝛃±⟩) + 𝜅	 ∑ 𝐱AA∈[g]\¯à Þ,

= 𝛃± + [𝑋«𝑋]�fÝ∑ 𝐱AA∈¯à 𝑦A − ∑ 𝐱AA∈¯à 𝐱A«𝛃± + 𝜅	 ∑ 𝐱AA∈[g]\¯à Þ,

= 𝛃± + [𝑋«𝑋]�fÝ∑ 𝐱AA∈¯à 𝑦A − 𝑋«𝑋𝛃± + ∑ 𝐱AA∈[g]\¯à ⟨𝐱A, 𝛃±⟩ + 𝜅	 ∑ 𝐱AA∈[g]\¯à Þ,

= [𝑋«𝑋]�fÝ∑ 𝐱AA∈¯à 𝑦A + ∑ 𝐱AA∈[g]\¯à {⟨𝐱A, 𝛃±⟩ + 𝜅	}Þ,

  

which reduces to the update step of our solver. 

As shown above, our solver is second-order in nature hence its convergence behavior should 

be close to that of Newton’s method. However, there is one caveat: the second derivative of the one-

sided Huber loss is not continuous. Therefore, one cannot expect to achieve a quadratic rate of 

convergence; this issue is commonly encountered in M-estimation. Nevertheless, Algorithm 1 

converges very quickly in practice. 
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Setting 𝜿 Adaptively in Robust Estimation 

We write 𝜖 and 𝜅 for the true values of these parameters. Recall that the two are related as 

𝛷(𝜅) +
𝜙(𝜅)
𝜅

=
1

(1 − 𝜖)
		. 

We introduce a shorthand function 𝑓:  

    𝑓(𝑥) = 𝛷(𝑥)𝑥 + 𝜙(𝑥).      (3) 

We have the following routine for estimating 𝜅: We assume that we start with a fixed 𝜅′ (usually set 

to 1), for which we find a 𝛽 estimate, and then compute the residual to estimate the true 𝜅. We denote 

any estimate of 𝜅 with 𝜅. We use an iterative scheme in which we set κ′(𝑡) = 𝜅
(±�f) and do a few 

iterations to get increasingly finer estimates, 𝜅(±). When estimating 𝜅, for simplicity we only deal with 

univariate regression (scalar 𝛽). We use 𝑟A ≜ 𝑦A − 𝑥A𝛽 to denote the residual for any given 𝛽. 

Ideally, we would use an estimator with the lowest possible variance. On the other hand, it is 

important in practice to restrict ourselves to estimators that are computationally efficient to use. 

Therefore, we use an estimator for which we assume 𝜎A has a density 𝑓cç (distributed according to 

our noise model with true parameter 𝜅) and denote with ℎ| the density of 𝐻|. Let 𝑏 ≜ 𝔼 �̂� − 𝛽∗. We 

can obtain a straightforward relationship between 𝜅′ and 𝑝A (only in the asymptotic regime) as follows: 

𝑝A = ℙ(𝜎A + 𝑥A(𝛽∗ − 𝔼 �̂�) > 0) = ℙ(𝜎A > 𝑥A(𝔼 �̂� − 𝛽∗))

= � 𝑓cç
�

µÍë
(𝑦)𝑑𝑦 = � {

�

µÍë
(1 − 𝜖)𝜙(𝑦) + 𝜖ℎ|(𝑦)}𝑑𝑦

= (1 − 𝜖)𝛷(𝑥A𝑏) +� 𝜖
�

µÍë
ℎ|(𝑦)𝑑𝑦

⏟
≈î

≈ 1 − (1 − 𝜖)𝛷(𝑥A𝑏)

= 1 −
𝜅

𝑓(𝜅)
𝛷(𝑥A𝑏).
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Once we establish a mapping between the asymptotic bias, 𝑏, and 𝜅, we can estimate 𝜅 from above. 

However, in practice we will not be able to get a good estimate of 𝑝A, and we need to estimate an 

aggregate quantity by averaging over multiple measurements. Therefore, we need to deal with the 

following quantity: 

     f
g
∑ 𝑝AA = f

g
∑ 1A − |

ï(|)
𝛷(𝑥A𝑏)     (4) 

We can find a relationship between 𝑥A𝑏 and 𝜅′,	𝜅 using the asymptotic optimality condition, which we 

will simply refer to as the bias condition: 

l𝔼
A

𝜓(𝑦 − 𝑥A𝛽, 𝜅′) = 0

⇔
1
𝑛
l

𝑓(𝜅′ + 𝑥A𝑏)
𝜅′

A

=
1

1 − 𝜖
.
 

Note that if 𝑏 = 0, we have 𝜅′ = 𝜅. In general, we can use this to eliminate 𝜖 and get 

1
𝑛
l

𝑓(𝜅′ + 𝑥A𝑏)
𝜅′

A

=
𝑓(𝜅)
𝜅

. 

In order to isolate 𝑥A𝑏, we can approximate 𝑓 using its first order Taylor expansion around 𝜅′: 

    

f
g
∑ ï(|ñ)�(|ñ)µÍë

|ñA ≈ ï(|)
|

⇔ f
g
∑ 𝑥AA 𝑏 ≈ ò|ñï(|)

|
− 𝑓(𝜅′)ó /𝛷(𝜅′).

   (5) 

We wish to plug (5) into (4) to eliminate 𝑥A𝑏 and attain a relationship directly between 𝜅 and the data 

related quantities. (From there, we can estimate the real 𝜅 with a 𝜅). For this, we need to isolate 

∑ 𝑥AA 𝑏 from (4). We simply expand the normal CDF 𝛷 around 𝑥A𝑏 = 0 using its 1st-order 

approximation and get 

1
𝑛
l𝑝A
A

≈
𝜅

𝑓(𝜅)
ô𝛷(0) + 𝜙(0)

1
𝑛
l𝑥A
A

𝑏õ . 
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We summarize the procedure to estimate 𝜅 in Algorithm 2 below. 

Algorithm 2: Estimating 𝜅: 

Set 𝜅(u) = 1.  

Set 𝜅′(±) = 𝜅
(±�f) solve for �̂� using 𝜅′(±).  

Get �̂� ≜ f
g
∑ 𝟙A (𝑟A > 0) from data 

Find 𝜅(±) by plugging (5) into (4) and solving it using �̂�.  

Return 𝜅(±). 

In practice, we use adaptive 𝜅 only for cell finding, via the univariate estimation scheme above.  

EXTRACT Preprocessing Module  

The spatial high-pass filter is a second-order high-pass Butterworth filter designed in the frequency 

domain with a cutoff determined by the user-provided average cell radius. First, a corner frequency 

is computed by 1/p /radius, and then the cutoff for the Butterworth filter is determined (separately in 

the x and y directions) by dividing the corner frequency by a dimensionless factor set by the user 

(the default value is 5). The resulting high-pass filter is multiplied with each frame of the Ca2+ movie 

in the spatial frequency domain and then transformed back to real-space. EXTRACT preprocessing 

also supports spatial low-pass filtering of the movie for smoothing. The spatial low-pass filter is also 

a second-order Butterworth filter, and the cutoff frequency is obtained by multiplying the corner 

frequency by another user-set, dimensionless constant (the default value is 2).  

The baseline removal method is applied separately to the time trace of each movie pixel. The 

method samples the baseline at regularly spaced time points by taking the mode of the Ca2+ values 

within a temporal interval (a constant multiple of the GCaMP time constant) surrounding each chosen 

time point. It then smooths this coarsely sampled baseline with a moving average filter that computes 
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a mean intensity value across 5 time bins. Finally, it uses linear interpolation to generate baseline 

values for all time points. The baseline trace is subtracted from the Ca2+ trace of the input pixel to 

yield the output. 

EXTRACT Cell Finding Module 

In the cell finding module, we first compute a ‘smoothed’ maximum projection image of the whole 

movie, which we obtain as follows. For each movie pixel, we first identify the time point at which the 

Ca2+ activity of the pixel reaches its maximum. We record this information in an array 𝑤 ∈ ℝ³. We 

then compute the “smoothed” maximum projection image, 𝑝 ∈ ℝ³ as 

𝑝A = ∑ 𝑀A,ùúû	∈	ÃüÂýþÿ!"#(A) . 

In other words, for each pixel i, we average the values of the Ca2+ activity of the pixel over the time 

points at which neighboring pixels had their activity maximums. The function, neighbors(⋅), selects 

the neighboring pixels of a given pixel; this is done in practice by creating a binary circular mask 

around the query pixel with a radius of 2 pixels and returning the indices that are nonzero. This 

procedure has the advantage that it reports values close to the maximum values of pixels within 

cells, due to the co-activation of a neighborhood of pixels within, whereas the activity of the noise 

pixels is substantially mitigated due to averaging over uncorrelated activity. 

At every iteration of the cell finding module, a seed pixel is chosen as the brightest pixel in 

the smoothed maximum projection array, 𝑝, and then a cell image centered at the seed pixel is 

initialized. This initialization is done either by generating a Gaussian shape with a radius equal to a 

user-given radius estimate, or by using the temporal Pearson correlation of the Ca2+ activity of the 

seed pixel with the movie, and truncating the correlation image at 0.5 of its maximum. With the 

resulting estimate of the cell image, the temporal Ca2+ trace of the cell is obtained using a one-

component robust regression. The cell image is then re-estimated using the same regression routine, 

this time with the trace estimate as the input. This alternating estimation scheme is repeated either 
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10 times, or until the relative change in the cell image and the trace estimates between iterations are 

<1% as measured by the L2 norm.  

For the one-component robust regression, we optimize the one-sided Huber loss with a non-

negativity constraint on the cell image and the trace using the Newton’s method. The non-negativity 

constraint follows from our fundamental assumption that the neural activity always rises above the 

baseline noise, and this constraint leads to more sparse solutions. The non-negativity constraint is 

enforced by solving the problem using Newton’s method first, and truncating the result at zero. This 

returns the same result as if non-negativity was enforced during optimization, because it is a scalar 

estimation problem. After obtaining the cell image, 𝒔,	and the trace, 𝒕, for the identified cell, we 

subtract the contribution from this cell by setting 𝑴 to 𝑴− 𝒔𝒕. We then re-compute the smoothed 

maximum projection, 𝒑, for only the movie pixels that were affected by the activity subtraction.  

At the end of each iteration, we apply a quality check to the cell image and the trace of the 

identified cell to decide whether to include it in the set of identified cells. We discard cells that occupy 

an abnormal number of pixels given the expected area of a typical cell (as computed from the user-

provided estimate of a cell’s radius). We also compute the trace SNR for each cell, and discard it if 

the trace SNR is lower than the user-provided threshold. 

We terminate cell finding if any of the following conditions are met: 1) The maximum allowed 

number of iterations set by the user has been exceeded 2) The pixel-wise SNR in the current seed 

pixel is lower than the user-provided SNR threshold 3) The running yield, defined as the fraction of 

good cells over the last 10 iterations, is lower than 1 in 10. The cell finding module outputs the spatial 

and temporal weights of the identified components in two matrices: the spatial weights matrix 𝑺, 

whose columns contain the (flattened) cell images, and 𝑻, the temporal weights matrix, whose rows 

contain the corresponding Ca2+ traces. 

EXTRACT Refinement Module 

In the refinement module, we update the entire spatial weights matrix or the entire temporal weights 
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matrix at once by multivariate regression using the above-introduced fast solver. For estimating both 

𝑺 and 𝑻, we impose the constraint that they are non-negative, as in the cell finding step. When solving 

for 𝑺 only, we compute a binary mask ℳ obtained by convolving each cell image with a disk filter of 

a radius equal to the average cell radius, followed by binary thresholding. We then add the following 

constraint: 

𝑆Aû = 0	𝑖𝑓	ℳAû = 0. 

This constraint ensures that estimation of each component is restricted to a local neighborhood, 

preventing artifacts due to strong spatiotemporal co-activity between spatially distinct regions of the 

movie. This local restriction constraint defines a convex set, hence it can be added to the estimation 

problem without violating convexity.  

Overall, given 𝑴 and 𝑻, the S-estimation step solves the following problem: 

    minimize𝑺 	∑ 	𝜌u(𝑴 − 𝑺𝑻)AûA,û  

    subject	to	 

     𝑺 > 0,  

     𝑆Aû = 0	𝑖𝑓	ℳAû = 0. 

Given 𝑴 and 𝑺, the T-estimation step solves the following problem: 

    minimize𝑻 	∑ 	𝜌u(𝑴 − 𝑺𝑻)AûA,û  

    subject	to	 

     𝑻 > 0. 

We solve both of these problems with a consensus optimization method that is based on dual ascent, 

termed ‘alternating direction method of multipliers’ (ADMM40). Adding constraints to our original 

problem through ADMM is straightforward, and it allows us to use our fast solver,	𝑟𝑜𝑏𝑢𝑠𝑡_𝑠𝑜𝑙𝑣𝑒(⋅)	 

as a subroutine. 

After each alternating estimation step, which involves first solving for 𝑻 given 𝑺, and then for 

𝑺 given 𝑻, we compute several quality metrics and discard the subset of cells for which any of the 
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computed metrics are worse than certain user-set thresholds. In particular, we compute the following 

quality metrics: 

Trace SNR: We compute the trace SNR for each component given its Ca2+ trace. We eliminate cells 

whose trace SNR is below the trace SNR threshold. 

Area of the cell image: We compute the area of each cell image by summing the number of pixels 

with spatial weight >0.1 times the maximum weight. If the calculated area is smaller than a lower 

threshold or higher than an upper threshold, then the cell is discarded. 

Duplicate cells: We check whether cells are duplicates by separately examining (a) the similarities 

of cell images, and (b) the overall similarities of cells’ spatiotemporal profiles. For the former check, 

we first smooth the cell images by convolving them with a two-dimensional Gaussian kernel with 𝜎 

equal to half the average cell radius. After this, we compute Pearson correlation coefficients between 

pairs of smoothed cell images and then apply a binary threshold at 0.95. We then treat this 

thresholded correlation matrix as a graph adjacency matrix, and we find the connected components 

using MATLAB’s 𝑔𝑟𝑎𝑝ℎ𝑐𝑜𝑛𝑛𝑐𝑜𝑚𝑝() function. For each set of connected components, we identify the 

component with the most edges in the set, and we mark it as a duplicated cell. Although this 

procedure identifies only one cell per iteration within a highly similar set of cells, we have empirically 

found it to be effective in eliminating duplicates across iterations of cell refinement. For identification 

of duplicates based on spatiotemporal similarity, we follow the same procedure, but we fuse the 

spatial and temporal similarity through the following two steps: 1) We obtain a temporal correlation 

matrix by first pre-conditioning the temporal matrix, 𝑻, with the matrix of correlations between 

smoothed cell images and then computing the Pearson correlation coefficients between pairs of 

components in the pre-conditioned 𝑻. This allows us to enforce spatial proximity within the 

computations of trace similarity. 2) We then obtain a spatiotemporal similarity matrix via an 

elementwise multiplication of the temporal correlation matrix with the spatial correlation matrix 

computed above. A binary thresholding is applied to the resulting correlation matrix at 0.95 to obtain 
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the graph adjacency matrix, and the above steps are repeated for this procedure to identify 

duplicates. 

Spatial corruption metric: We compute a spatial corruption metric that measures the lack of local 

smoothness in a cell’s spatial weight values. We do this based on a heuristic that compares the 

variance of spatial weights for each cell to a ‘local variance’ for the same cell. We first compute the 

empirical variance of the spatial weights that are larger than 10-3. We then compute the local variance 

as the sum of squared distances between the spatial weight for a pixel and that after applying 2D 

low-pass filtering based on a square kernel with uniform weights over a 4 ´ 4 pixel neighborhood. 

The spatial corruption metric is the ratio of the local variance to the spatial weight variance. Intuitively, 

better-looking cells have negligible local variance when compared to the spatial weight variance, so 

the spatial corruption metric will be small for these cells. In the algorithm, the threshold for spatial 

corruption is set at 0.7, based on our experience of spatial corruption metric values across datasets. 

Spatiotemporal match metrics: We use two quality metrics that are intended to assess the relative 

spatiotemporal contribution of the cell with respect to the power of the cell signal. The first metric 

looks at the mean gap (averaged over all movie frames) between the cellular activity within the ROI 

encapsulated by a cell’s spatial weights (weighted by the spatial weights), and the same cell’s 

fluorescence trace. This metric accounts for the activity within the ROI that is not explained by a 

cell’s fluorescence trace. The second metric looks at the mean gap (averaged over movie frames) 

between a cell’s fluorescence trace and nearby fluorescence activity in its vicinity. This metric 

accounts for the spurious activity estimated to belong to a cell that is attributable to its surroundings. 

Our implementation for these metrics can be found in our codebase inside the function 

find_spurious_cells(), which can be referred to for full details on how the various fluorescence activity 

traces are computed. Both metrics must be <10-2 for EXTRACT to accept the identified cell in the 

output.  

Set of output activity traces:  EXTRACT provides two options regarding the final set of estimated 
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Ca2+ activity traces, termed ‘non-negative’ or ‘raw’ in the software Github. With both options, the 

robust solver operates under the constraint that the Ca2+ signals must be non-negative until the end 

of the cell refinement process. The motivation for this constraint is that EXTRACT considers activity 

below each cell’s baseline value to be noise, where the baseline is determined by the cell’s time-

averaged mean fluorescence. The algorithm thresholds all activity that is below this baseline, which 

leads to non-negative activity traces. When the ‘non-negative’ option is selected, EXTRACT provides 

these non-negative traces to the user, and throughout the paper we used this option. However, if the 

user selects the ‘raw’ option, EXTRACT performs an additional final round of robust estimation to 

solve for the activity traces using the final set of cells’ spatial profiles, but with the non-negativity 

constraint removed from the robust solver. 

Computer Hardware 

For all studies involving CPU implementation of EXTRACT, we used an Intel® Xeon(R) CPU E5-

2637 v4 @ 3.50GHz × 16 computer. For all studies involving a GPU implementation, we used a 

single NVIDIA GTX 1080 processor.  

Simulated Ca2+ Imaging Datasets 

We created synthetic Ca2+ imaging data that is designed to be representative of the Ca2+ activity of 

cortical pyramidal neurons. The generation of synthetic data comprised three independent steps.  

In the first step, we simulated the Ca2+ traces of neurons assuming a 10 Hz imaging frame 

rate. For this, we first simulated spike trains for each cell by assuming that spike occurrences were 

governed by a Bernoulli random variable with a probability of 0.01, corresponding to spike rate of 0.1 

Hz. We then convolved the resulting spike trains with an exponentially decaying temporal kernel of 

the form 𝑒𝑥𝑝 (− ±
/
), and we chose 𝜏 = 10 time bins. This corresponds to a decay time constant of 1 s, 

roughly comparable to that of GCaMP6m (Ref. 3). To simulate data with correlated spiking, instead 

of independently generating the spike trains of each cell, we synchronized the instantaneous firing 

probabilities of groups of cells. Specifically, we clustered cells into groups of 5, and then at each time 
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point, with synchronization probability (chosen as 0.2), we assigned new spiking probabilities to each 

neuron such that all cells of the same group shared a common spiking probability. After simulating 

the synchronized spikes in this way, we adjusted the baseline spiking rate of each cell to keep its 

overall mean firing rate constant at 0.1 Hz. 

In the second step, we simulated spatial profiles of individual neurons. For this, we used a 

fixed-sized square field-of-view, with each square pixel corresponding to a 1 μm2 image region. We 

created the fluorescence image of each cell independently from the others by randomly sampling a 

two-dimensional Gaussian distribution oriented in a random direction relative to the x-y coordinate 

axes of the movie. For each cell, we independently and randomly chose s.d. values for this Gaussian 

distribution between 2.5–5 pixels, in order to have an effective cell radius ranging between 5–10 μm, 

approximating the radius as twice the s.d. of the Gaussian. We truncated the weights of each cell to 

0.01 of its maximum weight, setting weight values beneath this threshold to zero.  The cell centroids 

were randomly distributed within the field of view, and we enforced a minimum distance between the 

cells’ centroids. This minimum distance was 4 μm for the quantitative comparisons between the 

different cell detection algorithms and 7 μm for the studies of algorithmic runtimes. 

In the third and the final step, we generated the noise components of the synthetic Ca2+ movie 

by sampling random values from a normal distribution for each pixel and each time point, with a s.d. 

set according to the desired mean pixel-wise SNR for the movie. We generated the final synthetic 

movie as the product of the matrix of the cells’ spatial weights and that of their Ca2+ traces, with the 

noise matrix added to this matrix product. 

For the runtime experiments, the number of cells generated was controlled by the cell density, 

which we defined in units of the number of cells per mm2. We set the cell density between 1000–

6000 cells per mm2, guided by the upper limits of the local, neuronal densities encountered in two-

photon imaging studies of the neocortex (~1500 cells per mm2 for datasets from the Allen Brain 

Observatory) and in one-photon imaging studies of the CA1 area of hippocampus (~6000 cells per 

mm2 for CA1 pyramidal neurons41).  
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Published Ca2+ Imaging Data 

The published Ca2+ imaging datasets of Fig. 4D,E were taken with a custom-built two-photon 

mesoscope based on 16 spatiotemporally multiplexed illumination beams that collectively sweep 

across a 2 mm ´ 2 mm area of brain tissue at an image frame-acquisition rate of 17.5 Hz, as 

previously  described1. In brief, these movies of Ca2+ activity were acquired in cortical area V1 (plus 

some surrounding regions) of triple transgenic, GCaMP6f-tTA-dCre mice that express the Ca2+ 

indicator GCaMP6f in layer 2/3 neocortical pyramidal neurons.  

 The Ca2+ imaging data used for Fig. S4C,D were from studies of dendritic excitation in 

neocortical pyramidal neurons42, for which processed data are publicly available 

(https://gui.dandiarchive.org/#/dandiset/000037/draft). 

 Ca2+ videos from the Allen Brain Observatory were originally 512 × 512 pixels and about ~1 h 

in duration (http://alleninstitute.github.io/AllenSDK/brain_observatory.html), but before running 

EXTRACT we downsampled them to 256 × 256 pixels. 

Surgical Procedures 

For imaging studies of the ventral hippocampus, all surgeries were conducted under aseptic 

conditions using a digital small animal stereotaxis instrument (David Kopf Instruments). Double-

transgenic (tetO-GCaMP6s-2Niell/J: Camk2a-tTA-1Mmay/DboJ) mice expressing GcaMP6s were 

anesthetized with isoflurane (5% induction, 1-2% maintenance, both in oxygen) in the stereotactic 

frame for the entire surgery. Body temperature was maintained using a heating pad. A craniotomy 

centered on the injection coordinates was performed using a trephine drill (1.0 mm in diameter). To 

prevent increased intracranial pressure due to the insertion of the implant, we aspirated brain tissue 

until the white fibers of the corpus callosum became visible. Next, we slowly lowered a custom-

designed 0.6-mm-diameter microendoscope probe (Grintech GmBH) to the coordinates –3.40 mm 

AP, –3.75mm ML, –3.75mm DV. We fixed the implanted microendoscope to the skull using 

ultraviolet-light-curable glue (Loctite 4305). To ensure stable attachment of the implant, we inserted 

two small screws into the skull above the contralateral cerebellum and contralateral sensory cortex 
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(18-8 S/S, Component Supply). We then applied Metabond (Parkell) around both screws, the implant 

and the surrounding cranium. Lastly, we applied dental acrylic cement (Coltene, Whaledent) on top 

of the Metabond, for the joint purpose of attaching a metal head bar to the cranium and to further 

stabilize the implant. After surgery, we maintained the animal’s body temperature using a heating 

pad until it fully recovered from anesthesia. 

Mice recovered for 3–6 weeks, at which point we checked the brightness of GCaMP6s 

expression using a miniature microscope (nVista HD, Inscopix, Inc.). If expression was sufficiently 

bright, a baseplate for repetitive mounting of the miniature microscope was fixed unto the skull using 

blue-light curable composite (Pentron, Flow-It N11VI).  

For imaging studies of cerebellar Purkinje neurons, we followed our published procedures43 

and performed surgeries on isoflurane-anesthetized PCP2-Cre/Ai148 mice (1.25–2.5% in 0.5–1.5 

L/min of O2). We first cleaned and removed skin to reveal part of the skull. We then opened a 4-mm-

diameter craniotomy centered mediolaterally on the midline, and rostrocaudally at the boundary 

between cerebellar lobules V and VI. We attached a 3-mm-diameter cover slip beneath a 3-mm-

diameter and 1-mm-high stainless steel ring using ultraviolet-light activated epoxy (Norland NOA81). 

We then implanted the cover slip / steel ring combination into the craniotomy and fixed it in place 

with Metabond (Parkell). Finally, we centered an aluminum headplate with a 5-mm-diameter opening 

over the cranial window and fixed it to the skull with Metabond. The custom-made plate was shaped 

to allow the additional attachment of two stainless steel bars to the cranium, which we used during 

Ca2+ imaging sessions to hold the mouse’s head secure. 

Ca2+ Imaging Sessions 

For imaging studies of ventral CA1 pyramidal neurons, we allowed the mice to explore an elevated 

platform (72 cm above the floor) consisting of two opposing open (35 cm × 8 cm), and two opposing 

closed arms [35 cm × 8 cm; wall height of 23 cm] for a total of 10 min. To start the assay in a uniform 

manner, we placed each mouse in the center of the platform (8 cm × 8 cm) facing a closed arm. 

Ambient illumination in the open arms was 350-400 Lux. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436279doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436279
http://creativecommons.org/licenses/by/4.0/


 66 

For imaging studies of cerebellar Purkinje cells (Fig. S4A,B), we used a custom-built two-

photon mesoscope, the design of which we have previously described in detail1,44. We acquired 

images over a 2 × 2 mm2 field-of-view at a 17.5 Hz frame rate (842 × 842 pixels). 

Cell Extraction with CNMF, CNMF-e, and ICA 

For studies with CNMF (Ref. 13), we used the open-source CaImAn-MATLAB Github repository. We 

based our implementation on the provided demo script and used the suggested settings in it. We set 

tau (half-size of a neuron) = 3, and set K (number of expected neurons) to 1.5 times the number of 

ground truth cells for the simulated data experiments. We used CPU parallelization by default; CNMF 

ran with 8 CPU workers in all experiments on our analysis computer. 

 To run CNMF-e, we used the original authors’ own implementation15, taken from a Github 

repository called CNMF_E. We based our implementation of CNMF-e on the provided demo script 

for running it on large data, inheriting most settings from the script. For both the striatum and the 

ventral CA1 data, we used gSig = 3, gSiz = 2*gSig,  min_pnr=2.5, and min_corr = 0.7. 

 To run PCA/ICA, we used the authors’ published version12, which is available on MATLAB’s 

FileExchange forums. The ICA method first performs a principal component analysis (PCA) to reduce 

the dimensions of the data and then runs independent components analysis (ICA) to unmix the 

components spatiotemporally12. In all our studies, we ran ICA with µ = 0.1 (which sets the contribution 

of temporal information in the ICA step), its recommended value in the original paper12. We also used 

a maximum of 750 fixed-point iterations for the ICA step. In our studies with simulated data, we set 

both the number of principal components and the number of independent components to 1.5 times 

the number of ground truth cells. 

Manual Sorting of the Cell Extraction Outputs 

After running EXTRACT and CNMF-e for the striatal and the ventral CA1 datasets, we manually 

examined the outputs to eliminate possible false positives. For this, we wrote custom software that 

allows a user to view the movie with the cellular outline of each cell of interest and to judge the quality 

of the cell by comparing its cellular trace to the Ca2+ activity in the original movie. Using this approach, 
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we eliminated output components that were thereby deemed of low quality, i.e., that yielded a poor 

spatiotemporal match between the candidate cell’s activity trace versus the activity in the movie, and 

the signal-to-noise ratio of its activity trace. After this step, for detailed comparisons between different 

cell extraction algorithms, we used cells that were retained after their identification by more than 

algorithm (see below). 

Matching Cells between Cell Extraction Outputs 

We matched cells between the outputs of the different cell extraction algorithms using custom-written 

MATLAB code, provided in our Github, that used a greedy matching scheme based on the cell 

images. For this, we first computed the distance matrix of Pearson correlations between a set of 

reference cells and a set of detected cells. We then traversed this distance matrix in the order of 

decreasing distance values, recording a match between the ith reference cell and the jth detected cell 

after visiting the (i, j)th index of the matrix. The ith row and the jth column were also set to infinity after 

visiting the (i, j)th index, to prevent further visits. Matching stopped when the currently visited index 

of the matrix held a lower value than a threshold, which we set to 0.5. For matching across several 

sets of outputs, we performed matching between all output pairs, and then reported the intersection 

of all pairwise-matched cells. 

Detection of Ca2+ Transients 

Prior to all quantitative analyses that involved Ca2+ traces, we detected the Ca2+ event peaks from 

the activity traces. For this, we used simple peak detection (peakseek function, available from 

MATLAB FIleExchange forums) on smoothed Ca2+ traces. We smoothed the Ca2+ traces using a 1-

dimensional median filter with a window size of 3, followed by convolution with a Gaussian window 

function (gausswin in MATLAB with length 6). For peak detection, we did not consider time points in 

the Ca2+ trace with activity levels below an event detection threshold, which was between 0–1, as 

measured relative to the maximum of the Ca2+ trace. When reporting event peaks, we used the 
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analog value of each Ca2+ trace at its event peak, instead of binary information marking the presence 

of Ca2+ event. 

Detection of Dendritic Ca2+ Activity 

For the analyses of Fig. S4, involving dendritic activity in cerebellar Purkinje neurons and neocortical 

pyramidal neurons42, we used two different approaches to optimize cell extraction results and 

runtimes. In both cases, we omitted the use of high-pass spatial filtering during the pre-processing 

stage, set the ‘dendritic awareness’ parameter in EXTRACT to 1 and visually inspected the outputs 

from EXTRACT. The default setting for the ‘dendritic awareness’ parameter is 0. However, when its 

value is set to 1, EXTRACT no longer discards candidate sources of Ca2+ activity whose spatial 

areas or eccentricity values are uncharacteristic of cell bodies. This alteration allows EXTRACT to 

detect Ca2+ activity sources, such as dendritic segments, with a wide range of shapes. 

For studies of cortical pyramidal cell dendrites, we first temporally downsampled the Ca2+ 

videos from 31 fps to 7.75 fps and then ran EXTRACT on the downsampled movies. For studies of 

Purkinje neuron dendrites, we first sought to initialize EXTRACT with a reasonable set of candidate 

dendrites. To determine this set, we denoised the movie by performing a factor analysis, through a 

singular value decomposition of the movie. We discarded the noise components of the movie, as 

determined through the factor analysis, and spatiotemporally smoothed the resultant by convolving 

the movie with a filter that was of 3 time bins duration and 3 pixels wide in both spatial dimensions. 

We ran EXTRACT on the denoised, low-pass filtered movie version and used the resulting set of 

dendritic spatial profiles as the starting point for another iteration of EXTRACT, as performed on a 

denoised version of the movie that was spatially filtered as before but not temporally smoothed. 

Within both iterations of EXTRACT, we used the algorithm’s internal low-pass Butterworth spatial 

filtering in the pre-processing module, but with greater filtering along the rostral-caudal dimension 

then the medial-lateral dimension, to account for the rostral-caudal elongation of the Purkinje cell 

dendritic trees. After the second iteration of EXTRACT, we visually inspected the results and retained 

the larger dendritic segments with substantial Ca2+ activity. 
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Analyzing the Cell Extraction Outputs from the Simulated Datasets 

After performing cell extraction on the simulated datasets, we first matched the found cells to the 

ground truth cells by using our aforementioned cell matching routine. To compute the areas under 

the spike precision-recall curves, we detected Ca2+ events within the traces provided by the cell 

detection algorithm, across a range of event-detection thresholds between 0–1 (in units of each cell’s 

peak Ca2+ signal), and we matched the ground truth spikes to the detected spikes to compute the 

spike recall and spike precision metrics. To perform this matching, we used the same greedy 

matching scheme described above but adapted to spike matching; instead of using a spatial distance 

matrix as we had for cell matching, for spike matching we computed a temporal distance matrix 

between the ground truth and detected spikes, and then negated the values of it to be consistent 

with the logic of the cell matching routine (greedy cell matching requires an affinity matrix). We also 

set the matching threshold to correspond to a maximum temporal separation of 3 image frames 

between the ground truth and detected events. After matching detected events to ground truth 

spikes, we computed the spike recall as the ratio of the number of matching detected spikes to the 

total number of ground truth spikes. We computed the spike precision as the ratio of the number of 

matching detected spikes to the total number of detected spikes. We averaged the spike and 

precision values for each detection threshold across all cells of a given movie, which resulted in the 

mean spike-precision curve for that movie. To compute AUC values, we performed numerical 

integration of the curves with MATLAB’s trapz function, which uses the trapezoidal approximation. 

After matching the detected cells with the ground truth cells, we computed the cell finding recall and 

precision metrics in an analogous manner to that used to compute the spike recall and precision. 

Selection of Algorithm Parameters for Runtime Comparisons  

We adjusted the parameters of EXTRACT and CNMF to compare their runtimes under conditions 

when the two methods returned comparable outputs. For EXTRACT, we set cellfind_min_snr 

(minimum acceptable pixelwise SNR for  cell finding) to 2.5. For CNMF, we adjusted both patch_size 

(size of the independently processed movie tile), and K (number of cells to initialize), to tune the 
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method for the fastest speed while outputting a comparable number of cell candidates as EXTRACT. 

Consequently, we set patch_size = 52 and K = 6. 

Analyses of Striatal Spiny Projection Neural Activity 

For analyses of striatal neural activity, we used published datasets of Ca2+ activity in spiny projection 

neurons, and to compute the spatial coordination index we followed closely the approach published 

in the original paper22. We first computed a matrix of centroid distances between each pair of cells 

in a movie. We then detected Ca2+ events from the output traces and obtained a binarized event 

trace by marking as ‘active’ the one-second period following each Ca2+ event. The motivation for this 

temporal expansion is that it better highlights clustered activity, which may not be perfectly 

synchronous, as described previously22. For each time point, using the centroid distance matrix, we 

obtained a histogram of pairwise centroid distances for all pairs of active cells at each time point. We 

also performed the same computations using shuffled versions of the same data in which the 

identification numbers of the cells were randomly permuted. From these shuffled datasets, we 

obtained a null distribution by aggregating the histograms of pairwise distances over 100 different 

permutations. For each time point, we then compared the histogram of pairwise distances for the 

real data to the null distribution using a one-sample Kolmogorov-Smirnov test with one tail, performed 

using MATLAB’s kstest function. This allowed us to test statistically whether the pairwise centroid 

distances in the real data were less than expected by chance. We then took the negative base-10 

logarithm of the resulting p-value as the spatial coordination metric (SCM). We compared the 

resulting SCM values obtained using traces from PCA/ICA to those from CNMF-e and EXTRACT. 

For these comparisons, we used the same traces from PCA/ICA as in Ref. 22, which were already 

sorted, whereas for EXTRACT and CNMF-e we performed sorting (see above) ourselves after cell 

detection.  

Classification of Arm-coding Cells in the Ventral Hippocampus 

We wrote custom MATLAB software to determine mouse trajectories on the elevated plus maze, and 
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we manually verified the accuracy of the estimated locations. We computed the average Ca2+ event 

rate on each arm-type of the maze by computing the mean of the event trace across the the time 

bins in which a mouse was on a given arm. For each cell, we obtained the difference between the 

Ca2+ event rates on closed and open arms, d = event_rateclosed_arm - event_rateopen_arm. We repeated 

the same procedure after circularly shifting the event trace of each cell by a random number of time 

bins, to break the dependence between Ca2+ events and mouse locations. We computed the event 

rate difference, d, on 1000 different instantiations of such randomized traces, providing a null 

distribution of d values for each cell. We classified a cell as closed-arm coding if d was within the 

95th percentile or higher of the null distribution. We classified a cell as open-arm coding if d was 

within the 5th percentile or lower of the null distribution. 

Correlation Analysis of Cell Images and Movie Frames for Ventral CA1 Pyramidal Neurons 

To compute the Pearson correlation coefficient between the image of a given output cell and the 

movie frames at the time points with detected Ca2+ events, we first limited analysis to a small spatial 

neighborhood centered around the cell image. We binarized the cell image and then applied a 

morphological opening operation45 with a 3 pixels ´ 3 pixels structuring element. We treated the 

resulting two-dimensional binary array as a truncation mask to retain only the region-of-interest 

around the cell. We then determined the Pearson correlation coefficient between the truncated cell 

image array and the truncated movie frame array at the time of each detected Ca2+ event. 

To compute a scalar, weighted correlation value for each cell, we took a weighted sum of the 

Pearson correlation coefficients using the event magnitudes as the weighting factors. Specifically, 

we first removed the zero entries of the event trace and normalized the trace so that its entries 

summed to 1. This yielded an array with the same size as the array of Pearson correlation coefficients 

for the same cell. We then took the inner product of the two arrays and reported it as the weighted 

correlation metric.  
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Decoding of Mouse Locations from Ca2+ Traces of Ventral CA1 Pyramidal Neurons 

We divided the plus maze into 5 spatial bins: left arm, right arm, upper arm, lower arm, and the stem. 

We first obtained the analog-valued Ca2+ event traces from the output traces using our event 

detection routine. We then smoothed the event traces with a moving average filter of length 20 time 

bins, corresponding to smoothing over two seconds of activity. We trained support vector machines 

to predict the spatial bins from the smoothed event traces for a given session. We used the 

templateLinear function in MATLAB with SVM learners, selecting ridge regularization with 

regularization penalty selected automatically. We obtained decoding test errors by first circularly 

shifting the event traces by a random amount, then selecting the leading 70% of the circularly shifted 

event traces as the training set, and the latter 30% as the test set. We repeated this procedure 20 

times, and we averaged the decoding test errors over 20 repetitions. 
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