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Abstract13

Tissue growth in three-dimensional (3D) printed scaffolds enables exploration and control of14

cell behaviour in biologically realistic geometries. Cell proliferation and migration in these15

experiments have yet to be explicitly characterised, limiting the ability of experimentalists16

to determine the effects of various experimental conditions, such as scaffold geometry, on cell17

behaviour. We consider tissue growth by osteoblastic cells in melt electro-written scaffolds18

that comprise thin square pores with sizes that we deliberately vary. We collect highly detailed19

temporal measurements of the average cell density, tissue coverage, and tissue geometry. To20

quantify tissue growth in terms of the underlying cell proliferation and migration processes,21

we introduce and calibrate a mechanistic mathematical model based on the Porous-Fisher22

reaction-diffusion equation. Parameter estimates and uncertainty quantification through23

profile likelihood analysis reveal consistency in the rate of cell proliferation and steady-state24

cell density between pore sizes. This analysis also serves as an important model verification25

tool: while the use of reaction-diffusion models in biology is widespread, the appropriateness26

of these models to describe tissue growth in 3D scaffolds has yet to be explored. We find27

that the Porous-Fisher model is able to capture features relating to the cell density and28

tissue coverage, but is not able to capture geometric features relating to the circularity of29

the tissue interface. Our analysis identifies two distinct stages of tissue growth, suggests30

several areas for model refinement, and provides guidance for future experimental work that31

explores tissue growth in 3D printed scaffolds.32
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Author Summary33

Advances in 3D printing technology have led to cell culture experiments that realistically34

capture natural biological environments. Despite the necessity of quantifying cell behaviour35

with parameters that can be compared between experiments, many existing mathematical36

models of tissue growth in these experiments neglect information relating to population size.37

We consider tissue growth by cells on 3D printed scaffolds that comprise square pores of38

various sizes in this work. We apply a relatively simple mathematical model based on the39

Porous-Fisher reaction-diffusion equation to interpret highly detailed measurements relating40

to both the cell density and the quantity of tissue deposited. We analyse the efficacy of such a41

model in capturing cell behaviour seen in the experiments and quantify cell behaviour in terms42

of parameters that carry a biologically meaningful interpretation. Our analysis identifies43

important areas for model refinement and provides guidance for future data-collection and44

experimentation that explores tissue growth in 3D printed scaffolds.45

Keywords: Tissue engineering; Uncertainty quantification; 3D printing; Parameter estimation;

Porous-Fisher; reaction-diffusion
46

1 Introduction47

Cell culture scaffolds provide biomimetic experimental models to explore tissue growth in essential48

biological processes such as bone remodelling and development [1–3]. Achieving control over49

tissue growth through these scaffolds has clinical applications such as replacing synthetic grafts50

with artificially regenerated tissues [1, 4, 5]. Three-dimensional (3D) printing technology [6–9]51

enables precise control of scaffold geometry, including the size and shape of the pores that52

comprise each scaffold. Despite these technological advances, the effects of scaffold geometry on53

scaffold-level properties of tissue growth, such as the time for tissue to close or bridge scaffold54

pores, and individual-level properties, such as cell proliferation and migration rates, are yet to55

be explicitly understood.56

A preference away from traditional in vitro 2D culture and towards mimicking biological57

features, such as the bone micro-environment, through 3D scaffolds has been aided by more58

accurate 3D printing processes [6,7]. Technologies based on melt electrowriting [8,9] enable precise59

control of scaffold geometry, ensuring consistency and reproducibility. There is a significant60

body of research that guides the material and physical properties of scaffold construction, but a61

comparative scarcity on the influence of scaffold architecture on cell and tissue behaviour. In62

fact, several recent studies suggest that tissue growth in pore infilling experiments is strongly63

curvature controlled [10–13], which implies that pore shape and size play a significant role in64

tissue growth [11,13] since the average curvature of a pore is a function of its size [14].65

In this work, we consider tissue growth by osteoblastic cells in a 3D printed scaffold formed of66

thin square pores with depth ≈100 µm and side lengths ranging from 300 to 600 µm (Fig. 1a–d).67

This thin geometry means that we can approximate the three-dimensional tissue growth as a68

depth-averaged two-dimensional phenomena [15]. Initially located only on the scaffold fibres,69

cells migrate and proliferate to form new tissue that bridges each pore over an experimental70

duration of 28 days (Fig. 1e–h). Scaffolds are systematically harvested and stained to obtain71

fluorescent microscopy images that provide highly detailed information about the pore bridging72

progress (which we measure as the proportion of the pore containing tissue) and the cell density73
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Figure 1. Scaffold geometry and experimental data. (a–d) Scaffolds comprise a grid of square
pores with lengths ranging from 300 to 600 µm. Shown is a 800× 800 µm DIC image taken from the central
region of a scaffold for each pore size. (e–h) Composite fluorescence microscopy images of pore bridging
experiments. Cell nuclei, stained with DAPI, are shown in the blue channel; tissue and cytoskeleton,
stained with phalloidin, are indicated in the green channel. Scale varies between pore sizes, but is identical
within a pore size and is indicated in day 28 images. It is important to note that scaffolds are fixed to
obtain images: data from successive time-points are independent experiments.

within each pore. The variability in pore bridging we see in the experimental data is striking:74

smaller pores appear, on average, to bridge at earlier times (Fig. 1e–f ) [14]; and some, but not75

all, larger pores are bridged at the conclusion of the experiment (Fig. 1g–h). While we expect76

larger pores—which require the development of a larger amount of tissue and cells to migrate a77

greater distance—to bridge more slowly [14], it is unclear whether there are also changes in cell78

behaviour between pore sizes. We aim to determine whether there are fundamental differences79

in cell proliferation and migration between different pore sizes while demonstrating the value of80

collecting experimental data relating to both tissue coverage and cell population.81

To disentangle the effects of cell proliferation and migration on tissue growth, we perform82
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model-based data analysis using a deterministic, continuum, process model [16]. Existing83

continuum models of tissue growth within porous scaffolds typically neglect information relating84

to properties such as cell count or density [17,18]. Instead, the time-evolution of tissue interfaces85

are described using techniques ranging from continuum mechanics [3, 18, 19] to curvature86

flow [10,12,20–24]. While these models often provide good agreement with geometric features87

in experimental data, they yield parameter estimates that are purely phenomenological and88

lack a clear biophysical interpretation. We describe pore bridging using a relatively simple89

two-dimensional reaction-diffusion equation, often referred to as the Porous-Fisher model [14,25].90

This choice naturally accounts for density-dependent behaviour expected in these experiments:91

contact inhibition limits cell proliferation in high-density regions, and contact stimulates cell92

migration, leading to co-operative tissue growth that is limited in regions of low cell density.93

We take a summary statistic and likelihood-based approach to parameter inference [26]94

to identify parameters that characterise cell behaviour both individually within each pore95

size, and across all pore sizes simultaneously. In comparison to our previous work [14], we96

consider a temporal dataset that includes information about both cell density and bridging97

progress. To quantify the uncertainty associated with parameter estimates—which may be non-98

identifiable from the available information in the experimental data—we perform profile likelihood99

analysis [27,28], which facilitates the computation of approximate confidence intervals [29–31].100

We compare parameter estimates that quantify cell proliferation and migration rates across pore101

sizes to determine whether pore size, and by extension, curvature, influence cell behaviour. For102

example, if pore size and, by extension, curvature, play a significant role in cell proliferation, we103

would expect the estimates of the cell proliferation rate to vary significantly between pore sizes.104

Compared to models of 2D culture, which are well developed and routinely applied in105

experimental design [16,32–36], there is little data-based modelling guidance for tissue growth106

within 3D scaffolds. Development and verification of mechanistic models for pore bridging107

is essential: models can guide engineering design choices in scaffold construction to optimise108

and control tissue growth [37]. Despite the widespread application of reaction-diffusion models109

in collective cell behaviour [32, 38–40] and biology more broadly [41–44], their suitability to110

describe geometrically-induced phenomena—such as that arising from corners and the relatively111

small, constrained, domain in our experiments—remains largely unexplored. Qualitatively, the112

Porous-Fisher model produces results that capture key behaviours in the experimental data;113

namely both an increase in cell density over the duration of the experiment, and sharp-fronted114

tissue growth that bridges each pore (Fig. 2). A key focus of our work is to further verify the115

appropriateness of the Porous-Fisher model by comparing features not used for calibration to116

model predictions, and comparing parameter estimate and model behaviour across pore sizes.117

Given that tissue growth is thought to be curvature controlled [11], we focus on comparing118

geometric features in the data, such as circularity, to model predictions. Comparing parameter119

estimates and model predictions across pore sizes is crucial for model verification: if only a single120

experiment condition is considered, the model might appear to match the experimental data121

but be incapable of matching data across multiple experimental conditions without significantly122

varying the parameters [35, 45]. Through this analysis, we identify several avenues for both123

future experimentation and model refinement.124
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Figure 2. Model simulated tissue growth. Model simulation using the maximum likelihood estimate
where information relating to cell density and tissue coverage are included in the likelihood. The coloured
curves show the boundary of the ECM, taken to be τ = 0.5 (50%) of carrying capacity, K. Shown in
greyscale is the density as a proportion of carrying capacity.

The outline of the work is as follows. We first describe the experimental model and methods125

used to summarise the data (Section 2.1). The data are available on GitHub as supplementary126

material. In Section 2.2, we describe a two-component mathematical model comprising both a127

deterministic process model that describes pore bridging dynamics and a probabilistic observation128

process that connects model predictions to noisy experimental observations. Subsequently, we129

outline the techniques used to obtain maximum likelihood estimates and likelihood profiles130

(Section 2.3). We present and discuss the results in Section 3 before outlining future experimental131

and mathematical modelling recommendations in Section 4. Code to reproduce all results are132

provided in the high-performance, open-source, Julia language on GitHub.133

2 Methods134

2.1 Pore bridging experiments135

Polycaprolactone fibres of diameter 50 µm are fabricated into a two-layer scaffold of size 7× 7 mm136

through melt electrospinning. The resultant scaffold has an overall thickness of approximately137

100 µm (two fibre layers) and comprises square shaped pores of lengths 300, 400, 500 and 600 µm138

(Fig. 1a–d). Prior to cell seeding, scaffolds are sterilised and incubated in 5% CO2 overnight.139

Murine calvarial osteoblastic cells (MC3T3-E1) [46] are cultured in α-MEM, 10% fetal140

bovine serum, and 1% penicillin-streptomycin (Thermo Fisher). Scaffolds are placed on top141

5

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.25.436898doi: bioRxiv preprint 

https://github.com/ap-browning/Pore-Bridging
https://doi.org/10.1101/2021.03.25.436898
http://creativecommons.org/licenses/by-nd/4.0/


(a)

100 μm

(b)

100 μm

Tissue boundary
Tissue
Edge tissue
Pore boundary (∂Ω)
Pore corner

Pore interior (Ω)

Figure 3. Data processing technique and experimental domain. Example data summarisation
for a 400 µm pore at day 14, indicated in Fig. 1f . (a) The pore boundary and tissue identified using
the semi-automated data processing approach. Also shown is the region classified as edge tissue. In the
model, we denote the boundary of the pore ∂Ω, and the interior of the pore Ω. (b) DAPI image, showing
cell nuclei, with the pore boundary and cell locations superimposed.

of non-adherent 2% agarose to prevent cell-to-plate attachment within a 48-well plate. Cells142

are detached using 0.05% trypsin and seeded at 7500 cells in 250 µL media onto each scaffold143

within a 48-well plate (Nunc, Thermo Fisher). Cells are allowed 4 h to attach to each scaffold144

before an additional 250 µL of media is added. Cell-seeded scaffolds are cultured in a humidified145

environment at 37 °C in 5% CO2 for 28 days. Media is changed every 2–3 days from day 1 to 14,146

every 1–2 days from day 15 to 21, then every day from day 22 to 28. Cell viability is assessed147

at day 10, 14 and 28 using calcein AM (to stain live cells) and ethidium homodimer (to stain148

dead cells).149

Cell-seeded scaffolds are fixed with 4% paraformaldehye at day 4, 7, 10, 14, 18, and 28.150

Replicates are stained with both DAPI and Alexa FluorTM 488 Phalloidin (Thermo Fisher), which151

stain cell nuclei and actin filaments, respectively. Fluorescent microscopy (Leica AF6000 LX)152

is used to capture high resolution images of the centre of each scaffold. To accurately identify153

scaffold geometry, a differential interference contrast (DIC) image is also captured. Fixation,154

staining and microscopy are repeated across two or three replicates for each pore size and time155

point. Each experimental replicate yields information about 9 to 12 pores, providing tissue156

growth data across days 4 to 28 from 618 pores in total. In Fig. 1e–h we show composite images157

of four pores for each pore size, for each time point.158

2.1.1 Data summarisation159

The tissue growth data are processed in a semi-automated fashion using MATLAB [47] to obtain160

information about the cell population and bridging progress in each pore (Fig. 3). First, the four161

corners of each pore are identified manually from the DIC image and thresholding is applied to162

the phalloidin image to establish the region in each pore containing tissue (Fig. 3a). Next, the163

location of the cells within each pore are identified using the thresholded DAPI image, which164

colours cell nuclei (Fig. 3b). Data are discarded for pores that are not deemed sufficiently regular165

in shape, or for which accurate measurements cannot be taken.166

We summarise the experimental data obtained from each pore with four summary statistics,167

denoting yL,t,ji the jth observation of the ith summary statistic at time t for a pore of size length168
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L. These are as follows.169

1. Average cell density:170

yL,t,j1 =
Cell count in pore

Area of pore
, 0 ≤ yL,t,j1 <∞. (1)

2. Coverage:171

yL,t,j2 =
Area of tissue

Area of pore
, 0 ≤ yL,t,j2 ≤ 1. (2)

3. Edge density:172

yL,t,j3 =
Cell count on edge tissue

Area of edge tissue
, 0 ≤ yL,t,j3 <∞. (3)

Here, we define edge tissue as tissue located within approximately 20 µm of the pore173

boundary (Fig. 3a).174

4. Circularity:

ỹL,t,j4 =
4π ×Area of tissue void

(Perimeter of tissue void)2
, π/4 / ỹL,t,j4 / 1. (4)

yL,t,j4 =
ỹL,t,j4 − 1

1− π/4
+ 1, 0 / yL,t,j4 / 1. (5)

Here, ỹL,t,j4 represents the standard measure of circularity or roundness [47], which175

approaches unity as the tissue void approaches a perfect circle. For a square shape,176

ỹL,t,j4 = π/4. Since our experiments consider a scaffold that is approximately square, we177

normalise ỹL,t,j4 to obtain yL,t,j4 that still tends to unity as the tissue void approaches178

a perfect circle, but tends to zero as the tissue void approaches a square. To smooth179

out small-scale irregularities in the identified tissue shape, the convex hull of the largest180

contiguous tissue void is used to calculate the circularity [47].181

2.2 Mathematical model182

We interpret the pore bridging experiments with a deterministic spatio-temporal process model183

that aims to capture the key biological processes involved in tissue growth. To account for184

variability in the experimental data, we model experimental observations as normally distributed185

about predictions made through the process model [48–50]. In this section, we describe the186

process model and the probabilistic observation process used for analysis.187

2.2.1 Process model188

The substrate of the wells containing the scaffolds is coated with non-adherent agarose that does189

not allow cell attachment, while cells are initially adhered to the scaffold fibres. Cells, therefore,190

cannot move freely into the pore void. Rather, cells work together to bridge the pore through191

interconnecting material such as extracellular matrix and intracellular actin filaments. Therefore,192

traditional models of cell migration based upon linear diffusion, which do not capture the sharp193

tissue boundary seen in the experimental data (Fig. 1e–h), are inappropriate.194
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In this work, we assume that cells move at a rate proportional to their own density and195

proliferate logistically to a maximum density of K, which we model with the Porous-Fisher [39]196

equation, given by197

∂u

∂t
= D∇ ·

[( u
K

)
∇u
]

+ λu
(

1− u

K

)
, x ∈ Ω. (6)

Given that the vertical depth of the pores is small compared to the horizontal length scale,198

and that we observe cells forming a thin horizontal layer of tissue that bridges each pore, we199

implicitly integrate out the vertical dimension [15] so that x = (x, y) and u(x, t) is a depth-200

averaged density, which we refer to as the cell density. In Eq. 6, Ω the interior of the pore201

(Fig. 3a) and θ = (D,λ,K) are parameters that relate to the diffusivity, proliferation rate, and202

carrying capacity, respectively.203

The pore is surrounded by a fibre on which cells are initially placed approximately uniformly204

so that, on the fibre, ∇u = 0. We assume that both the proliferation rate and maximum205

packing density is the same as in the pore interior. Substituting ∇u = 0 into Eq. 6 recovers a206

time-dependent Dirichlet boundary condition on the edge of the pore207

∂u

∂t
= λu

(
1− u

K

)
, x ∈ ∂Ω, (7)

where ∂Ω represents the pore boundary (Fig. 3a).208

Initially, cells appear distributed exclusively on the fibre, and not in the interior of the pore.209

It is not until after t0 = 4 d that cells visibly start the pore bridging process (Fig. 1a–d). We,210

therefore, assume that at t0 = 4 d, cells are distributed around the pore boundary (i.e., on the211

fibre) with an initial density u0, which we assume to be unknown and, therefore, estimate for212

each pore size. The initial condition is given by213

u(x, t0) =

{
u0, x ∈ ∂Ω,

0, x ∈ Ω.
(8)

We solve Eq. 6–8 using a finite difference scheme based upon a discretisation with 1012 mesh214

points for each pore size. Due to the symmetry of the problem, we only solve Eq. 6–8 on a215

quarter-domain. To integrate the resultant system of ordinary differential equations, we apply216

the standard Tsit5 routine in Julia [51, 52]. Full details are available in the supplementary217

material.218

2.2.2 Observation process219

Whereas output from the mathematical model is deterministic and comprises the cell density,220

u(x, t), as a function of space and time, the experimental observations comprise noisy observations221

of four summary statistics, yL,t,j = (yL,t,j1 , yL,t,j2 , yL,t,j3 , yL,t,j4 ). To compare model realisations222

to experimental observations, we define functions that map u(x, t) to summary statistics that223

correspond to those that summarise the experimental data. These functions are as follows.224
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1. Average cell density:225

µ1(t) =
1

L2

∫∫
Ω
u(x, t) dx, 0 ≤ µ1(t) ≤ K. (9)

We approximate the integral in Eq. 9 numerically using the trapezoid rule.226

2. Coverage:227

µ2(t) = 1−
Avoid

(
u(x, t); τK

)
L2

, 0 ≤ µ2(t) ≤ 1. (10)

Here, τ represents a proportion of maximum cell density, K, at which tissue becomes228

visible, so that in regions where u(t, x, y) > τK, cells are considered part of the observed229

newly formed tissue and Avoid

(
u(x, t); τK

)
is the area of the tissue void. In this work, we230

fix τ = 0.5, so that the tissue boundary in the model is assumed to be where the density231

is 50% of the maximum [14]. To calculate the area of the tissue void, Avoid

(
u(x, t); τK

)
,232

we apply an interpolation method to approximate the tissue boundary (supplementary233

material). This approach ensures that µ2(t) remains a continuous function in the parameter234

space, which is desirable for computational inference.235

3. Edge density:236

µ3(t) = u(xb, t), 0 ≤ µ3(t) ≤ K. (11)

Here, xb is any point on the pore boundary (the modelled cell density is homogeneous on237

the pore boundary); we set xb = (0, 0).238

4. Circularity:

µ̃4(t) =
4πAvoid

(
u(x, t); τK

)
P 2

void

(
u(x, t); τK

) , π/4 ≤ µ̃4(t) ≤ 1, (12)

µ4(t) =
µ̃4 − 1

1− π/4
+ 1, 0 ≤ µ4(t) ≤ 1. (13)

Here, Pvoid

(
u(x, t); τK

)
is an interpolated approximation of the perimeter of the tissue239

boundary (supplementary material). As for ỹL,t,j4 , we normalise µ̃4(t) to obtain 0 ≤240

µ4(t) ≤ 1 (Eq. 5). For simulations where the coverage exceeds 0.99, we set µ4(t) = 1 for241

convenience.242

To account for biological noise and measurement error, we assume that model realisations243

describe the expected behaviour and that observations of the summary statistics are independent244

and normally distributed [48]. Therefore,245

yL,t,ji ∼ Normal

(
µi(t;L,θ), σ2

i

(
µi(t;L,θ)

))
. (14)

Here, we write µi(t) = µi(t;L,θ) to emphasise the dependence of model realisations on the246

pore size, L, and set of unknown parameters, θ = (D,λ,K, u0). We observe in Fig. 4 that the247

variability in the experimental data varies significantly between both summary statistics and248

observation times. Therefore, we pre-estimate a variance function, σi(µi) as a function of the249
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mean [48]. Here, we take σi(·) to be a quadratic, with intercept of 10% of the maximum standard250

deviation observed for the summary statistic (supplementary material).251

2.3 Inference252

We take a summary statistic, likelihood-based, approach to inference and sensitivity analysis.253

Given a set of observations from pores of size L, YL = {yL,t,j}j,t, the log-likelihood function is254

given by255

`(θ; YL, L) =
∑
t∈T

∑
j

∑
i∈S

log φ

(
yL,t,ji ;µi(t;L,θ), σ2

i

(
µi(t;L,θ)

))
, (15)

where T = {7, 10, 14, 18, 28} is the set of observation times (t0 = 4 d is excluded from the256

analysis); S ⊆ {1, 2, 3, 4} is the set of summary statistics included in the analysis; and φ(x;µ, σ2)257

is the normal density function.258

2.3.1 Parameter bounds259

The set of unknown parameters, θ = (D,λ,K, u0), carry a physical interpretation so we can260

formulate realistic parameter bounds. The doubling time of MC3T3-E1 osteoblast cells in261

two-dimensional culture is approximately 15 h [46], which corresponds to a proliferation rate262

of approximately λ ≈ 1.1 d−1. Analysis based upon the overall bridging time of MC3T3-E1263

osteoblast cells suggests D carries a magnitude of approximately 100 µm2 d−1 [14]. Results in264

Fig. 4a,b suggest that cell density is bounded above by approximately 4× 10−3 cells µm−1, which265

corresponds to a packing density where a monolayer of cells occupy the same amount of space266

as a disk with diameter of approximately 18 µm. Based on these values, we choose conservative267

bounds such that268

10 ≤ D ≤ 2000 µm2 d−1,

1× 10−2 ≤ λ ≤ 2 d−1,

2× 10−3 ≤ K ≤ 5× 10−3 cells µm−2,

1× 10−5 ≤ u0 ≤ 2× 10−3 cells µm−2.

(16)

2.3.2 Maximum likelihood estimation269

We apply maximum likelihood estimation [53] to obtain a best fit parameter combination, θ̂L,270

for each pore size. The maximum likelihood estimate (MLE) is given by271

θ̂L = argmax
θ

`(θ; YL, L), (17)

subject to the bounds given in Eq. 16.272

To compute a numerical approximate the solution to Eq. 17, we employ both a global and273

local optimisation routine from the open-source NLopt optimisation library [54]. First, we run274

a global optimisation routine, based on the DIRECT algorithm [55], for a fixed amount of time275

(chosen to be 6 hours). This approach avoids the need to specify an initial guess of θ for the276

optimisation routine. We then use the output from the global optimisation routine as the initial277

guess in a the local optimisation algorithm BOBYQA [56]. We look for a maximum with absolute278
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Figure 4. Processed experimental data and model fits. Experimental data and model fit showing
(a–d) the density, (e–h) the coverage, (i–l) the circularity, and (m–p) the edge density. Violin plots show
the experimental data. In each case, a model prediction is shown based on the maximum likelihood
estimate that includes information relating to the cell density (dashed colour); cell density and tissue
coverage (solid colour); tissue coverage with day 28 density measurements (dotted colour); and cell density
and tissue coverage from all pore sizes (solid grey).
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threshold of 10−4, several orders of magnitude below the threshold of 1.92 for an approximate279

univariate 95% confidence interval from a normalised-log-profile-likelihood [53].280

2.3.3 Profile likelihood analysis281

While point estimates provide a means of assessing the ability of the model to capture features282

in the data, we are interested in establishing parameter uncertainties and comparing estimates283

across pore sizes. To do this, we profile the log-likelihood function for each parameter [29,30].284

First, we partition the parameter space into a parameter (or group of parameters) of interest,285

ψ, and nuisance parameters, γ, such that θ = (ψ,γ). The profile log-likelihood for the parameter286

ψ is given by287

`p(ψ; YL, L) = sup
λ
`(ψ,λ; YL, L). (18)

For example, to profile the diffusivity, we would specify ψ = D and γ = (λ,K, u0). To obtain a288

value of `p(D; YL, L), we maximise the log-likelihood function in the case that D is fixed.289

Likelihood-based confidence intervals can be defined from the profile log-likelihood by an290

asymptotic approximation using the chi-squared distribution, for sufficiently regular problems291

[53,57]. 95% confidence intervals and regions are given using the threshold values of 1.92 and292

3.00 log-likelihood units below the maximum for univariate and bivariate profiles, respectively293

[53, 57,58]. It is convenient to work with a normalised profile log-likelihood294

ˆ̀
p(ψ; YL, L) = sup

λ
`(ψ,λ; YL, L)− `(θ̂L; YL, L), ˆ̀

p ≤ 0. (19)

Here, a 95% confidence interval is given where ˆ̀
p(ψ; YL, L) ≥ −1.92, for example [53].295

To compute numerical approximations to each profile log-likelihood, we employ the local296

optimisation routine BOBYQA [56]. The log-likelihood is profiled along a regular spaced grid,297

(ψ1, ψ2, ..., ψM ), in series, starting at the grid point closest to the MLE, using the MLE as the298

initial guess [30]. Subsequent grid points use the output from the previous grid points as an299

initial guess. Again, we look for a maximum with absolute threshold of 10−4.300

3 Results and Discussion301

We interpret spatially-detailed, temporal, pore bridging data from a range of pore sizes using a302

relatively simple reaction-diffusion model. Our analysis considers data relating to the spatial303

characteristics of tissue growth—specifically, the tissue coverage and circularity of the tissue304

void—in addition to typical measurements, such as cell density. We aim to quantitatively305

determine whether there are fundamental differences in cell behaviour and tissue growth between306

different pore sizes, and verify the appropriateness of the reaction-diffusion model in explaining307

pore bridging, by comparing results across a series of experiments with various pore size. In308

particular, applications of reaction-diffusion models to describe tissue growth are typically limited309

to one-dimensional or unbounded geometries [32–36,38–41]; there is comparatively little guidance310

on applying these models to describe the geometrically constrained phenomena we study.311

In Fig. 1e–h, we show a subset of the experimental images obtained for each pore size over312
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the duration of the experiment, and in Fig. 4 we show the summary statistics collected from the313

processed experimental data for each pore size. As each scaffold is fixed prior to staining and314

imaging, we note that data collected from successive time points are statistically independent.315

We work with average cell density (Fig. 4a–d) instead of cell count to allow direct comparison316

between pore sizes. It is not until after day four that cells migrate from the fibres into the pore317

void, so we exclude data collected at earlier time points from the analysis, and calibrate the318

model with observations taken after day four. Observations from day four itself are excluded as319

cells primarily occupy the fibres, which the model does not consider (Fig. 1e–f ). By the end320

of the experiment (28 days), the majority of the 300 and 400 µm pores are bridged (85% and321

100%, respectively), and the cell density appears very close to a steady-state (the average cell322

densities are 102% and 93% of the edge density, respectively). In comparison, several of the 500323

and 600 µm pores do not bridge at the conclusion of the experiment (70% and 60% bridged at324

day 28, respectively), and, for these pore sizes, cell growth is more evident between days 18 and325

28 (cell densities are 78% and 69% of edge density, respectively).326

Using information about the cell density and tissue coverage, we calibrate the Porous-Fisher327

model to obtain a maximum likelihood estimate (MLE), θL, individually for each pore size328

(Table 1). We show the solution of the model at the MLE, which we refer to as the best fit,329

along with the predicted tissue boundary in Fig. 2. Qualitatively, the behaviour predicted by330

the model matches that seen in Fig. 1 for the experimental data. First, the Porous-Fisher model331

predicts sharp-fronted migration, where regions ahead of the tissue boundary are devoid of cells.332

Second, we see cell migration drive tissue growth that bridges each pore. Pore bridging appears333

to occur at a slower rate for the larger pores, consistent with experimental observations. A334

counter-intuitive result that highlights the variability in pore bridging we see in the experimental335

data is that the 600 µm pores are predicted to bridge faster than the 500 µm pores: this is also336

seen in the experimental data, where at day 18 tissue coverage is greater in the 600 µm than the337

500 µm pores (Fig. 1).338

In Fig. 4, we overlay a time-series of the best fit for each summary statistic with the339

experimental data, and in Fig. 5 we compare relationships between summary statistics predicted340

by the model to the experimental data. In all cases, we interpret realisations of the deterministic341

process model as the expected behaviour. To determine the distinct value of collecting information342

relating to the cell density and coverage, we also calculate the MLE in the case where we calibrate343

the model using (i) the cell density alone, and (ii) the coverage alongside day 28 observations of344

the cell density. Finally, to determine if the model can simultaneously match data across all345

D (µm2 d−1) λ (d−1) K ( cells/µm2)

300 µm 397 (290,653) 0.561 (0.353,0.858) 0.00352 (0.00338,0.00361)
400 µm 1030 (525,1690) 0.35 (0.191,0.694) 0.0033 (0.00314,0.00343)
500 µm 117 (40.6,269) 0.497 (0.238,1.21) 0.00361 (0.00322,0.00401)
600 µm 99.9 (54.7,240) 1.41 (0.621,2.0) 0.00294 (0.00271,0.00319)

All 426 (364,552) 0.339 (0.261,0.388) 0.00345 (0.00336,0.00355)

Table 1. Maximum likelihood estimates obtained by calibrating the Porous-Fisher equation to information
relating to the cell density and tissue coverage. Asymptotic 95% confidence intervals, approximated using
the profile likelihoods (Fig. 6) are given in parentheses. All values are stated to three significant figures.
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Figure 5. Relationships between experimental and simulated summary statistics. Experi-
mental data and model fit showing the relationship between (a–d) tissue coverage and cell density, and
(e–h) coverage and circularity. In each case, a model prediction is shown based on the maximum likelihood
estimate based on the cell density (dashed colour); cell density and tissue coverage (solid colour); tissue
coverage with day 28 density measurement (dotted colour); and cell density and tissue coverage from all
pore sizes (solid grey).

pore sizes, we calculate the MLE using both cell density and tissue coverage information from346

all pore sizes (in this case, the initial density is allowed to vary between pore sizes). We show347

the best fits in these three additional scenarios in Fig. 4 and Fig. 5.348

Results in Fig. 4a–h show a clear value in considering information relating to tissue coverage.349

We see an excellent match with experimental observations of cell density for all pore sizes350

(Fig. 4a–d), even for cases where only tissue coverage and day 28 cell density observations are351

used for model calibration. Overall, we also see an agreement with experimental observations of352

tissue coverage; however, when the model is calibrated using cell density information alone, the353

best fit does not appear to capture early time tissue formation correctly (Fig. 4e–h). The model354

also provides an excellent match to experimental cell density and coverage observations when355

calibrated to all pore sizes simultaneously. These results are important as the model does not356

explicitly incorporate geometric behaviour (aside from the initial and boundary conditions) yet is357

still able to capture features relating to tissue coverage and cell density in the experimental data.358

This agreement between the model and experimental data is not only the case when parameter359

estimates are allowed to vary between pore sizes, but also when a single set of parameters is360

used to describe data across all pore sizes.361

Comparison between model fits and experimental observations in Fig. 4a–h highlight how362

variable experimental observations are despite a large sample size of n = 618 pores: the average363

density and coverage for the 400 µm pores, for example, decreases by 12% from day 7 to 10 (the364
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model monotonically increases), and observations at day 14 of the same pore size encompass365

observations at nearly every other time, (Fig. 4b,f ). For this reason, we have excluded day 7366

observations of 400 µm pores from results in the main text. In the supplementary material, we367

demonstrate that including these observations leads to results inconsistent with the other pore368

sizes. We address possible reasons for high levels of variability data later in the discussion.369

A critical area in which the model fails to capture the experimental observations is in its370

ability to match the circularity of the tissue boundary in the larger 500 and 600 µm pores371

(Fig. 4k,l and Fig. 2c,d). We further verify this by calibrating the model to information that372

includes circularity, finding that the model best fit in this case does not match the circularity373

measurements seen in the experimental data (supplementary material). In Fig. 5e–h we explore374

the relationship between tissue coverage and circularity, which we note are both non-dimensional375

quantities and, therefore, can be directly compared between pore sizes. The relationships376

observed in the experimental data are remarkably consistent both between and within pore sizes,377

contrasting significantly to results in Fig. 4 that show highly variable observations. Comparing378

the tissue boundaries predicted by the model (Fig. 2) to the experimental data (Fig. 1) reveals379

why this may be the case. The model predicts initial tissue growth in both the corners and380

edge of the pore. In comparison, tissue growth in the experiments appears to occur initially381

only in the corners: it is not until the tissue boundary becomes almost completely circular,382

with a diameter equal to the pore size, that tissue growth occurs on the pore edge. We confirm383

this in Fig. 5e–h by calculating the coverage for a hypothetical, idealised, pore that forms a384

circular tissue void inscribed in the pore, equal to 100(1− π/4)% for all pore sizes (indicated in385

black). We note that since the manufacturing process never leads to pores that are perfectly386

square, we do not expect to see a perfectly circular pore with coverage 100(1− π/4)% in the387

experimental data. This corner corner bridging stage of tissue growth is not included in or388

captured by the Porous-Fisher model (Fig. 2). To develop a better understanding of corner389

bridging, we suggest future mathematical and experimental work focussed on corner bridging390

using scaffolds with pores large enough that tissues in adjacent corner tissues do not interact391

and start pore bridging [17,22].392

Point or maximum likelihood estimates for each parameter vary across pore sizes (Table 1),393

yet the model is able to match experimental observations of cell density and tissue coverage394

across all pore sizes with a single set of parameters (Fig. 4). To allow for parameter uncertainty395

when comparing parameters across pore sizes, we compute profile likelihoods (Fig. 6) and396

approximate confidence intervals (Table 1) for each parameter. Although profile likelihoods must397

be interpreted with care given that they depend not only on the process model but also the noise398

model, they provide valuable information about the sensitivity of the likelihood estimates we399

obtain. This is important as the point estimates provided by the maximum likelihood estimate400

give no information about parameter uncertainty, sensitivity or identifiability [29]. Although401

point estimates for each parameter appear to vary between pore sizes (Table 1), confidence402

intervals (Table 1) and likelihood profiles (Fig. 6) largely overlap, providing no evidence that403

these parameters vary across pore sizes. MLEs obtained for the diffusivity, D, from cell density404

information alone are much larger than we might expect, but examination of the profile likelihoods,405

which provide a lower, but no upper, bounded confidence interval, indicates that D is cannot be406
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established unless information relating to tissue coverage is included. The largest discrepancy407

between pore sizes is seen in the diffusivity: estimates range from 400 to 1000 µm2 d−1, for the408

300 and 400 µm pores, respectively (the larger variability and inconsistencies in data for the409

400 µm pores leads to a much wider confidence interval than for the 300 µm pores), to below410

200 µm2 d−1 for the 500 and 600 µm pores. This variability is consistent with estimates for411

cell diffusivities in two-dimensional culture, which often vary over several magnitudes across412

experimental conditions [59,60].413

Estimates, profiles and confidence intervals for the proliferation rate, λ, are remarkably414

consistent between pore sizes. While the model does not capture the shape of the tissue boundary,415

it does capture both the cell density and tissue coverage, suggesting that the crowding effects416

which lead to logistic growth in the experiments are also captured. In particular, our results in417

Fig. 6 suggest proliferation of MC3T3-E1 is similar between scaffolds of different sizes and is418

lower than a rate of λ ≈ 1.1 d−1 observed in two-dimensional culture [46] (this is also seen in419

Fig. 7). Another interesting result is the consistency in carrying capacity, K, of approximately420

0.00345 (95% combined CI: (0.00336,0.00355)), which corresponds to an average packing density421

where a monolayer of cells occupy the same amount of space as a disk with diameter of 19 µm. An422

exception is for the largest 600 µm pore, which produces an estimate much lower than the other423

pores (95% CI: (0.0027,0.0032)). While this lower estimate may be consistent with average cell424

density observations (Fig. 4d), the higher estimate from the combined MLE is more consistent425

with behaviour at the edge of the pore (Fig. 4p). In some cases, the assumption of a constant426

carrying capacity across the entire pore may not be appropriate. It is not clear from the data427

alone whether this observation is due to actual variation in carrying capacity within a pore, or428

because net cell growth in the centre of the pore has not yet plateaued due to crowding effects.429

To answer this question, data must be collected over a longer experimental duration for these430

larger pores.431

In Fig. 7 we compute bivariate profiles to assess potential relationships between parameter432

estimates. First, examining the bivariate profiles between the proliferation rate, λ, and diffusivity,433

D, in Fig. 7a–d , reveals a hyperbolic relationship. This result is consistent with previous434

studies that establish only the product Dλ using information about the position of the tissue435

interface [14, 40], but that cannot establish individual values for these parameters. In our work,436

by using information relating to both cell density and tissue coverage, we are able to establish437

the individual values of D and λ within a region of compact support (a 95% confidence region is438

shown in Fig. 7a–d). Second, examining the bivariate profiles between the proliferation rate, λ,439

and carrying capacity, K, highlights the information obtainable from the 28 day experiment440

for each pore size. On average, the larger 500 µm and 600 µm pores do not bridge by the441

conclusion of the experiment, and we see comparatively large uncertainties in both the estimated442

proliferation rate and estimated carrying capacity (Fig. 7g,h). In contrast, results for the smaller443

300 µm and 400 µm pores—the majority of which bridge by day 18—show that we are able to444

establish these parameters with a relatively small region (Fig. 7e,f ). Although point estimates445

for the proliferation rate vary across pore sizes (Table 1), the bivariate profiles show a significant446

overlap in possible parameter values, indicating that these parameters are similar between pore447

sizes.448
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When the data are analysed as summary statistics that depend upon time, as in Fig. 4, we see449

a large amount of variability that cannot be fully captured by the observation noise process we450

define in Section 2.2.2. However, when relationships between summary statistics of each pore are451

analysed with respect to each other, independent of time, we see notably less variability (Fig. 5).452

These results suggest that time alone is a poor predictor of each summary statistic. In contrast,453

the dependence between summary statistics in Fig. 5 suggests that summary statistics have well454

defined relationships with relatively little variability. In the deterministic process model, the455

initial condition (which describes the expected value of each summary statistic on day 4) is456

taken to be a fixed density of cells distributed around the fibres. The majority of the variability457

in the temporal pore bridging data may be due to variability in the initial condition, which458

affects initial pore formation. For example, we expect tissue growth to be slower, or stationary,459

for pores that initially have a smaller density of cells distributed around the pore boundary at460

day 4. One way around the limitation of providing a homogeneous initial distribution of the461

cells in the experiments is to collect time-series data, where the same pore is imaged at multiple462

time points. There are two ways this information could be incorporated into the mathematical463

model. First, by including a time delay parameter for each data point that describes the delay464

until tissue formation inside the pore begins, that can be profiled out as a nuisance parameter465

in the analysis. Second, by capturing the variability directly by describing pore bridging as a466

differential equation where the initial density at the pore boundaries is a random variable.467

Our results do not suggest significant differences in cell behaviour between pore sizes. Despite468

the Porous-Fisher model not explicitly incorporating geometric behaviour (aside from the initial469

and boundary conditions), we can capture information relating to both tissue coverage and cell470

density even when calibrated simultaneously to data from all pore sizes. By accounting for471

tissue coverage, we quantify a similar proliferation rate for all sizes based on a logistic growth472

assumption. The relationship between tissue boundary circularity and coverage is similar between473

all pore sizes. In all pores we see two stages of bridging: first, the corners bridge—this takes474

longer in the larger pores—and form an approximately circular tissue boundary; second, the pore475

closes and remains approximately circular in shape. These observations have also been made476

for triangular and hexagonally shaped pores [20], and convex pores [11]. Further experimental477

and modelling work is needed to disentangle the effect of each of these stages on overall pore478

bridging and tissue growth. For example, we suggest experimental work that investigates corner479

bridging and tissue establishment using non-constrained or “open” geometries [17,22], rather480

than the current geometry where tissue growth eventually closes a pore of finite size. To reduce481

overall variability in the data, variability in the initial condition should be accounted for through482

time-series imaging, where information about each pore is available at multiple time-points, and483

throughout each distinct stage.484

Our thin three-dimensional experimental framework, and two-dimensional depth-averaged485

mathematical modelling framework, carry several advantages over more complex alternatives. In486

addition to information relating to tissue coverage, we are able to access detailed information487

about cell density, which we interpret with a mathematical model that quantifies cell behaviour488

with biophysical parameters such as proliferation and migration rates. This allows for comparison489

of cell behaviour between cell lines, allowing tissue growth optimisation with respect to cell line in490
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white lines indicates the −3.00 contours which corresponds to an approximate asymptotic 95% confidence
region for each parameter combination.

addition to scaffold geometry. Our modelling framework is also extensible to co-culture systems491

that include multiple cell lines, which are more representative of in vivo tissue growth, through492

a coupled system of partial differential equations. Additionally, working with a thin three-493

dimensional experimental geometry reduces the need to account for additional extraneous factors494

on cell growth, such as nutrient availability. For example, typical in vitro three-dimensional495

tissue culture lack the vascular system that ensures homogeneous nutrient availability for in vivo496

tissue growth [3]. In comparison, our geometry results in a monolayer of cells that are all in497

direct contact with growth medium.498

We suggest, in future, a hybrid modelling framework to describe each stage of pore bridging,499

rather than a single model that captures all stages of growth. While our analysis does not500

preclude generalisations of the Porous-Fisher model from capturing geometric features like501

circularity, reaction-diffusion models alone cannot account for both the corner bridging and pore502

closing stages of growth we see in the experimental data. Models based on continuum mechanics503

or curvature control have been successful in recapturing the initial stages of bridging seen504

experimental data [11,20, 23], but typically neglect information relating to cell density. Once a505

circular tissue boundary is established, tissue growth may be quantified using density-dependent506

models such as those based on the Porous-Fisher equation, or agent based models [45,61].507
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4 Conclusion and Outlook508

We analyse experimental data from a series of pore bridging experiments using a relatively509

simple reaction-diffusion model based on the Porous-Fisher equation. In addition to commonly510

reported tissue coverage information, our model allows for the interpretation of information511

relating to cell density, and we see a clear value in considering both measurements. For example,512

the cell migration rate is often unidentifiable from information relating to cell density alone513

but becomes identifiable when information relating to tissue coverage is included. Compared514

to existing models of tissue growth that are largely phenomenological [17,18], our framework515

characterises cell behaviour with parameters that carry a biologically meaningful interpretation,516

such as cell proliferation and migration rates. We find no evidence to suggest that cell behaviour517

is dependent upon pore size. The cell proliferation rates, which are lower than that observed518

for two-dimensional culture, and carrying capacities are found to be remarkably similar across519

different pore sizes. This outcome suggests that our experimental protocols lead to consistent,520

reproducible tissue growth. This conclusion is not apparent without interpretation of the521

experimental data with a mechanistic mathematical model.522

Our analysis identifies two distinct stages of pore bridging that are consistent between pore523

sizes: an initial corner bridging stage, and a latter hole closing stage. The Porous-Fisher model524

does not describe the initial corner bridging stage and, therefore, does not reproduce the shape525

of the tissue boundary. However, the model does match features relating to cell population and526

tissue coverage, thus capturing crowding effects and providing confidence in the estimated cell527

proliferation rates. We suggest that a better understanding of pore bridging can be formed528

through distinct theoretical models and experimental analysis that individually capture both529

the corner bridging and hole closing stages.530

The experimental data used for model calibration suggests, at first, that pore bridging is531

a highly variable process. However, analysis of the relationships between summary statistics532

reveals this may not be the case. Rather, variability in both the initial distribution of cells on533

the scaffolds and corner bridging leads to a time-delay that cannot be accounted for with the534

information available from our data-collection method. These results highlight a potential value535

in designing an experiment to collect time-series observations, which will provide information536

about cell density and tissue coverage of each pore at multiple time points. This more detailed537

information will allow for the inclusion of more complicated mechanisms, such as directed538

migration through chemotaxis [43,62], mechanical effects at the tissue boundary [63,64], or the539

depletion of nutrients available to the cell population. At present, we find the complexity of the540

mathematical model is well suited to the level of information available in the experimental data,541

and we expect identifiability issues to arise if we were to interpret the current data with a more542

complex model.543

Many of our conclusions could not have been made without considering data from multiple544

experimental geometries. The smaller pores, for example, give the impression that the model545

captures geometric features of pore closing; the inability of the model to capture these features546

is only evident when we analyse data for the larger pores. Comparing parameter estimates547

and profile likelihoods across experimental conditions is essential for constructing and verifying548

theoretical descriptions of pore bridging. Typical applications of mechanistic mathematical549
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models to understand tissue formation usually involve working with a single experimental550

geometry, most often in a one-dimensional setting. These approaches cannot provide insight551

into the effect of high-dimensional geometric phenomena, such as corners, which we explore in552

our work.553

In conclusion, our Porous-Fisher model successfully captures many of the key features of the554

experiments, providing a straightforward means of interpreting experimental observations in555

terms of the underlying cell proliferation and migration mechanisms that drive tissue growth.556

To the best of our knowledge, these mechanisms have never before been explicitly characterised557

for tissue growth in 3D-printed scaffolds.558

Data availability559

Code and data used to produce the numerical results are available as a Julia module on GitHub560
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