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Abstract 38 

Background: Findings in adults have shown more culturally sensitive ‘crystallized’ measures of 39 

intelligence have greater heritability, these results were not able to be shown in children. 40 

Methods: With data from 8,518 participants, aged 9 to 11, from the Adolescent Brain Cognitive 41 

Development (ABCD) Study®, we used polygenic predictors of intelligence test performance 42 

(based on genome-wide association meta-analyses of data from 269,867 individuals) and of 43 

educational attainment (based on data from 1.1 million individuals), associating these predictors 44 

with neurocognitive performance. We then assessed the extent of mediation of these associations 45 

by a measure of recreational reading.  46 

Results: more culturally sensitive ‘crystallized’ measures were more strongly associated with the 47 

polygenic predictors than were less culturally sensitive ‘fluid’ measures. This mirrored 48 

heritability differences reported previously in adults and suggests similar associations in 49 

children. Recreational reading more strongly statistically mediated the genetic associations with 50 

crystallized than those with fluid measures of cognition. 51 

Conclusion: This is consistent with a prominent role of gene-environment correlation in 52 

cognitive development measured by “crystallized” intelligence tests. Such experiential mediators 53 

may represent malleable targets for improving cognitive outcomes.  54 

 55 

 56 

 57 

 58 
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Introduction 59 

Scores on cognitive tests in both children and adults have been linked to long term 60 

outcomes and to genetic variation(1–4). Some cognitive tests, e.g., those requiring literacy and 61 

mathematical skills, depend upon and are more sensitive to variability in cultural and socio-62 

economic factors. These measures are often referred to as ‘crystallized’ intelligence measures.  63 

In contrast, other tests that tap the capacity to solve novel problems, or process novel 64 

information, often referred to as ‘fluid’ measures, are less culturally sensitive and are less 65 

strongly related to socio-economic variables(5,6). A recent review reported systematic 66 

differences in heritability (an estimate of trait variability attributable to genetic variation) of the 67 

traits measured by these different kinds of cognitive measures(7).  Surprisingly, in studies of 68 

adult twins, more culturally sensitive tests exhibited higher, rather than lower, heritability; which 69 

runs counter to predictions from conventional models of intelligence.  The authors described 70 

similar trends in the twin studies of children, but increased heritability of crystallized relative to 71 

fluid measures have not yet been established for children, in whom intellectual functions are 72 

continuing to mature.  73 

The finding that the measures most strongly influenced by cultural factors exhibit higher 74 

heritability is perhaps counterintuitive; however previous authors have noted that genetic 75 

variation can be associated with environmental, cultural, or experiential (ECE) factors that 76 

themselves amplify effects of a genotype on the phenotype, a phenomenon often referred to as 77 

rGE (gene-environment correlation).  These associations between genotypes and ECE factors 78 

could influence the development of cognitive and intellectual abilities in several ways.  As an 79 

example, if others in the social environments of children recognize traits, e.g., precocious 80 

behavior, in those with a genetic propensity for a given cognitive ability, they may begin to treat 81 
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such individuals differently, rewarding them disproportionately for intellectual pursuits, 82 

investing more in their instruction, and/or placing them in environments that drive learning more 83 

effectively. Alternatively, the associations can be driven by the motivation of the children 84 

themselves if for example they develop greater enthusiasm for intellectual activities for which 85 

they have been more frequently rewarded, and which they then pursue more assiduously, thus 86 

enjoying beneficial effects of the increased practice associated with these activities.  In either 87 

case, the genetically advantaged abilities are disproportionately enhanced by these mediating 88 

ECE factors.  Of course, individuals with less advantageous genotypes may experience the 89 

converse of these social and motivational effects, resulting in languishing, or in the worst case 90 

suppressed, intellectual development, even within similar environments. Such rGE effects can 91 

increase variance in intellectual phenotypes and increase estimates of heritability using both 92 

epidemiological and genomic methods(8).  The important implication is that a component of this 93 

increased heritability requires the mediating ECE effects for its expression.  In essence, more 94 

direct biological effects of the genotype and associated differences in the environments or 95 

experiences of the child are both contributing causal factors influencing the mature phenotype, 96 

but they act through dissociable mechanisms. 97 

Heritability is a population statistic frequently measured using a twin design. For this 98 

study, we used polygenic scores to examine variation in genetic and experiential factors and their 99 

relationship to trait measures of cognitive function. Polygenic scores have the advantage that 100 

they can be used to index relevant genetic factors in samples of unrelated individuals by 101 

leveraging the statistical power of meta-analysis results from large Genome Wide Association 102 

Studies (GWAS).  Using neurocognitive test scores, genomic data, and a measure of parent-103 

reported recreational reading assessed in a large sample of 8,618 children, aged 9 to11, from the 104 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2021. ; https://doi.org/10.1101/637512doi: bioRxiv preprint 

https://doi.org/10.1101/637512
http://creativecommons.org/licenses/by-nc/4.0/


 5

ABCD Study®, we used polygenic scores of intelligence test performance (based on GWAS of 105 

269,867 individuals(9)) and educational attainment, sometimes considered a proxy for 106 

intellectual ability (based on 1.1 million individuals(10)), to ask 3 questions:  First, do these 107 

genomic predictors account for more of the variability in estimates of culturally sensitive 108 

crystallized traits than fluid traits in children, as might be expected from reports of higher 109 

heritability in adult twins? Second, does a parent-reported estimate of the time their children 110 

spend reading for pleasure mediate the relationship between a genomic predictor and measures 111 

of cognitive performance, consistent with a role of this experiential enhancer of performance in 112 

increasing heritability?  Third, if mediation is observed, is this mediating effect larger for the 113 

culturally sensitive crystallized than the fluid measures of cognitive performance, consistent with 114 

a role for rGE in the higher heritability of these measures?  115 

In additional analyses, we examined the degree to which the findings in the ethnically 116 

diverse ABCD sample were similar between the subgroup of children with high genomic 117 

European ancestry (EurA) and a remaining subgroup of children who were from diverse ancestry 118 

groups (DivA). Finally, using simulations, we tested whether our observed findings may be due 119 

to previously reported differences in test-retest reliabilities (for crystallized vs fluid measures). 120 

 121 

Materials and Methods 122 

2.1 Data available in the ABCD data release 2.0.1 123 

The ABCD study (http://abcdstudy.org) enrolled the families of 11,875 children aged 9 or 124 

10 years at baseline(11). This longitudinal study follows the development of these children at 21 125 

sites across the US for ten years. The cohort exhibits a large degree of sociodemographic 126 

diversity. Exclusion criteria were limited to: 1) lack of English proficiency; 2) the presence of 127 
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severe sensory, neurological, medical or intellectual limitations that would inhibit the child’s 128 

ability to comply with the protocol; 3) an inability to complete an MRI scan at baseline. The 129 

study protocols are approved by the University of California, San Diego Institutional Review 130 

Board(12). Parent/caregiver permission and child assent from each participant were obtained. 131 

Here, our data were drawn from the baseline assessments shared in ABCD release 2.0.1 (NDAR 132 

DOI: 10.15154/1504041).  133 

 134 

2.1.1 Cognitive Measures 135 

Seven of the 10 cognitive tasks were subtests from The NIH Toolbox Cognition Battery® 136 

(NTCB) in the version recommended for ages 7+(http://www.nihtoolbox.org)(13).  The average 137 

time to complete this battery is approximately 35 minutes. The NTCB was administered in 138 

English(14), using an iPad, with support from a research assistant when needed.  The battery 139 

yields individual test scores measuring specific constructs and composite scores that have been 140 

shown to be highly correlated with ‘gold standard’ measures of intelligence in adults(15) and 141 

children(5). Here, all 7 individual test scores and 2 composite scores were examined: the 142 

Crystallized Cognition Composite Score (derived from scores on the Picture Vocabulary and 143 

Oral Reading Recognition measures) and the Fluid Cognition Composite Score (derived from the 144 

remaining measures). Additionally, three neurocognitive tasks were used that were not 145 

components of the NTCB: Rey-Auditory Learning Task, Little Man Task and Matrix Reasoning. 146 

Please see supplementary materials for a description of each task. 147 

 148 

2.1.2 Latent Neurocognitive Factors 149 
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Thompson et al. derived a three factor, varimax rotated, solution for the latent structure 150 

across the neurocognitive battery in ABCD using Bayesian Probabilistic PCA(16). The final 151 

latent factor solution included the measures described above, except for the Matrix Reasoning 152 

task which had very little effect on the solution. The factors will be referred to as Bayesian 153 

Factors (BF) 1-3. Language tasks loaded most heavily on BF1, which was highly correlated with 154 

the Crystallized Composite (r=0.93); executive functioning tasks loaded most heavily on BF2; 155 

and learning/memory tasks loaded heavily on BF3.  156 

 157 

2.1.3 Recreational Reading 158 

 Parents of ABCD participants were asked to complete a survey of their children’s 159 

activities. One question asked, “Does your child read for pleasure?”  The follow-up question 160 

was, “About how many hours per week does your child read for pleasure?”.  This estimate of 161 

number of hours of recreational reading was log transformed due to skewness. To confine the 162 

analyses of this variable to a homogenous group of children who read for pleasure, we included 163 

only children whose parents answered ‘yes’ to the first question.  164 

 165 

2.1.4 Genetic Data and Computing Polygenic Scores 166 

 Using genotype data we derived genetic ancestry using fastStructure(17) with four 167 

ancestry groups. Genetic principal components were also calculated using PLINK. Variants were 168 

imputed using the Michigan Imputation Server(18). Polygenic scores were computed using 169 

PRSice(19). The Intelligence Polygenic Score (IPS) was trained on 269,867 individuals by 170 

Savage et al.(9), and focused on neurocognitive tests considered to gauge fluid intelligence. The 171 

Education Attainment Polygenic Score (EAPS) was generated from 1.1 million individuals, 172 
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predicting the phenotype of number of years of schooling completed. Please see supplementary 173 

materials for further details on genetic data and analysis. 174 

 We were primarily focused on studying the IPS association with cognitive tests in 175 

ABCD, due to it being trained on a more directly relevant phenotype. However, we additionally 176 

examined EAPS as a secondary analysis for comparison as it has been previously used as a proxy 177 

for cognitive ability and has a discovery sample size four times the size of the IPS. 178 

 179 

2.2 Analytic Methods 180 

 181 

2.2.1 Ancestry Group Analyses 182 

 Training and testing polygenic scores in different ancestry groups has been shown to 183 

reduce predictive power(20–22). Given the ancestry differences between the polygenic score 184 

discovery samples (predominantly European) and the ABCD study (multiple ancestry groups), 185 

we wanted to confirm our main results in the full samples were not driven by population 186 

structure. As such we additionally performed analyses in two subsamples: 1) children with 187 

estimated proportion of European ancestry higher than 90% (EurA) and 2) a group of the 188 

remaining children with diverse ancestry, which included those from other or mixed ancestry 189 

(DivA).  190 

 191 

2.2.2 Statistical Model for Genomic Prediction of Behavioral Measures 192 

 To assess the association between the polygenic scores and cognitive performance in 193 

ABCD, we fit Generalized Linear Mixed-Effects Models (GLMMs) using the gamm4 194 

package(23) in R. Each model predicted performance on a different cognitive measure. 195 
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Continuous variables were z-scored before model fitting to allow coefficients to be interpreted as 196 

standardized effect sizes. To test if regression coefficients differed between regressions we 197 

performed a z-test on the difference between coefficients, based on the propagated standard error 198 

for the two regression coefficients as the sum of the error of variances for each measure. This test 199 

assumes the standard errors are uncorrelated and so provides a conservative estimate of 200 

significance. Please see supplementary materials for details and covariates used. 201 

 202 

2.2.3 Differential Mediation Analysis 203 

 To assess whether recreational reading is a plausible ECE factor increasing heritability of 204 

crystallized cognition, through rGE effects, we performed a mediation analysis.  Specifically, we 205 

compared the statistical mediation effects of recreational reading experience on the associations 206 

between the IPS and both the Crystallized Composite and Fluid Composite, respectively. We 207 

achieved this by calculating the proportion of mediation of recreational reading on the i) IPS-208 

crystallized and the ii) IPS-fluid associations using an average causal mediation effect model(24) 209 

across 10,000 bootstrap samples. With bootstrapped samples we tested if the mediation effect of 210 

recreational reading on the IPS-crystallized association was greater than that of IPS-fluid , by 211 

performing a Welch t-test on the samples. Mediation analysis was performed using general linear 212 

models in the mediation package in R(25), see supplementary materials for details. 213 

 214 

2.2.4 Data and Code Availability 215 

The ABCD dataset is available approved researchers at https://nda.nih.gov/abcd. A 216 

jupyter notebook of the analysis be found at 217 

github.com/robloughnan/ABCD_Intelligence_Polygenic_Score. 218 
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 219 

Results  220 

Demographics 221 

 Figure 1 illustrates a flow-chart for sample selection. For the final analysis we have  222 

8,518 individuals in the full sample, 4,885 in the EurA sample and 3,633 in the DivA sample.  223 

Behavioral Measures and Sociocultural Factors 224 

 Mean performance, standard deviation (SD), median and estimates of variance explained 225 

by age, sex, and the set of socio-cultural covariates (parental marital status, highest education 226 

level of parent/caregiver, household income, ethnicity, genetic principal components) are given 227 

for each behavioral measure examined in Table 2.  Consistent with previous reports, there are 228 

substantial differences in the degree to which socio-cultural factors account for variability in 229 

these measures.  The Crystallized Composite, its constituent Picture Vocabulary and Reading 230 

Recognition measures, and BF1, on which these measures of language and literacy load heavily, 231 

all exhibit higher levels of association with socio-cultural variables. This pattern persisted when 232 

controlling for IPS (Sup. Table 2). Sex, age and socio-cultural factors explained little variability 233 

in recreational reading. Partial correlations between the individual cognitive task measures 234 

controlling for covariates (Figure 2), suggest that performance on the different tasks is modestly 235 

correlated across children (rs=.08-.41) in this sample.  Correlations peak in the .3 range within 236 

Fluid Composite measures, and the highest correlation is observed between the two Crystallized 237 

Composite measures (Picture Vocabulary and Oral Reading r=.41).  238 

 239 

Genomic Prediction of Crystallized and Fluid Cognition Measures 240 
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Table 3 summarizes the regression results for predicting the Crystallized and Fluid 241 

Composites with IPS or EAPS in the full sample, and separately in the EurA and DivA 242 

subsamples. The IPS was a significant predictor of both measures in all analyses. Importantly, 243 

the standardized regression coefficient was significantly higher for the Crystallized than the 244 

Fluid Composite regardless of ancestry group (full sample: z=4.8, p=1.8x10-6, EurA: z=4.6, 245 

p=5.1x10-6  and DivA: z=2.5, p=1.4x10-2).  246 

In no case did the EAPS, despite a much larger training sample size, appear to account 247 

for more of the variance in the neurocognitive measures than did IPS.  However, across ancestry 248 

groups and for both composite scores, combining both genomic predictors explained 249 

significantly more variance in behavior than IPS alone (supplementary results). IPS + EAPS 250 

explained 5.8% variance (p=4.5x10-64) in the Crystallized Composite for EurA (a 40% increase 251 

compared to IPS alone). Supplementary Tables 3-8 show regression results for each behavior 252 

using IPS, EAPS and IPS + EAPS within each ancestry group.  253 

Fitting separate regression models for each individual task in the neurocognitive battery, 254 

we found that the IPS was a significant predictor for each cognitive measure for the full sample 255 

and the EurA subsample (all p values<10-3), surviving the Bonferroni-corrected significance 256 

threshold of 0.05/10=0.005. Within the DivA subsample only six of the ten tasks were 257 

individually significantly predicted by the IPS (Sup. Table 8). Figure 3 shows the standardized 258 

regression coefficients of IPS predicting performance on each task, as well as the Crystallized 259 

and Fluid Composite measures from the NTCB and Bayesian Factors 1-3(16), in the full sample. 260 

Individual cognitive measures included in the Crystallized Composite have consistently higher 261 

IPS standardized regression weights than the measures included in the Fluid Composite. Other 262 

neurocognitive tasks from the ABCD battery (shaded in gray) showed similar associations to the 263 
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Fluid Composite. The results for the Bayesian Factors mirrored these results: BF1, on which 264 

‘Crystallized” measures had the highest factor loadings (Sup. Figure 1)(16), displayed a stronger 265 

association with IPS than BF2 and BF3 on which ‘Fluid”, executive function and memory 266 

measures had higher loadings. The results in the subsamples (EurA and DivA) are provided in 267 

supplemental material. 268 

 269 

Differential Mediation Results 270 

 The mediation analysis showed that recreational reading partially mediated associations 271 

between IPS and both composite measures, proportions of mediation: fluid 0.084 (95% CI: 272 

0.047-0.14, p≤10-4), crystallized 0.12 (95% CI: 0.88-0.16, p≤10-4).  However, the differential 273 

mediation analyses revealed a highly significant difference between the large degree of 274 

attenuation of the association between IPS and the Crystallized Composite relative to that 275 

between IPS and the Fluid Composite (Welch t-test: t=125, df=19053, p<10-300), shown in Figure 276 

4.  277 

 278 

Sensitivity Analyses to Address Test Reliability 279 

A previous study reported the test-retest reliability for the Fluid Composite from the 280 

NTCB (.76) was somewhat lower than for the Crystallized Composite (.85)(5), raising questions 281 

about whether differences in the strength of their associations with IPS could be attributed to 282 

more noise in the Fluid Composite measure.  In supplementary sensitivity analyses we 283 

demonstrate that our results are robust to the addition of simulated noise to the Crystallized 284 

Composite that mimics this difference in test reliability. At this level of simulated noise we 285 

estimated 1.0 power (alpha=0.05) to detect Crystnoise having a significantly greater IPS 286 
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standardized regression coefficient than the Fluid Composite. Moreover, additional sensitivity 287 

analyses indicate that the observed differences in the mediation effects of recreational reading 288 

are similarly robust against potential measurement error modelled as random noise.  These 289 

analyses are described in detail in Supplemental Material. 290 

 291 

Discussion 292 

We have shown that polygenic predictors of intelligence test performance and of 293 

educational attainment are associated with neurocognitive performance in this large group of 294 

children from diverse backgrounds. These results are consistent with previous findings 295 

demonstrating that virtually all behavioral traits, including cognitive and intellectual phenotypes, 296 

are heritable(26).  Moderate estimates of heritability of many behavioral phenotypes also 297 

establish that a substantial portion of the variability is due to independent environmental 298 

influences. Given that behavioral phenotypes emerge through interactions between children and 299 

their physical, social, and cultural environments, much attention has been paid to how these 300 

environmental factors modify the phenotypes, since they are presumably the malleable factors.  301 

However, recently, more attention has been focused on the possible roles of mediating 302 

nongenetic (ECE) factors that, through their statistical association with genetic variation (rGE), 303 

may amplify heritability(7,8). 304 

 We found that a culturally dependent estimate of crystallized cognitive functions, the 305 

Crystallized Composite measure from the NTCB, is more strongly associated with the best 306 

available polygenic predictor of intelligence test performance than is the Fluid Composite 307 

measure, consistent with earlier findings in adults of heritability differences(7) and polygenic 308 

score performance(27) across similar measures.  This is despite the IPS being based on a large 309 
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meta-analysis of GWAS combining cognitive measures that were described by the authors as 310 

primarily “fluid intelligence” measures(9). Indeed, the relative size of the IPS association across 311 

the 15 measures examined here (Figure 2) closely mirrored the relative percent variance 312 

explained in these measures by socio-cultural variables (Table 2), a pattern that persists after 313 

accounting for IPS (Sup. Table2).  Moreover, for children who read for pleasure, the extent of 314 

recreational reading was found to partially mediate the associations between IPS and both 315 

Composite measures, but to a significantly greater degree for the crystallized than for the fluid 316 

measure, consistent with a more prominent role of rGE in the development of abilities tapped by 317 

measures that are both more heritable, and apparently more sensitive to socio-cultural variables.  318 

In other words, even when controlling for independent contributions of more global sociocultural 319 

variables, how often a child reads for pleasure more strongly mediates the association between 320 

IPS and crystallized rather than in fluid performance. 321 

It is perhaps unsurprising that recreational reading more strongly mediates the association 322 

between IPS and culturally sensitive measures of intelligence since such measures are generally 323 

sensitive to educational factors. Indeed, a measure of oral reading proficiency loads highly on 324 

both measures of crystallized functions examined here, Crystallized Composite and BF1. One 325 

can imagine that children with neurobehavioral phenotypes advantageous for learning to read 326 

might be more likely to develop the habit of reading for pleasure than those with other 327 

neurobehavioral phenotypes, for a variety of reasons. However, these results imply that choosing 328 

to read for pleasure at 10 years of age is associated with having a genotype linked to intellectual 329 

functions most dependent on reading, and that an estimate of the frequency of reading behavior 330 

mediates that link. This is consistent with previous descriptions of  rGE effects, and with 331 

analyses by Beam and Turkheimer(8), who showed that increasing rGE over time could explain 332 
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observed increases in the heritability of measures of cognitive function through development. 333 

The ABCD study will provide an opportunity to measure changes in heritability at later time 334 

points of this longitudinal study. Importantly, despite the lower test-retest reliability of the fluid 335 

compared to the crystallized composite score from the NTCB(5), our supplementary analyses 336 

show that this difference in test reliability is unlikely to explain our findings. 337 

Though recreational reading would appear to be an enhancing mediator of intellectual 338 

development, it is important to note that genotype-correlated ECE factors can also suppress 339 

intellectual development.  As an example, early struggles to read by children with less 340 

advantageous genotypes for reading may decrease the likelihood that these children will choose 341 

reading activities, leading to slower progression of these faculties.  Worse, if children’s early 342 

reading attempts are experienced very negatively, these children may develop avoidant responses 343 

to reading, which could result in active suppression of developing literacy.  Importantly, when 344 

these kinds of differences originate with differences in children’s genotypes, they can increase 345 

heritability and exaggerate disparities.  Identifying ECE factors that contribute to heritability of 346 

cognitive and intellectual phenotypes is important because it can point to practices that better 347 

adapt to neurogenetic diversity among children.  Innovative pedagogical practices may lead to 348 

approaches that increase “enhancing” ECE effects in the subset of children disadvantaged by 349 

current practices and reduce ECE effects that suppress intellectual development and academic 350 

achievement, which may lead to more equitable educational outcomes.  351 

 352 

Limitations and Caveats 353 

The proportion of variance in the cognitive measures accounted for by the genomic 354 

predictors was larger in the EurA participants than in the DivA group(Sup. Tables 5 & 7), as 355 
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would be expected given the discovery samples were in individuals of European ancestry.  356 

However, the patterns were generally similar in the DivA group.  This suggests similar genetic 357 

architecture for these cognitive phenotypes across ancestry groups and supports the validity of 358 

the results from the full sample.  Analyses in all three groups included as covariates the top ten 359 

genetic principal components derived from the full sample.  Because of broad ancestral diversity 360 

in the ABCD cohort, there is limited power for comparing the effects in different ancestry 361 

groups.  As has been discussed in genetics generally(28,29), the lower predictive performance in 362 

the DivA group once again underscores the importance of collecting genetic data from 363 

ancestrally diverse populations and developing methods that can be used across ancestry groups. 364 

One may have predicted that EAPS would have been a more powerful predictor of 365 

cognitive measures in ABCD than IPS, due to it having over 4 times the discovery sample size. 366 

However, we found generally the IPS had stronger associations (Sup. Tables 3-8), perhaps 367 

because the phenotype is a better match between training and testing. This contrasts with results 368 

of a previous study of adults, where EAPS explained 7-10% of the variance in cognition(10), 369 

while IPS explained only 2-5%(9). This discrepancy may be due to methodological differences, 370 

alternatively the young age of the cohort may be the key difference. Educational attainment, 371 

while clearly related to scores on cognitive tests, may be influenced by other genetically 372 

influenced traits (e.g. personality) that may contribute to greater persistence in formal education; 373 

thus the EAPS is likely to reflect to a greater degree these traits. Such pleiotropic of EAPS 374 

effects has been observed in adults(30).  When we include both EAPS and IPS in a single model, 375 

together they explain 5.8% of the variability in the Crystallized Composite (EurA, Sup. Table 6), 376 

substantially more than IPS alone explains (4.1%), indicating that these genomic predictors 377 
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capture unique sources of the relevant variance, and are likely measuring different (relevant) 378 

constructs. 379 

 These results are consistent with previous evidence for a role of genetic variation in 380 

developing cognitive functions, and they strengthen the evidence for rGE during cognitive 381 

development.  However, it should be emphasized that the genomic predictors (together) account 382 

for only 4.15% of cognitive performance variance in the full sample.  Furthermore, this was 383 

observed for the Crystallized Composite measure, the culturally sensitive measure hypothesized 384 

to exhibit increased genetic association as a result of rGE effects. The additive effects of 385 

potentially confounding sociocultural covariates, even controlling for IPS, accounted for 13.2% 386 

of the variability.  For the Fluid Composite the genomic predictors together accounted for only 387 

1.1% of the variance, and sociocultural covariates accounted for almost 5%.  Of note, even with 388 

the narrow 2 year age range in the cohort, age alone accounts for 10% of the variability in the 389 

Crystallized Composite and 7% in the Fluid Composite. These effects may reveal clues about a 390 

highly dynamic process of cognitive and intellectual development in children. 391 

Finally, though the results of the mediation analysis focusing on recreational reading 392 

strengthen the plausibility that such ECE mediators associate with genotypes and increase 393 

genetic effects, these results do not prove a causal explanation, and none should be inferred.  In 394 

the context of an observational study such as ABCD it is always possible that confounding 395 

variables not accounted for in the analysis are responsible for the mediation effect we observed.   396 

 397 

 398 

 399 

 400 
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 517 
Figure 1 Flow chart of sample selection and exclusion. 518 
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 519 
Figure 2 Partial correlation matrix showing intercorrelations among individual task 520 
performance measures (controlling for age, sex, parental marital status, parental education, 521 
household income, principal components of genetic ancestry and Hispanic status) in the full 522 
sample included in the present study of genomic predictors. 523 
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 530 
Figure 3 Standardized regression coefficients of IPS for fitting linear mixed models to 531 
performance on Fluid and Crystallized Composites, each individual task from the NTCB, 532 
additional measures from the ABCD neurocognitive battery, and Bayesian (latent) Factors 1-3, 533 
in the full sample. Prediction of the Crystallized Composite is significantly stronger than for the 534 
Fluid Composite. Tasks included in the Fluid Composite (shaded in blue) have consistently lower 535 
regression coefficients than those included in the Crystallized Composite (shaded in red). 536 
Additional measures from the neurocognitive battery exhibit associations with IPS more similar 537 
to the Fluid Composite than to the Crystallized Composite, however Bayesian Factor 1, on which 538 
the verbal tasks load heavily, exhibits an association similar to the Crystallized Composite. 539 
Error bars show estimates of 95% confidence intervals as 1.96 × standard error. 540 
 541 
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 542 
Figure 4 Differential mediation analysis in singletons (N= 5,210): histograms shows 10,000 543 
bootstrap estimates for proportion of mediation of recreational reading on: i) IPS and  544 
Crystallized Composite (red) and ii) IPS and Fluid Composite (blue).  Recreational reading 545 
attenuates the relationship between the IPS and the Crystallized Composite to a significantly 546 
greater degree. 547 
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Full Sample European Ancestry Other Ancestry 

Total N 8518 4885 3633 

 Mean (SD) 
Age - months  119.05 (7.48) 119.21 (7.49) 118.85 (7.47) 

 N (%) 
Sex Male 4438 (52.1) 2576 (52.7) 1862 (51.3) 
Parent Married = Yes 6024 (70.7) 4066 (83.2) 1958 (53.9) 
Parental Education    
   < HS Diploma 302 (3.5) 21 (0.4) 281 (7.7) 
   HS Diploma/GED 649 (7.6) 138 (2.8) 511 (14.1) 
   Some College 2149 (25.2) 899 (18.4) 1250 (34.4) 
   Bachelor 2318 (27.2) 1548 (31.7) 770 (21.2) 
   Post Graduate Degree 3100 (36.4) 2279 (46.7) 821 (22.6) 
Household Income    
   [<50K] 2353 (27.6) 596 (12.2) 1757 (48.4) 
   [>=50K & <100K] 2444 (28.7) 1471 (30.1) 973 (26.8) 
   [>=100K] 3721 (43.7) 2818 (57.7) 903 (24.9) 
Race     
   White 5715 (67.7) 4750 (97.4) 965 (27.1) 
   Black 1129 (13.4) 1 (0.0) 1128 (31.7) 
   Asian 199 (2.4) 0 (0.0) 199 (5.6) 
   Other 1397 (16.6) 128 (2.6) 1269 (35.6) 

Hispanic     

Hispanic 1628 (19.1) 131 (2.7) 1497 (41.2) 

 572 
 573 
Table 1: Summary of demographics for individuals included in the full sample for the present 574 

genomic prediction analyses, and for the genomic European Ancestry and genomic Other 575 
Ancestry subgroups. 576 

 577 
 578 
 579 
 580 
 581 
 582 
 583 
 584 
 585 
 586 
 587 
 588 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2021. ; https://doi.org/10.1101/637512doi: bioRxiv preprint 

https://doi.org/10.1101/637512
http://creativecommons.org/licenses/by-nc/4.0/


 27

 589 
 Mean (SD) Median Sex Age Sociocultural 

Crystallized Composite 86.87 (6.93) 87 0.01 9.51 21.57 

Fluid Composite 92.18 (10.43) 93 0.32 7.17 10.28 

Reading 91.23 (6.73) 91 0.01 5.97 13.18 

Picture Vocabulary 85.04 (8.02) 84 0.07 7.67 20.14 

Pattern 88.29 (14.47) 88 0.57 4.81 1.90 

List 97.43 (11.81) 97 0.13 2.04 9.47 

Picture 103.33 (12.01) 103 0.51 1.17 5.46 

Flanker 94.42 (8.83) 96 0.03 3.21 3.73 

Cardsort 92.97 (9.26) 94 0.48 3.76 5.22 

Rey Auditory Verbal 43.78 (9.96) 44 1.25 2.23 8.57 

Matrix Reasoning 18.13 (3.74) 18 0.34 2.74 9.15 

Little Man Task 0.60 (0.17) 0.56 0.48 5.13 6.25 

Bayesian Factor 1 0.05 (0.76) 0.06 0.28 9.63 20.85 

Bayesian Factor 2 0.02 (0.76) 0.06 0.22 5.49 2.65 

Bayesian Factor 3  0.04 (0.70) 0.04 0.89 1.59 7.83 

Recreational Reading (hours) 6.5 (10) 4 0.45 0.18 0.86 
Table 2 Mean (SD) and median for each behavioral measure in the full sample, estimated % variance explained by sex, age, and 590 
the set of socio-cultural covariates (parental marital status, parental education, household income, genetic ancestry PCs and 591 
Hispanic/non-Hispanic).  592 

 593 
 594 
 595 
 596 
 597 
 598 
 599 
 600 

Sample Fluid Composite Crystallized Composite 
 Stand. β t P value % Var.  

Explained  
Stand. β t P value % Var 

Explained 
 IPS 

Full Sample 0.28 8.03 1.14E-15 0.75 0.50 15.82 1.31E-55 2.86 

EurA 0.11 7.53 6.10E-14 1.15 0.21 14.48 1.44E-46 4.13 

DivA 0.20 3.41 6.52E-04 0.32 0.40 7.34 2.68E-13 1.47 

 EAPS 

Full Sample 0.11 7.23 5.26E-13 0.61 0.19 14.21 2.56E-45 2.32 

EurA 0.09 6.60 4.66E-11 0.89 0.18 12.95 9.36E-38 3.34 

DivA 0.08 3.38 7.28E-04 0.32 0.15 6.66 3.24E-11 1.21 
Table 3 Regression results for GLMMs associating IPS (top) and EAPS (bottom) with Crystallized Composite and Fluid 601 
Composite of the NIH toolbox within full Sample and ancestry subgroups. 602 
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