
1 
 

U-Net Model for Brain Extraction: Trained on Humans for Transfer to Non-1 

human Primates 2 

 3 

Xindi Wang1*, Xin-Hui Li2, Jae Wook Cho2, Brian E. Russ3,4,5, Nanditha Rajamani2, Alisa 4 

Omelchenko2, Lei Ai2, Annachiara Korchmaros2, Stephen Sawiak6, R. Austin Benn7, Pamela 5 

Garcia-Saldivar8, Zheng Wang9,10, Ned H. Kalin11, Charles E. Schroeder3,12, R. Cameron 6 

Craddock13, Andrew S. Fox14, Alan C. Evans1, Adam Messinger15, Michael P. Milham2,3, Ting 7 

Xu2* 8 

 9 

1. Montreal Neurological Institute, McGill University, Montreal, Québec, Canada. 10 

2. The Child Mind Institute, 101 East 56th Street, New York, NY, 10022, USA. 11 

3. Nathan Kline Institute, 140 Old Orangeburg Rd, Orangeburg, NY, USA. 12 

4. Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, 13 

USA  14 

5.Department of Psychiatry, New York University School of Medicine, New York City, NY, USA  15 

6. Translational Neuroimaging Laboratory, Department of Physiology, Development and 16 

Neuroscience University of Cambridge, Cambridge, CB2 3EG, UK 17 

7. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain 18 

8. Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, 19 

Querétaro, México 20 

9. Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence 21 

Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate 22 

Neurobiology, Chinese Academy of Science, Shanghai, China 23 

10. University of Chinese Academy of Science, China  24 

11. Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, 25 

6001 Research Park Blvd, Madison, WI 53719  26 

12. Departments of Psychiatry and Neurology, Columbia University College of Physicians and 27 

Surgeons, New York, NY 10032, USA 28 

13. Department of Diagnostic Medicine, The University of Texas at Austin Dell Medical School 29 

14. Department of Psychology, and the California National Primate Research Center, University 30 

of California, Davis, One Shields Ave., Davis, CA 95616 31 

15. Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, USA 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

*Corresponding Authors: sandywang.rest@gmail.com, ting.xu@childmind.org  40 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 26, 2021. ; https://doi.org/10.1101/2020.11.17.385898doi: bioRxiv preprint 

mailto:sandywang.rest@gmail.com
mailto:ting.xu@childmind.org
https://doi.org/10.1101/2020.11.17.385898


2 
 

Abstract: 1 

 2 

Brain extraction (a.k.a. skull stripping) is a fundamental step in the neuroimaging pipeline as it can 3 

affect the accuracy of downstream preprocess such as image registration, tissue classification, etc. 4 

Most brain extraction tools have been designed for and applied to human data and are often 5 

challenged by non-human primates (NHP) data. Amongst recent attempts to improve performance 6 

on NHP data, deep learning models appear to outperform the traditional tools. However, given the 7 

minimal sample size of most NHP studies and notable variations in data quality, the deep learning 8 

models are very rarely applied to multi-site samples in NHP imaging. To overcome this challenge, 9 

we used a transfer-learning framework that leverages a large human imaging dataset to pretrain a 10 

convolutional neural network (i.e. U-Net Model), and then transferred this to NHP data using a 11 

small NHP training sample. The resulting transfer-learning model converged faster and achieved 12 

more accurate performance than a similar U-Net Model trained exclusively on NHP samples. We 13 

improved the generalizability of the model by upgrading the transfer-learned model using 14 

additional training datasets from multiple research sites in the Primate Data-Exchange (PRIME-15 

DE) consortium. Our final model outperformed brain extraction routines from popular MRI 16 

packages (AFNI, FSL, and FreeSurfer) across a heterogeneous sample from multiple sites in the 17 

PRIME-DE with less computational cost (20s~10min). We also demonstrated the transfer-learning 18 

process enables the macaque model to be updated for use with scans from chimpanzees, 19 

marmosets, and other mammals (e.g. pig). Our model, code, and the skull-stripped mask repository 20 

of 136 macaque monkeys are publicly available for unrestricted use by the neuroimaging 21 

community at https://github.com/HumanBrainED/NHP-BrainExtraction. 22 

 23 

  24 
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1. Introduction 1 

 2 

As the recent explosion of MRI data sharing in Nonhuman Primate (NHP) scales the amounts and 3 

diversity of data available for NHP imaging studies, researchers are having to overcome key 4 

challenges in preprocessing, which will otherwise slow the pace of progress (Autio et al. 2020; 5 

Milham et al. 2018; Messinger et al., 2021; Lepage et al. 2021). Among them is one of the 6 

fundamental preprocessing steps - brain extraction (also referred to as skull-stripping) (Seidlitz et 7 

al., 2018; Tasserie et al., 2020; Zhao et al., 2018). In both human and NHP MRI pipelines, brain 8 

extraction is often among the first early preprocessing steps (Esteban et al., 2019; Glasser et al., 9 

2013; Seidlitz et al., 2018; Tasserie et al., 2020; Xu et al., 2015). By removing the non-brain tissue, 10 

brain extraction dramatically improves the accuracy of later steps, such as anatomy-based brain 11 

registration, pial surface reconstruction, and cross-modality coregistration (e.g., functional MRI, 12 

diffusion MRI) (Autio et al. 2020; Seidlitz et al. 2018; Acosta-Cabronero et al. 2008; Lepage et al. 13 

2021). In humans, automated brain extraction tools have been developed (e.g., the Brain Extraction 14 

Tool [BET] in FSL, 3dSkullStrip in AFNI, the Hybrid Watershed Algorithm [HWA] in FreeSurfer, 15 

etc.) and easily inserted into a diversity of preprocessing pipelines (e.g. Human Connectome 16 

Project [HCP], fMRIPrep, Configurable Pipeline for the Analysis of Connectomes [C-PAC], 17 

Connectome Computational System [CCS], Data Processing & Analysis for Brain Imaging 18 

[DPABI]) (Cox, 1996; Craddock et al., 2013; Fischl, 2012; Glasser et al., 2013; Jenkinson et al., 19 

2012; Ségonne et al., 2004; Xu et al., 2015; Yan et al., 2016). However, adaption for macaque 20 

brain extraction is significantly more challenging, as the data are often noisy due to the smaller 21 

brain and voxel sizes involved. The low signal-to-noise ratio (SNR) and strong inhomogeneity of 22 

image intensity compromise intensity-based brain extraction approaches, necessitating parameter 23 

customization to fit the macaque data (Messinger et al., 2021; Milham et al., 2018). For instance, 24 

a new option ‘-monkey’ has been developed to customize AFNI’s widely-used 3dSkullStrip 25 

function, which improves its performance for NHP data. Yet, the results are still mixed across 26 

datasets and often require further manual corrections (Fig 1). 27 

 28 

 29 

In recent years, registration-based label transferring (i.e. template-driven) approaches have been 30 

proposed as a potential solution for NHP brain extraction (Jung et al., 2020; Lohmeier et al., 2019; 31 

Seidlitz et al., 2018; Tasserie et al., 2020). These approaches start by registering an individual’s 32 

anatomical image to the template in order to establish the deformation between the subject-specific 33 

head and template head. Once obtained, the transform is used to bring a template-based brain mask 34 

back to the individual space, where it can be used to extract the individual brain. The performance 35 

of such approaches heavily relies on the accuracy of the transformation and whether the template 36 

is representative of the individual data. As such, factors that can compromise the appropriateness 37 

or representativeness of the template for the specific individual dataset can decrease the utility of 38 

registration-based approaches. Examples where a template may not be representative include 39 

variations in macaque species (i.e. M. mulatta, M. fascicularis, etc.) and other NHPs species (e.g. 40 
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macaque, marmoset, etc.), the field of view, age (e.g. infant, juvenile, aging), sex (e.g. thicker 1 

muscular tissue for male adult macaque), and surgical implants (e.g. with head-holder implants, or 2 

anatomical lesions). This issue might be further intensified for data from multiple study centers 3 

with different scan acquisitions and samples (Fig 1). In addition, non-linear registration (e.g. 4 

ANTs, 3dQwarp) for high-resolution images in brain extraction step is relatively time-consuming 5 

(e.g. over hours) and limits the computational efficiency of NHP pipelines. 6 

  7 

Recognizing the continued challenges of brain extraction, researchers in human literature have 8 

begun to leverage deep learning models as a potential solution. In humans, a growing number of 9 

studies have demonstrated the ability of convolutional neural network (CNN) models for brain 10 

extraction, as well as tissue segmentation (Henschel et al., 2020; Lyksborg et al., 2015; Rehman 11 

et al., 2018; Snehashis Roy et al., 2018; Yogananda et al., 2019). Across studies, training and 12 

validation datasets in humans have included hundreds, and in some cases, even thousands of 13 

datasets, to ensure accurate performance and avoid overfitting. Once trained, the models have 14 

proven to be able to perform highly accurate extraction for new datasets in a matter of seconds. 15 

With rare exceptions, the NHP field does not possess datasets close to the multitudes used for 16 

training in humans. A recent study did, however, successfully implemented a CNN model (i.e. 17 

Bayesian SegNet) for brain extraction using a relatively smaller sample in macaques collected at 18 

a single site (N=50), suggesting that such training sets may not need to be as large as expected 19 

based upon these preliminary human studies (Zhao et al., 2018). However, the large majority of 20 

NHP studies use notably smaller sample sizes (i.e., 2-10). While combining data from multiple 21 

studies could be a solution, it is important to note the NHP literature tends to have substantially 22 

greater variability in imaging protocols than its human counterpart. 23 

  24 

The present work attempts to overcome the challenges at hand for NHP imaging by developing a 25 

generalizable macaque brain extraction model that can handle data from previously untrained 26 

protocols/sites with high accuracy. To accomplish this, we leveraged a transfer learning U-NET 27 

strategy, which explicitly aims to train a model for one purpose, and then extended its utility to 28 

related problems. In the present case, we trained our model on a human sample (n = 197), and then 29 

treated a nonhuman sample (n = 2 for six sites) as the transfer dataset - a strategy that exploits the 30 

similarity of human and non-human brain structure. Upon successful demonstration of the ability 31 

to transfer between species, we then evaluated the transfer of the updated model to untrained sites 32 

in the PRIMatE Data Exchange. Finally, we improved the generalizability of our model by adding 33 

a single macaque sample from each of the additional 7 sites (for a total of N=19). We released our 34 

pre-trained model, code, and the brain masks outcomes via the PRIMatE Resource Exchange 35 

(PRIME-RE) consortium (Messinger et al., 2021; Milham et al., 2018). 36 

 37 
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 1 

Figure 1. Examples of failures using traditional pipelines in NHPs. A) brain mask (red) extends 2 

beyond brain; B) a highly inhomogeneous T1w image with a mask that both misses parts of the 3 

brain and extends into the skull; C) an overly expansive mask for a NHP with a surgical implant 4 

(i.e. head holder); D) an incomplete mask for a brain that is not centered in the volume; E-H) other 5 

inaccurate masks.  6 

 7 

2. Methods 8 

 9 

2.1. Human Sample 10 

We made use of an open available human brain extraction sample as an initial good-standard 11 

training dataset (Puccio et al., 2016). Data were collected as a part of the Enhanced Rockland 12 

Sample Neurofeedback Study (N=197, 77 female, age=21-45) (McDonald et al., 2017). 13 

Anatomical images data were acquired from a 3T Siemens Trio scanner using a 12 channel head 14 

matrix (T1-weighted 3D-MPRAGE sequence, FOV=256x256mm2, TR=2600ms, TE=3.02ms, 15 

TI=900ms, Flip angle=8°, 192 sagittal slices, resolution=1x1x1 mm3). T1w images were skull-16 

stripped using a semi-automatic iterative procedure that involved skull-stripping all of the data 17 

using BEaST (brain extraction based on nonlocal segmentation technique) (Eskildsen et al., 2012) 18 

and manually correcting the worst results. Corrected brain masks were added into the BEaST 19 

library and the procedure was repeated until the process converged. The results of this procedure 20 

underwent an additional manual inspection and correction procedure to identify and fix any 21 

remaining errors.  22 

 23 

2.2. Macaque Sample  24 

The MRI macaque data used in the present study are publicly available from the recent NHP data-25 

sharing consortium – the non-human PRIMate Data-Exchange (PRIME-DE) (Milham et al. 2018), 26 

which includes 136 macaque monkeys from 20 laboratories. We selected one anatomical T1w 27 
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image per macaque in our analyses. The detailed description of the data acquisition of the 1 

magnetization-prepared rapid gradient echo (MPRAGE) image for each site was described in the 2 

prior study and PRIME-DE website (https://fcon_1000.projects.nitrc.org/indi/indiPRIME.html, 3 

Milham et al., 2018). As the sample size is relatively small in most of the sites (N≤6 for 13 out of 4 

20 sites), we selected six sites which have no less than eight macaque monkeys collected as the 5 

first dataset pool for manual edits, model training, and testing (East China Normal University Chen 6 

[ecnu-chen], Institute of Neuroscience [ion], Newcastle University Medical School [newcastle], 7 

University of Oxford [oxford], Stem Cell and Brain Research Institute (sbri), and the University 8 

of California, Davis [ucdavis]). The details of the sample and MRI acquisition are specified in 9 

Milham et al ((Milham et al., 2018), Table 1). In total, eight macaque monkeys per site were 10 

selected to create the manually-edited ‘ground truth’ dataset to train and evaluate our model 11 

(Macaque Dataset I, N=48). To optimize the generalizability of our model to other sites, we also 12 

manually edited an additional seven macaques from seven sites (one per site: East China Normal 13 

University Kwok [ecnu-k], Lyon Neuroscience Research Center (lyon), Mount Sinai School of 14 

Medicine - Siemens scanner [mountsinai-S], National Institute of Mental Health - Messinger 15 

[nimh1], Netherlands Institute for Neuroscience [nin], and Rockefeller University [rockefeller]) to 16 

create Macaque Dataset II (N=7). The rest of the PRIME-DE macaques across all 20 sites were 17 

used as an additional hold-out testing dataset (N=81). Of note, our main model was built based on 18 

the MPRAGE data. We further made use of the magnetization‐prepared two rapid acquisition 19 

gradient echoes (MP2RAGE) images from site-UWO-MP2RAGE (N=3) to extend our model to 20 

facilitate the brain extraction for MP2RAGE data. All animal procedures were conducted in 21 

compliance with the animal care and use policies of the institution where the data was collected. 22 

 23 

2.3. Preprocessing 24 

To improve the quality and homogeneity of input data across different sites, a minimal 25 

preprocessing was carried out for all anatomical images to remove the salt-and-pepper noise and 26 

correct the intensity bias. Specifically, we first re-conformed all T1w images into RPI orientation 27 

and applied a spatially adaptive non-local means filtering to remove the ‘salt-and-pepper’ noise 28 

(DenoiseImage in ANTs) (Buades et al., 2011). Next, we performed the bias field correction to 29 

normalize image intensities (N4BiasFieldCorrection in ANTs) (Tustison et al., 2010). The 30 

preprocessed images were served as inputs for all the brain extraction approaches. 31 

 32 

2.4. Traditional Methods and Manually Edited Masks 33 

To compare our deep learning models with state-of-the-art methods for brain extraction, we 34 

employed five widely-used skull stripping pipelines implemented in commonly used MRI 35 

packages (AFNI, ANTs, FSL, and FreeSurfer) (Avants et al., 2009; Cox, 1996; Fischl, 2012; 36 

Jenkinson et al., 2012). Specifically, we tested three intensity-based approaches (FSL BET, 37 

FreeSurfer HWA, and AFNI 3dSkullStrip) and two template-driven pipelines (Flirt+ANTS and 38 

AFNI @animal_warper) (Jung et al., 2020; Seidlitz et al., 2018; Tustison et al., 2020). The 39 

command and parameters of intensity-based approaches were selected based on the experiments 40 
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and suggestions from the prior studies as follows (Xu et al., 2019; Zhao et al., 2018). 1) FSL ‘bet’ 1 

command with a smaller fractional intensity threshold (-f 0.3, denoted as “FSL”) and 2) with the 2 

vertical gradient in fractional intensity threshold and the head radius setting (-f 0.3 -g -0.5 -r 35, 3 

denoted as “FSL+”), 3) FreeSurfer ‘mri_watershed’ command with default settings and 4) using 4 

atlas information and brain radius setting (30 mm), 5) AFNI ‘3dSkullStrip’ command with NHP 5 

specific option ‘-monkey’ and shrink factor = 0.5. Template-driven approaches in both Flirt+ANTs 6 

and AFNI @animal_warper pipelines were performed by first applying a linear registration to 7 

transform the individual head to the template head, followed by nonlinear registration. Next, the 8 

template brain mask was transformed back into the individual space to obtain the individual brain 9 

mask. Specifically, the Flirt+ANTs pipeline uses ‘flirt’ and symmetric diffeomorphic image 10 

registration (SyN) (Avants et al., 2008) for linear and nonlinear registration. Of note, we used FSL 11 

‘flirt’ rather than ANTS linear registration because ‘flirt’ is faster and performed better in our 12 

initial tests on NHP samples. AFNI @animal_warper uses 3dAllineate and 3dQwarp to compute 13 

affine and nonlinear alignments. The same NIMH Macaque Template (NMT) was used in the 14 

Flirt+ANTs and AFNI @animal_warper pipelines (Jung et al., 2020; Seidlitz et al., 2018). The 15 

details of the parameters and the approximate processing time are shown in Table S1. The Macaque 16 

Dataset I and II were manually edited by well-trained experts (J.W.C, A.K, and T.X.) using the 17 

best output from the traditional approaches as initial masks in ITK-SNAP 18 

(http://www.itksnap.org/pmwiki/pmwiki.php)(Yushkevich et al., 2006).  19 

 20 

2.5. Train, Update & Evaluation Workflow for Deep Learning Models 21 

2.5.1. Overview 22 

Figure 2 illustrates the overall analytic flow chart of the present study. First, we established a skull-23 

stripping model using the human dataset, aiming to provide an initial pre-trained model to facilitate 24 

the transfer-learning from humans to macaques. The human NKI-RS dataset (N=197) was split 25 

into a training set (N=190) and a validation set (N=7). We used the training set to train the U-Net 26 

model for 10 epochs (i.e. the full training dataset passed through the complete neural network 10 27 

times) and selected the best epoch as the human model based on the performance (i.e. dice 28 

coefficient) in the validating set. Next, we transferred the pre-trained human model to build the 29 

macaque model using Macaque Dataset I. Specifically, for each of six sites, we randomly selected 30 

2 macaque monkeys as the training set, 1 macaque as the validation set and 5 macaques as the 31 

testing set. We also used all macaques across six sites in Macaque Dataset I to create the merged 32 

training (N=12), validating (N=6), and testing (N=30) sets.  33 

 34 

Transfer-learning from human to macaque was carried out for each site as well as for the merged 35 

data. We calculated 40 transfer-training epochs and selected the epoch that had the best 36 

performance in the validation set as the transfer-learning model for each site and the merged 37 

samples (refer to the U-Net T model). We also created macaque models that were trained only on 38 

the macaque data using the same training (N=12) and validation (N=6) data for each of the six 39 

sites and the merged samples (refer to the non-transfer-learning model, i.e. U-Net NoT model). 40 
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We evaluated and compared the performance between the site-specific T model and the NoT model 1 

in testing sets. We also compared the U-Net T and NoT model to the traditional pipelines using 2 

the held-out test set from Macaque Dataset I. To improve the generalizability of the U-Net model 3 

to fit more macaque data from other sites, we further upgraded the U-Net transfer-learning model 4 

using both Macaque Dataset I (N=12) & II (N=7) to generate the final generalized model (referred 5 

to as generalized U-Net 12+7 model). To evaluate the model performance, we applied the U-Net 6 

transfer-learning model, generalized 12+7 model, and traditional pipelines to all the T1-weighted 7 

images from PRIME-DE (136 macaques). Expert ratings (details in the Model Evaluation section) 8 

were conducted to evaluate whether brain extraction was successful.  9 

 10 

 11 

 12 

Figure 2. Schematic of the U-Net model’s training, transfer-learning, and validation steps. 13 

The datasets are highlighted in square boxes, models are in hexagonal boxes, and training and 14 

validating process (including transfer-learning) are in round boxes. The human dataset (light blue 15 

box, middle left) was used to pretrain the U-Net model for transfer learning. Macaque Dataset I 16 

(yellow box, upper left) included 12 subjects from 6 sites to train the model. Another 30 subjects 17 

from these sites were used to evaluate versions of this model with (T-model; blue angled box) and 18 

without (NoT-model; yellow angled box) transfer-learning from the human dataset. Macaque 19 
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Dataset II (red box, lower left) was then added to the training set to generate a generalized model 1 

(purple angled box) for brain extraction on macaque data. Numbers in parentheses are subjects 2 

unless otherwise specified. 3 

 4 

 5 

2.5.2. Neural Network Model (U-Net) 6 

We used a convolutional neural network (CNN) model, U-Net (Ronneberger et al., 2015) for brain 7 

extraction. The model was built using an open resource machine learning package (PyTorch: 8 

https://pytorch.org). Briefly, the preprocessed 3D T1w images were first resampled into slices 9 

along the axial, sagittal, and coronal planes. The U-Net model predicts the brain tissue in each 10 

slice and then merges all slices to obtain a 3D brain mask. Here, we focused on the architecture of 11 

the U-Net model (Fig. S1) and illustrated the details of how the U-Net model identifies the whole 12 

brain tissue in the training, validation, and testing processes in the next section.  13 

 14 

As shown in Fig. S1, the U-Net model consists of a contraction (i.e. encoding) and an expansion 15 

(i.e. decoding) path; each includes five convolution units (Ronneberger et al., 2015). Of note, for 16 

a given slice resampled from the T1 images, the input of the U-Net model also included its 17 

neighboring slices (i.e. 3 slices in total) as an input (dimension:  3×256×256 blocks). Next, for 18 

each convolution unit, two 3×3 convolution layers are built and each is followed by a batch 19 

normalization and a leaky rectified linear (ReLU) operation (Fig. S1, blue arrow). In the encoding 20 

step, a 2×2 max pooling with stride 2 was adopted for down-sampling data from the upper unit to 21 

the lower unit. We used 16 feature channels in the initial unit, and doubled every unit. The 22 

expansive path consists of four up-convolution units. For each up-convolution unit, a 2×2 up-23 

convolution and ReLU operation were applied to the lower unit to yield the feature map for the 24 

current unit. This feature map was then concatenated with the feature map at the same level in the 25 

contracting path to generate the combined feature map. Similar 3×3 convolution layers with batch 26 

normalization and ReLU operation were then performed on the feature maps at each up-27 

convolution unit. Next, we employed a 1×1 convolution layer at the upper un-convolution unit to 28 

map the final feature maps to a two-classes map. Finally, a SoftMax layer was used to obtain the 29 

probability map for brain tissue. Of note, the initial weights of the convolution and up-convolution 30 

layers were randomly selected using a Gaussian distribution N(0, 0.2), and the initial bias of layers 31 

was set to 0. For the transfer-learning and model-upgrading model, the parameters from the pre-32 

trained model were used in the initial setting.  33 

 34 

2.5.3. Model Training and Validating Procedure 35 

In Figure S2, we illustrated the training procedure of how 3D T1w data was processed for the U-36 

Net model. First, we normalized the intensity of the preprocessed T1w image in the range 0 to 1 37 

across all voxels. We then resampled the T1w volume to a 3D intensity matrix where the highest 38 

sampled dimension of the T1w volume was forced to be rescaled to 256. In the example shown in 39 

Fig. S2, the initial T1w matrix of 176×176×96 was rescaled to a 256×256×140 matrix. Next, for 40 

each slice along the axial, sagittal, and coronal direction, we generated a 3-slice block; the slice 41 
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and its two neighboring slices. As a result, we obtained 254, 254, and 138 blocks for axial, coronal, 1 

and sagittal directions respectively. Next, we conformed each of the 3-slice blocks into a 2 

3×256×256 matrix. When the dimension of the slice plane was less than 256, we filled the matrix 3 

with zeros. In total, 646 conformed blocks were generated for the T1w image. Similarly, we 4 

processed the manually edited brain mask of the T1w image and generated 646 corresponding 5 

blocks. After that, we used the above U-Net model to estimate the probability of brain tissue for 6 

each T1w block and calculated the cross-entropy (PyTorch function: CrossEntropyLoss) between 7 

the probability map and the ‘ground truth’ map (Ketkar, 2017) as the model cost. A stochastic 8 

optimization (learning rate=0.0001, batch size=20) was then used for backpropagation (Kingma 9 

and Ba, 2014).   10 

 11 

To evaluate and select the model from the training epochs, we used the probability map generated 12 

from the U-Net model to create the final predicted brain mask for each epoch, and then examined 13 

the Dice coefficient (see equation in section 2.6 below) between the predicted mask and the 14 

‘ground truth’ mask (Fig. S3). Specifically, we processed the validation T1w images into 3-slices 15 

blocks following the above procedure. Next, we used the U-Net model at each training epoch to 16 

estimate the probability map for each block. All the probability maps (646 blocks) were then 17 

combined along the axial, sagittal, and coronal direction and yielded an averaged 3D probability 18 

matrix (256×256×256). After that, we rescaled and cropped the matrix back to the original voxel 19 

dimension to create a probability volume for the given T1w image. Finally, we thresholded (>0.5) 20 

this probability volume to obtain the predicted brain mask. The Dice coefficient between the 21 

predicted mask and the ‘ground truth’ mask was computed for each epoch during training. The 22 

epoch which showed the highest Dice coefficient was then selected as our final model.  23 

 24 

2.6. Model Evaluation 25 

We carried out a quantitative examination in the testing set of Macaque Dataset I and evaluated 26 

the degree to which methods provided more similar brain masks as compared to the manually 27 

edited ‘ground truth’. Specifically, we calculated Dice coefficients (Dice) (Sørensen, 1948) 28 

between the predicted mask and the manually edited ‘ground truth’ using the following equation:  29 

       𝐷𝑖𝑐𝑒 =  
2|𝑃∩𝑇|

|𝑃+𝑇|
 , 30 

where |...| represents the total number of voxels in a mask and P and T are the predicted and ‘ground 31 

truth’ masks, respectively. Dice equals 1 when the predicted mask and ‘ground truth’ mask are 32 

perfectly overlapped. In addition, we also calculated the voxel-wise false-positive (FP), and false-33 

negative (FN) rate to examine where the predicted mask falsely includes non-brain tissue (higher 34 

FP) or misses any brain tissue (higher FN). For each voxel in a given macaque, we tested whether 35 

the voxel is falsely assigned as brain tissue (FP=1) or falsely assigned as non-brain tissue (FN=1) 36 

in individual space. Next, we transferred the individual FP and FN map to the NMT space by 37 

applying affine and warp transforms. Linear affine here was created by aligning the manually 38 

skull-stripped brain to the NMT brain (‘flirt’) and nonlinear warp was generated by registering 39 
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each individual’s head to the NMT head (‘fnirt’). The FP and FN maps were averaged across 1 

macaques for each brain extraction approach in the NMT space. 2 

 3 

We also employed a qualitative evaluation to compare the success rate across different brain 4 

extraction approaches for PRIME-DE data without the ‘ground truth’. Three experts with rich 5 

experience in imaging quality control visually rated the brain masks (J.W.C., X.L., and T.X.). First, 6 

each expert independently reviewed all the images and rated them with four grades, i.e. ‘good’, 7 

‘fair’ (the brain tissue was identified with a slightly inaccurate prediction at the edge), ‘poor’ (i.e. 8 

most of the brain regions are identified but with significant errors, in particular missing brain tissue 9 

at the edge), and ‘bad’. ‘Good’ and ‘fair’ rating were considered as a success while ‘poor‘ and 10 

‘bad’ scores were recognized as failures. The brain masks with inconsistent ratings (including good 11 

vs. fair, fair vs. poor, and poor vs. bad) among experts were reviewed and discussed for a final 12 

consensus rating.  13 

 14 

3. Results 15 

 16 

3.1. The Convergence of Human U-Net Model  17 

To acquire a pre-trained model for macaque samples, we first trained a U-Net model using the 18 

human samples. Fig. S4 demonstrates the sum of loss on the training set and the mean Dice 19 

coefficients across human participants on the validation set for each epoch. After the first epoch, 20 

the loss decreased steeply and the mean Dice coefficient reached above 0.985. After that, the mean 21 

Dice coefficient gradually improved, showing its highest value (0.9916±0.0012) after the 9th 22 

epoch. To avoid over-fitting the human samples for the subsequent macaque training, we only 23 

carried out 10 epochs and selected the model after the 9th epoch as the pre-trained model for 24 

transfer-learning to the macaque samples.  25 

 26 

3.2. Comparison Between Models with and Without Transfer-learning 27 

We first evaluated the site-specific models with and without transfer-learning on Macaque Dataset 28 

I. For each site and for the merged sample across the six sites, the loss converged faster for the 29 

transfer-learning model than the model without transfer-learning (Fig. 3, left); the loss had nearly 30 

reached its minimum after 2 epochs. In addition, the Dice coefficients were more stable for 31 

transfer-learning models in the validation sets (Fig. 3, center). Of note, the mean Dice coefficients 32 

slowly dropped after 20 epochs in the validation set across three sites (i.e. ecnu-chen, ion, and 33 

sbri), which may reflect overfitting of the model selection on small training samples (Fig. 3, 34 

center). Nevertheless, the mean Dice coefficients still remained stable in the testing set after the 35 

first epoch (Fig. 3, right). In addition, compared to the model trained solely on macaque samples, 36 

the transfer-learning model also showed lower variation across testing macaques, suggesting its 37 

potential generalizability across macaque samples (Fig. 3, right).  38 

 39 
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We also computed and evaluated the model with and without transfer-learning based on the 1 

merged training samples across six sites (N=12). Similarly, the transfer-learning model (referred 2 

to as U-Net T12 model) showed lower loss and higher Dice coefficients across 40 epochs than the 3 

model without transfer-learning (Fig. 3, last row); its best performance epoch (i.e. the 37th epoch) 4 

was selected as our macaque transfer-learning model (i.e. U-Net T12).  5 

 6 

 7 

Figure 3. Comparison of skull-stripping performance of the U-Net models with and without 8 

transfer-learning on Macaque Dataset I. The models with transfer-learning (blue curve) 9 

outperform the one without (orange curve) across each of six sites (row 1-6), as well as the merged 10 

sample (the last row). The loss (i.e. the sum of cross-entropy, first column) between the predicted 11 

mask and ground truth mask on the train set converges faster for the model with transfer-learning. 12 

Similarly, models with transfer-learning show higher Dice coefficients with lower variation in the 13 

validation and testing sets than models without transfer-learning. Of note, one-side error bars 14 

(standard deviation) were used to avoid dense overlaps between the two models. 15 

 16 

3.3. Comparison Between the U-Net Model and Traditional Approaches 17 
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Recognizing that the model with transfer-learning is superior to the one without, we then updated 1 

the transfer-learning model (i.e. U-Net T12) using Macaque Dataset I (N=12) & II (N=7) to 2 

generate our final generalized model (U-Net 12+7 model). Here, we evaluated the performance of 3 

the U-Net T12 model and the U-Net 12+7 model in comparison to other traditional brain extraction 4 

approaches. Brain masks from the two U-Net models showed significantly higher Dice coefficients 5 

than those from the traditional pipelines (Fig. 4, F=30.164, p<10-29 repeated ANOVA, all post-hoc 6 

p<0.05). Skull-stripping using the U-Net models was successful (Dice>0.95) for all of the testing 7 

macaques (N=30) across six sites. Notably, the U-Net 12+7 model showed relatively higher Dice 8 

coefficients than the U-Net T12 model (Fig. 4, paired-t=3.62, p=0.001), though the additional 9 

training samples used in U-Net 12+7 model were not included in the sites where the testing samples 10 

were selected from. This indicated the generalizability of model-upgrading across sites. At the 11 

voxel level, both the U-Net T12 and ‘12+7’ models exhibited fewer false negatives and false 12 

positives than traditional pipelines (Fig. 5). The U-Net T12 model showed slightly more false 13 

positives than false negatives, which indicated that the model tends to include a few non-brain 14 

voxels on the edge of the brain mask rather than miss the brain tissue. Overall, these results 15 

demonstrated the feasibility of transfer-learning and model-upgrading using small training 16 

samples. 17 

 18 

Comparing amongst the traditional approaches, the template-driven approaches (i.e. AFNI 19 

@animal_warper and Flirt+ANTS), and AFNI 3dSkullStrip with parameters customized for NHP 20 

data (3dSkullStrip -monkey) showed better performance than FSL and FreeSurfer (Fig. 4-5). FSL 21 

performed better with the radius setting (Fig 4-5, FSL vs FSL+), though still not particularly 22 

accurately (Dice<0.928). Both template-driven approaches appear to be more conservative and 23 

have missed the brain tissue (low false positives and high false negatives). AFNI 3dSkullStrip 24 

missed identifying the brain in the superior regions (higher false negatives on the top) and falsely 25 

included non-brain voxels in the bottom (Fig. 5).  26 

 27 
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 1 

Figure 4. Performance of the U-Net models and traditional approaches. The boxplot shows 2 

the Dice coefficients in the testing datasets (N=30) of Macaque Dataset I across brain extraction 3 

approaches including 1) the transfer-learning model (i.e. U-Net T12), 2) generalized model (i.e. 4 

U-Net 12+7), 3) AFNI 3dSkullStrip command with ‘-monkey’ option, 4) AFNI @animal_warper 5 

pipeline, 5) template-driven FLIRT+ANTS pipeline, 6) FreeSurfer HWA approach, 7) FSL BET 6 

approach, and 8) FSL BET approach with customized options (FSL+).  7 

 8 

 9 
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 1 

Figure 5. The averaged voxel-wise false-negative and false-positive rates of the U-Net models 2 

and traditional approaches in the testing datasets of Macaque Dataset I. The false-negative 3 

rate examines where the predicted mask falsely misses the brain tissue in the brain (left column) 4 

while the false-positive rate examines where the predicted mask falsely includes the non-brain 5 

tissue. Of note, FSL BET tends to falsely include large amounts of non-brain tissue in the brain 6 

mask, thus false-negative rates are close to zeros.  7 

 8 

3.4. Generalizability of U-Net model and Skull-Stripping PRIME-DE Samples 9 
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To evaluate the generalizability of the U-Net model, we applied the U-Net T12 and 12+7 models 1 

to all the other macaque samples (i.e. T1w images) contributed to PRIME-DE from differing 2 

research sites. The results of brain masks were visually reviewed by three experts and rated into 3 

four grades (good, fair, poor, and bad). Good and fair ratings were considered to be successes, 4 

while poor and bad ratings were failures. We also used the traditional pipelines and similarly rated 5 

their brain mask results. The performance of different pipelines for each macaque is shown on 6 

github repository:  https://github.com/HumanBrainED/NHP-BrainExtraction. Figure 6 shows the 7 

proportion of macaques with good, fair, poor, and bad skull-stripping masks for each of the 20 8 

sites, for each of the five approaches. Again, the U-Net models outperformed the traditional 9 

approaches for most sites. In particular, the final U-Net 12+7 model showed the best performance 10 

across macaque samples (success rate=90.4%). All macaque samples (N=123) were successfully 11 

skull-stripped across the twelve sites with thirteen exceptions. This result demonstrated the 12 

generalizability of the U-Net 12+7 model across sites. Of note, all crab-eating macaques (M. 13 

fascicularis, N=12) were successfully skull-stripped using the U-Net 12+7 model, though the 14 

training samples only contained the rhesus macaques (M. mulatta). No significant difference was 15 

observed in age and sex between the successes sand failures. In addition, four out of five sites with 16 

anisotropic data also succeeded (sbri: 0.6×1.2×0.6 mm, nki: 0.50×0.55×0.55 mm, ecnu and ecnu-17 

chen: 0.75×0.75×0.8 mm75x0.75x0.8mm, NIMH: 1.5×0.5×0.5mm). These findings suggested the 18 

generalizability and relative robustness of the U-Net model across macaque species, age, sex and 19 

whether the voxels were anisotropic or isotropic. 20 

 21 
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 1 

Figure 6. Expert rating consensus of brain extraction performance across the U-Net models 2 

and traditional approaches for the PRIME-DE datasets. The stacked bar plots show the 3 

proportion of macaques with good, fair, poor, and bad skull-stripping masks on T1w images for 4 

each of 20 sites in PRIME-DE. Of note, the FSL BET customized pipeline only succeeded for 5 5 

macaques. FreeSurfer HWA and FSL BET default pipelines failed to obtain fair/good brain masks, 6 

and thus their ratings were not displayed. The U-Net 12+7 model (the first row) shows the highest 7 

rating across pipelines.  8 

 9 

Among intensity-based approaches, AFNI 3dSkullstrip showed better performance (successful 10 

rate=10.3%) than FSL and FreeSurfer. FSL and FreeSurfer default pipelines failed in almost all 11 

the cases except FSL with customized options (successful rate=3.7%). In particular, massively 12 

incorrect results were observed (see visual inspection figures: 13 

https://github.com/HumanBrainED/NHP-BrainExtraction). This is because the intensity-based 14 

approaches heavily depend on the data quality. Specifically, these approaches perform brain 15 
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extraction by identifying the center of the brain and expand the brain outline outward till the 1 

intensity drops (at the cerebrospinal fluid [CSF] or skull). As such, it is crucial to set the brain/head 2 

radius as the NHP has a smaller brain size than the human, recognize the center of the brain for 3 

the input image, and have a sufficient intensity contrast between brain and CSF/skull to identify 4 

the brain boundary. However, as shown in Fig 1, those conditions in NHP data are usually not 5 

satisfied. Thus, most of the samples failed with FSL, FreeSurfer, or even AFNI 3dSkullstrip with 6 

‘-monkey’ option.   7 

 8 

We also noticed that template-driven approaches performed well in some cases but failed in others 9 

(success rate: AFNI @animal_warper=52.9%, Flirt+ANTS=38.2%). Visual inspection of the 10 

intermediate outputs from AFNI @animal_warper and Flirt+ANTS pipelines showed that all 11 

successful cases had the first linear alignment of the individual’s head to the template head 12 

somewhat close. The failures mostly occurred in the first linear registration step; 79.4% of 63 13 

skull-stripping failures using @animal_warper and 89.3% of the 84 failures using the Flirt+ANTS 14 

pipeline had failed in the first linear registration step. We also noticed that, for some cases, the 15 

brain mask generated by AFNI @animal_warper had a straight cut-off at the top of the brain 16 

(Fig.(Fig S5A).  This might be caused by the displaced center of the brain within these T1w image.  17 

As a first step, @animal_warper aligns the centers of the input and template volumes. If the brain 18 

is far from the center of the image, this first pass at alignment with the template may be too far off 19 

for subsequent alignment steps to succeed. We found that re-centering the head to the center of the 20 

image could fix the straight cut-offs, though did not necessarily produce a good brain mask (Fig. 21 

S5B). We further cropped the neck regions by zeroing out the bottom slices using the U-Net output 22 

as a prior. Specifically, we zeroed the bottom k slices along the z-axis. Here k was determined by 23 

N-m-p, where N = the total number of slices of the image along the z-axis, m = the total number 24 

of non-zeros slices of the U-Net mask, p = the number of slides from the top slice of the image to 25 

the first non-zero slice of U-Net mask along the z-axis. After the recentering and cropping, we 26 

found that @animal_warper turned most of the failed cases (66.7% of 63 failures) into successes 27 

(Fig S5C). For some cases, however, inaccuracies remained (Fig. S5D). 28 

  29 

U-Net successfully skull-stripped 123 out of 136 macaques. Among the 13 failures in the U-Net 30 

12+7 model, 8 macaques failed because their T1w images were substantially different from the 31 

training samples (e.g., highly inhomogeneous intensity, very different field of view, Fig. S6A). 32 

For the other 5 failed cases, the U-Net 12+7 model still enabled identifying most of the brain with 33 

only minor inaccuracies at the edge of the brain (Fig. S6A). When we used the U-Net output mask 34 

to perform an initial brain extraction and estimated the affine transformation from the initial skull-35 

stripped brain to the template brain, the template-driven approaches (AFNI @animal_warper and 36 

ANTS) turned seven failed cases into successes (Fig S6C). As the performance of the deep-37 

learning approach heavily depends on the training set, we also updated the U-Net 12+7 model 38 

using site-specific training data and showed the improvement across macaques (Fig S6B). We 39 
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have selected the best of the successful brain masks (Fig S6D) for each macaque and shared them 1 

on PRIME-RE (Messinger et al., 2021).  2 

 3 

3.5. Application of U-Net Model-Upgrading for an External Dataset and MP2RAGE Images 4 

Here we used a large external dataset (N=454, UW-Madison dataset with manually drawn whole-5 

brain masks, details described in previous studies) to evaluate the utility of our U-Net -based 6 

approach (Fox et al., 2018, 2015; Oler et al., 2010). First, we directly applied the model-prediction 7 

module using our U-Net 12+7 model to extract the brain masks for 40 macaques and found 8 

relatively good results (Dice=0.923+/-0.025). We further used the U-Net 12+7 model as the pre-9 

trained model and upgraded the U-Net model on these 40 macaques for 10 epochs. This procedure 10 

took about 90 min. The upgraded model showed substantial improvement and successfully skull-11 

stripped all remaining macaques (N=414, All Dice>0.95, Mean=0.977±0.005). We further 12 

challenged our U-Net model-upgrading module with MP2RAGE images collected from the UWO 13 

site (N=8) in PRIME-DE, which have different intensity profiles with opposite contrast in gray 14 

matter and white matter (Fig. S7). By upgrading the pre-trained U-Net 12+7 model with three 15 

MP2RAGE brain masks, the U-Net model enabled skull-stripping on the rest of the hold out 16 

MP2RAGE images (N=5). 17 

 18 

3.6 Applications of U-Net Transfer-learning Model to Chimpanzee, Marmoset and Pig 19 

Samples  20 

To demonstrate the feasibility of applying our U-Net tool in other primates, and other mammals, 21 

we included chimpanzee data (N=1) from a repository of previously collected scans (the National 22 

Chimpanzee Brain Resource; https://www.chimpanzeebrain.org), the common marmoset template 23 

data (N=1) from the Riken marmoset atlas (https://brainatlas.brain.riken.jp/marmoset_html), a 24 

common marmoset dataset (N=5) from the coauthor SS, and a pig dataset (N=5) (Benn et al., 25 

2020). We directly applied the U-Net 12+7 model to the chimpanzee data (Figure 7A). 26 

Interestingly, the U-Net 12+7 macaque model performed relatively well in chimpanzees. We also 27 

applied the U-Net 12+7 macaque model directly to the marmoset data. The result was fairly good 28 

for the template data (Fig 7B) but failed in the individual data with highly site-specific 29 

inhomogeneous noise (Fig 7C). We further updated our 12+7 macaque model using one manually 30 

edited marmoset. The updated model succeeded in the rest of the 4 marmosets from the same site 31 

(Fig. 7D). We also tested whether our U-Net tool is capable of transferring the macaque model to 32 

other mammals. With the addition of training data from 3 pigs, the transferred model achieved a 33 

Dice coefficient ≥ 0.93 in the remaining 2 pigs (Fig. 7E). 34 

 35 

 36 

 37 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 26, 2021. ; https://doi.org/10.1101/2020.11.17.385898doi: bioRxiv preprint 

https://paperpile.com/c/QhDae6/Zwpza
https://paperpile.com/c/QhDae6/62dYF+o0JE2+3K5RK
https://www.chimpanzeebrain.org/
https://brainatlas.brain.riken.jp/marmoset_html
https://paperpile.com/c/QhDae6/oLjKq
https://paperpile.com/c/QhDae6/oLjKq
https://doi.org/10.1101/2020.11.17.385898


20 
 

 1 

Figure 7. The applications of the U-Net tool in the chimpanzee, marmoset, and pig datasets. 2 

 3 

 4 

4. Discussion 5 

The present work demonstrated the feasibility of developing a generalizable brain extraction model 6 

for NHP imaging through transfer learning. Central to the success of our effort was our leveraging 7 

of human data as a base training set, upon which additional learning for NHP and site-related 8 

variations could be readily achieved. We employed the heterogenous, multi-site PRIME-DE 9 

resource to evaluate the effectiveness of our framework, finding that the transfer-learning U-Net 10 

model identified macaque brain tissue with higher accuracy than traditional methods and also 11 

proved more generalizable across data collections. Notably, the transfer-learning U-Net model 12 

provides a notably faster solution (approximately 1-10 min) than the next best performing 13 

algorithms, which tend to rely on template-based strategies and require over an hour. We have 14 

released our model and code, including the utilities for skull-stripping, model-training, transfer-15 

learning, as well as model-updating modules (https://github.com/HumanBrainED/NHP-16 

BrainExtraction). Additionally, we created and shared the skull-stripped repository of 136 17 

macaque monkeys to facilitate the large-scale macaque MRI imaging for the PRIME-DE and NHP 18 

community (Messinger et al., 2021; Milham et al., 2018). 19 

  20 

A priori, the major roadblocks that one would anticipate for the application of deep learning in 21 

NHP imaging are the small sample sizes and variations in imaging protocols (Autio et al., 2020b; 22 
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Milham et al., 2018). In part, this is a reflection of the experiences of the human imaging 1 

community, where large sample sizes have been required to accurately segment the brain using 2 

deep learning (Henschel et al., 2020; Kleesiek et al., 2016). The superiority of the transfer learning 3 

models in the present work emphasizes the unique advantages of transfer-learning in overcoming 4 

such challenges for nonhuman primate imaging and offers a model that may be considered in future 5 

efforts to overcome similar obstacles in other imaging populations (e.g., macaques with surgical 6 

implants and/or in-dwelling electrodes, brain extraction in other species, pathologic models, early 7 

development, aging) (Pontes-Filho et al., 2019; S. Roy et al., 2018; Salehi et al., 2018). The success 8 

of the transfer-learning model emphasizes the similarity of the general structure of brain tissue in 9 

both species (e.g. gray matter, white matter) - despite the anatomical differences between human 10 

and macaque heads (e.g. head size, muscular tissue surrounding the skull, skull thickness, etc.) 11 

(Yosinski et al., 2014). Aside from accuracy, the transfer-learning model also converged faster 12 

(leveling off after 2 epochs) and yielded more stable results across epochs, even though the pre-13 

trained model was established using a different species. Notably, our human-to-macaque model 14 

also enables skull-stripping the chimpanzee data though no chimpanzee training samples were 15 

used. Moreover, the smaller NHP (e.g. marmoset) and other mammals (e.g. pig) could also benefit 16 

from the transfer-learning model from the human-to-macaque and only required adding a small 17 

training sample to update the model. These findings suggest the utility of transfer-learning in other 18 

animal studies and further brain tissue segmentation.  19 

 20 

The success of transfer learning in the present work may signal the ability to use smaller samples 21 

than previously employed for human imaging studies (Ghafoorian et al., 2017). However, this is 22 

not necessarily the case, as this may instead reflect that the folded surface of the macaque is much 23 

less complex than that of humans. The macaque central sulcus is less meandering on the lateral 24 

parietal lobe (Hopkins et al., 2014). There is only one superior temporal sulcus in the temporal 25 

lobe and two less curved sulci (i.e. rectus, arcuate) in the frontal lobe, such that there is a relatively 26 

smooth surface edges for brain extraction (Bogart et al., 2012; Hopkins, 2018). In addition, such 27 

folded and meandering brain morphology is substantially more similar across individual macaques 28 

than humans (Croxson et al., 2018). As such, small training samples suffice for the macaque model 29 

compared to the human. Future work in the human imaging community would benefit from a 30 

systematic examination of minimal sample sizes needed for successful training and generalization. 31 

 32 

Beyond transfer across species, a key finding of the present work is the ability to improve model 33 

generalizability across independent imaging sites relative to traditional methods. By further 34 

upgrading the pre-trained transfer-learning model based on the secondary training samples across 35 

multiple datasets, the upgraded U-Net model has improved the brain extraction performance and 36 

showed a higher success rate than the traditional methods across multiple sites. Of note, the 37 

upgraded model enabled successful skull-stripping of datasets acquired from three additional sites 38 

that were not included in any training sites. This demonstrates the out-of-site generalizability of 39 

upgrading the pre-trained U-Net model across sites. More impressively, we found that the model-40 
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upgrading module offers a solution of generalizing the pre-trained model to other modalities (i.e. 1 

MP2RAGE), which is usually difficult to achieve with traditional methods. These findings 2 

highlight the important role of pre-trained models in brain extraction for small samples, regardless 3 

of site (across or within sites), modality (MPRAGE or MP2RAGE), and species (across or within 4 

species). Further improvement for the user-specific dataset can be achieved by adding small 5 

samples (N≥2) using our U-Net result as the pre-trained model.  6 

 7 

It is worth noting that the U-Net model we used in the current study is a 2D convolutional neural 8 

network. Although the 3D model usually tends to have higher accuracy (Hwang et al., 2019), the 9 

2D model has a smaller network size, much less memory cost, and requires less computational 10 

time. More importantly, the 2D model is more accessible in general computational platforms for 11 

users without large amounts of video memory, which can be costly. In addition, unlike the single 12 

slice 2D model, our 2D model leveraged the local interslice features by using each slice and its 13 

neighboring slices (i.e. 3 slices in total as opposed to just one) as the input image in the first layer. 14 

We also resampled the slices in axial, sagittal, and coronal planes and combined the predictions 15 

from all three planes into a final probability map (Lyksborg et al., 2015). By doing so, we 16 

effectively tripled the number of training slices, which is especially useful for optimizing 17 

prediction when training sample sizes are limited (i.e. data augmentation technique). Of note, we 18 

opted for the U-Net model as the U-Net-like methods appear to be preferred for a broad biomedical 19 

image application across a variety of segmentation designs (e.g. identifying heart, cell, tumor, 20 

vessel etc.) (Isensee et al., 2021). For further improvement in a specific application, besides 21 

optimizing the specific architecture of neural networks, adding training data and optimizing the 22 

preprocessing step (e.g. denoising, bias correction, data harmonization etc.) are still suggested. For 23 

example, a conditional random field can be considered in the prediction layer for further refining 24 

the weights in the tissue prediction (Chen et al., 2019; Zhao et al., 2018). Beyond improving brain 25 

extraction, future efforts may place a greater focus on tissue classification (e.g. GM, WM, 26 

subcortical structures). Central to such efforts will be the sharing and amassing of manually 27 

segmented brain images, to which 3D CNNs can be applied. 28 

 29 

To promote pipeline development in the NHP field, we have released the skull-stripped brain 30 

masks, our generalized model, and code via the PRIMate Resource Exchange platform (PRIME-31 

RE: https://prime-re.github.io) (Messinger et al., 2021). Researchers can access the code and 32 

perform the brain extraction on their own macaque datasets. The model-prediction for a dataset 33 

takes about 20 seconds on a GTX1070 GPU with 700MB GPU memory or 2-10 min on a single 34 

CPU core. We also included the model-building and model-upgrading modules in the code, which 35 

has been implemented in a recent version of a Configurable Pipeline for the Analysis of 36 

Connectomes (C-PAC v1.6: https://github.com/FCP-INDI/C-PAC/releases/tag/v1.6.0). When the 37 

results from the current model need improvement, users can upgrade the U-Net using our current 38 

generalized model as a pre-trained model and expect a stabilized solution after several training 39 

epochs (N<10 epochs) without validation datasets. The model-upgrading module takes about 1-5 40 
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hours on a single CPU, or 15-20 min on a GPU. In addition, we released our manually skull-1 

stripped masks (40 macaques across 7 sites) which can be used as ‘gold standards’ for other deep-2 

learning algorithms. Researchers are encouraged to manually refine brain masks to further improve 3 

the training datasets (e.g. NMT v2.0) for deep-learning approaches (Jung et al., 2020; Seidlitz et 4 

al., 2018). Additionally, we included the successful brain mask outputs to facilitate the further 5 

preprocessing analysis of PRIME-DE data. For a new macaque dataset, we recommend one to:  6 

1) Use the U-Net 12+7 model first. 7 

2) If the U-Net 12+7 model fails with minor inaccuracies, consider using the U-Net output 8 

to perform an initial linear alignment and apply AFNI @animal_warper or ANTs. 9 

3) If the U-Net 12+7 model fails with high inaccuracies, use AFNI @animal_warper as 10 

the alternative. Of note, we recommend to recenter and crop the image before applying 11 

@animal_warper.  12 

4) If both the U-Net 12+7 modal and template-based approaches fail, manually edit a few 13 

(N>=1) datasets and update the U-Net model using the 12+7 model as a prior. 14 

 15 

There are some limitations in our studies. First, although the final U-Net model showed better 16 

generalizability across research centers than traditional approaches, it is unable to accurately skull 17 

strip all macaque datasets (success rate: 90.4%). Of note, in failed cases, it is possible to use the 18 

output of the U-Net model as the initial brain mask to recenter and crop the image, and then create 19 

a prior linear transformation for traditional template-driven approaches - a process that can turn 20 

most of the failed cases into successes. Second, the U-Net model requires denoising and bias 21 

correction using traditional approaches prior to the model prediction. Future work may consider 22 

leaving this image noise and the bias field information in the image during training of the network 23 

to simplify the processing steps and possibly improve performance.  24 

 25 

 26 

5. Conclusion 27 

In the present work, we proposed and evaluated a fast and stable U-Net based pipeline for brain 28 

extraction that exhibited performance superior to traditional approaches in a heterogenous, 29 

multisite NHP dataset. We have released the code for brain mask prediction, model-building, and 30 

model-updating, as well as macaque brain masks of PRIME-DE data. We hope this open repository 31 

of code and brain masks can promote pipeline development in the NHP imaging field and 32 

accelerate the pace of investigations. 33 
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Supplementary Table 

 

Table S1. The Pipelines, command options, approximate processing time, and successful rate estimated 

using 136 macaque samples from PRIME-DE. 

 

Pipeline Options Processing 

times 

Dice coef 

(N=30, 

testing set) 

Success 

rate 

(N=136) 

AFNI 

3dSkullstrip 

3dSkullstrip -push_to_edge -monkey 

-shrink_fac 0.5 

~1-2 min 0.841±0.134 10.3% 

FSL  bet -f 0.3  ~30 sec  

- 1 min 

0.374±0.110 
 

0% 

FSL+ bet -f 0.3 -g -0.5 -r 35  ~30 sec  

- 1 min 

0.739±0.308 3.7% 

FreeSurfer  mri_watershed default ~30 sec  

- 1 min 

0.396±0.250 0% 

FreeSurfer+  mri_watershed -T1 -atlas -r 

30/voxel_size 

~30 sec  

- 1 min 

0.231±0.210 0% 

Flirt+ANTS flirt -dof 6 

ANTS -t SyN[0.25] -r Gauss[3,0] -i 

60x50x20 --use-Histogram-Matching  

--number-of-affine-iterations 

10000x10000x10000x10000x10000 -

-MI-option 32x16000 

~30 min – 

1 hour 

0.556±0.471 38.2% 

AFNI 

@animal_warper 

@animal_warper 

Template: NMT 0.5mm 

~2 hours  0.865±0.254 52.9% 

(84.6% *) 

U-Net prediction muSkullStrip.py ~2 min 0.98±0.004 90.4% 

U-Net training trainSs_UNet.py -init -epoch 10 

(default=40) Training set (N=2), 

Validation set (N=0) 

~10-15 min 

(with GPU) 

~1-2 hours 

n.a n.a 

*  The success rate was improved after recentering and cropping the input image using the U-Net output 

as an initial brain mask for @animal_warper. 
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Supplementary Figures 

 

 

 

 
 

Figure S1. Outline of the architecture of 2D U-Net.  
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Figure S2. U-Net training procedure for each 3D image. 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 26, 2021. ; https://doi.org/10.1101/2020.11.17.385898doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.385898


33 
 

 
Figure S3. U-Net validating and prediction procedure for each 3D image. 
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Figure S4. The loss and Dice coefficient of the U-Net model for each training epoch on the human dataset. 

The mean and standard deviation (arrows) across validation samples was calculated for each epoch. 
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Figure S5. Examples of AFNI @animal_warper results for different inputs. Brain masks for (A) the original 

T1 image (not centered or cropped), (B) the images centered (the brain is placed in the middle) but not 

cropped (the neck is included), (C) The input image is centered and cropped, resulting in an 

@animal_warpper success. (D) The input image is centered and cropped, yet @animal_warpper still failed. 
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Figure S6. Visual inspections of all failed cases in the U-Net 12+7 model. A) brain masks and rating 

using the U-Net 12+7 model. B) brain masks and rating using updated the U-Net site-specific model. C) 

brain masks obtained using either the AFNI @animal_warper or U-Net+ANTs template-driven approach. 

The better of the resultant masks is shown. The tool used and the outcome obtained are indicated below 

the image. The alternative method and outcome are reported in parentheses. D) the method producing the 

best mask selected for each macaque. 
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Figure S7. Skullstripping results of U-Net MP2RAGE model and traditional pipelines for MP2RAGE 

dataset from PRIME-DE (site-uwo). 
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