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gDepartment of Physics, University of Ottawa, Ottawa, ON, Canada

Abstract

Neurons are very complicated computational devices, incorporating numer-
ous non-linear processes, particularly in their dendrites. Biophysical models
capture these processes directly by explicitly modelling physiological vari-
ables, such as ion channels, current flow, membrane capacitance, etc. How-
ever, another option for capturing the complexities of real neural computa-
tion is to use cascade models, which treat individual neurons as a cascade of
linear and non-linear operations, akin to a multi-layer artificial neural net-
work. Recent research has shown that cascade models can capture single-cell
computation well, but there are still a number of sub-cellular, regenerative
dendritic phenomena that they cannot capture, such as the interaction be-
tween sodium, calcium, and NMDA spikes in different compartments. Here,
we show that it is possible to capture these additional phenomena using par-
allel, recurrent cascade models, wherein an individual neuron is modelled as
a cascade of parallel linear and non-linear operations that can be connected
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recurrently, akin to a multi-layer, recurrent, artificial neural network. We
go on to discuss potential implications and uses of these models for artificial
intelligence. Overall, we argue that parallel, recurrent cascade models pro-
vide an important, unifying tool for capturing single-cell computation and
exploring the algorithmic implications of physiological phenomena.

Keywords: Cascade models, Single-cell computation, Dendritic
non-linearities, Artificial neural networks

1. Introduction

One of the greatest success stories in modern neuroscience is the develop-
ment of biophysical models of single-cell computation. Though there are still
many mysteries to be explored, and new discoveries are still being made, our
core understanding of the biophysics of excitable membranes as described
by circuit equivalence models, cable theory, and Hodgkin & Huxley-style
models has stood the test of time and can reasonably be considered as an
accepted theory in neuroscience [1, 2, 3, 4, 5, 6]. This has provided the foun-
dation for countless computational studies on single-cell computation using
detailed models that explicitly incorporate physiological variables including
membrane capacitance, ion channels, reversal potentials, etc. Such models
have proven very useful for understanding a variety of phenomena, particu-
larly dendritic computation [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].
Without these models we would understand much less than we do about how
dendrites contribute to computation in neural circuits.

However, due to their complexity and the requirement for computation-
ally demanding numerical simulations, biophysical models are very difficult
to link to algorithmic models of neural computation. To some extent, this
is part of the dilemma we always face in science, i.e., “How detailed should
our models be in order to achieve our scientific goals?” [7, 21]. But, one
thing that we can say is that it would be beneficial for understanding the
functional importance of dendritic computation if we possessed models of in-
termediate complexity that could capture many of the phenomena of single-
neuron computation while still being sufficiently mathematically tractable
to use for explaining complex animal behaviour. Moreover, if we could de-
velop such intermediate models we would be better placed to use insights on
dendritic computation to inform the development of novel machine learning
approaches [21, 22].
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To this end, previous work has explored the use of “cascade models” to
capture dendritic computation [23, 24, 25, 26]. Cascade models use a cas-
cade of linear and non-linear operations, which are effectively tree-structured,
feedforward, multi-layer artificial neural networks (ANNs) [7]. Research has
shown that these models can capture more variance in single-cell activity than
standard point neuron models (which consist of a single linear operation and
non-linear activation function) [23, 24, 26]. Thus, cascade models treat in-
dividual neurons as deep feedforward ANNs in order to capture single-cell
computation with a mathematically tractable model (Figure 1A). However,
such models still have not been compared to many facets of dendritic compu-
tation, including calcium spikes and N-methyl-D-aspartate (NMDA) receptor
mediated plateaus.

Here, we show that it is possible to capture these phenomena using par-
allel and recurrent cascade models (PRC models), i.e. models that use a set
of parallel cascades of linear and non-linear operations that are recurrently
connected to one another. This is equivalent to treating individual neurons
as multi-layer, recurrent ANNs (Figure 1B). We show that these PRC models
can successfully reproduce a number of experimentally observed regenerative
phenomena in dendrites, all while being mathematically tractable and easy
to fit to data. Moreover, because these models are fully differentiable, they
could easily be incorporated into machine learning approaches that utilize
gradient descent for model optimization [21]. This opens the door to explor-
ing the possibility that dendrites and dendritic computation may provide
important inductive biases for brains that could be mimicked by artificial
intelligence (AI) [21, 22]. Thus, we conclude this paper by providing some
speculation as to the possible advantages for AI of dendritic PRC models.
Altogether, this work helps to lay the ground for better integration between
our well-developed understanding of the biophysics of neural computation
and our ever increasing understanding of algorithms for complex behaviour.

2. The use of recurrent cascade models to capture single-cell com-
putation

Models made of LNL operations have had a long history in systems neu-
roscience, where such models were conceptually implied by early work on
retinal ganglion cells [27] and cortical cells [28]. These models consist of
a linear filter of the stimulus followed by a nonlinear readout to generate
predictions of a non-negative observable. Important refinements to improve
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Figure 1: Illustration of cascade models and PRC models: (A) Dendritic computation
can be modelled using a cascade of linear and non-linear operations [23, 24, 26]. (B)
Cascade models can be extended with the use of parallel pathways and recurrence in the
operations, which can enable the modeling of more complicated regenerative phenomena.

the accuracy of these models were the inclusion of spike-triggered adaptation
[29, 30], the composition of linear-nonlinear (LNL) operations in a cascade
[31, 32], and the addition of recurrent interactions between linear-nonlinear
subunits [33, 34]. Together, these various extensions are described by an
LNL subunit with multiple possible types of interconnection motifs. The
LNL subunit is composed of a linear-nonlinear operation with feedback from
the output of the nonlinearity to capture spike-triggered adaptation (Fig. 2A;
Methods 5.1). Wiring between subunits can create multiple types of motifs
including a strictly feedforward cascade, a common input to two units hav-
ing possibly different filters or nonlinearities (parallel feature processing, Fig.
2B), or recurrent interconnections (Fig. 2C). In most systems neuroscience
applications, the output of the nonlinearity is the Poisson intensity, used to
capture the stochastic spike-timing responses of real neurons. Our approach
with PRC models here is slightly different, as we will consider the output
of the nonlinearity to represent deterministic voltage excursions. Also, in
most systems neuroscience applications, the filters and nonlinearities may
arise from a large number of possible – yet undefined – mechanisms. These
are typically thought of as interactions within and between cells, but may
also include dendritic computations [35]. In order to better understand the
cellular mechanisms underlying such information processing, we focus on the
application of a deterministic LNL framework within a single cell.
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Figure 2: Linear-nonlinear operations and interconnection motifs. A The linear-nonlinear
(LNL) subunit. This architecture combines linear filtering of an input Iext(t) (middle)
with a nonlinear readout (top, g) and feedback (bottom, κad), which together flexibly
capture the passive filtering effects of neuronal membranes, the nonlinear effects of voltage-
dependent ionic conductances, and adaptation. The contributions of each of these effects to
the output z(t), which may loosely represent neuronal voltage or a spiketrain, can be tuned
via the parameters of the filters κnlin, κlin, and κad, and the choice of nonlinear function
g(·). B Multiple LNL subunits arranged in parallel can model the effects of multiple ionic
conductances in a single cellular compartment. C Recurrent connections between model
compartments, each composed of one or more LNL subunits, capture interactions between
cellular compartments.
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2.1. Somatic spikes

Since the pioneering work of Richard Stein [36], the leaky integrate-and-
fire (LIF) model has become the workhorse of interrogations of information
processing of large numbers of interconnected neurons. In itself, the LIF
can be seen as a special case of the LNL subunit. When a depolarizing
current is injected into an LIF model, it first passes through the membrane
filter and produces a voltage (leaky integration; a linear operation) which is
eventually reset to a lower value if it reaches a threshold (firing; a nonlinear
operation). This leaky integrate-and-fire behaviour can be captured by an
LNL subunit with a filter that corresponds to the membrane filter of an LIF
model, together with a Heaviside nonlinearity that is triggered exactly at
spike threshold and a Dirac delta-shaped adaptation filter which resets the
voltage to a lower value. Such deterministic LNL models can capture both the
time-dependent membrane voltage response and the spike timing responses
to complex inputs [37]. Adding multiple time-scales to the kernel for spike-
triggered adaptation makes these models highly predictive of the responses
a variety of cell types [38, 39, 40, 41, 42]. Furthermore, considering smooth
nonlinearities and surrogate gradients can ensure that the LNL unit remains
differentiable.

2.2. LNL models for dendritic spikes

To circumscribe a systems-level function for dendritic computation, many
studies have focused on the role of intrinsic nonlinear dendritic operations—
first using models of dendritic trees in a stationary state [43, 44, 23], then
using models capturing the dynamics of dendrites and their intrinsic nonlin-
ear properties [45, 25, 26]. These contributions are examples of what we call
PRC models because they involve cascade of nonlinearities, but they leave
out the recurrent motifs. Also, most have not considered the parallel pro-
cessing introduced by Ujfalussy et al. (2018) [26]. Recurrence was, however,
part of other efforts focusing on simplified models of the interaction between
somata and dendrites [46, 47, 48, 49]. Thus our goal in this section is to
unify these complementary perspectives.

In comparison to the action potentials generated in the proximity of the
cell body, the spikes observed in dendrites display less stereotypical ampli-
tudes and durations [50, 51, 52, 53]. These features pose a problem for the
LIF framework, but they are captured naturally by the LNL framework. In
Figure 3, we illustrated the response of a LNL subunit to noisy inputs and
to short pulses. For a fast filter preceding a sharp nonlinearity, the model
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Figure 3: Effects of changing parameters in the linear-nonlinear model. A A linear nonlin-
ear model is simulated to produce a nonlinear component (blue) which is added to a passive
component (orange). As input to the model, we consider B a noisy time-dependent signal
representing a bombardment of asynchronous synaptic currents, and C a short pulse. D
Response to noisy inputs having three different baselines (top three traces, lower baseline
is topmost trace). Maximum amplitude of response as a function of pulse amplitude (bot-
tom). E Effects of increasing the timescale of the linear filter. F Effects of decreasing the
sensitivity of the nonlinearity.
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produced short spikes on top of a noisy voltage trace. The short spikes arise
when the low-pass filtered input reaches the activation threshold of the non-
linear readout. Sometimes, the fluctuation is only able to activate a fraction
of the nonlinearity, which produces spikes of variable amplitudes. Increasing
the mean of the input makes those spikes more frequent as there are more
chances that the random fluctuations reach the activation threshold of the
nonlinearity. Thus in the configuration where a sharp sigmoidal nonlinearity
is fed by a linear filter that is considerably faster than the membrane filter, we
observe variable amplitude spikes akin to dendritic sodium spikes. We note
that a very similar model architecture was able to be reproduce with great
precision the response to noisy dendritic inputs in the presence of dendritic
sodium spikes [25].

Next, we examined the effects of changing the parameters in the LNL sub-
unit (Fig. 3E). We began by increasing the timescale of the filter preceding
the nonlinearity. This reduced the number of suprathreshold fluctuations,
and when a fluctuation in the low-pass filtered input did cross the activation
threshold it tended to stay for a longer time period. This produced less fre-
quent but longer spikes, akin to calcium spikes [54, 51, 55, 56] or, with an
even longer timescale, NMDA spikes [53]. As a consequence of changing the
filter, the aspect of the nonlinearity that can be observed when presenting a
pulse input is altered, and appears more graded. When, instead of chang-
ing the linear filter, we only changed the gain of the nonlinearity, then the
spikes had a more variable amplitude and duration. In these simulations,
we have not included an adaptation-like recurrence, which can control the
degree of variability in amplitude and duration of the dendritic spikes. Thus,
altogether, by changing the parameters of the LNL model, we can simulate
some basic electrophysiological features of various types of dendritic spikes.

2.3. Dendritic sodium spikes

To test whether a PRC model can capture other features observed in elec-
trophysiological recordings, we focused on experimental findings reported by
Golding and Spruston (1998) [50] pertaining to dendritic sodium spikes. In
one of the experiments reported (Fig. 4), recordings were made simultane-
ously in a proximal dendrite and in the soma. A variable-amplitude synaptic-
like stimulus was injected in the dendrite. The recordings showed that in one
dendrite, low input amplitudes initiated a spike in the soma which produced
a back-propagating action potential in the dendrite and at high amplitudes
initiated a spike in the dendrite before triggering an action potential in the
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Figure 4: A recurrent motif of linear-nonlinear models for the dendritic sodium spikes.
A Schematic of the model: A dendritic current (Id) impinges on two LNL subunits with
recurrent interactions, one corresponding to a dendrite, another corresponding to the soma.
When the somatic compartment reaches the threshold of its nonlinearity, a spike in the
form of a square pulse is added to the dendritic current. B Experimental data showing
injection of synaptic-like pulses of varying amplitudes in the dendrite (topmost traces have
highest input). Two exemplars are shown in different columns. Reproduced from Golding
et al. (1998) Fig. 1 [50]. C Model responses showing three amplitude levels of a synaptic-
like inputs in the model shown in A. D To reproduce the exemplars in B the model in the
right column has a lower threshold for the dendritic nonlinearity and a higher threshold
for the somatic nonlinearity.
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soma. In another dendritic recording, a low amplitude stimulus initiated
a dendritic spike unaccompanied by an action potential at the soma, and
only a large input produced an action potential at the soma. We found that
we can reproduce these phenomena by changing the parameters of two LNL
subunits wired in a recurrent fashion (Fig. 4A and C). To capture how dif-
ferent recordings initiated spikes preferentially in the dendrite or the soma,
we varied the relative threshold of activation of the dendritic and somatic
nonlinearities.

2.4. Dendritic NMDA spikes

Next we considered the electrophysiological recordings of NMDA spikes
reported in Schiller et al. (2000) [53]. We focused on the threshold input-
pulse amplitude to trigger an NMDA spike which was lowered by the addition
of blockers of sodium and calcium ion channels (TTX and cadmium). This
observation suggested that the nonlinear effects of sodium and calcium ion
channels participated in the initiation of the NMDA spikes. Since calcium
and sodium ion channels are characterized by distinct timescales, we consid-
ered a parallel connectivity motif shown in Fig. 5A. We chose the filter of the
sodium LNL to be fast (5 ms), the filter of the calcium filter to be slower (40
ms), and the filter of the NMDA LNL to be even slower (80 ms). Simulat-
ing the response of this model to pulse inputs produced a long depolarization
that was clearly initiated by contributions from sodium and calcium. To sim-
ulate the blockade of these mechanisms by TTX and cadmium, we reduced
the amplitudes of their corresponding nonlinearities to zero, which prevented
the occurrence of spikes for a range of input amplitudes (Fig. 5C). The effect
on the initiation threshold of removing the nonlinearity in the PRC model
mimicked that of pharmacological manpulations (Fig. 5D-E).

2.5. Dendritic calcium spikes

We then considered how bidirectional interactions between somatic spik-
ing and calcium spikes can be captured by a PRC model. The tuft dendrites
of cortical pyramidal cells express a high density of voltage-gated calcium
channels which produce dendritic plateau potentials when sufficiently strong
inputs are injected into the soma and tuft dendrites simultaneously [54, 55].
These dendritic plateau potentials mediate burst firing at the soma, pro-
ducing coincidence detection and modulating the gain of somatic responses
to peri-somatic input. To capture these effects in our PRC framework, we
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Figure 5: Linear nonlinear model of a NMDA spike as a combination of cascade and
parallel processing. A Schematic of the model: current impinging on the dendrite is
passed through two LNL operations in parallel before feeding into another LNL operation
to produce an NMDA spike. B Response of the model to a supra-threshold pulse input
showing the calcium (blue) sodium (orange) and NMDA (green). C The response to the
model with the same pulse input as in B but with the nonlinear component of sodium
and calcium set to zero, simulating the application of TTX and Cadmium. D Maximum
voltage as a function of the amplitude of the input pulse for the model in B (full circles)
and the model in E (open circles). E Experimental recordings of peak membrane potential
as a function of stimulation power in control (full circles) and the presence of calcium and
sodium ion channel blockers (TTX and cadmium, open circles). Figure reproduced from
Schiller et al. (2000) Fig. 3c [53].
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created a model with two recurrently-connected compartments, correspond-
ing to the soma and apical tuft dendrites (Fig. 6A). Appropriately tuned
filtering and nonlinear operations in each compartment (see Methods 5.4)
caused the somatic compartment to emit single spikes when input was deliv-
ered to the soma alone and intermittent bursts when input was delivered to
both compartments simultaneously (Fig. 6B). Inputs delivered to either com-
partment alone evoked small responses in the dendritic compartment, while
simultaneous inputs to both compartments evoked burst-associated plateau
potentials in the simulated dendrite. In cortical pyramidal neurons, den-
dritic inputs produce somatic bursts most potently when they are delivered
just before or at the same time as somatic input, creating an asymmetric
coincidence-detection effect [54]. Injecting a synaptic-like pulse into the den-
dritic compartment of our model evoked a dendritic plateau potential and
somatic burst only when it preceded or arrived at the same time as a so-
matic input pulse (Fig. 6C), recapitulating the coincidence-detection effect
observed in pyramidal neurons [54]. Dendritic input to our model also mod-
ulates somatic gain by increasing the number of spikes evoked by a given
input (Fig. 6D), consistent with an effect of dendritic input on gain observed
experimentally [57]. Together, these simulations add to previous efforts [48]
in showing that the PRC framework is able to capture features of dendritic
excitability and somatodendritic interactions.

3. Potential applications of recurrent cascade models for learning
theory

Aside from the additional capabilities to capture biological phenomena
in dendrites that we have illustrated here, PRC models may have relevance
for machine learning applications. Notably, thanks to the use of differen-
tiable computational graphs (see [58] for an approach to making our somatic
units differentiable), a PRC model can be incorporated into any artificial
neural network model and trained with gradient descent [26, 59]. As such,
PRC models open the door to investigating whether sub-cellular dendritic
computations have any potential utility for improving machine learning ap-
plications. The answer to this question will depend, in large part, on whether
dendritic computations can provide important inductive biases for an artifi-
cial neural network [60, 59].
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Figure 6: A recurrent cascade model of the interaction between the back-propagating
action potential and calcium spikes. A Schematic of the model: external current impinging
on the dendrite (Id) and somae (Is) each engage a LNL operation. The output of the
nonlinearities is combined to the input current of the other unit, forming a recurrent
interaction. B Step current injections in the soma alone, the dendrite alone and then in
both compartments simulataneously produces regular bursting only for the conjunction of
inputs. C A strong synaptic-like current pulse is injected in the both the soma (Is) and the
dendrite (Id). Three simulations are shown for three relative timings of the dendritic input
(i blue, ii orange, iii green). Responses for the somatic (Vs, black traces) and dendritic (Vd,
color traces) compartments are overlaid for each condition. Somatic spikes are denoted by
a clear reset but the full depolarization is not shown. A burst of action potentials arise
from the near-coincident condition (ii, orange) recapitulating experimental observations
in pyramidals of the cortex [54]. D Responses to increasing amplitudes of synaptic-like
input to soma in the absence of dendritic input (left) and in the presence of a concomitant
input in the dendrite (right), a simulation of the gain modulation property of dendritic
input reported experimentally [57].
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3.1. Parallel-recurrent cascade models as architectural inductive biases
One of the realities that any machine learning system faces is that no

learning agent can be efficient at learning all types of problems and/or tasks.
Due to the No Free Lunch Theorem for Optimization [61], we know that
there is always a trade-off: for a learning system to achieve good perfor-
mance in one set of problems, it must sacrifice its performance in other sets
of problems. When an engineer introduces some design components into an
optimization system that help to bias a learning system towards a particular
set of problems, we refer to these components as “inductive biases”. Induc-
tive biases are key to developing useful machine learning systems, because
without appropriate inductive biases, learning systems will provide mediocre
performance on all tasks, as opposed to superior performance on the subset
of tasks that we may care about [62, 63]. For example, if an engineer creates
a machine learning system that is built with an inductive bias to seek out
relationships between discrete objects, then that can help the system learn
about spatio-visual object relations such as “there is a blue ball to the left
of a red cube” [64, 65].

These insights about the importance of inductive biases actually helped to
lay the foundations for the modern deep learning approach in AI [66, 63]. The
early proponents of deep learning proposed that the set of problems we most
care about in AI are those that humans and/or animals are good at, e.g.
image processing, motor control, language comprehension, etc [66]. Given
this, they argued that machine learning researchers should seek inspiration
from real brains in order to find appropriate inductive biases for AI [67]. At
the time, the principal inductive bias that these researchers were interested
in was network depth (hence the name “deep” learning). They believed that
the macroscopic architecture of the brain, with multiple stages of processing
involved in sensorimotor transformations, provided an inductive biases to
promote hierarchical representations, which they proposed were well suited
to solving the sorts of problems humans and animals are good at [66]. In
hindsight, it appears that their intuitions were largely correct: deep ANNs
have consistently outperformed other types of machine learning approaches in
exactly the sort of problem/task domains that humans and animals excel at
[67]. Moreover, theoretical analyses have provided some explanations for why
ANNs with deep architectures are particularly well suited to such applications
[68, 69].

There is a broader, two-fold point within the story of deep learning and
inductive biases. First, it is clear now that the inductive biases of an ANN are
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determined in large part by architecture, i.e. how the linear and non-linear
operations are arranged in a computational graph within the ANN. This
is because architecture determines both how information flows through the
ANN, but also the shape of the loss landscape, which can directly impact the
efficiency with which different types of representations can be learned [70, 71].
Second, the success of using the brain’s hierarchical structure to inspire the
architecture of ANNs demonstrates that, in principle, it can be beneficial
for AI to seek inspiration from the brain when seeking new inductive biases
[72]. Importantly, PRC models provide a new way of incorporating biological
insights into the design of ANN architectures. If we were to replace the
standard units of an ANN with PRC models based on real neurons, this
would represent a major change in the architecture of the ANN, one that
may provide useful inductive biases.

3.2. Potential advantages of PRC-based inductive biases

When considering the potential inductive biases that PRC models in-
troduce, the natural question is, would these inductive biases actually help
or hinder AI? Though it is true that inspiration from brains have provided
useful inductive biases for machine learning in the past [67, 72], there is no
rule that says that neural phenomena always provide such utility. Indeed,
some aspects of physiology may be more related to phylogenetic history and
biological constraints than they are to improved learning performance. How-
ever, there are a few reasons to think that dendrite inspired PRC models
may provide useful inductive biases.

As noted above, research over the last decade has confirmed that network
depth is an important architectural consideration for AI [68, 69]. However,
not all depth is equal. Researchers have found that increasing depth is most
useful when additional architectural features are included, such as skip con-
nections [71]. If we were to replace the units of an ANN with PRC models
based on real neurons that would increase the depth of the network, but in a
very particular way. The central question, then, is would the specific form of
increased depth that one would obtain from using PRC model units would
be helpful?

One reason that PRC models may provide a useful form of depth is that
they would help to promote sparsity, which has also been shown to be a
useful in neural networks [73]. PRC models would help to promote sparsity
because they would provide distinct computational sub-units with non-linear
interactions that could handle different components of a task. For example,
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it would be possible to have individual dendrites that are responsible for
processing distinct types of features, e.g. one set of dendrites for processing
facial features, another set for processing body parts, etc. Thus, depending
on the input provided, the network could activate only a very sparse set of
all the dendrites for processing.

Related to this, there is a growing recognition in the machine learning
community that a desirable form of inductive biases for AI would be those
that promote the emergence of specialized modules that can be flexibly com-
posed [74, 75]. This may turn out to be critical to overcoming the limitations
of current ANN approaches. Specifically, if an ANN was provided with an
architecture that promoted the learning of distinct, specialized modules that
can be composed, then it should be possible both to learn more intuitive
part-whole relationships that capture the underlying structure of objects in
the world more accurately [74, 75] and to avoid the catastrophic forgetting
that can plague standard ANNs [76]. However, current systems to promote
specialized modules are only loosely inspired by real neural circuits. There-
fore, an interesting open question is whether PRC models could provide a
good mechanism for implementing brain-inspired inductive biases to promote
composability. Notably, dendrites have functionally clustered inputs [77],
synaptic dynamics can perform LNL operations [78], and these phenomena
interact [79]. Given the fact that PRC models would allow an ANN to learn
dendrite-like, flexible, non-linear, recurrent interactions between function-
ally clustered inputs, it is plausible that they could help with composability.
Thus, we would argue that future research should investigate the potential
for ANNs that use PRC models inspired by sub-cellular dendritic computa-
tion to show better specialization and composability, and less catastrophic
forgetting.

4. Conclusion

In this article, we have illustrated the capabilities of PRC models to cap-
ture the various experimentally observed features of dendritic computation,
and discussed how this modeling framework may be key to understand the
role of dendrites in learning and neuronal computation. In doing so, we have
identified modular, composable connectivity motifs (Fig. 2), with the paral-
lel, recurrent and cascade elements forming the basic building blocks of the
framework. We have illustrated how the interaction between sodium spikes
in the dendrite and the soma [50] can be captured using a recurrent motif
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of LNL subunits (Fig. 4). Furthermore, we have demonstrated that a par-
allel motif of LNL subunits within a cascade can reproduce the dependence
of NMDA spikes on the activation of sodium and calcium channels [53]. Fi-
nally, we demonstrated that the interaction between back-propagating action
potentials and calcium spikes can be captured by a recurrent motif of LNL
subunits with a different set of parameters (Fig. 3) [54, 57]. In closing, we
have argued that these PRC models of dendritic computation could have an
important role in shaping inductive biases (Section 3), and thus contribute
to the optimization of learning capabilities of the brain.

Our LNL models, however, bear some important limitations. Firstly, the
set of operations that are possible within the LNL framework correspond
to a subset of the operations that are achievable by the type of dynamical
systems used in detailed simulations of dendritic integration [53, 80, 26, 81].
For instance, modeling the NMDA spike as two LNL units in parallel fol-
lowed by another nonlinearity ignores the nonlinear impact that sodium ion
channels can have on calcium ion channels via rapid increase of the mem-
brane potential. Another element not captured by the phenomenological
LNL model is that ion channel time constants almost always depend on the
mean depolarization, which implies an adaptive filter instead of a fixed filter
assumed in the LNL model. A second important limitation is that we have
assumed that the dendrites remain in a fluctuation-driven regime where the
net input is low on average but highly variable. If we were to give strong and
sustained inputs to the LNL model, these would saturate the nonlinearity
and nonlinear transients would disappear. Such a sustained-depolarization
regime has been observed in some experiments [57], but it remains to be seen
whether these take place in vivo or whether homeostatic mechanisms pre-
serve the fluctuation-driven regime [82]. One last limitation of our model is
that a very high input variability is capable of making nonlinear operations
effectively linear [26]. In this case, the complex linear-nonlinear structure
operates in a way that can actually be captured by an effective model that
is entirely linear. Although some in vivo manipulation of dendritic inputs
[56, 83, 84] argue against this point of view, the full relationship between
inputs and outputs of neurons in a naturalistic condition is far from being
fully known.

We included in this paper some discussion of the potential machine learn-
ing applications of PRC models. As we outlined, there are some reasons to
believe that dendritic computations may provide useful inductive biases for
machine learning systems. We are hopeful that future research will demon-
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strate this. However, it also has to be recognized that real dendrites may be
solving an implementation problem for neurons, i.e. how can you actually
integrate thousands of distinct signals in a physical circuit with space and
energy constraints? It is possible that this is the problem which dendrites
solve for real neurons, and that dendritic computation is, itself, not impor-
tant at the algorithmic level. Only by exploring the potential advantages of
training AI systems with PRC models inspired by real neurons will we be
able to get some initial insight on this mystery.

In summary, our work shows how PRC models can be used to model sub-
cellular dendritic computation with a computationally tractable approach.
This lays the groundwork for future explorations of the algorithmic implica-
tions of dendritic computation, both in the brain, and in machine learning
applications. We believe that PRC models will help open the door to explor-
ing the true computational power of dendrites.

5. Methods

5.1. Linear-nonlinear subunit

The basic component of the modeling framework presented here is the
linear-nonlinear subunit, which receives a net time-varying input Ii(t) and
produces an activation z(t) as its output

z(t;κnlin, κlin, κad) = g(anlin(t;κnlin, κad)) + alin(t;κlin, κad) (1)

ax(t;κx, κad) = [κx ∗ (Iext + Iad)] (t) (2)

Iad(t;κad) = κad ∗ z(t), (3)

where g(·) is a nonlinear activation function; anlin(t) and alin(t) are the pre-
activations for the nonlinear and linear parts of the output, respectively;
Iext(t) =

∑
i Ii(t) is the total input from all external sources; Iad(t) is a re-

current adaptation current; and (κ ∗ x)(t) =
∫ t
−∞ κ(t− τ)x(τ)dτ denotes the

causal convolution of a filter κ with a signal x evaluated at time t. The
subunit is parameterized in terms of the activation filters κnlin and κlin, the
adaptation filter κad, and the choice of nonlinear activation function g(·).
Except where noted, all filters in this work are defined as exponential func-
tions

κ(t) =
1

τ
e

−t
τ (4)
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with time constant τ . For models with multiple cellular compartments, Iext(t)
may include inputs from an external source as well as from other compart-
ments (eg, Methods 5.4). Depending on the model, z(t), anlin(t), or alin(t)
may correspond loosely to the voltage of a compartment denoted Vx(t) where
x is the name of the compartment.

5.2. Two-compartment model subject to a single dendritic input

The two-compartment model with a recurrent connection from the so-
matic to the dendritic compartment is defined as follows

z(s)(t) = g(a
(s)
nlin(t;κ

(s)
nlin)) + a

(s)
lin(t;κ

(s)
lin) (5)

z(d)(t) = σ(a
(d)
nlin(t;κ

(d)
nlin)) + a

(d)
lin (t;κ

(d)
lin ) (6)

I
(s)
ext(t) = I

(d)
ext(t) = Id(t), (7)

where the dendritic nonlinearity σ(·) is the sigmoid function. g(·) is the
somatic spiking nonlinearity, a function which emits a 1 ms square pulse of
amplitude A = 2 AU when z(s)(t) crosses the somatic spike threshold from
below

g(t; v) = rect(t) ∗
∑
t(f)<t

δ(t− t(f)) (8)

rect(t) =

{
A for 0 < t < 1ms

0 otherwise
, (9)

where t(f) denotes the time of a threshold crossing. Exponential functions
with the following time constants were used for the pre-activation filters:
τ
(s)
lin = 40 ms, τ

(d)
lin = 20 ms, τ

(s)
nlin = 40 ms, and τ

(d)
nlin = 2 ms. Adaptation

filters were set to zero and the terms associated with them were omitted from
the above model for simplicity. The activation output z(x)(t) corresponds
loosely to the voltage of each compartment; Vs(t) ≡ z(s)(t) and Vd(t) ≡ z(d)(t)
are therefore used to refer to these terms in figures and the main text for
ease of interpretation.

5.3. Multi-subunit model with parallel processing

The model is composed of three linear-nonlinear subunits which loosely
capture the contributions of sodium, calcium, and NMDA voltage-dependent
conductances (denoted by the superscripts (1), (2), and (3), respectively) to
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nonlinear processing of synaptic inputs in a dendritic compartment. Their
dynamics are defined as follows

z(x)(t) = σ(a(x)(t;κ(x))) + a(x)(t;κ(x)) for x ∈ {1, 2, 3} (10)

κ(x) =
1

τx
e

−t
τ (11)

I
(1)
ext(t) = I

(2)
ext(t) = Id(t) (12)

I
(3)
ext(t) = z(1)(t) + z(2)(t). (13)

In all three subunits, the non-linear and linear pre-activation filters were set
to be equal, such that

κ(x) = κ
(x)
lin = κ

(x)
nlin (14)

where τ (1) = 5 ms, τ (2) = 40 ms, and τ (3) = 80 ms. The adaptation filters were
set to zero and the associated terms dropped for simplicity. The dendritic
synaptic-like input current is given by the alpha function

Id(t) = Ate
−t
τ for t ≥ 0 (15)

with amplitude A and time constant τ = 2 ms. The voltage output shown in
the figures and main text is analogous to the activation output Vx(t) ≡ z(x)(t)
for each respective subunit.

5.4. Two-compartment model with bi-directional dendro-somatic interactions

The model with bi-directional dendro-somatic interactions is composed
of two reciprocally-connected linear-nonlinear subunits (see Section 5.1) as
follows

z(s)(t) = Θ(a
(s)
nlin(t;κ

(s)
nlin, κ

(s)
ad )) (16)

I
(s)
ext(t) = Is(t) + z(d)(t) (17)

z(d)(t) = σ(a
(d)
nlin(t;κ

(d)
nlin)) (18)

I
(d)
ext(t) = Id(t) + z(s)(t), (19)

where Θ(·) is the Heaviside step function and σ(·) is the sigmoid function.

The nonlinear activation filters κ
(x)
nlin are defined as exponential functions with

τ
(s)
nlin = 10 ms and τ

(d)
nlin = 5 ms. The somatic adaptation filter is defined as

κ
(s)
ad (t) =

{
1 for t = 0
1
τad
e

−t
τad for t > 0

(20)
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with τad = 20 ms. In this model, the linear activation filters κ
(s)
lin and κ(d)

are set to zero, along with the dendritic adaptation filter κ
(d)
ad . (The terms

associated with these filters have been dropped from the above model defi-
nition for simplicity.) Is(t) and Id(t) correspond loosely to synaptic inputs
to the somatic and dendritic compartments, respectively. The somatic pre-
activation a

(s)
nlin and the dendritic activation z(d) loosely correspond to the

voltage in their respective compartments. For clarity, we use Vs(t) ≡ a
(s)
nlin(t)

and Vd(t) ≡ z(d)(t) to refer to these quantities in the figures and main text.

5.5. Numerical methods

Simulations were implemented in Matlab and Python 3.8 using NumPy
1.18.5, SciPy 1.5.0, and ez-ephys 0.4.2. Figures were prepared in Python
using Matplotlib 3.2.2, Jupyter 1.0.0, and ez-ephys. Code is available at
https://github.com/nauralcodinglab/linear-nonlinear-dendrites.
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