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Summary 22 

Dynamic intron retention (IR) in vertebrate cells is of widespread biological importance. Aberrant IR 23 
is associated with numerous human diseases including cancer.  Despite consistent reports demonstrating 24 
intrinsic sequence features that predispose introns to become retained, conflicting findings about cell 25 
type-specific IR regulation demand a systematic analysis in a controlled experimental setting. We 26 
integrated matched transcriptomics and epigenetics data (including DNA methylation, nucleosome 27 
occupancy, histone modifications) from primary human myeloid and lymphoid cells. Using machine 28 
learning we trained two complementary models to determine the role of epigenetic factors in the 29 
regulation of IR. We show that increased chromatin accessibility contributes substantially to the 30 
retention of introns in a cell-specific manner. We also confirm that intrinsic characteristics of introns 31 
are key for them to evade splicing. With mounting reports linking pathogenic alterations to RNA 32 
processing, our findings may have profound implications for the design of therapeutic approaches 33 
targeting aberrant splicing. 34 

Keywords: chromatin accessibility, intron retention, epigenetics, alternative splicing, histone marks, 35 
CpG methylation, nucleosome occupancy 36 

 37 

Introduction 38 

The role of introns in mammalian genomes remains largely unexplained. Given the time and energy 39 
required for the transcription and subsequent excision of introns from pre-mRNA, it was important to 40 
recognise in recent years that introns can be selectively retained in mature mRNA transcripts and 41 
thereby contribute significantly to transcriptomic complexity (Schmitz et al., 2017; Wong et al., 2013). 42 
Intron retention (IR) is a form of alternative splicing that was assumed to occur due to the failure of the 43 
spliceosome to excise an intron from a pre-mRNA transcript. However, growing evidence suggests that 44 
IR is highly regulated by multiple complementary factors (Monteuuis et al., 2019).  45 

IR is widespread across all human tissues and affects more than 80% of protein-coding genes 46 
(Middleton et al., 2017). For example, dynamic IR profiles have been identified in key genes involved 47 
in hematopoietic cell differentiation and activation (Edwards et al., 2016; Green et al., 2020; Ni et al., 48 
2016; Ullrich and Guigo, 2020; Wong et al., 2013). Fates of intron-retaining transcripts can be diverse 49 
and include (i) nonsense-mediated decay triggered by intronic premature termination codons, (ii) 50 
detention in the nucleus or nuclear degradation, and (iii) translation into alternative protein isoforms or 51 
creation of neoepitopes (Monteuuis et al., 2019; Smart et al., 2018; Wong et al., 2016). A better 52 
understanding of how IR is regulated is crucial to determine factors leading to aberrant IR, which has 53 
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been associated with multiple diseases including cancer (Dvinge et al., 2019; Hershberger et al., 2020; 54 
Monteuuis et al., 2020) 55 

Despite numerous studies that describe the role of retained introns in key biological functions in animals 56 
and in human diseases (Monteuuis et al., 2020; Monteuuis et al., 2019; Wong et al., 2016), a 57 
comprehensive understanding of their regulation is still lacking. Retained introns have conserved 58 
intrinsic characteristics such as a higher GC content, shorter lengths, and weaker splice sites in 59 
comparison to their non-retained counterparts (Braunschweig et al., 2014; Monteuuis et al., 2019; 60 
Schmitz et al., 2017). These features predispose introns to retention but cannot explain the dynamic IR 61 
profiles observed in numerous biological processes. 62 

The regulation of alternative splicing has been the focus of many studies. Evidence suggests that 63 
alternative splicing is regulated at least at two levels: (i) locally, where trans-acting splicing regulators 64 
interact with cis-acting regulatory elements, and (ii) globally, through the structure of chromatin, which 65 
is largely governed by epigenetic factors, including nucleosome assembly, histone modifications and 66 
CpG methylation (Zhou et al., 2014). 67 

Previous reports have shown that, apart from intrinsic sequence-based features, intron expression can 68 
be regulated through (i) cis-regulatory elements, such as sequence motifs attracting trans-acting 69 
splicing-regulatory RNA binding proteins (Middleton et al., 2017), (ii) core components of the splicing 70 
machinery (Wong et al., 2013), and (iii) change in the RNA Pol II elongation rate (Fong et al., 2014). 71 
Moreover, an increasing number of studies have found links between epigenetic profiles and IR; 72 
reporting that IR is associated with reduced CpG methylation (Gao et al., 2019; Green et al., 2020; Kim 73 
et al., 2018; Wong et al., 2017a) and various histone modifications (Guo et al., 2014; Wei et al., 2018). 74 
However, these reports have typically established the association of IR with only one epigenetic factor 75 
at a time. In general, the question of whether there are dominant epigenetic factors that underpin IR 76 
regulation remain unanswered.  77 

In the quest to find a splicing regulatory ‘code’, several studies have used machine learning methods to 78 
train models that predict exon usage with increasing precision (Barash et al., 2010; Leung et al., 2014). 79 
Moreover, some models were developed to predict cryptic splicing events caused by genetic variations 80 
and to link these to human diseases (Baeza-Centurion et al., 2019; Jaganathan et al., 2019; Xiong et al., 81 
2015). However, the computational prediction of IR events has not been attempted to date and the role 82 
of epigenetic marks has rarely been considered in computational models of splicing regulation 83 
(Monteuuis et al., 2019; Pacini and Koziol, 2018). 84 

In this study, to sought to systematically elucidate the role of epigenetic marks in the regulation of IR. 85 
We analysed genome-wide profiles of 6 histone modifications, CpG methylation and nucleosome 86 
occupancy at single-base resolution in primary lymphoid and myeloid cells. Using machine learning, 87 
we developed two models that predict IR in primary human immune cells. More specifically, we trained 88 
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a logistic regression with elastic net (EN) classifier and a conditional Random Forest (RF) classifier 89 
with matched transcriptomics and epigenomics data from monocytes, macrophages, naïve T-cells, T-90 
central memory, and T-effector memory cells (Figure 1).  91 

Our results show that intrinsic characteristics are key for introns to evade splicing and that epigenetic 92 
marks may modulate IR levels in a cell type-specific manner, where the dominant factor for dynamic 93 
IR regulation is chromatin organisation. 94 

Results 95 

Intrinsic features of retained introns are consistent across cell types 96 

To investigate how IR is regulated in primary immune cells (CD4+ T-cells, monocytes, and 97 
macrophages), we integrated transcriptomics (mRNA-Seq) data with epigenomics data including 98 
genome-wide CpG methylation (WGBS), histone modifications (ChIP-Seq), and nucleosome 99 
occupancy (NOMe-Seq) (Table S1). The cells were isolated from peripheral blood of 2 healthy donors, 100 
except for the monocyte-derived macrophages. Using the IR identification software IRFinder 101 
(Middleton et al., 2017), we quantified IR events of expressed genes (FPKM>1) in five cell types across 102 
myeloid and lymphoid cells, representing two modes of differentiation: monocyte-to-macrophage 103 
differentiation and naïve T-cell differentiation into central memory (CM) and effector memory (EM) 104 
T-cells. Introns that were present in at least 10% of a gene’s mature mRNA transcripts (IRratio ≥ 0.1) 105 
with an overall intron depth ≥ 10 were considered retained. Non-retained introns were defined as those 106 
with an IRratio ≤ 0.01 and intron depth < 10.  107 

We identified a total of 26,147 retained introns in 12,379 genes, some of which were retained in both 108 
myeloid and lymphoid cells while others were cell type-specific (Figure S1A). Consistent with previous 109 
reports, retained introns in our dataset are shorter in length, exhibit a higher GC content and weaker 110 
splice site strengths compared to non-retained introns (Figure S1B-E). Our analysis revealed diverse 111 
splicing patterns in myeloid and lymphoid cells. While 40% of the retained introns in myeloid cells 112 
were significantly differentially retained (∆IR ≥ 0.1; p < 0.05 Audic-Claverie test) between monocytes 113 
and macrophages (571/1425), T cells displayed greater stability in regard to IR with only 8% of introns 114 
classified as differentially retained (146/1812 in naïve T vs CM, and 80/969 in CM vs EM). In contrast 115 
to the monocyte-to-macrophage differentiation, where we observed a reduction in IR events (Figure 116 
2A), the overall number of retained introns remained consistent in all CD4+ T cells. These patterns 117 
coincide with fewer changes in gene expression during T cell differentiation in contrast to major gene 118 
expression changes in monocyte-to-macrophage differentiation (Figure S1F). 119 

Most retained introns in our analysis overlapped with histone marks (HM) or with a nucleosome free 120 
region (NFR, predicted from NOMe-seq data) around their 5′ and 3′ splice sites (+/100 bp) as well as 121 
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the middle of an intron (Figure S2A). Interestingly, many non-retained introns (~50%) lacked such 122 
epigenetic marks in lymphoid cells (as opposed to only 20-30% of retained introns). H3K36me3 was 123 
the most frequently observed histone modification followed by NFR peaks. In retained introns, between 124 
30% and 60% of H3K36me3 signals were classified as strong (see Methods), whilst in non-retained 125 
introns the proportion of overlap with the regions of strong signal ranged between 2% and 18%. Again, 126 
the patterns of signal strength varied between the cell types (Table S3).   127 

CpG methylation profiles (extracted from WGBS data) for retained and non-retained introns displayed 128 
a characteristic bimodal distribution with two distinct peaks at 0% and 100%. Differential methylation 129 
was predominantly found at the splice sites when we compared regions of genomic DNA associated 130 
with IR and no IR. At the 5´ splice sites, we observed higher methylation levels in retained compared 131 
to non-retained introns in all five cell types. However, this trend was reversed in the lymphoid cells at 132 
the 3´ splice sites and in the middle of introns (Figure S2B).  133 

M.CviPI enzyme, used in NOMe-seq experiment, methylates cytosine dyads in GC sequence and GCH 134 
methylation levels (where H is any nucleobase except guanine) provide information about chromatin 135 
accessibility. Unlike endogenous CpG methylation, GC dinucleotides are rarely fully methylated, 136 
therefore the mid-range levels (anywhere between 20 to 50%) are usually sufficient to indicate open 137 
chromatin regions. In our data, chromatin accessibility (i.e. GCH methylation) increased from 138 
monocytes to macrophages with slightly higher levels in retained introns, while lymphoid cells had 139 
increased chromatin accessibility (GCH methylation levels 15-35%) but with lower levels in retained 140 
introns compared to non-retained introns (Figure S2C). 141 

To determine important factors of IR regulation, we compiled sequence-based and epigenetic features: 142 
(i) sequence-based features: intron length, GC content, splice site strength, CpG density (also referred 143 
to as intrinsic features), (ii) transcriptomics features: percent spliced-in (PSI) values of the flanking 144 
exons, and (iii) epigenomics features extracted from the WGBS, ChIP-Seq (H3K9me3, H3K27me3, 145 
H3K27ac, H3K36me3, H3K4me1, H3K4me3), and NOMe-Seq data (Table S2). We then used these 146 
features (n=46) to train EN models for each cell type and predict whether introns are either retained or 147 
non-retained. The performance of our models was assessed based on the area under the receiver 148 
operating characteristic curve (AUC) values, which ranged between 0.87 and 0.95 (Figure 2B) and 149 
values for the area under the prediction-recall curve (accuracy) ranging between 0.85 and 0.95 (Figure 150 
2C). The consistently high values suggest that the model choice was appropriate for the task. 151 

Next, in order to evaluate whether the learned relationship between the model features and IR was 152 
generalizable across cell types we trained our model with data from one cell type and tested it with data 153 
from another cell type. For all training/test data pairs, the AUC and accuracy metrics were comparable 154 
to those models that were trained and tested on the same cell type (Table S4). 155 
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The EN model assumes a monotonic linear relationship between the class variable and the model 156 
features. To determine whether this assumption is adequate for IR classification, we also trained 157 
conditional random forest (cRF) models, which do not make any prior assumption about the relationship 158 
between the outcome of interest and the model features. Comparing the results from both types of 159 
models, we found that cRF performed slightly better than EN with AUC values ranging between 0.91 160 
and 0.98 (Figures 2D, S3A) and PR values between 0.87 and 0.95 (Figure S3B). 161 

To assess which features contribute most to the model performance (and thus, the relevance of a feature 162 
to IR), we used variable-importance measures (VIM). For EN, these are the regression coefficients 163 
ordered from lowest to highest, where parameters with larger values have a greater effect. For cRF, 164 
variable importance was calculated as the mean decrease in accuracy after permutation of each model 165 
feature (Figure 2E). Given the known properties of retained introns it was no surprise that intrinsic 166 
features, such as length, GC content and CpG density were ranked as the top predictors with a high 167 
level of agreement across all cell types analysed. Again, we observed consistency between the EN and 168 
cRF models, except for minor variations in the order that important features were ranked in. 169 

Epigenetic features were also ranked among the top 5 predictors across all models and cell types, 170 
however their nature and relative importance varied between cell types (Figure 2E). Overall EN models 171 
ranked epigenetic features as moderately to very important (VIM between 0.4 and 0.8), which is 172 
comparable to the intrinsic features (ranging between 0.3 and 1). In contrast, cRF identified epigenetic 173 
features as somewhat important with VIM mostly below 0.50 (Figures S3C, S3D). Nevertheless, 174 
intrinsic features were consistently identified as most relevant for correctly classifying IR, suggesting 175 
that these features predispose introns to being retained irrespective of cell or tissue type. 176 

 177 

Chromatin accessibility is predicted to be the strongest regulator of IR 178 

In the previous section we classified IR on a cell type-specific basis and determined the intrinsic features 179 
as having the strongest association with IR outcomes. However, we often find that an intron is retained 180 
in one cell type but not in another. In those cases, factors beyond intrinsic features are the likely drivers 181 
of this transition.  182 

To find these IR determinants, we modified our initial modelling approach by focusing only on the 183 
dynamic introns - those that changed their retention status between cell types (Figure 3A). In total, 184 
1,540 introns matched this criterion with various IR patterns (Figure 3B). We used these introns to train 185 
EN and cRF models with both epigenetic and intrinsic features. The cRF model was performed superior 186 
to the EN model achieving AUCs of 0.85 and 0.76, respectively (Figure 3C). cRF also achieved a higher 187 
area under the precision-recall curve value (0.83) than EN (0.73) (Figure 3D). The poorer performance 188 
of EN might be a reflection of the model’s inability to fully utilise complex structures within the omics 189 
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data, thus supporting the notion that a relationship between chromatin modifiers and IR is indeed non-190 
linear, as previously suggested (Singer et al., 2015).  191 

Evaluation of feature rankings revealed that, despite varying model performances, both EN and cRF 192 
models identified features related to chromatin accessibility as most important for correct IR 193 
classification (Figure 3E). These features include GCH methylation and GCH (i.e. nucleosome) 194 
occupancy and the presence of nucleosome free regions (NFRs). GCH methylation at the 5′ and 3′ splice 195 
sites were determined as most important features discriminating retained form non-retained introns in 196 
both models. The cRF classifier also identified CpG methylation as somewhat important for IR 197 
classification, which has a known relationship with chromatin accessibility (Farlik et al., 2016; Lay et 198 
al., 2015; Taberlay et al., 2014). Interestingly, the cRF model also identified GC content as a moderately 199 
important contributor to IR outcomes, whilst the EN model included histone marks (H3K27ac and 200 
H3K36me3) in their top 10 predictors (Figure S4A). 201 

 202 

Epigenetic IR regulation is independent of gene expression regulation 203 

It is reasonable to assume that changes in the epigenomic landscape might not directly affect IR but 204 
rather gene expression (Jaenisch and Bird, 2003). To confirm that the features identified as relevant to 205 
IR are independent from gene expression regulation, we split dynamically retained introns into three 206 
groups: (i) host gene expression is reduced along with the change in IR status, (ii) host gene expression 207 
remained stable (log2 FC FPKM ≤ 2), and (iii) host gene expression increased (Figure 4A). For most 208 
of the dynamic introns the host gene expression remained unchanged (N = 1,220), whilst down- and 209 
upregulated host genes were associated with 73 and 247 alternately retained introns, respectively. We 210 
repeated the classification analysis on the group of introns where the IR changes were not accompanied 211 
by host gene expression changes. Since the relationship between IR and epigenetic model features is 212 
not linear, as was established in the previous section, we only used the cRF algorithm. 213 

The model fitted on this data subset achieved an AUC of 0.83 (Figure 4B) and an area under the 214 
precision-recall curve value of 0.78 (Figure S4B). The features that were selected as important were 215 
GCH methylation at the 5′ and 3′ splice sites and GC content in the same order as in the model trained 216 
on all dynamically retained introns (Figure 4C). This observation held true for both highly and lowly 217 
expressed host genes (Figures S4C). We therefore concluded that the observed epigenetic changes 218 
associated with IR modulation are independent from gene expression regulation. In Figure 4D, we show 219 
two exemplary introns where greater chromatin accessibility was associated with an increase in IR: 220 
Phosphatidylinositol Glycan Anchor Biosynthesis Class T (PIGT) helps building the 221 
glycosylphosphatidylinositol-anchor which is found on the surface of various blood cells (Figure 4D, 222 
left). PIGT is known to express many isoforms through alternative splicing including IR. The nucleotide 223 
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binding protein SEPTIN8 is a regulator of cytoskeletal organization, which has multiple alternatively 224 
spliced transcript variants as well (Figure 4D, right). 225 

 226 

Dynamic changes in chromatin structure are responsible for cell type-227 

specific IR 228 

As chromatin accessibility was identified as the strongest predictive factor for differential IR, we closely 229 
examined its relationship with retained and non-retained introns. We identified 5 distinct GCH 230 
methylation profiles in the +/- 200 bp region around the 5′ splice site of retained introns (Figure 5A, 231 
left). Similar clustering profiles were identified in the region around 3´ splice sites and the middle of 232 
introns (Figure S5). To understand changes in chromatin status in the context of differential IR, we 233 
plotted the GCH methylation values of the same introns when they were not retained (Figure 5A). The 234 
associated heatmap shows that GCH methylation is widely depleted in non-retained introns, with no 235 
distinct clustering. In retained intron, however, we observed a clear increase in GCH methylation 236 
immediately upstream or downstream from the 5′ splice site (Figure 5B, clusters 1, 3 and 4). We also 237 
identified a group of retained introns with relatively low levels of GCH methylation (cluster 2) and 238 
another with particularly strong GCH methylation (cluster 5).  239 

Upon visualising the intronic regions that changed their IR status between cell types, we observed 240 
greater chromatin accessibility levels in retained introns (Figure 6A). Moreover, for the majority of 241 
introns, we found that IR gain was accompanied with a reduction in H3K36me3 signal (Figure 6A).  242 

Based on the observed patterns, we hypothesise that there is an association between chromatin dynamics 243 
and IR: chromatin is more likely to be in a permissive state (high GCH methylation) in the vicinity of 244 
retained introns and more compact (low GCH methylation) around constitutively spliced introns. 245 
Indeed, we observed that chromatin becomes more accessible as introns become retained (65% of 246 
observations). In other cases, the IR status changes without any change to the chromatin state (35% of 247 
observations).  248 

Based on the observations concerning chromatin accessibility, we sought to assess the relationship 249 
between IR and epigenetic factors in the context of changing chromatin states, i.e. differential GCH 250 
methylation (Figure 6B), and stable chromatin status, i.e. non-differential GCH methylation (Figure 251 
6C). In our analysis, we separated first introns from other introns to detach epigenetic signals associated 252 
with gene promoters. 253 

The patterns of CpG methylation, H3K27ac, H3K4me3 and H3K4me1 levels in retained and non-254 
retained introns were similar in both chromatin modes (dynamic and stable). First non-retained introns 255 
displayed enrichment for histone marks and reduced CpG methylation levels, while first retained introns 256 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2021.02.17.431609doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431609
http://creativecommons.org/licenses/by-nd/4.0/


Page 9 of 28  
 

had negligible levels of histone marks and were marked by the absence of CpG methylation (Figure 6B 257 
and 6C, top rows). In contrast, the above-mentioned histone marks were silenced in the internal introns 258 
irrespective of the IR status, while the H3K36me3 signal increased. Interestingly, H3K36me3 levels 259 
were reduced in retained introns associated with dynamic chromatin (Figure 6B, 2nd row, far right), 260 
while they remained similar in retained- and non-retained introns associated with stable chromatin 261 
(Figure 6C, 2nd row, far right).  262 

A most interesting result of this analysis was that there are no differences in epigenetic marks between 263 
internal retained and non-retained introns when a stable chromatin state is maintained (Figure 6C, 264 
bottom row). This suggests that there must be unknown factors that are independent of chromatin 265 
accessibility responsible for modulating IR. Thus, further investigations are required to identify 266 
additional factors that impact on IR in haematopoietic cells. 267 

Discussion 268 

In this study, we have employed a machine-learning approach to determine regulators of IR in primary 269 
hematopoietic cells. For the first time we provide integrated matched transcriptomic, nucleosome 270 
occupancy, CpG methylation, and 6 histone modification profiles from 5 primary human cell types 271 
representing 2 independent systems of haematopoietic cell differentiation. Previous studies have 272 
described features that are associated with retained introns, including a higher intronic GC content, 273 
shorter intron lengths, weaker 5′ and 3′ splice site strengths, and some epigenetic marks (Braunschweig 274 
et al., 2014; Schmitz et al., 2017; Wong et al., 2017a). However, these studies have focused on single 275 
or paired omics layers only and often used individual cell lines for their analyses.  276 

We applied supervised machine learning using EN and conditional RF algorithms.  Unlike deep learning 277 
methods, that are very capable of identifying complex relationship patterns but do not provide tools to 278 
determine how exactly an outcome was determined (Rauschert et al., 2020), these multivariate models 279 
allows the identification of features that contribute most to the outcome of interest (IR). Such modelling 280 
strategy is “data-independent” and can be applied to other forms of alternative splicing as well. For 281 
example, RF has been used to study the importance of chromatin modifications in the interaction 282 
between topologically associated domains (Dixon et al., 2015) and EN was used to model prognostic 283 
alternative splicing signatures in breast cancer (Wang et al., 2020).  284 

Previous studies have mostly focussed on investigating the functional links between chromatin 285 
organisation and gene expression regulation and found that nucleosome free regions at a transcription 286 
start site are strongly associated with transcription initiation (Radman-Livaja and Rando, 2010). 287 
Nucleosomes were also reported to be preferentially positioned in exons to facilitate their identification 288 
among flanking introns by the splicing machinery (Schwartz et al., 2009; Tilgner et al., 2009). However, 289 
it is important to note that these findings were made using the micrococcal nuclease digestion with deep 290 
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sequencing (MNase-seq) protocol, which is more susceptible to GC content bias. Kelly et al. (Kelly et 291 
al., 2012) showed that nucleosome enrichment in exons vs. introns was not observed in NOMe-seq data, 292 
which they attributed to the technical differences between the two experimental approaches. NOMe-293 
seq data includes the percentage of methylated reads at a given position as opposed to the count of 294 
mapped reads in MNase-seq data. Similarly, our NOMe-seq based analysis of chromatin accessibility, 295 
quantified by GCH methylation, did not reveal a specific preference for nucleosomes to be positioned 296 
in exons rather than introns.  297 

Our study did reveal the regions of clear GCH enrichment clusters either upstream, downstream or 298 
directly at the splice sites of retained introns in contrast to non-retained introns. High GCH methylation 299 
levels, like those observed in retained introns, are indicative of nucleosome free regions or NFRs, 300 
regions of possible nucleosome eviction that are characterised by a high density of methylated GCH 301 
sites and unmethylated CpG dinucleotides (Nordström et al., 2019). Interestingly, You et al. showed 302 
that a loss of nucleosome depleted regions accompanied by nucleosome occupancy precedes changes 303 
in endogenous CpG methylation in OCT4 and NANOG genes in embryonic carcinoma cell line NCCIT 304 
(You et al., 2011). Formation of an NFR upstream from the 5′ exon/intron boundary led to DNA 305 
hypomethylation and the depletion of H3K36me3 in SETD2 deficient tumours (Simon et al., 2014). It 306 
is therefore reasonable to conclude that alteration of the epigenetic landscape attributed to IR initially 307 
starts with changes in nucleosome architecture and subsequent transcriptome rewiring. 308 

Apart from signalling a nucleosome eviction, high levels of GCH methylation potentially mark regions 309 
with longer internucleosomal spacing, also known as DNA linker regions. A study in estimating 310 
nucleosome phasing in single cell found great agreement between average linker length measured with 311 
scNOMe-seq data and the phase estimates derived from MNase-seq (Pott, 2017). Linker length ranges 312 
between ~20–90 bp and varies among different species, tissues, and even fluctuates within a single 313 
cellular genome (Szerlong and Hansen, 2011). Nucleosome phasing has been linked to alternative 314 
splicing before, where RNA Pol II elongation rates increase upon histone depletion and pre-mRNA 315 
splicing is delayed (Jimeno-González et al., 2015). Previous studies identified nucleosomes as physical 316 
barriers to efficient transcription elongation in vitro, however in vivo they are efficiently removed from 317 
transcribed chromatin (Saldi et al., 2016). Pol II were also found to be involved in maintaining 318 
nucleosome phasing in the transcribed region, where longer Pol II dwell times, associated with slow 319 
transcription, allowed for remodelling of H3K36me3 profiles (Fong et al., 2017).  320 

In regions further downstream of transcription start sites, nucleosome positioning becomes less stable 321 
(Radman-Livaja and Rando, 2010) and linker region lengths become nonuniform. We therefore propose 322 
that the differences in DNA methylation and H3K36me3 signal observed over internal introns reflect 323 
the underlying changes in nucleosome organisation, that in turn propagates IR (Figure 7). In the 324 
presence of IR, transcription rates are faster over more spaced out nucleosomes that does not allow 325 
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sufficient time for a “writer” to deposit H3K36me3 in the splicing region (Fong et al., 2017). CpG sites 326 
in the DNA linker regions are usually unmethylated (Pott, 2017) and therefore may explain the reduced 327 
DNA methylated levels associated with IR (Wong et al., 2017b).        328 

In the proximity of transcription start sites, strong histone modification levels (like we observed for 329 
H3K4me3 and H3K27ac) indicate a well-positioned nucleosome (Andersson et al., 2009), while 330 
reduced histone modification levels, particularly reduced H3K4me3, are associated with transcription 331 
factor (TF) binding (Wu et al., 2015). TF binding sites can undergo nucleosome remodelling (Ballaré 332 
et al., 2013) in the form of nucleosome shifts or nucleosome eviction and the formation of an NFR with 333 
associated changes to RNA polymerase II elongation rates. We propose that IR in first introns might be 334 
a biproduct of functional histone modifications and nucleosome remodelling for the purpose of TF 335 
recruitment in the regions proximal to transcription start sites.  336 

In summary, our results provide a major conceptual advance in our understanding of alternative splicing 337 
regulation. We found an unanticipated strong contribution of chromatin organisation in IR modulation 338 
where nucleosomes position upstream or downstream of retained introns (determined by the length of 339 
linker regions and NFRs) to facilitate an acceleration of RNA Pol II elongation and increased IR.  340 
Furthermore, the models generated in this study can be adapted to study epigenetic gene expression and 341 
alternative splicing regulation in other cell systems, other species, in health or disease, and further our 342 
understanding of these essential biological mechanisms.  343 
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Figure legends 381 

Figure 1 Experimental design and workflow to determine regulators of IR. Raw high-throughput 382 
data were processed for each biological replicate and amalgamated by cell type from the indicated 383 
number of samples (n). The output was used for feature extraction: IR events were treated as a binary 384 
outcome and we trained an Elastic Net (EN) regression model and a conditional Random Forest model 385 
with a total of 46 sequence-based and epigenetic features. Using feature ranking, we identified the 386 
factors that were most strongly associated with IR outcomes and compared the performances of both 387 
modelling strategies. These steps were repeated for each cell type.  388 

Figure 2 IR prediction and model feature association analyses. (A) Scatter plot of differential IR 389 
events (Sig blue – significant; Not Sig yellow – not significant) between monocytes (Mo) vs 390 
macrophages (Ma) (left), Naïve (TN) vs Central Memory (CM) T cells (middle), and Central Memory 391 
vs Effector Memory (EM) T cells (right). (B) Receiver operating characteristic (ROC) curves and (C) 392 
precision recall (PR) curves comparing the performance of the EN classifier in five cell types. (D) 393 
Comparison of AUC values between EN and cRF algorithms, error bars show 95% confidence interval. 394 
(E) Variable importance scores for the top 10 features identified by EN and conditional RF algorithms. 395 
The scores were scaled to values that add up to 1.0 and the size of a bar corresponds to the effect size.   396 

Figure 3. Analysis of dynamics intron retention. (A) Modified modelling strategy from Figure 1. 397 
Only introns that were found to be in retained and non-retained states in different cell types were 398 
included in the analysis. (B) Alluvial plot illustrating the dynamics of IR states among the five cell 399 
types. (C) ROC and (D) PR curves comparing the performance of cRF (brown) and EN (black). (E) 400 
Variable importance scores for the top 5 features identified by EN and conditional RF algorithms, scaled 401 
between 0 and 1.  402 

Figure 4 Analysis of introns from genes with non-differential expression levels. (A) Scatter plot of 403 
host gene expression for introns that change their IR status. (B) ROC curve indicating the performance 404 
of a conditional RF model fitted on the data from non-differentially expressed genes (GE, gene 405 
expression). (C) Ranking of the features based on the scaled variable importance scores. (D) Integrative 406 
Genomics Viewer (IGV) plots revealing higher density and hypermethylation levels of GCH sites in 407 
the splice site regions of differentially retained introns in both highly- and lowly- expressed gene 408 
examples (NFR – Nucleosome Free Region, GCH Methylation – methylation levels of GC 409 
dinucleotides followed by any nucleobase except guanine). 410 

Figure 5 GCH methylation clustering in differentially retained introns. (A) Clustering of GCH 411 
methylation in the +/- 200 bp region around the 5′ splice site (ss). Each line corresponds to one intron 412 
that is either in a retained (left) or non-retained state (right). (B) Line plots showing average GCH 413 
methylation values (i.e. chromatin accessibility) in retained vs non-retained introns across 5 clusters. 414 
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Figure 6 Interplay between chromatin accessibility, CpG methylation and histone modifications. 415 
(A) IGV plots of mRNA-seq, H3K36me3 ChIP-seq, NOMe-seq, and WGBS-seq data indicating 416 
different levels of GCH methylation between retained and non-retained introns and higher prevalence 417 
of NFRs in the regions proximal to IR. (B) Line graphs show the average levels of GCH methylation, 418 
CpG methylation, and the difference between ChIP-seq H3K4me3, H3K27ac, H3K4me1, and 419 
H3K36me3 signals and ChIP-Seq Input, normalised to the Bins Per Million (BPM),  in retained (red) 420 
and non-retained (blue) introns associated with chromatin status. The first row shows epigenetic signals 421 
at the 5′ splice site of first introns (close to the promoter region) and the second row represents all other 422 
introns. (C) The same analysis performed in (B) is repeated for introns where the chromatin status 423 
remains the same, i.e. non-differential GCH methylation.  424 

Figure 7 Proposed role of chromatin accessibility in IR regulation. More dense positioning of 425 
nucleosomes slows down RNA Pol II elongation rate, allowing sufficient time for a histone 426 
modification (in this case, H3K36me3). Methylated CpG dinucleotides and unmethylated GCH sites 427 
over the nucleosome core explain higher CpG methylation levels and lower GCH methylation levels in 428 
constitutively spliced introns. 429 

 430 

 431 
  432 
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STAR Methods 433 

Quantification and statistical analysis  434 

To investigate how IR is regulated in primary immune cells, we integrated epigenomics and 435 
transcriptomics data from the German Epigenome Program (DEEP). Primary monocytes, monocyte-436 
derived macrophages, and primary T-cells (naïve, central memory, effector memory) were retrieved 437 
from 2 healthy donors. Cell isolation, differentiation, DNA/RNA extraction and library preparation for 438 
mRNA-Seq, WGBS, NOMe- and ChIP-Seq experiments are described in detail in these articles (Durek 439 
et al., 2016; Wallner et al., 2016). 440 

mRNA-Seq data processing and identification of IR events 441 

RNA-Seq reads (FASTQ format) of each technical replicate were tested for quality using FastQC 442 
v.0.11.5 (github.com/s-andrews/FastQC). Further processing, including adaptor trimming, was 443 
performed within the IRFinder algorithm for IR quantification (Middleton et al., 2017). Sequencing 444 
reads were mapped to the human reference genome (GRCh38) using STAR v2.7 with default 445 
parameters (Dobin et al., 2013). IR-ratios, a quantitative measure of IR levels, were determined as: 446 

𝐼𝑅𝑟𝑎𝑡𝑖𝑜	 = 	
	𝐼𝑛𝑡𝑟𝑜𝑛𝑖𝑐	𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒

𝐼𝑛𝑡𝑟𝑜𝑛𝑖𝑐	𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒	 + 	𝐸𝑥𝑜𝑛𝑖𝑐	𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒
	, 447 

where the Intronic Abundance is defined as the trimmed mean of the reads that map to an intron, after 448 
having excluded features that overlap the intron, with the highest and lowest 30% of values being 449 
excluded. Exonic Abundance is defined as the number of reads that map across an exon-exon junction. 450 
Library size normalisation (between-sample normalisation) was not required as the ratio between 451 
intronic and exonic abundance is determined from within the same transcriptome (Middleton et al., 452 
2017).  453 

Introns that were present in at least 10% of a gene’s mature mRNA transcripts (IRratio ≥ 0.1) with an 454 
overall intron depth ≥ 10 were considered retained. Non-retained introns were defined as those with an 455 
IRratio ≤ 0.01 and intron depth < 10. 456 

We used Cufflinks v2.1.1 (Trapnell et al., 2010) to estimate gene abundance in fragments per kilobase 457 
per million (FPKM). Only introns from host genes with FPKM ≥ 1 were selected for the downstream 458 
analyses.  459 

WGBS data processing 460 

Raw WGBS FASTQ files were assessed for quality using FastQC v.0.11.5 (github.com/s-461 
andrews/FastQC). Standard Illumina adaptors used for the library preparation were trimmed using 462 
cutadapt v.1.10 (Martin, 2011) with a quality cutoff of 20 base pairs (bp) and minimum read length of 463 
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30 bp. Trimmed reads were mapped to the GRCh38 reference genome, duplicate reads removed, and 464 
methylation calling performed using Bismark v.0.19.0 (Krueger and Andrews, 2011). Only CpG sites 465 
with a coverage of more than 5 reads were retained for further analysis. 466 

ChIP-Seq data processing 467 

ChIP-Seq data for six histone modifications (H2K27ac, H3K27me3, H3K36me3, H3K4me1, 468 
H3K4me3, H3K9me3) were aligned to the human GRCh38 reference genome using STAR v2.7 (Dobin 469 
et al., 2013). Duplicate reads were removed using Picard v.2.18.4 (broadinstitute.github.io/picard/) and 470 
further processed using MACS2 v.2.2.6 (Zhang et al., 2008) to identify histone modification peaks, 471 
with default parameters and q-value cut-off of 0.01. All histone modifications were processed in the 472 
“narrow peak” mode in order to extract peak summit coordinates. For visualisation in IGV (Robinson 473 
et al., 2012), we generated coverage tracks using bamCoverage from deepTools2 (Ramirez et al., 474 

2016) with the following parameters --binSize 1 --normalizeUsing BPM --475 

effectiveGenomeSize 2913022398 --extendReads 200.   For HM line plots, we 476 

substracted ChiP-Seq Input from a respective HM ChiP-seq read counts and normalised based on Bins 477 
Per Million (BPM) mapped reads using bamCompare and parameters --binSize 1 --478 
scaleFactorsMethod readCount --effectiveGenomeSize 2913022398 --479 

operation subtract --normalizeUsing BPM.  480 

NOMe-Seq data processing 481 

Raw FASTQ files were assessed for quality using FastQC v.0.11.5 (github.com/s-andrews/FastQC). 482 
Reads were mapped to the GRCh38 reference genome, duplicate reads removed, and methylation 483 
calling performed using Bismark v.0.19.0 (Krueger and Andrews, 2011). GCH methylation information 484 
was extracted with the coverage2cytosine utility with --nome parameter. 485 

NFRs were predicted using gNOMePeaks tool (Nordström et al., 2019) with default parameters, which 486 
include 4,000 bp up- and downstream from each peak for background signal calculation and the 487 
maximum distance between GpC sites of 150 bp. We used the same algorithms to predict nucleosome 488 
positioning by substituting GCH methylation, as required input, with GCH occupancy (1 −489 
𝐺𝐶𝐻	𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛) and reducing the background region to 1,000 bp up- and downstream from each 490 
peak and the distance between GCH sites to 20bp.  491 

Feature selection 492 

Model features were associated with three genomic regions around retained and non-retained introns: 493 
(i) +/- 100 bp from the 5´splice site, (ii) +/- 100 bp from the 3´splice site, and (iii) +/- 100bp from the 494 
middle of an intron, each region being 200 bp long. GC content was extracted using bedtools v.2.26.0 495 
(Quinlan and Hall, 2010) nuc command. For splice site strength calculations, we used MaxEntScan 496 
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(Yeo and Burge, 2004). CpG density values was obtained using Repitools (Statham et al., 2010). The 497 
percent spliced in (PSI) index of flanking exons was calculated as described in (Schafer et al., 2015). 498 
Exons with PSI ≥ 0.9 were considered as included. 499 

To generate epigenetic features, we overlapped three regions of interest with the pre-processed 500 
epigenetic data. NFR regions were defined as regions greater than 40bp in length with p-value ≤  0.05 501 
(Fisher test comparing CpG methylation in the NFR to the surrounding background). Presence or 502 
absence of an NFR was dichotomised as “yes” – 1 and “no” – 0. Information about nucleosome location 503 
was included into the model in the similar manner (nucleosomes were defined as regions greater than 504 
140bp in length with p-value ≤  0.05). 505 

The relationship between histone modification and IR was included into the model through the presence 506 
or absence of an overlap with a histone signal region. It was categorised as 0 – no overlap, 1 – overlap 507 
with a region of HM signal, 2 – overlap with a region of strong signal (strong signal = mean (HM pile-508 
up) + sd (HM pile-up)).	The full list of features is presented in Table S1. 509 

Elastic Net and Conditional Random Forest Modelling  510 

To identify features important for IR, we constructed a binary classification model using the EN 511 
algorithm. We approached the problem in a naïve manner, i.e. we did not impose any prior assumptions 512 
about the factors that might potentially play a role and therefore an equal penalty factor was applied to 513 
all features. EN classification was performed in the caret R package (Kuhn, 2008) using glmnet method 514 
(Friedman J, 2010) for a binary outcome. The group imbalance, due to the different number of retained 515 
and non-retained introns identified suitable for modelling, was handled by down-sampling, using 516 
downSample command. Parameter 𝜆,	determining	the	overall	size	of	the	regularization	penalty,	was 517 
optimised by 10-fold cross validation procedure. Features were ranked based on the absolute values of 518 
the model coefficients.  519 

We repeated this in-silico analysis to validate our results using an independent machine learning 520 
algorithm, cRF. In cRF, unlike standard RF where the first split variable is randomly selected, an 521 
association test between the outcome and the model predictors is performed first. The ranked p-values 522 
are then used to identify the covariate with the strongest association to the outcome, which is later used 523 
for the first binary split at cutpoint 𝑐 for a continuous covariate or at category 𝐶	for a categorical 524 
covariate. cRF classification was also performed in caret using cforest method as implemented in the 525 
party R package (Strobl C, 2008). The cRF model provides an unbiased measure of variable importance, 526 
which we used to rank the most important features for IR prediction.  527 

To avoid overfitting, we ranked the features’ importance using both EN and cRF techniques (Ding et 528 
al., 2018). Moreover, our findings were validated across different blood cell lineages from different 529 
humans. 530 
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Statistical Analysis 531 

All statistical analyses were performed in R v.4.0. For the identification of differentially retained introns 532 
we used the Audic and Claverie Test (Audic and Claverie, 1997). P-values ≤ 0.05 were considered 533 
significant. Clustering was performed using unsupervised hierarchical clustering with complete linkage. 534 

Data and Software Availability 535 

Sequencing data are deposited at the European Genome-Phenome Archive under the accession numbers 536 
EGAS00001001595 and EGAS00001001624. Access is subject to an application process as per the 537 
EGA requirements. R scripts developed for this study are available at 538 
https://github.com/combiomed/IR_code. Processed sequencing data used to train the models was 539 
deposited at Mendeley Data: http://dx.doi.org/10.17632/b6crxbxbk2.1. 540 
 541 
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 728 
Figure 6 Experimental design and workflow to determine regulators of IR. Raw high-throughput data were processed for 729 
each biological replicate and amalgamated by cell type from the indicated number of samples (n). The output was used for 730 
feature extraction: IR events were treated as a binary outcome and we trained an Elastic Net (EN) regression model and a 731 
conditional Random Forest model with a total of 46 sequence-based and epigenetic features. Using feature ranking, we 732 
identified the factors that were most strongly associated with IR outcomes and compared the performances of both modelling 733 
strategies. These steps were repeated for each cell type.  734 
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 736 
Figure 7 IR prediction and model feature association analyses. (A) Scatter plot of differential IR events (Sig blue – 737 
significant; Not Sig yellow – not significant) between monocytes (Mo) vs macrophages (Ma) (left), Naïve (TN) vs Central 738 
Memory (CM) T cells (middle), and Central Memory vs Effector Memory (EM) T cells (right). (B) Receiver operating 739 
characteristic (ROC) curves and (C) precision recall (PR) curves comparing the performance of the EN classifier in five cell 740 
types. (D) Comparison of AUC values between EN and cRF algorithms, error bars show 95% confidence interval. (E) Variable 741 
importance scores for the top 10 features identified by EN and conditional RF algorithms. The scores were scaled to values 742 
that add up to 1.0 and the size of a bar corresponds to the effect size.  743 
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 744 
Figure 8. Analysis of dynamics intron retention. (A) Modified modelling strategy from Figure 1. Only introns that were 745 
found to be in retained and non-retained states in different cell types were included in the analysis. (B) Alluvial plot illustrating 746 
the dynamics of IR states among the five cell types. (C) ROC and (D) PR curves comparing the performance of cRF (brown) 747 
and EN (black). (E) Variable importance scores for the top 5 features identified by EN and conditional RF algorithms, scaled 748 
between 0 and 1.   749 
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 750 
Figure 9 Analysis of introns from genes with non-differential expression levels. (A) Scatter plot of host gene expression 751 
for introns that change their IR status. (B) ROC curve indicating the performance of a conditional RF model fitted on the data 752 
from non-differentially expressed genes (GE, gene expression). (C) Ranking of the features based on the scaled variable 753 
importance scores. (D) Integrative Genomics Viewer (IGV) plots revealing higher density and hypermethylation levels of 754 
GCH sites in the splice site regions of differentially retained introns in both highly- and lowly- expressed gene examples (NFR 755 
– Nucleosome Free Region, GCH Methylation – methylation levels of GC dinucleotides followed by any nucleobase except 756 
guanine). 757 
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 759 
Figure 10 GCH methylation clustering in differentially retained introns. (A) Clustering of GCH methylation in the +/- 760 
200 bp region around the 5′ splice site (ss). Each line corresponds to one intron that is either in a retained (left) or non-retained 761 
state (right). (B) Line plots showing average GCH methylation values (i.e. chromatin accessibility) in retained vs non-retained 762 
introns across 5 clusters. 763 
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 765 
Figure 6 Interplay between chromatin accessibility, CpG methylation and histone modifications. (A) IGV plots of 766 
mRNA-seq, H3K36me3 ChIP-seq, NOMe-seq, and WGBS-seq data indicating different levels of GCH methylation between 767 
retained and non-retained introns and higher prevalence of NFRs in the regions proximal to IR. (B) Line graphs show the 768 
average levels of GCH methylation, CpG methylation, and the difference between ChIP-seq H3K4me3, H3K27ac, H3K4me1, 769 
and H3K36me3 signals and ChIP-Seq Input, normalised to the Bins Per Million (BPM),  in retained (red) and non-retained 770 
(blue) introns associated with chromatin status. The first row shows epigenetic signals at the 5′ splice site of first introns (close 771 
to the promoter region) and the second row represents all other introns. (C) The same analysis performed in (B) is repeated 772 
for introns where the chromatin status remains the same, i.e. non-differential GCH methylation.   773 
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 774 
Figure 7 Proposed role of chromatin accessibility in IR regulation. More dense positioning of nucleosomes slows down 775 
RNA Pol II elongation rate, allowing sufficient time for a histone modification (in this case, H3K36me3). Methylated CpG 776 
dinucleotides and unmethylated GCH sites over the nucleosome core explain higher CpG methylation levels and lower GCH 777 
methylation levels in constitutively spliced introns. 778 
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