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Abstract 
Deeply phenotyped cohort data can elucidate differences associated with genetic risk for common 
complex diseases across an age spectrum. Previous work has identified genetic variants 
associated with Alzheimer’s disease (AD) risk from large-scale genome-wide association study 
meta-analyses. To explore effects of known AD-risk variants, we performed a phenome-wide 
association study on ~2000 clinical, proteomic, and metabolic blood-based analytes obtained 
from 2,831 cognitively normal adult clients of a consumer-based scientific wellness company. 
Results uncovered statistically significant SNP-analyte associations for five genetic variants after 
correction for multiple testing (for SNPs in or near NYAP1, ABCA7, INPP5D, and APOE). These 
effects were detectable from early adulthood. Sex modified the effects of four genetic variants, 
with multiple interrelated immune-modulating effects associated with the PICALM variant. Sex-
stratified GWAS results from an independent AD case-control meta-analysis supported sex-
specific disease effects of the PICALM variant, highlighting the importance of sex as a biological 
variable. These analyses support evidence from previous functional genomics studies in the 
identification of a causal variant within the PILRA gene. Taken together, this study highlights clues 
to the earliest effects of AD genetic risk variants in individuals where disease symptoms have not 
(yet) arisen.    
 
 
Introduction 

The rapidly decreasing cost of genomics paired with technological advances in the 
generation of longitudinal multi-omic data has resulted in multiple datasets of deeply phenotyped 
individuals with a variety of health outcomes1–3. The data collected in these studies have the 
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potential to yield important insights into potential molecular drivers of health, differences observed 
as a function of differential genetic disease risk, and the earliest manifestations of disease 
transitions. The present study seeks to leverage a unique and relatively large set of multi-omic, 
deep-phenotyping data to shed light on genetic pathways to late-onset Alzheimer’s disease (AD) 
by assessing differences in ~2000 analytes in the blood that show association with known genetic 
risk variants for AD. Coupled with high-dimensional data sets, this approach has the potential to 
yield clues into disease processes and possible early-intervention strategies, which are critically 
important given the essentially untreatable nature of late-stage Alzheimer’s disease once 
significant brain deterioration has occurred.  

Genetic variation plays a substantial role in AD risk, with twin studies estimating AD 
heritability at 58-79%4. While the emergence of recent large-scale consortia efforts has facilitated 
well-powered meta-analyses of genome-wide association studies (GWAS) to identify multiple 
common variants with small effect sizes5,6, the research community is still untangling exactly how 
this genetic variation influences disease risk. Functional genomics studies are beginning to 
identify likely genetic pathways to disease with the aid of transcriptomic, epigenomic, and 
endophenotypic data7–10. So far, genetic and multi-omic studies of AD studies have largely 
focused on older individuals with either clinically diagnosed AD or milder symptoms of cognitive 
decline, despite research pointing to highly variable AD pathobiology that occurs on a spectrum, 
and begins decades before clinical symptoms onset11.  
 In this study, we leveraged the results from a large-scale GWAS meta-analysis5 alongside 
data from a deeply phenotyped wellness cohort to investigate the effects of genetic risk for AD in 
individuals without cognitive impairment, at all ages. We undertook an agnostic approach by 
adopting a phenome-wide association study (PheWAS) design12. By examining how genetic 
variation impacts 2008 analytes in the blood of 2831 individuals, we sought to complement 
previous functional genomics studies as well as potentially reveal new testable hypotheses for 
future studies. In addition, we tested for associations between a polygenic risk score (PGRS) for 
AD and blood analytes to determine if a relative burden of genetic risk might impact observable 
changes in the blood, and we assessed for effect modification of genetic risk by sex.  
 
Results 
Summary of population and study design: Data was collected from subscribers in a now-
closed scientific wellness program (Arivale, Inc.3,13), starting in July 2015 and ending in May 2019. 
From this population, we identified 2831 participants with whole genome sequencing (WGS) and 
at least one class of blood-derived analyte (clinical chemistries, proteins, or metabolites) obtained 
at entry into the program (see Online Methods). Sixty-one percent of Arivale participants were 
female, 22% were of non-white self-reported ethnicity, and 28% were obese (Table 1). The mean 
age at blood draw was 47 years, with a range of 18 to 89+. In general, individuals who joined 
Arivale had somewhat higher levels of cardiovascular risk markers compared to the US 
population, and slightly lower rates of obesity and pre-diabetes3 (these rates were consistent with 
rates in the geographies and ethnicities of the population, mostly from the west coast region of 
the United States).  
 We selected 25 common (>5% minor allele frequency (MAF)) and somewhat rare (>1% 
MAF) single nucleotide polymorphisms (SNPs) linked to 24 genes that were significantly 
associated with AD in a recent large-scale meta-analysis5 (Supplementary Table 1). In brief, 
following a PheWAS approach14, for each SNP we fitted a linear regression, with genotype as the 
independent variable and each quantitative log-transformed analyte as the dependent variable, 
adjusted for age, sex, vendor (in the case of clinical lab values), and four principal genetic 
components to account for ancestry. We applied the Benjamini-Hochberg false-discovery rate 
(FDR) correction15 to account for multiple comparisons. We also assessed for gene by sex 
interactions. An APOE-free polygenic risk score (PGRS) was also incorporated into the PheWAS 
model. Lastly, since the SNP candidates for this study were derived from meta-analysis of non-
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Hispanic white (NHW) cohort populations5, we stratified PheWAS by self-identified race (white vs. 
other) in order to determine whether the statistically significant signals we observed were a result 
of the majority-NHW Arivale cohort demographic makeup. 
 
Phenome-wide association study results: We observed 33 SNP-analyte associations that were 
statistically significant at FDR-adjusted p-value<0.05, with the majority of the associations 
observed for the APOE SNPs (rs7412, or the e2-defining allele, and rs429358, or the e4-defining 
allele). The other SNPs showing significant associations with at least one clinical chemistry, 
protein, or metabolite were rs10933431, rs12539172, and rs3752246 (Figure 1, Table S1).  
 
NYAP1: The most robust SNP-analyte associations we observed were between rs12539712 in 
the 3’ region of NYAP1, and two co-regulated proteins, paired immunoglobulin-like type 2 
receptors beta and alpha (PILRB and PILRA). Carriage of the minor allele (AD risk odds ratio 
(OR)=0.92) was associated with significant reduction in normalized protein expression (NPX) of 
PILRB and PILRA compared to individuals homozygous for the major allele (FDR-adjusted p-
values=2.2x10-33 and 2.3x10-17, respectively), while the overall level of NPX increased with age 
among all genotypes. The reduction in protein levels appears roughly dose-dependent with the 
number of minor alleles and was observed in all age groups (Figure 2a). This locus was originally 
identified by rs1476679 near ZCWCP16. NYAP1 and ZCWPW1 are located near PILRA and 
PILRB on chromosome 7, within a linkage disequilibrium (LD) block. In previous gene expression 
studies, the initial index SNP for ZWCWP1 has been associated with expression of multiple PILRB 
and PILRA transcripts in brain9,16. Other recent studies have pointed to variation in PILRA as the 
causal gene at this locus, with a missense SNP as a leading candidate (G78R, rs1859788)17–20. 
We repeated the PheWAS with this putative causal SNP (which was in LD with our index SNP 
rs12539172, R2=0.77), and the associations became stronger (FDR-adjusted p-value for 
PILRB=3.6x10-52; for PILRA=1.4x10-22) (Figure 2b).  
 
APOE4: We observed significant associations between rs429358 (which encodes the e4 allele) 
and multiple related clinical measures of cholesterol (Figure S1), consistent with previous cohort 
studies that included young, middle-aged, and older adults21–24. Differences by genotype were 
less pronounced in older age groups likely due to statin use; exploratory analyses visualizing only 
individuals who did not report use of statin-lowering medications showed more consistent 
genotype-dependent differences in older age groups (Figure S2). The concentration of two 
inflammation-related proteins in the blood were associated with the e4 allele: PLA2G7 and CD28 
(Figure S1). PLA2G7 (platelet activating factor acetylhydrolase) is a known cardiovascular risk 
marker with pro-inflammatory and oxidative activities25 which has previously been associated with 
APOE genotypes26 and implicated in AD and cognitive decline25,27. Selected lipid metabolites in 
the blood were positively associated with e4: two diacylglycerol (DG) metabolites (one of which 
was measured twice in the Metabolon panel) were higher in e4 carriers compared to non-carriers. 
These DGs were also elevated in APOE e2 carriers (see below). 
 
APOE2: Consistent with previous studies21–24, we observed significantly lower levels of multiple 
clinical measures of cholesterol associated with carriage of the e2 allele. As the unadjusted plots 
show (Figure S3), e2 homozygotes are dramatically different than other genotypes, though it 
should be noted that few e2 homozygotes were present in the population (n=16) and were within 
a limited age range (30-59 years). Selected lipid metabolites in the blood were positively 
associated with e2: a monoglyceride (MG) and four diacylglycerol (DG) metabolites (one of which 
was a replicate) were higher in e2 carriers compared to non-carriers. Diacylglycerol is a precursor 
to triacylglyceride (TG), which is typically higher in APOE2 carriers24. The effects of high DGs and 
TGs remains unclear. DG-rich diets fed to diabetic APOE-knockout mice had reduced 
atherosclerosis and lower plasma cholesterol than mice fed TG-rich or western diets28,29; 
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however, non-targeted metabolomics studies have shown elevated levels of DGs and MGs in AD 
and MCI patient brains and blood compared to cognitively intact individuals30,31.  

We observed six proteins that were significantly upregulated in APOE2 carriers (Figure 
3). Though APOE2 is known to bind poorly to LDLR (~2% of e3 or e4 binding activity)32, APOE2 
was associated with lower levels of LDL cholesterol across age groups as noted previously, 
perhaps due to compensatory up-regulation of LDL receptors (LDLR)24 (Figure 3a). APOE2 was 
associated with increased levels of the highly inducible HMOX-1, which has antioxidant properties 
and has been associated with neuroprotection and neurodegeneration33. SLAMF8 may be 
another link to an antioxidant effect of APOE2, as it has been implicated in modulation of reactive 
oxygen species and inflammation via negative regulation of NOX activity34. APOE2 carriers 
displayed higher levels of RNF31 (aka HOIP). HOIP is the catalytic component of the linear 
ubiquitin chain assembly complex (LUBAC), which was recently shown to have a role in the 
recognition and degradation of misfolded proteins35. Variation in CNTNAP2, a member of the 
neurexin superfamily of proteins involved in cell-cell interactions in the nervous system, has been 
associated with neurodevelopmental disorders36, and has been implicated in AD-related 
dementia37. Lastly, SRP14, which has a role in targeting secretory proteins to the rough 
endoplasmic reticulum (ER) membrane, has been identified as one of many tau-associated ER 
proteins in AD brains38. 
 
ABCA7: ABCA7 is involved in lipid efflux from cells into lipoprotein particles, plays a role in lipid 
homeostasis39, and has also been implicated in amyloid-β (Aβ) processing and deposition in the 
brain40. Our results support ABCA7’s lipid-related function by showing lower levels of two 
lactosylceramide (LC) metabolites among individuals carrying the AD-risk allele of rs3752246. 
These differences were evident across all ages but were especially pronounced in the youngest 
age groups (Figure S4). The minor allele of rs3752246 was also associated with higher levels of 
DEFA1 (neutrophil defensin 1, or alpha-defensin 1), an antimicrobial peptide. This novel gene-
protein association is consistent with previous studies showing higher levels of this protein in CSF 
and sera of AD patients compared to controls41,42, potentially linking ABCA7 with an inflammatory 
response pathway to AD. 
 
INPP5D: An intronic SNP in INPP5D (rs10933431), which was associated with a lowered risk of 
AD in meta-analyses, was associated with lower levels of the protein IDUA (alpha-L-iduronidase) 
(Figure S4). INPP5D, which encodes the lipid phosphatase SHIP1, is a negative regulator of 
immune signaling and is expressed in microglia43. To our knowledge, this association has not 
been previously observed. 
 
Polygenic risk score: No associations were observed between the APOE-free PGRS and any 
analyte after FDR correction for multiple testing, either in primary analyses or in analyses adjusted 
for e4 status, or among non-e4 individuals only. No effect modification by sex or APOE4 status 
was observed. 
 
Sex-specific findings: We observed a SNP x sex interaction involving the AD-protective PICALM 
variant, such that the minor allele was associated with higher levels of 30 proteins in men and 
lower levels of the proteins in women (Figure 4, Figure S5). These proteins were highly correlated 
with one another (mean pairwise spearman’s rho = 0.49); thus, it is unclear whether the 
associations are independently biologically meaningful, or whether there is a passenger effect, in 
which one or a few proteins are driving the sex-differential association with genotype observed in 
the data. The set of proteins that are differentially affected by sex and PICALM genotype are 
primarily implicated in immune processes, cell adhesion, and regulatory processes, with widely 
overlapping functions (Figure S6). In addition, the PICALM variant is associated with a sex-
specific effect on five highly correlated long-chain fatty acid (LCFA) metabolites and one 
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polyunsaturated fatty acid (PFA) metabolite (DHA) (Figure 4). A potential link between PICALM 
function, lipids, and AD is feasible: fatty acids, and DHA in particular, have long been known to 
have a role in maintaining brain health and cognition44, while PICALM expression has been shown 
to influence cholesterol homeostasis through multiple mechanisms45.  To investigate further, we 
conducted a post-hoc analysis examining the impact of this variant on AD risk stratified by sex, in 
a meta-analysis of clinically diagnosed late-onset AD (18,812 individuals) (See Online Methods 
for details). While AD risk was reduced in both men and women among carriers of the minor allele, 
the effect was stronger among men (Table 2 and Table S5), which was consistent with the sex-
stratified SNP-analyte analyses (data not shown).  

Other observed sex-specific effects were more modest. The SNP near CD2AP, a 
scaffolding protein, interacted with sex to affect three highly correlated sphingomyelins and three 
plasmologens, while the SNP in SPI1, a transcription factor associated with microglial activation46, 
interacted with sex to affect SMOC2, a protein involved in microgliosis that has been previously 
associated with Aβ positivity in CSF47. Lastly, the missense ABCA7 SNP interacted with sex to 
affect levels of Ubiquitin conjugating enzyme E2f (UBE2F).  
 
Stratification by self-identified race/ethnicity: Previous studies have shown genetic 
heterogeneity between white and non-white individuals, particularly with regard to African 
Americans and risk of cognitive outcomes among carriers of APOE and ABCA7 variants48,49. 
Unfortunately, due to vanishingly small numbers in individual self-identified groups (Table 1), we 
were not able to assess genetic risk effects in individual groups with statistical rigor. As expected, 
analyses restricted to white individuals recapitulated results of the overall analysis (Figure S7). 
In the nonwhite group overall, we observed effect sizes that were consistent with the overall 
results and white-only results (Figure S8). Despite these overall consistencies, and given known 
wide-ranging racial/ethnic disparities in dementia incidence50, it is imperative that future deep-
phenotyping studies are far more inclusive than the study presented here. 
 
Discussion: Our study examines associations between known genetic risk factors for AD and 
blood markers (clinical labs, proteins, and metabolites). It provides insight into the manifestation 
of AD-related genetic risk in blood-borne analytes from cognitively normal individuals and 
demonstrated how AD-related genetic variation manifests in the blood across adulthood. Our 
results contribute to the growing literature highlighting a potential causal variant (missense SNP 
in PILRA), point to new mechanisms of protection among APOE2 carriers, and suggest a role for 
infectious diseases as AD risk factors, alongside lipid metabolism, immune response, and 
endocytosis. We also uncovered intriguing differences between men and women in how genetic 
risk manifests in the blood. These analyses not only add to the existing literature on functional 
genomics in AD, but also offer up multiple potential new hypotheses to catalyze future studies. 
 The strongest associations in the study were between the NYAP1 SNP (rs12539172) and 
the PILRB/PILRA proteins. PILRA and PILRB are paired inhibiting/activating receptors, 
respectively, that are expressed on innate immune cells, recognize certain O-glycosylated 
proteins, and have an important role in regulating acute inflammatory reactions51. The R78 
substitution in PILRA (rs1859788) has been shown to reduce the binding capacity of endogenous 
ligands and thereby potentially increase microglial activity20. In addition, while controversial, work 
from our group and others52–54 has suggested a potential viral role in AD risk. Notably, the R78 
variant has been implicated in HSV-1 infectivity20 and differences in HSV-1 antibody titer levels17. 
While previous studies have hypothesized that reduced activity of PILRA was due to steric 
conformational changes in the protein leading to reduced binding of key ligands (including HSV-
1 glycoprotein B), our results suggest that reduced levels of circulating PILRA protein in R78 
carriers could also be a factor in the overall protective effect of this genetic variant. 
 Strong associations were observed between multiple lipid analytes and the SNPs 
encoding APOE4 (rs429358) and APOE2 (rs7412). APOE normally plays a key role in lipid 
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transport, including shuttling cholesterol to neurons in healthy brains. Notably, APOE has a role 
in Aβ metabolism, and while the exact mechanism is unknown, the e4 variant appears to 
accelerate neurotoxic Aβ accumulation, aggregation, and deposition in the brain55. Blood 
cholesterol levels among APOE4 and APOE2 carriers amongst Arivale participants were largely 
consistent with a large body of existing data, as this is well studied. It should be noted that while 
5-10% of e2 homozygotes develop type III hyperlipoproteinemia (typically in the presence of an 
existing metabolic disorder56) resulting in elevated cholesterol levels, all e2 homozygotes in the 
study had significantly decreased levels of LDL cholesterol compared to other genotypes. Greater 
understanding of the compensatory mechanism leading to upregulated LDLR and lower 
circulating LDL cholesterol is needed. In addition, our results indicating a link between APOE2 
and several potential protective mechanisms suggested by upregulation of HMOX1, SLAMF8, 
and RNF31 in e2 carriers, warrants further research.  
 Genetic variation likely affects men and women differentially, pointing to mechanisms that 
contribute to known differences in AD pathology between the sexes57. Our results highlight a novel 
interaction between the AD-risk variant in PICALM and multiple proteins implicated in immune 
response in a sex-specific manner, and support emerging research showing sex differences in 
the neuroimmune response that impact microglia function58. This multi-analyte interaction was 
supported by results from sex stratified GWAS meta-analyses, which showed differing effect sizes 
of the variant on men vs. women. 
 In addition to effects of individual genetic variants, we also examined an AD-specific 
polygenic risk score. While the PGRS is predictive of disease in case/control studies59, it was not 
associated with any blood analytes in the all-ages AD-free Arivale cohort. Combining genetic 
effects into a single score for AD likely served to dilute any individual genetic effect on the 
manifestation of genetic risk in the blood. In addition, the relative youth and cognitive health of 
this cohort should be taken into account. The PGRS may be more likely to detect perturbation in 
analytes that are markers of systemic inflammation or immune dysfunction in later life and among 
cohorts experiencing cognitive impairment. 
 The results presented here are novel and we believe will be of interest to the AD-related 
functional genomics community, though several limitations should be noted. The study population 
was not a random sample but was self-selected. The population is largely self-identified NHW, 
was mostly located on the west coast, and likely has higher than average socio-economic status 
(though these data were not captured). Thus, results may not be generalizable to a broader 
population. At this time, we were not aware of a suitable replication cohort that would contain 
parallel -omics panels in an all-ages health-heterogeneous cohort. Future studies will be needed 
to assess generality of the findings to other populations. Another limitation to the interpretation of 
results concerns the issue of pleiotropy; we cannot discern pleiotropic, non-AD-related effects 
from true causal effects that are implicated in AD pathogenesis. Related, we only obtained 
peripheral plasma, and are unable to examine effects in AD-relevant compartments such as brain 
or CSF. We only had high-coverage WGS available and did not interrogate other types of genetic 
variation such as copy number variants, indels, and short tandem repeats. Lastly, data 
harmonization with other studies will be a challenge. For instance, most previous metabolomics 
studies used metabolomics data that lacked complete speciation, and more work is needed with 
newer technologies that yield high fidelity data to determine the biological effects of specific serum 
metabolites.  
 This study also has multiple strengths. While most studies focused on AD-related genetic 
variation consist of case/control cohorts in older adults, the Arivale data offered an unprecedented 
look into how genetic variation perturbs physiological pathways in the blood long before disease 
onset, in health-heterogeneous individuals of all ages. This feature allowed us to observe subtle 
changes in blood associated with genetic variation, due to the relatively large sample size (2831 
individuals with WGS) and the high quality of the blood analytes collected. Our results are from a 
“real-world” cohort, which promises to be an increasing source of large-scale data in the 
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community going forward, with its accompanying advantages and disadvantages. Some results 
were previously unobserved and need to be replicated (such as the associations between APOE2 
and multiple proteins), while other results are in agreement with previous findings and serve to 
reinforce confidence that the results are reasonably representative and not simply spurious.  
 Due to a unified world-wide effort, dozens of genetic variants have been robustly 
implicated in the development of AD, though we are still in the early stages of understanding 
exactly how genetic variation contributes to disease. Our study showed that AD-related genetic 
variation manifests in the blood, from early adulthood onward, and highlights known targets for 
prevention in early and mid-life, such as cholesterol monitoring, mitigation of inflammation, and 
possibly, HSV-1 prevention and/or viral load management. Importantly, as well as yielding new 
insight into the pathobiology of AD through adulthood, these results may provide a significant 
number of new drug targets that are highly novel and biologically plausible or may serve as 
biomarkers if confirmed to have a consistent influence on AD pathophysiology. Lastly, these 
results highlight the need to assess for sex differences in future studies. Taken together, these 
results not only illustrate previously unobserved biological phenomenon implicated in 
development of AD, but also serve as an important resource for the generation of hypotheses for 
future functional genomics studies and emphasize the potential insight that can be gleaned from 
deeply phenotyped individuals. 
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Online Methods 

Population: The Institute for Systems Biology, through partnership with their spin-out company 
Arivale, has access to a wealth of data collected longitudinally from subscribers in the 
commercially available Arivale Scientific Wellness program (as described previously3,13), starting 
in July 2015. In brief, participants in the Arivale program were assigned a health coach upon 
joining the program, who then utilized data from clinical blood assays and detailed health-history 
and behavioral questionnaires to personalize health advice and management of health goals; 
coaching generally focused on exercise, nutrition, stress management, and sleep. participants 
have consented to their de-identified data being used for research purposes. 
 
Blood-derived analytes: for each participant, fasting clinical blood laboratory tests were 
measured upon joining the program and at regular intervals for those enrolled longitudinally. 
Blood samples were collected at either local facilities hosted by LabCorp (North Carolina, USA) 
or Quest Diagnostics (New Jersey, USA). Whole genome sequencing was performed on DNA 
extracted from whole blood with library preparation using the Illumina TruSeq Nano Library prep 
kit and sequenced using Illumina HiSeq X, PE-150, target 30X coverage at a single CLIA-
approved sequencing laboratory. At the baseline blood draw, 2827 of the 2831 individuals with 
sequenced whole genomes had up to 63 fasting clinical blood lab tests with no more than 20% 
missing. Clinical blood tests included standard markers for cardiometabolic health (lipid levels), 
diabetes, inflammation, kidney and liver function, nutrition (vitamins and minerals), and blood 
cell counts; blood samples were collected and processed by Quest Diagnostics and Labcorp. 
Frozen plasma samples were also sent to Olink (Olink Bioscience, Sweden) for targeted 
proteomics assays based on Olink’s proximity extension assay technique. Up to 2694 of these 
participants had quantitative proteomic data on 274 proteins from three Olink panels 
(Cardiovascular II (https://www.olink.com/products/cvd-ii-panel, Cardiovascular III 
(https://www.olink.com/products/cvd-iii-panel/), and Inflammation 
(https://www.olink.com/products/inflammation/). An additional 919 proteins (from 10 additional 
panels available at Olink at the time) were obtained from a subsample of 354 individuals, in 
which APOE e2/e2 and APOE e4/e4 genotypes were overrepresented. Since multiple batches 
were performed, previously generated pooled control samples were run with each batch and 
used for batch correction and multiple control samples were included on each plate. Olink 
provides protein measurements as “Normalized Protein Expression” (NPX) values, Olink’s 
arbitrary unit which is in Log2 scale. Up to 1855 of the participants had data from 754 
metabolites. Aliquots of frozen plasma samples were sent to Metabolon, Inc. to conduct 
metabolomics assays using the Metabolon HD4 discovery platform. Relative concentration 
values were reported for each metabolite.  
 
SNP selection: We selected 25 common and somewhat-rare (>1% allele frequency) SNPs that 
were significantly associated with Alzheimer’s Disease in a recent large-scale meta-analysis 
based on updated data from the International Genomics of Alzheimer’s Project (IGAP)5. These 
variants have been widely studied, and are determined to be within or near genes in one of four 
pathways known to be associated with AD risk, including cholesterol metabolism, immune 
response, regulation of endocytosis, and protein ubiquination5–8,60. In addition to the variants 
replicated in Kunkle et al., 2019, we also included the SNP coding for APOE e2 (rs7412), as it is 
historically understudied due to its rarity and we hypothesized that associations with this SNP 
may yield valuable clues to the known protective effect of this genotype. The 25 SNPs were 
linked to 24 genes (two SNPs in APOE), as detailed in Table S1. 
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Polygenic risk score calculation for AD: PGRS for age-associated AD risk was computed using 
summary statistics from the initial IGAP-driven GWAS meta-analysis6. Briefly, the set of SNPs 
included in the PGS was determined as follows. The Benjamini-Hochberg15 procedure was 
applied to the p-values for all SNPs tested in the GWAS to account for multiple testing by 
controlling the false discovery rate (FDR) at a 5% level. This FDR-filtered set of SNPs was then 
further pruned using linkage disequilibrium (LD): pairs of SNPs in close proximity capturing 
highly correlated information (r2 > 0.2) were identified, and the SNP with the smaller p-value in 
the pair was kept; this was repeated until all remaining SNPs were mutually uncorrelated (r2 < 
0.2 for all pairs). The PGRS for each individual was then calculated by summing up the 
published effect size for each selected SNP multiplied by the number of effect alleles the 
individual carried for that SNP, across all of the selected SNPs. Missing genotypes were mean 
imputed using the effect allele frequency.  
 
Statistical analysis: The study population consists of all participants in the Arivale Wellness 
program with CLIA-laboratory-generated whole genome sequences. Following a phenome-wide 
association study approach (PheWAS) 12,14, the primary model for each SNP used linear 
regression, with genotype (0, 1, or 2, with 0 indicating homozygosity for the major allele and 2 
indicating homozygosity for the minor allele) as the predictor, and each continuous quantitative 
analyte as the dependent variable. Clinical lab and metabolite values were natural log 
transformed to account for right skewness and outliers, with +1 added to each natural log 
transformation to prevent zero values. Proteomic quantities were presented as normalized 
protein expression, Olink’s arbitrary unit, which is in log2 scale. Genetic ancestry was 
represented by principal components (PCs) 1-4, calculated using previously described methods 
61. All SNP models were adjusted for age, sex, genetic ancestry PCs 1-4, and vendor 
identification for the clinical labs. Secondary models tested effect modification by sex by 
including a gene x sex interaction term in the models. We accounted for multiple comparisons 
by applying the Benjamini-Hochberg method 15 at alpha=0.05 on a per-SNP basis and applied to 
the main effect of genotype in the primary models, while we set alpha=0.1 as the threshold for 
the gene x sex interaction models, as interaction terms are typically underpowered compared to 
main effects and we sought to fully explore sex effects for future hypothesis generation. The 
FDR rate took into account testing for all 2008 possible analytes, with the understanding that 
this adjustment was highly conservative given a high degree of correlation among multiple 
groups of analytes, and the fact that some analytes were sampled in only a subset of 
individuals. Both raw and adjusted p-values will be reported. 

We also repeated the primary PheWAS approach with participants stratified by self-
identified race, due to evidence for variable genetic risk for cognitive outcomes between white 
and nonwhite populations48,49. Differences may be due to gene-environment interactions 
impacting nonwhite populations as a result of sociocultural elements and/or structural inequities 
due to racism, and/or local ancestry-driven variation near specific loci. As the SNPs selected for 
this PheWAS were based on a meta-analysis consisting of non-Hispanic white (NHW) 
individuals, our results may be primarily driven by the fact that the majority of the Arivale 
population is also NHW, and thus results are not generalizable to other populations (we 
acknowledge that adjustment for genetic principal components may not be adequate to 
overcome such strong potential confounding factors). Unfortunately, due to small numbers of 
individuals in specific non-NHW racial and ethnic groups, which become vanishingly small when 
accounting for allele frequency and numbers of available samples (Table 1), we were not able 
to assess genetic risk effects in individual groups with statistical rigor and had to group all non-
NHW participants into one stratum for analysis. The stratified NHW and nonwhite group 
analyses merely serve as an investigation into whether our primary results reflected the 
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majority-NHW makeup of the Arivale population. PheWAS was applied as described above, with 
FDR to account for multiple comparisons. 
 In order to visualize genotype-analyte associations across adulthood, we created 
boxplots of the log-transformed analyte values by genotype, stratified by age group (by decade, 
from 18-29 to 70 and over). All statistical analyses were performed in R v3.5.1 (https://www.R-
project.org/). 
 In post-hoc exploratory analysis focused on the SNP in the PICALM locus (rs3851179), 
sex-stratified and sex-interaction analyses was performed on 12,324 cases (57.7% female) and 
11,453 controls (59.9% female) of European ancestry from the Alzheimer’s Disease Genetics 
Consortium (ADGC) (see Supplementary Table 4 for dataset details). Datasets were imputed to 
the Haplotype Reference Consortium (HRC)62 panel using the Michigan Imputation Server 
(https://imputationserver.sph.umich.edu/index.html#!). Standard pre-imputation quality control 
was performed on all datasets individually, including exclusion of individuals with low call rate, 
individuals with a high degree of relatedness, and variants with low call rate63. Individuals with 
non-European ancestry according to principal components analysis of ancestry-informative 
markers were excluded from the further analysis. Detailed descriptions of individual ADGC 
datasets can be found in Kunkle et al.5. Study-specific logistic regression analyses employed 
Plink64 for sex-interaction analysis and SNPTest65 for sex-stratified analysis. Sex-interaction, 
which analyzed the sex*variant interaction, and sex-stratified analysis of males and females 
separately, were performed for two separate models per analysis, one adjusting for age, sex 
and PCs (model 1) and a second adjusting for age, sex, PCs and APOE (model 2). Results 
were meta-analyzed with METAL using inverse variance-based analysis66. 
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Table 1. Baseline self-reported characteristics of Arivale  
participants with available whole-genome sequences 
Characteristica N=2831 
Age, mean (sd) 47.0 (12.0) 
Female, n (%) 1719 (60.7) 
Nonwhiteb, n (%) (n=2725) 597 (21.9) 
     Afro-Caribbean    1 (<0.1) 
     American Indian or Alaska Native 5 (0.2)  
     Ashkenazi Jewish 49 (1.8) 
     Asian 84 (3.1) 
     Black or African American 64 (2.3) 
     East Asian 91 (3.3) 
     Hispanic Latino or Spanish origin 120 (4.4) 
     Middle Eastern or North African 18 (0.7) 
     Native Hawaiian or other Pacific Islander 17 (0.6) 
     Sephardic Jewish 4 (0.1) 
     South Asian 79 (2.9) 
     White 2128 (78.1) 
     Other 65 (2.4) 
BMI, mean (sd) (n=2750) 27.9 (6.4) 
Obesec, n (%) (n=2750) 802 (29.2) 
Moderate activity ³ 3x/wk, n (%) (n=2275) 1460 (64.2) 
Vigorous activity ³ 3x/wk, n (%) (n=2271) 697 (30.7) 
Ever smoke, n (%) (n=2207) 565 (25.6) 
Current meds for cholesterol, n (%) (n=2378) 287 (12.1) 
Past and/or current self-report of:  
     Migraine, n (%) (n=2229) 558 (25.0) 
     High cholesterol, n (%) (n=2301) 558 (24.2) 
     Depression, n (%) (n=2278) 521 (22.9) 
     GERD, n (%) (n=2220) 464 (20.9) 
     Hypertension, n (%) (n=2316) 434 (18.7) 
     Asthma, n (%) (n=2361) 376 (15.9) 

aFor categories with missing data, total non-missing N is reported in parentheses 
bRace/ethnicity categories presented to participants in Arivale questionnaire 
cObese defined as BMI≥30 
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Table 2. Results of sex-specific analysis and sex-SNP interaction analysis of 
PICALM variant 3851179 in the ADGCa 
Sex-stratified resultsb Beta StdError P-value MAF 
Male model 1 -0.206 0.035 5.62E-09 0.358 
Male model 2 -0.176 0.038 4.08E-06 0.359 
Female model 1 -0.083 0.029 4.37E-03 0.354 
Female model 2 -0.087 0.031 5.60E-03 0.352 
     
     Interaction Resultsc Interaction beta Std Error P-value MAF 
Model 1 0.116 0.044 8.05E-03 0.354 
Model 2 0.372 0.048 7.84E-02 0.354 

aN=9,135 cases (60% female), 9,677 controls (60% female) 
bModel 1: adjusted for age, sex, and PCs; Model 2: adjusted for age, sex, PCs, and APOE genotype. 
cModel 1: adjusted for age and PCs; Model 2: adjusted for age, PCs, and APOE. 
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FIGURE LEGENDS 
 
Figure 1. Statistically significant SNP-analyte associations after correcting for multiple 
testing (threshold FDR-adjusted p-value=0.05), by SNP. Top panel: log-transformed beta-
coefficient from the linear regression model adjusted for sex, age, and genetic principal 
components 1-4; markers above the zero line (orange) indicate analytes that increased in value 
with the minor allele, while markers below the line indicate markers that decreased in value. 
Second panel: FDR-adjusted –log10 p-value; orange line at FDR-p=0.05. Proteins=red, 
metabolites=blue, clinical chemistries=purple. Metabolite codes: DG=diacylglycerol; 
LC=lactosylceramide; o=oleoyl; a=arachidonoyl; g=glycerol; l=linoleoyl; p=palmitoyl. Third 
panel: minor allele frequency (MAF). Bottom panel: Total sample size for each analyte-SNP 
regression. 
 
Figure 2. Unadjusted box plots of normalized protein expression (NPX) levels of PILRA 
and PILRB by genotype and age group. White boxplots=individuals who are homozygous for 
the major allele, gray boxplots=heterozygotes, black boxplots=minor allele homozygotes. Box 
plot midline=median value, lower/upper hinges=25th and 75th percentiles, respectively; lower 
whisker ends/upper whisker ends no further than 1.5 x interquartile range from the hinge. Data 
beyond whiskers are outlying points. a. NPX of PILRA and PILRB by rs12539172 (NYAP1) 
genotype; b. NPX of PILRA and PILRB by rs1859788 genotype. 
 
Figure 3. Unadjusted box plots of normalized protein expression levels (NPX) of six 
proteins significantly associated with APOE2 genotype, by age group. White 
boxplots=individuals who are homozygous for the major allele, gray boxplots=heterozygotes, 
black boxplots=minor allele homozygotes. Box plot midline=median value, lower/upper 
hinges=25th and 75th percentiles, respectively; lower whisker ends/upper whisker ends no 
further than 1.5 x interquartile range from the hinge. Data beyond whiskers are outlying points. 
a. Low-Density Lipoprotein Receptor (LDLR); b. heme oxygenase-1 (HMOX1); c. SLAM family 
member 8 (SLAMF8); d. E3 ubiquitin-protein ligase RNF31 (RNF31); e. Contactin-associated 
protein-like 2 (CNTNAP2); f. Signal recognition particle 14 kDa protein (SRP14). 
 
Figure 4. Heatmap of statistically significant genotype x sex interaction terms at FDR-
adjusted p-value<0.1. Beta coefficients obtained from sex-stratified analyses, middle-column 
p-values from interaction term in the full model. SL=sphingolipid; LCFA=long-chain fatty acid; 
PFA=polyunsaturated fatty acid. 
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