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Abstract 25 

Drug development has been hampered by a high failure rate in clinical trials due to efficacy 26 

or safety issues not predicted by preclinical studies in model systems. A key contributor is 27 

our incomplete understanding of drug functions across organ systems and species. Therefore, 28 

elucidating species- and tissue-specific actions of drugs can provide systems level insights 29 

into therapeutic efficacy, potential adverse effects, and interspecies differences that are 30 

necessary for more effective translational medicine. Here, we present a comprehensive drug 31 

knowledgebase and analytical tool, PharmOmics, comprised of genomic footprints of drugs 32 

in individual tissues from human, mouse, and rat transcriptome data from GEO, 33 

ArrayExpress, TG-GATEs, and DrugMatrix. Using multi-species and multi-tissue gene 34 

expression signatures as molecular indicators of drug functions, we developed gene network-35 

based approaches for drug repositioning. We demonstrate the potential of PharmOmics to 36 

predict drugs for new disease indications and validated two predicted drugs for non-alcoholic 37 

fatty liver disease in mice. We also examined the potential of PharmOmics to identify drugs 38 

related to hepatoxicity and nephrotoxicity. By combining tissue- and species-specific in vivo 39 

drug signatures with biological networks, PharmOmics serves as a complementary tool to 40 

support drug characterization. 41 

 42 

Key words: PharmOmics, network medicine, tissue specificity, cross-species comparison, 43 

drug repositioning, adverse drug reactions, drug toxicity 44 
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Background 46 

Drug development has been challenging and costly over the past decades due to the high 47 

failure rate in clinical trials (1). Most drugs with excellent efficacy and safety profiles in 48 

preclinical studies often encounter suboptimal efficacy or safety concerns in humans (2).  49 

This translational gap is likely attributable to our incomplete understanding of the systems 50 

level activities of drugs in individual tissues and organ systems (3) as well as the differences 51 

between humans and model systems (4).  52 

 53 

Drug activities can be captured by gene expression patterns, commonly referred to as gene 54 

signatures. By measuring how a pharmacological agent affects the gene signature of a cell or 55 

tissue type in a particular species, we can infer the cell- or tissue-specific biological pathways 56 

involved in therapeutic processes or toxicological responses. This concept has prompted drug 57 

repositioning studies and provided important predictions for repurposing approved drugs for 58 

new disease indications (5–10). Similarly, gene signatures can reveal mechanisms underlying 59 

adverse drug reactions (ADRs) and be leveraged to predict ADRs as previously shown for 60 

liver and kidney toxicity (11–13). 61 

 62 

A drug may affect different molecular processes between tissues, providing treatment effects 63 

in the desired target tissue(s) but causing toxicity or ADRs in other tissues. Therefore, tissue-64 

specific drug signatures will offer a more systematic understanding of drug actions in vivo. In 65 

addition, rodent models have been commonly used in toxicology and preclinical studies, yet 66 

species-specific effects of drugs have been observed (14) and underlie the lack of efficacy or 67 

unexpected ADRs of certain drugs when used in humans (15). Therefore, understanding the 68 

species-specific molecular effects of drugs is of high biological importance. A detailed 69 

species- and tissue-specific drug genomic signature database will significantly improve our 70 

understanding of the molecular networks affected by drugs and facilitate network-based drug 71 

discovery and ADR prediction for translational medicine.  72 

 73 

The potential of using gene signatures to facilitate target and toxicity identification has led to 74 

several major efforts in characterizing genomic signatures related to drug treatment (8,16–18). 75 

However, none of the existing platforms offer comprehensive cross-tissue and cross-species 76 

in vivo assessments of drug activities to allow predictions of drug effects on individual tissues 77 

and to help assess the translational potential of a drug based on consistencies or discrepancies 78 

between species. For instance, the comparative toxicogenomics database (CTD), a literature-79 

based resource curating chemical-to-gene/protein associations as well as chemical-to-disease 80 
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and gene/protein-to-disease connections (16), lacks the cellular and tissue context of the 81 

curated interactions. More systematic, data-driven databases like CMAP (8) and LINC1000 82 

(17) focus on characterizing and cataloging the genomic footprints of more than ten thousand 83 

chemicals using in vitro cell lines (primarily cancer cell lines) to offer global views of 84 

molecular responses to drugs in individual cellular systems. However, these in vitro cell-line 85 

based gene signatures may not always capture in vivo tissue-specificity of drug activities. To 86 

move into in vivo systems, large toxicogenomics databases like TG-GATEs (19) and 87 

DrugMatrix from the National Toxicology Programs of the National Institute of 88 

Environmental Health Sciences (https://ntp.niehs.nih.gov/drugmatrix/index.html) have 89 

become available to provide unbiased transcriptome assessment for heart, muscle, liver, and 90 

kidney systems. However, information about other organ systems is limited. Efforts to 91 

analyze publicly deposited transcriptomic datasets in GEO (20) and ArrayExpress (21), 92 

which have broader tissue coverage, for individual drugs have been described (18), but 93 

systematic annotation and integration of species- and tissue-specific effects of drugs have not 94 

been achieved.  95 

 96 

Here, we present a database that contains 13,382 rat, human, and mouse transcriptomic 97 

datasets across >20 tissues covering 941 drugs. We evaluated the tissue- and species-98 

specificity of drug signatures as well as the performance of these signatures in gene network-99 

based drug repositioning, toxicity prediction, target identification, and comparisons of 100 

molecular activities between tissues and species. The drug signatures are hosted on an 101 

interactive web server, PharmOmics, to enable public access to drug signatures and 102 

integrative analyses for drug repositioning 103 

(http://mergeomics.research.idre.ucla.edu/runpharmomics.php). 104 

 105 

Methods  106 

Curation of tissue- and species-specific drug transcriptomic datasets 107 

As illustrated in Figure 1, we compiled a list of clinically relevant drugs, including  766 FDA 108 

approved drugs from Kyoto Encyclopedia of Genes and Genomes (KEGG) (16), which 109 

overlapped with drugs from the US Food and Drug Administration (FDA), European Medical 110 

Agency, and Japanese Pharmaceuticals and Medical Devices Agency, with an additional 175 111 

chemicals from TG-GATEs (19) and DrugMatrix 112 

(https://ntp.niehs.nih.gov/drugmatrix/index.html). The compiled drug list was queried against 113 

GEO, ArrayExpress, TG-GATEs, and DrugMatrix to identify datasets as of January 2018. 114 

Duplicated datasets between data repositories were removed. We developed a semi-115 
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automated pipeline combining automated search with manual checking to identify relevant 116 

datasets for drug treatment. The automated process first extracts datasets containing drug 117 

generic names or abbreviations and then inspects the potential datasets for availability of both 118 

drug treatment and control labels in the constituent samples. We also manually checked the 119 

recorded labels identified by the automated process to validate the labels and remove 120 

potential false detections. Only datasets with n>=3/group in both drug treatment and control 121 

groups were included in our downstream analyses. Although a larger sample size is desired, 122 

the majority (78.7%) of drug transcriptome datasets have n=3/group, 20.9% datasets have 123 

n=2/group, and <1% datasets have n>3/group (Supplementary Table 1). 124 

 125 

Obtaining drug treatment signatures stratified by species and tissues 126 

Species and tissue labels were retrieved based on the metadata of each dataset. Tissue names 127 

were standardized based on the Brenda Tissue Ontology (22). We implemented a search 128 

procedure to climb the ontology tree structure to determine the suitable tissue annotations. 129 

This was done by first building a priority list of widely used tissues/organs in toxicological 130 

research using the Brenda Tissue Ontology tree system. Tissue/organ priority order was set to 131 

"kidney", "liver", "pancreas", "breast", "ovary", "adipose tissue", "cardiovascular system", 132 

"nervous system", "respiratory system", "urogenital system", "immune system", 133 

"hematopoietic system", "skeletal system", "integument" (endothelial and skin tissue), 134 

"connective tissue", "muscular system", "gland", "gastrointestinal system", and "viscus" 135 

(other non-classified tissue). Tissue terms relevant to each of these tissues or organs were 136 

curated from the ontology tree into a tissue/organ ontology table. Next, we looked up terms 137 

from our tissue/organ ontology table in the Cell/Organ/Tissue column of the metadata in each 138 

transcriptomic dataset. If a tissue/organ term was not found, we searched the title and 139 

summary columns of the metadata as well to retrieve additional information. When the search 140 

returned multiple tissue terms (for example, breast cancer cell line may be categorized as 141 

both epithelial and breast organ), we used the term with the highest priority as described 142 

above. We prioritized the tissue terms based on the relevance to toxicology to make tissue 143 

assignments unique for each dataset to reduce ambiguity. Manual checking was conducted to 144 

confirm the tissue annotation for each dataset.  145 

 146 

For each gene expression dataset, normalized data were retrieved, and quantile distribution of 147 

the values were assessed. When a dataset was not normally distributed, log2-transformation 148 

using GEO2R (20) was applied. To identify differentially expressed genes (DEGs) 149 

representing drug signatures, two different strategies were used. First, the widely used DEG 150 
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analysis method LIMMA (23) was applied to obtain dose and time segregated signatures 151 

under FDR < 0.05. To overcome the low sample size issue and obtain “consensus” drug 152 

signatures for a drug/chemical, LIMMA was also applied to datasets where multiple doses 153 

and treatment durations were tested, and treatment effect were derived by combining 154 

dose/time experiments for the same drug/chemical in each study.  Second, we leveraged 155 

different studies for the same drugs or chemicals in the same tissue and species to derive 156 

meta-analysis signatures. To address heterogeneity in study design, platforms, sample size, 157 

and normalization methods across different data repositories, we applied the characteristic 158 

direction method from the GeoDE package (24) to derive consistent DEGs for each drug 159 

across different data sources. GeoDE was designed to accommodate heterogenous datasets 160 

that have differing parameters and outputs between treatment and control groups. It uses a 161 

“characteristic direction” measure to identify biologically relevant genes and pathways. The 162 

normalized characteristic directions for all genes were then transformed into a non-parametric 163 

rank representation. Subsequently, gene ranks of a particular drug from the same tissue/organ 164 

system and the same organism were aggregated across datasets using the Robust Rank 165 

Aggregation method (25), a statistically controlled process to identify drug DEGs within each 166 

tissue for each species. Robust Rank Aggregation provides a non-parametric meta-analysis 167 

across different ranked lists to obtain commonly shared genes across datasets, which avoids 168 

statistical issues associated with heterogeneous datasets. It computes a null distribution based 169 

on randomized gene ranks and then compares the null distribution with the empirical gene 170 

ranks to obtain a p-value for each gene. The robust rank aggregation process was done for the 171 

upregulated and downregulated genes separately to obtain DEGs for both directions under 172 

Bonferroni-adjusted p-value < 0.01, a cutoff implemented in the Robust Rank Aggregation 173 

algorithm. To obtain species-level signatures for each drug, we further aggregated DEGs 174 

across different organs tested for each drug within each species.  175 

 176 

Pathway analysis of individual drug signatures was conducted using Enrichr (26) by 177 

intersecting each signature with pathways or gene sets from KEGG (27) and gene ontology 178 

biological process (GOBP) terms (28). In addition, pathway enrichment analysis based on 179 

network topology analysis (29) was conducted using ROntoTools (30). Pathways at false 180 

discovery rate (FDR) < 0.05 were considered significant in both methods.  181 

 182 

We curated 14,366 drug signatures segregated by treatment dosage and duration, tissue, and 183 

species, covering 719 drugs and chemicals, among which 544 are FDA approved. In addition, 184 

our meta signatures is a consensus of 4,349 signatures covering 551 drugs across treatment 185 
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regimens. In total, the entire database is based on 13,382 rat, human, and mouse 186 

transcriptomic datasets across >20 tissue or organ systems across 941 drugs and chemicals 187 

from GEO, ArrayExpress, DrugMatrix, and TG-GATEs to derive drug signatures. These rat, 188 

human, and mouse datasets cover >20 tissue or organ systems. The toxicogenomics databases 189 

TG-GATEs and DrugMatrix mainly contain liver and kidney datasets from rats, while public 190 

data repositories GEO and ArrayExpress contain datasets with broader tissue and species 191 

coverage (Figure 2A). Overall, the rat datasets are mainly from liver and kidney whereas 192 

human and mouse datasets also contained signatures from other tissues and organs such as 193 

breast and the nervous system (Figure 2B). There is also a species bias between the data 194 

repositories; GEO covered more mouse and human datasets, TG-GATEs mainly has human 195 

and rat datasets, and DrugMatrix curated more rat datasets (Figure 2C). 196 

 197 

Comparison of PharmOmics with existing drug signature platforms  198 

To assess the degree of agreement in drug signatures between the PharmOmics database and 199 

existing platforms, we compared PharmOmics with the CREEDS (18) and L1000FWD (31) 200 

databases, for which drug signatures are accessible (Supplementary methods). As shown in 201 

Supplementary Figure 1, both the PharmOmics dose/time-segregated signatures and the 202 

meta signatures showed better concordance with the two existing platforms than the 203 

agreement between CREEDS and L1000FWD, as reflected by higher overlap fold 204 

enrichment score and lower statistical p values. The three platforms have differences in the 205 

datasets and analytical strategies and therefore are complementary. Due to the lack of full 206 

access to CMAP signatures, we were not able to systematically compare PharmOmics against 207 

CMAP. 208 

 209 

Web server implementation of PharmOmics 210 

To allow easy data access and use of  PharmOmics, we have created a freely accessible web 211 

tool deployed on the same Apache server used to host Mergeomics (32), a computational 212 

pipeline for integrative analysis of multi-omics datasets to derive disease-associated 213 

pathways, networks, and network regulators (http://mergeomics.research.idre.ucla.edu).  214 

 215 

The PharmOmics web server features three functions (Figure 3). First, it allows queries for 216 

species- and tissue-stratified drug signatures and pathways for both the dose/time-segregated 217 

and meta signatures. Details of statistical methods (e.g, LIMMA vs characteristic direction), 218 

signature type (dose/time-segregated vs meta), and datasets used are annotated. The drug 219 

query also includes a function for DEG and pathway signature comparisons between user-220 
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selected species and tissues which can be visualized and downloaded. Second, it features a 221 

network drug repositioning tool that is based on the connectivity of drug signatures in 222 

PharmOmics to user input genes such as a disease signature. This tool requires a list of genes 223 

and a gene network that can be chosen from our preloaded gene regulatory networks if 224 

relevant or a custom upload (see Applications below for details in implementation). In the 225 

output, Z-score and p-value results of network repositioning are displayed and available for 226 

download. In addition, we list the overlapping genes between drug signatures in the given 227 

network and the input genes, the drug genes with direct connections to input genes through 228 

one-edge extension, and input genes with one-edge connections to drug genes in the 229 

downloadable results file. The output page also provides network visualization which details 230 

the genes affected by a drug and their overlap with and direct connections to user input genes 231 

using Cytoscape.js. The network nodes and edges files are also available for download and 232 

can be used on Cytoscape Desktop. Figure 4 shows the web interface of the input submission 233 

form (Figure 4A) and results display of the network repositioning tool using a sample liver 234 

network and a sample hyperlipidemia gene set (Figure 4B). Lastly, the web server offers a 235 

gene overlap-based drug repositioning tool that assesses direct overlap between drug gene 236 

signatures and user input genes. Gene overlap-based drug repositioning requires a single list 237 

of genes or separate lists of upregulated and downregulated genes and outputs the Jaccard 238 

score, odds ratio, Fisher’s exact test p-value, within-species rank, and gene overlaps for drugs 239 

showing matching genes with the input genes. This gene overlap-based approach is similar to 240 

what was implemented in other drug repositioning tools, but the network-based repositioning 241 

approach is unique to PharmOmics. 242 

 243 

Experimental methods for NAFLD drug validation 244 

Seven-week old C57BL/6 male mice were purchased from the Jackson Laboratory (Bar 245 

Harbor, ME). After acclimation the animals were randomly assigned to four experimental 246 

groups (n=7-9/group) on different diets/treatments: regular chow diet (Control) (Lab Rodent 247 

Diet 5053, St. Louis, MO), high fat high sucrose (HFHS) diet (Research Diets-D12266B, 248 

New Brunswick, NJ) to induce hepatic steatosis, a key NAFLD phenotype, HFHS diet with 249 

fluvastatin treatment (NAFLD + Flu), and HFHS diet with aspirin treatment (NAFLD + Asp). 250 

The target intake concentrations of fluvastatin and aspirin were 15mg/kg and 80 mg/kg, 251 

respectively, which were chosen based on doses used in previous studies that did not show 252 

toxicity (33,34). These experimental diets were then administered for 10 weeks. The average 253 

fluvastatin intake was 14.98 mg/kg/day, and the average aspirin intake was 79.67 mg/kg/day.  254 

 255 
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During drug treatment, metabolic phenotypes such as body weight, body fat and lean mass 256 

composition were monitored weekly. Fat and lean mass were measured with Nuclear 257 

Magnetic Resonance (NMR) Bruker minispec series mq10 machine (Bruker BioSpin, 258 

Freemont, CA). For metabolic phenotypes measured at multiple time points (body weight 259 

gain and adiposity), differences between groups were analyzed using a 2-way ANOVA 260 

followed by Sidak’s multiple comparisons test. At the end of treatment, livers from all groups 261 

were weighed, flash frozen, and stored at −80�°C until lipid analysis. Hepatic lipids were 262 

extracted using the Folch method as previously described (35). The lipid extracts were 263 

analyzed by the UCLA GTM Mouse Transfer Core for triglyceride (TG), total cholesterol 264 

(TC), unesterified cholesterol (UC), and phospholipids (PL) levels by colorimetric assay from 265 

Sigma (St. Louis, MO) according to the manufacturer’s instructions. All animal experiments 266 

were approved by the UCLA Animal Research Committee. 267 

 268 

 269 

Results 270 

Evaluating the ability of PharmOmics to extract drug targets and target pathways 271 

It remains unclear whether drug DEGs reflect drug targets. To evaluate this possibility, we 272 

retrieved known targets for the drugs included in PharmOmics from the DrugBank database 273 

(36) and used three different methods to evaluate the potential of DEGs for drug target 274 

identification. The first method assessed direct gene overlaps between known drug targets 275 

and DEG signatures. The second assessed overlaps between known drug target pathways and 276 

drug DEG pathways from pathway enrichment analysis. The last method was based on 277 

whether known drug targets were within the close neighborhood of drug DEGs in molecular 278 

networks, including the STRING network (37) and tissue-specific Bayesian networks (BNs) 279 

(Supplementary methods). For drugs with multiple dose and time regimens, only the 280 

signature with the best performance was used in these analyses. 281 

 282 

The drug target recovery rates using PharmOmics drug DEGs for gene overlap, pathway 283 

overlap, STRING network overlap, and liver BN overlap with liver DEGs were 22%, 59.1%, 284 

41.7%, and 60.2%, respectively, and were significantly higher than the rates using random 285 

genes (Supplementary Table 2). Although these rates are low, gene overlap drug target 286 

recovery rate using PharmOmics signatures was higher than using CMAP (14%) and L1000 287 

(17%) signatures, and drug target recovery was improved by pathway and network 288 

approaches. Notably, matching the tissue between DEGs and network improved the target 289 

detection rate. However, we note that while the pathway- and network-based approaches 290 
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increased the detection rate for true drug targets, the number of false positives was also 291 

increased. Overall, our results show that although PharmOmics has certain value in drug 292 

target and pathway retrieval as shown by better performance than random genes and other 293 

platforms, the retrieval rate is low. These results suggest that DEGs do not recover direct 294 

drug targets well but more likely reflect target-related pathways, and caution should be taken 295 

when using DEGs for target identification.  296 

 297 

Utility of PharmOmics drug signatures in retrieving known therapeutic drugs for various 298 

diseases 299 

We next evaluate the ability of PharmOmics drug signatures to identify drugs for diseases 300 

based on overlaps or network connectivity in gene signatures matched by tissue. We 301 

hypothesized that if a drug is useful for treating a disease, the drug signatures and disease 302 

signatures likely target similar pathways and therefore have direct gene overlaps or connect 303 

extensively in gene networks. For gene overlap-based drug repositioning, we calculate the 304 

Jaccard score, gene overlap fold enrichment, and Fisher’s exact test p values as the overlap 305 

measurements. For network-based drug repositioning, we used a network proximity 306 

measurement between drug and diseases genes which was previously applied to protein 307 

interaction networks and known drug targets (5) (Supplementary methods). Here, we used 308 

tissue-specific BNs and tested the mean shortest distance between drug DEGs and disease 309 

genes.  310 

 311 

The performance of PharmOmics drug repositioning was assessed using hyperlipidemia as 312 

the first test case, as multiple known drugs are available as positive controls. Since 313 

hyperlipidemia is most relevant to LDL and liver tissue, we retrieved LDL causal genes and 314 

pathways in liver tissue based on LDL GWAS and liver genetic regulation of gene expression 315 

using Mergeomics (Supplementary methods) (38), a method that can extract causal genes, 316 

pathways, and networks for diseases (39,40). In addition to retrieving disease genes from 317 

GWAS, a hyperlipidemia signature from CTD (16) was also used as an alternative source. 318 

For each drug with different dose and treatment durations, the signature with the highest 319 

overlap with the disease signature was used to represent the drug. Gene overlap- and 320 

network-based methods using dose/time-segregated signatures had similar overall 321 

performance (~90% AUC) in identification of antihyperlipidemic drugs (Figure 5A, 5B), and 322 

the dose/time-segregated signatures performed better than the meta signatures when using 323 

network-based repositioning (Figure 5C-5D). When compared to other platforms, 324 

PharmOmics was able to retrieve higher prediction rankings for the known drugs (Table 1) 325 
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and better AUC (Figure 5C-5D) than CMAP and L1000 and higher balanced accuracy 326 

(Supplementary Table 3) than CREEDS, CMAP, and L1000. These results support the 327 

capacity of the PharmOmics platform as a drug repositioning tool. 328 

 329 

We also examined the network overlap patterns of the top drugs consistently retrieved by the 330 

PharmOmics platform, lovastatin (ranked top 1% in both PharmOmics and CREEDS) and 331 

oxymetholone (ranked top 1% in PharmOmics and ranked as 15% in CREEDS). Both drugs 332 

targeted lipid metabolism genes (e.g. Sqle and Hmgcr) and PPAR pathways in the 333 

hyperlipidemia network (Figure 5E, 5F), but more lovastatin DEGs connected to disease 334 

genes compared to oxymetholone DEGs. These results support the utility of a network-based 335 

drug repositioning approach that does not require the direct retrieval of a known drug target 336 

or direct overlap of drug DEGs with disease genes. 337 

 338 

We further evaluated the performance of PharmOmics in retrieving known drugs for other 339 

diseases. Using CTD disease signatures for hyperuricemia, we found network-based 340 

repositioning obtained 90% AUC (p=0.009) for detection of anti-hyperuricemia drugs, 341 

whereas the gene overlap-based method did not yield a significant AUC (prediction ranks in 342 

Supplementary Table 4). We also queried hepatitis signatures and achieved 83% AUC (p< 343 

0.001) using the network method and 79% AUC (p<0.001) using the gene overlap method in 344 

retrieving non-steroid anti-inflammatory agents (prediction ranks in Supplementary Table 345 

5). Finally, using diabetes signatures, PharmOmics was able to predict PPAR gamma agonist 346 

drugs (79% AUC, p=0.04), but not sulfonylurea drugs which act on the pancreatic islet to 347 

enhance insulin release (prediction ranks in Supplementary Table 6). We note that the 348 

paucity of drug signatures in diabetes relevant tissues/cells such as the islets and the digestive 349 

system likely explains why sulfonylurea drugs are harder to retrieve. Overall, these various 350 

test cases using known therapeutic drugs as positive controls support the utility of network-351 

based drug repositioning for select diseases when drug signatures from the appropriate tissues 352 

are used. 353 

  354 

Use of PharmOmics to predict drugs for NAFLD 355 

After establishing the performance of PharmOmics in drug repositioning using the case 356 

studies above, we applied PharmOmics to predict potential drugs for NAFLD, for which 357 

there is currently no approved drugs. Using NAFLD steatosis signatures from a published 358 

study (40) and the CTD database (16), we predicted PPAR alpha agonists (clofibrate, 359 

fenofibrate, bezafibrate, and gemfibrozil), HMG-CoA reductase inhibitors (lovastatin, 360 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2021. ; https://doi.org/10.1101/837773doi: bioRxiv preprint 

https://doi.org/10.1101/837773
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12

fluvastatin, and simvastatin), and a PPAR gamma agonist (rosiglitazone) among the top 10% 361 

of the drug candidates (Supplementary Table 7). PPAR agonists have been supported as 362 

potential drugs for NAFLD (41–52). Statins have shown efficacy in animal models (34,53), 363 

although clinical results are controversial (54,55). Additional predicted drugs included aspirin, 364 

which was recently reported to be associated with reducing liver fibrosis progression (56).   365 

 366 

In vivo validation of drug repositioning predictions for NAFLD  367 

Next, we sought to experimentally validate the ability of two top ranked drugs by 368 

PharmOmics, fluvastatin and aspirin, to mitigate liver steatosis as predicted by PharmOmics 369 

and assess the accuracy of repositioning ranks. Compared to other platforms 370 

(Supplementary Table 7), fluvastatin was ranked high consistently in PharmOmics (top 5%), 371 

CMAP (top 1% in all cells combined, 20% in HEPG2), CREEDS (20%), and L1000 (top 1% 372 

in all cells combined, 55% in HEPG2). In comparison, aspirin was ranked higher in 373 

PharmOmics (top 5%) compared to CREEDS (30%) and CMAP (35%) and was not 374 

documented in L1000. Therefore, these predictions are relatively unique to PharmOmics. 375 

 376 

Comparison between the mice in HFHS group (NAFLD) and the chow group (Control) 377 

confirmed HFHS induced NAFLD phenotypes including increased body weight, adiposity, 378 

and hepatic steatosis (Supplementary Figure 2A and 2B). Comparison of the fluvastatin 379 

and aspirin treated groups with the NAFLD group revealed significant drug effects on body 380 

weight gain for both fluvastatin (p<0.0001; Figure 6A) and aspirin (p<0.0001; Figure 6B). 381 

The adiposity phenotype (fat and lean mass ratio) also showed significant drug effects from 382 

both fluvastatin (p<0.0001; Figure 6C) and aspirin (p=0.0157; Figure 6D).  383 

 384 

There was no significant difference in total liver weight among the groups (Supplementary 385 

Figure 2C for Control and NAFLD group comparison; Supplementary Figure 3A and 3B 386 

for NAFLD and drug group comparisons). As expected, the HFHS group had significantly 387 

elevated levels of liver TG compared to controls, without changes in other lipids measured 388 

such as TC, UC, and PL (Supplementary Figure 2D). In the drug treatment groups, both 389 

fluvastatin (p=0.0044) and aspirin (p=0.0023) induced significant decreases in hepatic TG 390 

compared to the NAFLD group, without any effect on TC, UC, and PL (Figure 5E-5F).  391 

 392 

We further investigated whether the effects of the drugs on NAFLD phenotypes were 393 

confounded by food and water intake. No effect of food intake was observed in the NAFLD + 394 

Flu group; however, there was a significant decrease in food intake in the NAFLD + Asp 395 
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group (Supplementary Figure 3C-3D). No effect on water intake was found for both groups 396 

(Supplementary Figure 3E-3F). We next adjusted for food intake in the NAFLD phenotypic 397 

analysis for body weight gain, adiposity, and TG levels using linear regression. After the 398 

adjustment, the significant effects of fluvastatin on NAFLD phenotypes remained (body 399 

weight gain p=0.0306; adiposity p=0.0022; hepatic TG p=0.0190). For aspirin, the significant 400 

effects on adiposity (p=0.0479) and hepatic TG (p=0.0372) remained, but the effect on body 401 

weight gain was no longer significant (p=0.0559). Overall, food/water intake did not have 402 

major influence on treatment effects on NAFLD observed for both drugs. 403 

 404 

Our experimental validation experiments support the efficacy of both fluvastatin and aspirin 405 

in mitigating NAFLD. The effects of fluvastatin were stronger than that of aspirin and 406 

visualization of the network overlaps between NAFLD signatures and drug signatures 407 

revealed more extensive disease network connections for fluvastatin than for aspirin (Figure 408 

6G-6H), supporting their repositioning ranks and potential mechanisms of action. The 409 

signatures of the two drugs connected to pathways involved in NAFLD such as PPAR 410 

signaling pathways, fatty acid and steroid biosynthesis (Figure 6G-6H).  411 

 412 

Utility of PharmOmics drug signatures in predicting and understanding hepatotoxicity  413 

We further explored the potential of coupling PharmOmics drug signatures and tissue 414 

networks to predict liver toxicity, a major type of ADR for which both toxicity signatures and 415 

orthogonal ADR documentations from various independent databases are available for 416 

performance evaluation. We used the chemical-induced liver injury signature containing 435 417 

genes from CTD to match with PharmOmics drug signatures through liver gene networks. 418 

We then used both the histological severity from TG-GATEs and the independent FDA drug-419 

induced liver disease (DILI) categories (“most”, “less” – moderate/mild DILI adverse 420 

reactions compared to the “most” category, and “no” DILI concern) as in silico independent 421 

validation of the drugs predicted by PharmOmics that match with the CTD liver toxicity 422 

signature.  423 

 424 

First, we examined the relationship between the matching scores of PharmOmics signatures 425 

and the histological severity grading based on TG-GATEs. Both the network-based and gene 426 

overlap-based scores from PharmOmics increased with higher histological severity defined 427 

by TG-GATEs (Figure 7A). Next, we examined the dose-dependent effects across the TG-428 

GATEs histological severity categories as well as the three FDA DILI categories. Our results 429 

indicated that severe histological grading occurred mainly at higher drug doses within both 430 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2021. ; https://doi.org/10.1101/837773doi: bioRxiv preprint 

https://doi.org/10.1101/837773
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14

the “less” and “most” DILI concern categories (Figure 7B). Analysis of the relationship 431 

between dose/time-segregated signatures and network-based PharmOmics scores indicated 432 

that drug treatment at higher doses had higher network matching ranks in PharmOmics and 433 

more severe DILI (Figure 7C). In addition, we tested the performance of PharmOmics in 434 

predicting hepatotoxic drugs from the FDA DILI drug database. PharmOmics dose/time-435 

segregated signatures resulted in higher performance (67% AUC) compared to the meta 436 

signatures (60% AUC) and the other platforms tested such as CREEDS, CMAP, and L1000 437 

(AUC 50-53%; Figure 7D; Supplementary Figure 4). Top drug predictions based on the 438 

complete hepatotoxicity signatures were wy-14643 (experimental drug with severe 439 

histological finding in TG-GATEs), dexamethasone (moderate DILI concern category in 440 

FDA and moderate histological finding in TG-GATEs), phenobarbital (moderate DILI 441 

concern), indomethacin (“most” DILI concern), and fenofibrate (moderate DILI concern). 442 

 443 

Since CTD curated a large number of genes (435 genes) related to chemical induced liver 444 

injury, we hypothesized that this large network could be divided into subnetworks indicative 445 

of different mechanisms towards liver toxicity, which could improve toxicity prediction for 446 

drugs with different mechanisms. We first examined network overlapping patterns of the top 447 

5 predicted drugs by using the CTD liver injury genes (Figure 7E) and found consistent 448 

targeting of gene subnetworks across top predictions. We then applied the Louvain clustering 449 

method to divide the liver injury network into subnetworks and filtered subnetworks with less 450 

than 10 genes to reduce uncertainty. These different subnetworks showed varying abilities in 451 

identifying drugs with DILI concerns (Supplementary Table 8). The best performing 452 

subnetwork showed improved AUC compared to the whole network (75% vs 67%; Figure 453 

7D). Further scrutinization of key genes documented in CTD signatures of the top performing 454 

subnetwork revealed that the antioxidant gene GSR, the phase 2 drug metabolizer NAT2, and 455 

the inflammatory response gene IRAK1 showed the best predictability (Supplementary 456 

Table 8). These results suggest that the network-based toxicity prediction approach may help 457 

prioritize predictive genes, pathways, and subnetworks related to hepatotoxicity.  458 

 459 

Utility of PharmOmics drug signatures in predicting and understanding nephrotoxicity  460 

We also examined the performance of PharmOmics in predicting nephrotoxicity, another 461 

ADR for which both toxicity signature and drug ADR documentations are available from 462 

independent sources to help validate performance.  463 

 464 
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Nephrotoxicity signatures were curated from CTD using either the chronic kidney disease 465 

signature (CKD, 56 genes) or acute kidney injury signature (AKI, 120 genes), which were 466 

matched with PharmOmics drug signatures to predict drugs matching CKD or AKI signatures. 467 

The PharmOmics predictions were then validated using kidney histological severity 468 

documented by TG-GATEs or nephrotoxicity defined by DrugBank. There were 13 shared 469 

genes between CKD and AKI signatures including several inflammatory factors TNF, 470 

TGFB1, NFKB1, and IL6. We found that unlike AKI signatures, using CKD signatures 471 

against PharmOmics drug signatures resulted in network matching scores (not gene overlap 472 

scores) that agreed well with histological severity documented in TG-GATEs (Figure 8A). 473 

Therefore, we focused on using CKD signatures in downstream network-based analyses. We 474 

found that PharmOmics drug signatures of higher doses predicted more drugs with severe or 475 

moderate kidney histology categorized by TG-GATEs as well as drugs with nephrotoxicity as 476 

defined by DrugBank (Figure 8B). However, when examining the relationship between 477 

PharmOmics network scores across doses and DrugBank nephrotoxicity categories (non-478 

nephrotoxic or nephrotoxic), the network scores did not show a significant dose-dependent 479 

relationship (Figure 8C). This is in contrast to the dose-dependent relationship observed for 480 

hepatotoxicity analysis (Figure 7C). The weaker performance of PharmOmics in 481 

nephrotoxicity prediction could be due to the smaller number of kidney drug datasets (~1k) 482 

compared to liver drug datasets (~5k) based on data availability. 483 

 484 

Finally, we assessed the performance of PharmOmics and other tools in identifying 485 

DrugBank nephrotoxic agents. PharmOmics dose/time-segregated (64% AUC, p=0.001) and 486 

meta databases (61% AUC, p=0.028) both showed a significant performance (Figure 8D), 487 

whereas from the other tools evaluated only CMAP (63% AUC, p<0.001) showed a 488 

significant performance (L1000 43% and CREEDS 56% AUC, non-significant). The top 5 489 

nephrotoxic drugs predicted by PharmOmics were dexamethasone (potential CKD alleviating 490 

agent) (57,58), naproxen (documented nephrotoxic drug in DrugBank),  cholecalciferol 491 

(potential CKD alleviating agent) (59), beta-estradiol (potential alleviating agent in women) 492 

(60,61), and ibuprofen (documented nephrotoxic drug in DrugBank). We also examined the 493 

gene overlap patterns of the top drugs with the CKD gene network (Figure 8E) and found 494 

sparse overlap, which again is in contrast to the top hepatotoxicity drugs (Figure 7E).  495 

 496 

Overall, our assessment of the application of PharmOmics in toxicity or ADR prediction 497 

supports its potential value but also emphasizes that PharmOmics drug signatures may have 498 

differing performance in different use cases. Several factors, including the toxicity signatures 499 
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used (e.g., CKD signature performed better than AKI signature for nephrotoxicity prediction), 500 

ADR/toxicity annotation (e.g., TG-GATEs or DrugBank), and signature matching method 501 

(network-based approach better than gene overlap approach) can all significantly affect the 502 

results. We also note that our network approach does not differentiate toxicity-inducing drugs 503 

from toxicity-mitigating drugs since it is based on network connectivity and not the 504 

directionality of gene signatures. 505 

 506 

Utility of meta-analysis signatures to understand tissue and species specificity 507 

We used meta signatures, which reflect the dose-independent, consistent genes affected by 508 

drugs across studies in the same tissue or species, to evaluate tissue and species specificity of 509 

drugs by analyzing the overlap in gene signatures for each drug across different tissues and 510 

species and visualized the results using UpSetR (62). As shown in Figure 9A, the overlap 511 

rate in the DEGs of the same drug between tissues and organs is usually less than 5%, 512 

indicating a high variability in DEGs between tissues. As an example, we examined 513 

atorvastatin, a HMGCR (β-Hydroxy β-methylglutaryl-CoA receptor) inhibitor, which has 514 

well understood mechanisms and has been broadly tested in different tissues under the human 515 

species label. We found that two DEGs (TSC22D3, THBS1) were shared across tissues 516 

(Figure 9B). These genes are involved in extracellular matrix and inflammation, suggesting 517 

these processes are common targets of atorvastatin across tissues. Among the pathways 518 

shared across tissues, immune related pathways were shared between blood cells and liver 519 

cells but not in prostate cells from the urogenital system (Figure 9C, Supplementary Table 520 

9). Pathway analysis indicated that steroid synthesis and drug metabolism pathways were 521 

altered primarily in liver, which is expected as the known target of statin drugs is HMGCR, 522 

the rate limiting enzyme in cholesterol biosynthesis in liver. Blood monocyte DEGs indicated 523 

changes in inflammation related pathways, while GPCR ligand binding proteins were altered 524 

in prostate cancer cells. The tissue specificity of drug meta signatures revealed through our 525 

analysis supports tissue-specific therapeutic responses and side effects and emphasizes the 526 

need for comprehensive inclusion of drug signatures from different tissue systems as 527 

implemented in the PharmOmics framework.   528 

 529 

We also found evidence for high species specificity. As shown in Figure 9D, the pair-wise 530 

overlaps in DEGs between species for the same drug is generally lower than 5%. Here we 531 

chose PPAR gamma receptor agonist rosiglitazone as an example because this drug has 532 

datasets across human, rat, and mouse in PharmOmics, and its mode of actions is well-533 

studied. As shown in Figure 9E and 9F, nine genes (CPT1C, AKR1B1, VNN1, ACSM3, 534 
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CD36, CPT1A, PDK4, ZNF669, ADH1C) and several pathways (PPAR signaling and fatty 535 

acid, triacylglycerol, and ketone body metabolism) were consistently identified from liver 536 

DEGs across species (Supplementary Table 10), reflecting the major species-independent 537 

pharmacological effects of rosiglitazone. Bile acid related genes were altered in rat datasets, 538 

whereas retinol metabolism and adipocytokine pathways were altered in human datasets. The 539 

species-specific differences identified highlight the importance of understanding the 540 

physiological differences among model systems to facilitate drug design with better 541 

translational potential. Our cross-species comparative studies also emphasize the need to 542 

investigate drugs in multiple species, as only 21% of the unique drug-tissue pairs (236 out of 543 

1144) from PharmOmics meta signatures have data from two or more species.  544 

 545 

Discussion 546 

Here we present PharmOmics, a publicly available drug signature database along with an 547 

open-access web interface for accessing and utilizing the signatures for various applications. 548 

PharmOmics utilizes published drug-related transcriptomic datasets across multiple data 549 

repositories and provides unique tissue-, species-, and dose/time-stratified gene signatures 550 

that are more reflective of in vivo activities of drugs. We also developed a unique framework 551 

for drug repositioning based on tissue-specific gene network models. We examined the 552 

potential applications of PharmOmics for various utilities including drug repurposing, 553 

toxicity prediction, target identification, and comparisons of molecular activities between 554 

tissues and species. We also carried out in silico performance assessments across drug 555 

signature databases and in vivo mouse experiments to validate our network-based drug 556 

predictions for NAFLD. 557 

 558 

Compared to the well-established CMAP and LINC1000 platforms, PharmOmics focuses 559 

more on in vivo settings and likely captures more physiologically relevant drug signatures to 560 

improve drug repositioning performance. Compared to a previous crowdsourcing effort 561 

which also utilizes publicly available drug datasets (18), our PharmOmics platform included 562 

more curated databases (TGGATEs + drugMatrix Affymetrix + drugMatrix Codelink 563 

datasets compared to only drugMatrix Codelink datasets from CREEDS) and involved 564 

systematic tissue, species, and treatment regimen stratification to facilitate drug repositioning. 565 

Our platform is also the only tool utilizing a gene network framework rather than direct gene 566 

overlap approach. 567 

 568 
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The use of tissue annotation with Brenda Tissue Ontology helps normalize organ labels and 569 

improves comparability of datasets. The unique tissue- and species-specific analyses 570 

implemented in PharmOmics allows for comprehensive molecular insight into the actions of 571 

drug molecules in individual tissues and species. Our results support that different species 572 

have unique drug responses in addition to shared features; therefore, drug responses obtained 573 

in animal models require caution when translating to humans. This notion agrees with the 574 

long-observed high failure rate of drug development that has primarily relied on preclinical 575 

animal models and argues for greater consideration and understanding of inter-species 576 

differences in drug actions.  577 

 578 

In addition to tissue and species stratification, we also provide detailed dose/time-segregated 579 

drug signatures, which can help better understand the dose- and time-dependent effects of 580 

drugs through gene signature and pathway comparisons offered through our web server. By 581 

contrast, the meta-analysis signatures capture the consistent genes and pathways across 582 

treatment regimens, which likely represent core, dose/time-independent mechanisms, and 583 

help address the sample size issue of individual datasets since the majority of drug treatment 584 

datasets have n<=3/group. Dose/time-segregated signatures performed better than meta 585 

signatures for both drug repositioning and toxicity prediction. However, meta signatures 586 

showed better performance than CMAP, LINC1000, and CREEDs (Figure 5, 7, 8), and can 587 

also significantly shorten the computation time in network-based repositioning applications. 588 

For instance, computation using 1251 human meta signatures can be completed in 40 minutes, 589 

whereas using ~14,000 dose/time-segregated signatures can take 4 hours. These estimates 590 

will vary depending on input data size and server load. 591 

 592 

Previous drug repositioning studies support the utility of a protein network-based approach 593 

for drug repositioning. Here we show that combining the drug transcriptomic signatures in 594 

PharmOmics with tissue-specific gene regulatory networks and gene signatures of diseases 595 

can retrieve known therapeutic drugs, predict potential therapeutic avenues, and predict tissue 596 

toxicity. Compared to other platforms, the use of tissue- and species-specific drug signatures 597 

along with network biology is a unique strength of PharmOmics, which enables drug 598 

prioritization based on network proximity rather than direct gene overlaps. We demonstrate 599 

in various applications that network-based analysis had a superior performance to that of 600 

gene overlap-based analysis. Moreover, the tissue-specific network connections between 601 

drugs and diseases or toxicity offer molecular and mechanistic insights into the therapeutic or 602 

toxic effects of drugs. For instance, fluvastatin showed different NAFLD overlapping 603 
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patterns compared to aspirin, which inferred differences in disease repositioning depending 604 

on different drug mechanisms. 605 

 606 

In general, gene signatures of drugs reflect cascades of downstream events after drug 607 

administration. The initial drug target(s) may or may not be captured by drug DEGs due to 608 

the lack of dynamic information in the DEGs. Therefore, we explored if PharmOmics 609 

signatures as well as signatures from other platforms can be used to retrieve drug targets 610 

through integration with pathway or network information. Our results show that DEGs may 611 

help inform on the pathways affected by the drugs but retrieving the direct targets can be 612 

difficult. We caution the use of drug DEGs from any drug signature platform for direct target 613 

identification. 614 

  615 

There are several limitations in this study. First, our computational pipeline may not be able 616 

to identify all of the drug datasets from GEO and ArrayExpress database. Variations in 617 

annotations of drug names, sample size, definition of treatment vs control groups, and 618 

tissue/cell line labeling across datasets make it challenging to design a fully automated 619 

pipeline to curate drug signatures. It is therefore crucial for GEO and ArrayExpress 620 

repositories to offer clear definitions and instructions for metadata generation in order to 621 

standardize terms across datasets to facilitate future data reuse. Secondly, the coverage of 622 

tissue, species, and treatment regimens across drugs is unbalanced, preventing a thorough 623 

comparison across tissues, species, dosages, and treatment windows. We will continue to 624 

refine the pipeline and update our PharmOmics database periodically to include more 625 

datasets as they become available to increase the coverage of datasets and drug signatures. 626 

Thirdly, the sample sizes for drug treatment studies tend to be small (majority with 627 

n=3/group or less), which limit the statistical power and reliability of the drug signatures 628 

when individual studies were analyzed. This is an intrinsic limitation of existing drug studies 629 

and highlights the need for systematic efforts to increase sample sizes in such studies. To 630 

mitigate this concern and reduce the reliance on individual studies, we implemented a meta-631 

analysis strategy to aggregate drug signatures from individual studies and derive meta 632 

signatures. However, this strategy removes dosage- and time-dependent effects. We offer 633 

both options in our database to mitigate sample size concerns through meta-analysis and 634 

retain dose and time regimen information through dose/time-segregated analysis. Fourth, our 635 

network-based applications are currently limited in the coverage of high-quality tissue 636 

specific regulatory networks and computational power. We will continue to expand and 637 

improve the tissue networks and computing environment in our web server. Lastly, 638 
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systematic validation efforts are needed to substantiate the value of our platform. We utilized 639 

both in silico performance assessments and in vivo experiments to validate our predictions in 640 

limited settings. We mainly focused on liver related diseases with well-documented drugs 641 

and disease signatures (hyperlipidemia, hyperuricemia, diabetes, and liver/kidney toxicity) to 642 

benchmark the utilities of PharmOmics and experimentally validated two drugs predicted for 643 

NAFLD. As with the other existing platforms such as CMAP and LINC1000, future 644 

application studies and community-based validation efforts are necessary to assess the value 645 

of PharmOmics.  646 

 647 

Conclusion 648 

We have established a new drug signature database, PharmOmics, across different species 649 

and tissues, which captures the systems level in vivo activities of drug molecules. In addition, 650 

we demonstrate the possible means to integrate these signatures with network biology to 651 

address drug repositioning needs for disease treatment and to predict and characterize liver 652 

and kidney injury. PharmOmics has the potential to complement other available drug 653 

signature databases to accelerate drug development and toxicology research. Our 654 

PharmOmics database and pipeline will be updated periodically to include newly available 655 

datasets to increase the coverage of the drug signatures across tissues and species. It should 656 

be noted that we aim to position PharmOmics as a data-driven compensatory tool in 657 

hypothesis generation. Integration with known drug characteristics to select drug candidates 658 

and design follow up experiments are still essential. 659 

 660 

List of abbreviations 661 

ADR         adverse drug reactions 662 

CTD   comparative toxicogenomics database 663 

KEGG  Kyoto Encyclopedia of Genes and Genomes 664 

DEG   differential expressed genes 665 

FDR   false discovery rate 666 

wKDA  weighted key driver analysis 667 

NAFLD  non-alcoholic fatty liver disease 668 

LDL   low-density lipoprotein cholesterol 669 

GWAS  genome-wide association study 670 

BN   Bayesian gene regulatory network 671 

ROC   Receiver operating characteristic 672 

HMGCR  β-Hydroxy β-methylglutaryl-CoA receptor 673 
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PPAR   Peroxisome proliferator-activated receptor 674 

GPCR   G-protein coupled receptor 675 
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Tables 907 

Table 1. Prediction percentile of FDA approved antihyperlipidemic drug based on hyperlipidemia signatures from MergeOmics (MO) pipeline and 908 

CTD database across different platforms tested. HEPG2 results from both L1000 and CMAP were retrieved for tissue specificity comparison.  909 

Platform 
PharmOmics 
dose/time seg 

network  

PharmOmics 
dose/time seg 

Jaccard 

PharmOmics 
meta CREEDS CMAP CMAP HEPG2 L1000 L1000 HEPG2 

 Disease gene 
signature MO CTD MO CTD MO CTD MO CTD MO CTD MO CTD MO CTD MO CTD  

Atorvastatin 0.951 0.794 0.981 0.957 0.498 0.316 0.989 0.82 0.913 0.164 0.414 0.31 0.962 0.668 0.405 0.307  
Bezafibrate 0.856 0.995 0.901 0.982 0.981 0.932 0.571 0.95 0.332 0.561 0.439 0.915 0.394 0.755 NA NA  
Cerivastatin 0.989 0.848 0.995 0.962 0.798 0.719 0.986 0.836 0.879 0.516 NA NA 0.967 0.761 NA NA  
Clofibrate 0.965 0.97 0.802 0.927 0.951 0.992 0.737 0.986 0.196 0.291 0.153 0.433 0.31 0.615 NA NA  

Clofibric acid 0.93 0.58 0.949 0.892 NA NA NA NA NA NA NA NA NA NA NA NA 
 

Fenofibrate 0.984 0.986 0.908 0.883 0.954 0.954 0.797 0.943 0.121 0.108 0.229 0.201 NA NA NA NA  
Fluvastatin 1 0.997 1.000 0.924 0.97 0.985 1 0.815 0.905 0.963 0.807 0.118 0.958 0.514 0.513 0.327  
Gemfibrozil 0.992 0.962 0.984 0.873 0.787 0.844 0.9 0.712 0.677 0.612 NA NA 0.363 0.591 NA NA  
Lovastatin 0.995 0.984 0.986 0.986 0.905 0.43 0.993 0.632 0.972 0.084 0.528 0.346 0.992 0.979 0.415 0.765  
Nafenopin 0.726 0.943 0.472 0.864 NA NA 0.431 0.712 NA NA NA NA NA NA NA NA 

 
Niacin 0.192 0.873 0.821 0.309 0.137 0.711 0.719 0.343 0.671 0.171 0.606 0.069 0.107 0.307 NA NA  

Pravastatin 0.894 0.339 0.911 0.862 NA NA 0.979 0.854 0.829 0.669 0.727 0.934 0.592 0.717 NA NA  
Simvastatin 0.949 0.935 0.856 0.992 0.916 0.909 0.996 0.9 0.972 0.951 0.844 0.573 0.987 0.843 0.595 0.425  
Ciprofibrate NA NA NA NA NA NA NA NA 0.685 0.998 0.84 0.288 0.292 0.272 NA NA  
Ezetimibe NA NA NA NA NA NA NA NA 0.905 0.982 0.514 0.757 0.657 0.269 0.366 0.101 

 
Probucol NA NA NA NA NA NA NA NA 0.552 0.115 0.021 0.696 0.018 0.529 NA NA  

Rosuvastatin NA NA NA NA NA NA NA NA 0.913 0.056 0.855 0.238 0.905 0.464 NA NA  
Median 0.951 0.943 0.911 0.924 0.911 0.876 0.94 0.828 0.829 0.516 0.528 0.346 0.624 0.603 0.415 0.327 

 
Mean 0.879 0.862 0.890 0.878 0.79 0.779 0.841 0.792 0.701 0.483 0.537 0.452 0.607 0.592 0.459 0.385 
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Figure legends 910 

Figure 1. PharmOmics data processing pipeline. FDA approved drugs based on KEGG 911 

database were searched against GEO, ArrayExpress, TG-GATEs, and DrugMatrix data 912 

repositories. Additional experimental drugs and chemicals from TG-GATEs and DrugMatrix 913 

were also included. Only datasets with drug treatment and control samples were retrieved. 914 

Datasets were first annotated with tissue and species information, followed by retrieval of 915 

dose/time-segregated or meta-analysis drug signatures using two different methods. 916 

Dose/time-segregated signatures were retrieved from individual datasets using LIMMA. 917 

Meta signatures across datasets of the same drugs were obtained by first applying GeoDE to 918 

obtain a ranked gene list for each treatment experiment, followed by meta-analysis using the 919 

Robust Rank Aggregation method. These signatures were used to conduct drug repositioning 920 

analysis and hepatotoxicity/nephrotoxicity prediction based on direct gene overlaps or a gene 921 

network-based approach. 922 

 923 

Figure 2. Summary of available datasets based on data sources, tissues, and species. Y-924 

axis indicates unique dataset counts, and X-axis indicates (A) tissue and data resources, (B) 925 

tissue and species, and (C) data resources and species. 926 

 927 

Figure 3. PharmOmics web server. The web server hosts drug signature and pathway 928 

queries, between-tissue and between-species drug signature comparisons, and network-based 929 

and gene overlap-based drug repositioning. Users are able to query, download, and perform 930 

drug repositioning using all species- and tissue-specific meta and dose/time-segregated 931 

signatures. Interactive results tables and network visualizations are displayed on the website 932 

and available for download. 933 

 934 

Figure 4. User interface of network drug repositioning web tool using sample 935 

hyperlipidemia gene set and sample mouse Bayesian gene regulatory network. (A) 936 

Inputs to network drug repositioning includes i) signature type to query (meta-analyzed, 937 

dose/time-segregated with top 500 genes per signature, or dose/time-segregated with all 938 

genes), ii) network (custom upload or select a sample network), iii) species (relating to the 939 

species of the network being used), and iv) genes. In this case we choose dose/time-940 

segregated signatures using top 500 genes, a sample liver network, mouse/rat species, and the 941 

sample hyperlipidemia gene set (loaded from ‘Add sample genes’). If human gene symbols 942 

are provided with the ‘Mouse/Rat’ species selection, the genes will be converted to mouse/rat 943 

symbols. (B) After the job is complete, the results file is displayed on the website and 944 
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available for download. A subset of the drug network containing the drug genes that are first 945 

neighbors to input genes and all input genes can be visualized using the “Display Network” 946 

button which will load an interactive display of the subnetwork topology. The oxymetholone 947 

drug signature in rat liver is a top hit, and the drug network is shown on the right. Additional 948 

data in the downloadable results file include the genes that are both a drug gene and an input 949 

gene in the network, drug genes that are directly connected (first neighbor) to input genes, 950 

and input genes directly connected to drug genes. 951 

 952 

Figure 5. Drug repositioning for hyperlipidemia. AUC plots for network-based 953 

repositioning and gene overlap-based repositioning in identifying anti-hyperlipidemia drugs 954 

against other drugs using (A) Mergeomics hyperlipidemia signature or (B) CTD 955 

hyperlipidemia signature. Comparison of drug repositioning performance between 956 

PharmOmics network-based approach with CREEDS (using the “combined score” generated 957 

by the enrichment analysis tool implemented in Enrichr), L1000, and CMAP query system 958 

using (C) Mergeomics hyperlipidemia signature and (D) CTD hyperlipidemia signature. For 959 

drugs with multiple datasets with different doses and treatment times, only the best 960 

performing signature was used. (E) Drug-disease subnetwork of Mergeomics hyperlipidemia 961 

signature (red) and lovastatin signature (blue) showing first neighbor (direct) connections. (F) 962 

Drug-disease subnetwork Mergeomics hyperlipidemia signature (red) and oxymetholone 963 

signature (blue) showing first neighbor connections. Wilcoxon signed rank test was used to 964 

calculate significance between gene overlap/network z-scores between groups. *, **, *** 965 

indicates p < 0.05, p < 0.01 and p < 0.001 repectively.  966 

 967 

Figure 6. In vivo validation of predicted drugs Fluvastatin and Aspirin on preventing 968 

NAFLD phenotypes in C57BL/6J mice. (A and B) Time course of body weight gain in 969 

mice treated with fluvastatin (A) and aspirin (B) over 10 weeks. (C and D) Time course of fat 970 

mass and muscle mass ratio (adiposity) in mice treated with fluvastatin (C) and aspirin (D) 971 

over 10 weeks. (A-D) Data were analyzed by two-way ANOVA followed by Sidak post-hoc 972 

analysis to examine treatment effects at individual time points. P value < 0.05 was considered 973 

significant and is denoted by an asterisk (*). (E and F) Quantification of lipids in the liver of 974 

mice on fluvastatin (E) and aspirin (F) treatment for 10 weeks. Triglyceride (TG), Total 975 

Cholesterol (TC), Unesterified Cholesterol (UC), Phospholipid (PL). (D and E) Data were 976 

analyzed using two-sided Student's t-test. P value < 0.05 was considered significant and is 977 

denoted by an asterisk (*). Sample size n�=�7-9/group. High fat high sucrose (HFHS) 978 

group (NAFLD); HFHS with fluvastatin (NAFLD + Flu); HFHS with aspirin (NAFLD + 979 
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Asp). (G-H) Gene network view of fluvastatin gene signatures overlapping with NAFLD 980 

disease signatures (G) Gene network view of aspirin gene signatures overlapping with 981 

NAFLD disease signatures (H). 982 

 983 

Figure 7. Utility of PharmOmics drug signatures in hepatotoxicity prediction based on 984 

matching between PharmOmics drug signatures and hepatotoxicity signatures of drug 985 

induced liver injury (DILI) curated from comparative toxicogenomics database (CTD). 986 

(A) Boxplots of Jaccard score-based hepatotoxicity ranking (left) and network-based 987 

hepatoxicity ranking (right) by PharmOmics, across four categories of liver injury 988 

histological severity defined by the independent TG-GATEs database (x-axis). PharmOmics 989 

hepatotoxicity scores are higher for more severe liver injury categories. (B) PharmOmics 990 

hepatotoxicity prediction scores based on gene signatures of higher drug doses correspond to 991 

more severe liver injury categories defined by TG-GATES across three DILI concern 992 

categories (“no”, “less”, “most”) defined by FDA. (C) Boxplots of network-based 993 

hepatoxicity scores show increased scores at higher doses across three FDA DILI concern 994 

categories. (D) ROC curves comparing PharmOmics with other tools in predicting 995 

hepatotoxic drugs from the FDA DILI drug database. For PharmOmics, three sets of tests 996 

were performed, where dose/time-segregated drug signatures, meta signatures, or a 997 

hepatotoxicity subnetwork was used. (E) Liver hepatotoxicity network based on CTD 998 

hepatotoxicity genes and its overlap with drug signatures of 4 of the top 5 predicted drugs by 999 

PharmOmics which had >50 signature genes. Phenobarbital was among the top 5 drugs but 1000 

was not included in the figure due to its small DEG size. Colors of the network nodes denote 1001 

the different drugs targeting the genes. The top 3 predictive subnetworks are depicted in red 1002 

(D). ANOVA test followed by post-hoc analysis was used for statistics in A and C. *, **, *** 1003 

indicates p < 0.05, p < 0.01 and p < 0.001 respectively. Boxplots show interquartile range 1004 

(IQR) and median values (line inside the box). IQR was defined as between 25th (Q1) and 1005 

75th (Q3) percentile. The upper and lower bars indicate the points within Q3 + 1.5*IQR and 1006 

Q1 – 1.5*IQR, respectively. 1007 

 1008 

Figure 8. Utility of PharmOmics drug signatures in nephrotoxicity prediction based on 1009 

matching between PharmOmics drug signatures and nephrotoxicity signatures of 1010 

chemical induced acute kidney injury (AKI) or chronic kidney disease (CKD) from 1011 

comparative toxicogenomics database (CTD). (A) Boxplots of Jaccard score-based 1012 

nephrotoxicity ranking (left) and network-based nephrotoxicity ranking (right) by 1013 

PharmOmics, based on matching with AKI (top) or CKD (bottom) nephrotoxicity genes from 1014 
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CTD, across four categories of kidney histological severity defined by the independent TG-1015 

GATEs database. Network-based nephrotoxicity prediction by PharmOmics showed a 1016 

positive relationship between nephrotoxicity scores by PharmOmics and kidney histology 1017 

severity defined by TG-GATEs. (B) PharmOmics nephrotoxicity prediction scores based on 1018 

gene signatures of higher drug doses correspond to more severe kidney injury categories 1019 

defined by TG-GATES, segregated by nephrotoxic labels defined by DrugBank. (C) Boxplot 1020 

of network-based nephrotoxicity scores, using CKD nephrotoxicity genes against 1021 

PharmOmics drug signatures, did not show significant dose-dependent trend in non-1022 

nephrotoxic drugs or nephrotoxic drugs defined by DrugBank. The low dose treatment group 1023 

for the nephrotoxic drugs did not contain drug signatures with more than 10 genes and 1024 

therefore the scores were not plotted. (D) ROC curve comparing the performance of 1025 

PharmOmics with other tools in predicting nephrotoxic agents in DrugBank. For 1026 

PharmOmics, two sets of tests were performed, where either dose/time-segregated drug 1027 

signatures or meta signatures was used. (E) Kidney nephrotoxicity network based on CTD 1028 

nephrotoxicity genes and the network overlap with drug signatures of top 5 drugs predicted 1029 

by PharmOmics. Colors of the network nodes denote the various drugs targeting the genes. 1030 

ANOVA test with post-hoc analysis was used for statistics in A and C. *, **, *** indicates p 1031 

< 0.05, p < 0.01 and p < 0.001 respectively. Boxplots show interquartile range (IQR) and 1032 

median values (line inside the box), with IQR defined as between 25th (Q1) and 75th (Q3) 1033 

percentile.  1034 

 1035 

Figure 9.  Cross-tissue and cross-species comparisons of drug signatures in 1036 

PharmOmics. (A) Distribution of drug signature overlap percentages between tissue pairs in 1037 

matching species from PharmOmics. Arrow points to the pairs of tissues for drugs with high 1038 

overlap in gene signatures. (B) Upset plot of cross-tissue comparison for atorvastatin 1039 

signatures genes. Y-axis indicates number of genes. (C) Upset plot of cross-tissue comparison 1040 

for pathways enriched in atorvastatin signatures. Y-axis indicates number of pathways. (D) 1041 

Distribution of drug signature overlap percentages between pairs of species for matching 1042 

tissues from PharmOmics. Arrow points to the species pair with high gene signature overlap 1043 

for a matching drug. (E) Upset plot of cross-species comparison for rosiglitazone liver gene 1044 

signatures. (F) Upset plot of cross-species comparison for pathways enriched in rosiglitazone 1045 

liver signatures. Pairs of tissues with shared drug signature genes or pathways are connected 1046 

with black vertical lines in the bottom portion of the Upset plots. 1047 

  1048 
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Figure 2. 1052 
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Figure 3. 1054 
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Figure 4. 1057 
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Figure 5.  1073 
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Figure 6. 1080 
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Figure 7. 1083 
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Figure 8. 1089 
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