Genome-wide survey of odorant-binding proteins

in the dwarf honey bee Apis florea

Bhavika Mam^{1,2,} Snehal Karpe^{1#} and Ramanathan Sowdhamini^{1*}

¹ National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK Campus, Bangalore, Karnataka, India; bhavikam@ncbs.res.in

² The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, Karnataka, India;

[#]Current address: Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium; Unit of Animal Genomics, GIGA, University of Liège, Liège, Belgium

*Correspondence: mini@ncbs.res.in

Abstract

Odorant binding proteins (OBPs) in insects bind to volatile chemical cue and help in their binding to odorant receptors. The odor coding hypothesis states that OBPs may bind with specificity to certain volatiles and aid the insect in various behaviours. Honeybees are eusocial insects with complex behaviour that requires olfactory inputs. Here, we have identified and annotated odorant binding proteins from the genome of the dwarf honey bee, *Apis florea* using an exhaustive homology-based bioinformatic pipeline and analyzed the evolutionary relationships between the OBP subfamilies. Our study suggests that Minus-C subfamily may have diverged from the Classic subfamily of odorant binding proteins in insects.

1. Introduction

Insects are a diverse class of Arthropods with a highly sensitive olfactory system. Olfactory information helps in mate selection, oviposition while mating, foraging for food and social behaviour (Hildebrand and Shepherd, 1997). Odorant binding proteins (OBPs) abound in the sensillar lymph of insects and in the nasal mucus of many animal species with the presence of at least 50 *OBP* genes reported in some species (Hekmat-Scafe *et al*, 2002). Despite their abundance and diversity, the role of OBPs in olfactory coding is yet to be completely explored (Larter *et al*, 2016).

OBP proteins are small, soluble globular proteins, 10-30 kDa, that are further characterized by alpha-richness, and the presence of six highly conserved cysteine residues (C1-C6) with conserved disulphide spacing (Vogt et al, 1985; Pelosi and Maida, 1990) that stabilizes its tertiary structure. It has been hypothesized that OBPs bind to ligands and solubilize them to aid transport and delivery towards odorant receptors.

Genome-wide surveys to identify odorant-binding proteins in insect orders have been previously performed for various insect species in existing literature. Previous studies have predicted the presence of odorant binding proteins in various species including *Apis mellifera* (Order: Hymenoptera) (Forêt and Maleszka, 2006), *Drosophila melanogaster* (Order: Diptera) (Hekmat and Scafe, 2002; Graham and Davies, 2002), *Anopheles gambiae* (Order: Diptera) (Manoharan *et al*, 2013), *Periplaneta americana* (Order: Blattodea) (He *et al*, 2017) using homology-based bioinformatic approaches as a typical start-point.

Previous work in our laboratory (Karpe *et al*, 2016), has identified odorant receptors (ORs) in *Apis florea* using an exhaustive genomic pipeline. In order to complement the search of ORs

towards a better understanding of odor coding, this study investigated odorant binding proteins (OBPs) in *Apis florea*.

Apis florea or the red dwarf honey bee exhibits the complex behavior of eusociality, where there is reproductive division of labour within a colony that comprises a female queen, male drones and female worker bees. While worker bees perform important tasks such as foraging, guarding the colony hive, maintenance and other diverse tasks for the colony, the queen and drone perform reproductive roles (Page and Robinson, 1991).

Members of the species exhibit haplodiploidy (Halling *et al*, 2001) system of genetic inheritance, where the males in this species are haploid, possessing half the number of chromosomes as diploid females. *Apis florea* is geographically distributed with a preference for warm climate (Otis, 1991) in regions such as mainland Asia, southern border of the Himalayas, plateau of Iran, Oman and in Vietnam, southeast China and peninsular Malaysia (Hepburn *et al*, 2005; Oldroyd and Nanork, 2009; Moritz et al, 2010) and display open nesting typically on low-lying tree branches in shaded regions (Wongsiri *et al*, 1997; Hepburn *et al*, 2005). *Apis florea* are important pollinators of tropical and ornamental plants as well as agricultural crops. They primarily feed on pollen and nectar from flowering plants. Like other honey bees, the body of *Apis florea* is studded with various types of sensilla among which olfactory sensilla (sensilla basiconica and sensilla chaetica) are prominent structures (Gupta, 1992). The antenna of the insect is typically the main site for olfactory receptors (Wigglesworth, 1965). The antennae of *Apis florea* harbor hair-like sensillae trichodea types I, II, III, IV, sensilla basiconica, sensilla placodea and sensilla ampullaceal (Gupta, 1992; Kumar *et al*, 2014).

> Insect OBPs, although highly divergent, are classified on the basis of conserved cysteine signature into Classic (six cysteines), Minus-C (loss of two conserved cysteines), Plus-C (additional cysteine residues and one proline) (Zhou et al., 2004) and Atypical (~ 10 cysteines and long Cterminus) (Hekmat-Scafe et al. 2002; Xu et al. 2003) and Dimer OBPs (two cysteine signatures). Rapid identification of repertoires of putative OBPs across various insect genomes has been suggestive of the idea that the ecological niche of an insect species may correlate with abundance of OBPs and social behaviour (Zhou et al, 2020). While reference Dipteran fruitfly, Drosophila melanogaster and Japanese encephalitis vector Culex quinquefasciatus have been found to have 51 and 110 putative OBPs respectively (Hekmat-Scafe et al., 2002; Manoharan et al, 2013), previous studies in Hymenopteran OBPs have also found species-specific differences in OBPs including 21 OBPs in eusocial Apis mellifera (Foret and Maleszka, 2006), 7 OBPs in fig wasp Ceratosolen solmsi (Wang et al, 2014) that living in closed spaces and 90 in P. xylostella (Vieira et al, 2012) that lives in open spaces. Using *Apis mellifera* as a closely related reference genome and a revised annotation of its OBPs, we thus investigated the identification, annotation and subfamily-based classification of putative OBPs from the genome of Apis florea and examined their evolutionary relationships using *in silico* approaches.

2. Materials and Methods

2.1 Obtaining genome of honeybee Apis florea

Aflo_1.1 genome was obtained from the National Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov).

2.2 Preparing query dataset from Apis mellifera

AmelOBPs were pooled from the NCBI non-redundant protein database (29 putative AmelOBPs) and a previous study (Foret and Malesczka, 2007; 21 AmelOBPs) to obtain a filtered set of query

protein sequences. Reciprocal homology was performed using the query set obtained and AmelOBPs from a recent study (Vieira *et al*, 2011; 21 AmelOBPs). An e-value cutoff of e^-10 was used. The resultant matches as well as unmatched OBPs (putative OBPs with no reciprocal hit; 10 protein sequences) resulted in a final dataset of annotated and unique AmelOBPs.

2.3 Query protein to subject genome alignments

Genomic alignments were obtained using Exonerate (Slater & Birney, 2005) with intron sizes of 500, 2000, 5000 and 10000 respectively with BLOSUM62 (Henikoff and Henikoff, 1992) as the substitution matrix.

The genomic alignments were processed as per the methodology in previous in-house study from lab (Karpe *et al*, 2016; 2017; 2020). The pipeline involves thoroughly scanning and scoring alignments to the genome based on length, degree of similarity and the best match of the scaffold location in the subject genome to the query sequence. The unique set of genomic alignments was then processed further to translate amino acids from corresponding in-frame codons. The resultant set of gene models and protein sequences were also manually corrected for missing start and stop codons, missing N-terminal and C-terminal amino acids and annotated as Complete, Partial or pseudogene.

2.4 Homology-based validation & nomenclature

The predicted *Apis florea* OBPs (AfloOBP) were subjected to reciprocal homology with our manually curated AmelOBP dataset, as explained above. The final dataset of predicted AfloOBPs comprised resultant matches as well as unique sequences with no corresponding hits found in the AmelOBP dataset. The AfloOBP predicted protein sequence dataset was thus annotated with respect to AmelOBP homolog, if present as well as its status as '**Complete**' or '**Partial**'.

2.5 Secondary structure prediction

Secondary structure of the protein sequences were predicted using neural network-based PSIPRED v3.2 (Conesa *et al*, 2005; Buchan *et al*, 2013).

2.6 Signal peptide detection

N-terminal signal peptide was detected using SignalP4.1 (Nielsen et al, 1997; Petersen et al, 2011). This algorithm uses neural networks and Hidden Markov Models to determine signal peptides in a given protein sequence. The predicted signal peptide for a given sequence was cleaved off and the "mature" sequence was used for multiple sequence alignment and phylogeny.

2.7 Preparing dataset of insect OBPs for rooted and unrooted phylogeny

In order to prepare an outgroup for the rooted phylogeny, annotated chemosensory proteins of *Apis mellifera* (AmelCSPs) were obtained from a previous study (Forêt, Wanner and Maleszka, 2015), namely, AmelCSP1, AmelCSP2, AmelCSP3, AmelCSP4, AmelCSP5 and AmelCSP6.

In order to construct the phylogeny (Vogt, Große-Wilde and Zhou, 2015; Missbach, Vogel, Hansson and Große-Wilde, 2015), protein sequences of OBPs from 11 insect orders from representative insect species were obtained from previous literature and UniProt (The UniProt Consortium, 2019) database. The insect orders, corresponding species and the number of species-specific OBPs have been tabulated as in **Table 1**.

2.8 Structure-based sequence alignment and phylogenetic analysis

A structure-based seed template was obtained from the PASS2.5 database (Gandhimathi *et al*, 2012) with the SCOP ID of the fold as 47565. The dataset of "mature" AfloOBP sequences was aligned against the seed template using MAFFT (Katoh *et al* 2002; 2013). A phylogenetic tree was

constructed using RaxML (Stamatakis *et al* 2006; 2014) with the maximum likelihood method with 100 bootstraps and the WAG evolutionary model (Whelan and Goldman, 2001). The phylogenetic tree was visualized and annotated using iTOL (Letunic and Bork, 2006; 2016).

3. Results and Discussion

We filtered and re-annotated OBPs from closely related reference genome *Apis mellifera* using a homology-based approach (See Methods). The final dataset (SI Table 1) comprised 25 AmelOBP protein sequences.

Genome-wide survey of *Apis florea* revealed 22 novel OBP protein sequences with 15 complete and 7 partial sequences either towards the N-terminus, C-terminus, or both with an average exon number of 5 (**Table 2; SI_Table2**). Secondary structure analysis revealed alpha-rich state of OBPs with high confidence. Typically, 6-7 alpha helices per complete AfloOBP sequence was predicted.

Out of 15 *AfloOBP* genes predicted as complete, manually corrected and annotated, 16 translated protein sequences were predicted to have signal peptide sequences. The average length of signal peptides predicted in our AfloOBP dataset was 19 amino acids. Cleavage position ranged from 16th to 24th amino acids in the sequence.

Sequences AfloOBP1-AfloOBP13 were found to display the conserved Cysteine signature of Classic and Minus-C subfamilies, as their orthologs in *Apis mellifera*, and comparable to that of AgamOBP (Figure 1). Multiple sequence alignment revealed conserved Cysteine profiles specific to Classic and MinusC subfamilies in the *Apis florea* genome (Figure 2). Sequences AfloOBP14-AfloOBP21 were found to show the conserved Minus-C cysteine signature where Cysteine residues in the conserved second and fifth positions are missing. Our analysis shows that the conserved cysteine signature for both subfamilies in *Apis florea* is similar to the representative

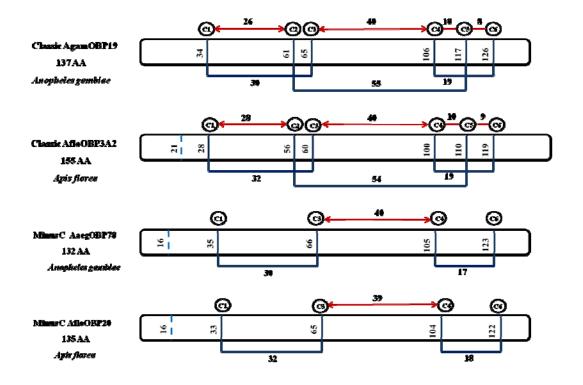
signature observed in a previous study (Xu *et al*, 2009). The conserved cysteine signature for Classic subfamily for the Hymenopteran insect order was determined as C1-X **23:35**-C2-X**3**-C3-X 27:45-C4-X 7:14-C5-X**8**-C6 (Xu *et al*, 2009). Our study has identified 13 Classic and 9 Minus-C OBPs in *Apis florea*. We observe the Classic cysteine signature to be conserved similarly as C1-X **27:37**-C2-X**3:4**-C3-X 33:43-C4-X 9:13-C5-X**8-9**-C6.

Phylogenetic inference revealed the clustering of Minus-C OBPs as a sub-clade of the Classic OBP subfamily comprising members of both *Apis mellifera* and *Apis florea* OBPs (Figure 3A). Moreover, conserved cysteine signature specific to the chemosensory protein (CSP) family was observed in the outgroup chemosensory proteins (AmelCSP) (Figure 2). AmelCSPs used as outgroup clustered distinctly (Figure 3A) from the odorant binding proteins input to the phylogeny with 100% bootstrap value. Minus-C OBPs were found to cluster together with 60% bootstrap value closest to AfloOBP9, annotated as a Classic OBP. OBPs of the Minus-C subfamily, AfloOBP 14-20 emerge closest to AfloOBP13, a Classic OBP with an observed six cysteine signature. Interestingly, all the other Classic OBPs cluster distinctly in a clade corresponding to the insect Classic subfamily, however, AfloOBP13 clusters closely with the Minus-C group in a distinct sub-clade suggesting an evolutionary ancestral link (Figure 3B). Interestingly, antennal OBP (MsexABP1) from Lepidopteran insect Manduca sexta clustered close to the Minus-C clade along with other bee species (Hymenopteran) with high bootstrap support of 97%. It is also observed that Classic OBPs in *Apis florea* are phylogenetically distant from Minus-C (bee OBPs) than clades representing Atypical OBPs in Dipterans and Plus-C insect OBPs. This suggests that Minus-C OBPs in honey bees may have evolved from a single ancestral Classic OBP (similar to AfloOBP13, AmelOBP13) of its species by deletion of second and fifth cysteines. The evolution and insect order-specific occurrence of Minus-C, Plus-C and Atypical subfamilies of insect OBPs may have functional roles and would be interesting to investigate.

Taken together our observations from a comprehensive bioinformatic analysis strongly suggest that Minus-C OBPs are likely to have evolved from a Classic OBP subfamily member in insects. It is possible that the evolution of a subfamily could be an adaptation to the local niche of the insect species for functional specificity (Zhou *et al*, 2020).

Conclusion

In a step towards understanding the role of OBPs in insects, a bioinformatics-based approach was used as the starting point here. A total of 22 OBPs **including isoforms** have been identified and annotated from the genome of eusocial Asian red dwarf honeybee, *Apis florea* using a modified in-house pipeline. Our results include AfloOBPs that have been previously identified by the automated pipeline of NCBI with a query coverage and identity of 100% each (AfloOBP9 and AfloOBP11) (SI_Table3). Our annotated data includes complete OBPs that were identified as having incomplete exons in N-termini and C-termini or/and labelled as uncharacterized by the automated pipeline of NCBI. We also observe that number of *OBP* genes in *Apis florea* (22) and the western honeybee, *Apis mellifera* (25) are similar despite the differences in respective ecological niche.

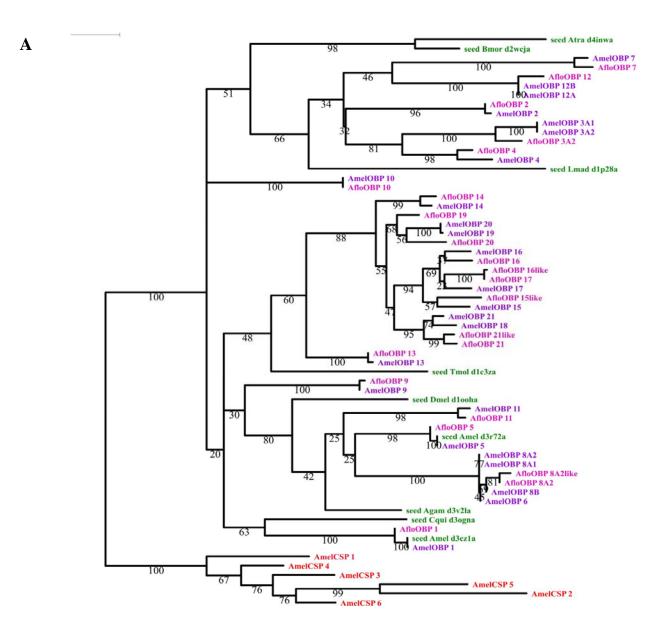

We have analyzed the characteristic conserved features of these OBPs using computational methods and phylogeny resulting in discovery of new gene models as well as improvement on existing gene models from NCBI. Presence of conserved cysteine pattern, disulphide spacing, domain analysis, size and predicted secondary structure further strengthen their identity as putative insect OBPs. Moreover, the use of structurally- guided multiple sequence alignment for phylogenetic inference has been suitable

The Classic OBP subfamily clade appears to have expanded to Minus-C OBPs in honeybee and few other insect orders suggesting that Minus-C may have evolved from the Classic subfamily

through strongly conserved deletions in positions corresponding to the two missing cysteines in a

Minus-C OBP.

Tables and Figures


Figure 1: Cysteine signatures across insect orders are comparable. Cysteine residue positioning and inter-disulphide spacing is conserved in *Apis florea* (Hymenoptera) genome across Classic and Minus-C subfamilies. The cysteine signature of OBPs from *Anopheles gambiae* is given for

reference.

10	20 30	40 50	0 60	70 80	90	D 0	110
seed Tmol d1c3za/1-102 ETPREKLKOHSD/	CKAESGVSEESLNKVRE	VDDPKLK	LKRAGF I DAS GEFOLDH	IKTKFKESEHPEKVDD	LVAK <mark>C</mark> A KKD TP	HSSADFFK	WHDNR
seed Dmel dlooha/1-121 MTMEOFLTSLDMIRS(
seed Amel d3r72a/1-119 MSADQVEKLAKNMRKS	CLOKIAITEELVDGMRRGE-F	PDDHDLOCYTTCI	MKLLRTFKN-GNFDFDM	I VKOLE I TMPPEEVVIGKE	I VAVORNE Y TODD	OCKTYOYVO	HYKONPEKFFFP
	CLQKIAITEELVDGMRRGE-F						
	CLOKIAITEELVDGMRRGE-F						
seed Agam d3v2la/1-118 MTVEQMMKSGEMTRSV							
	SCSKKNDTPKELLDGOFRGE - F						
	SKKNDTPKELLDGOFRGE - F						
AmelOBP 8A1/1-119 MT EELKKT KNLRK	CSKKNDTPKELLDGQFRGE - F	PODERLMOYMKCI	MIATKAMKN-DVILWDF	F VKNARM I LLEEY I PRVES	VVE T <mark>C</mark> KKE TSTEG	CE VAWOFGK	IYENDKELYLAP
	SKKNDTPKELLDGOFRGE - F						
AmelOBP 88/1-119 MT EEAKK T KNL RKV	CSKKNDTPKELLDGOFRGE - F	PODERLMOYMKOI	MIATKAMKN-DVILWDF	FVKNARMILLEEY I PRVES	VVE T <mark>C</mark> KKE TSTEG	CEVAWOFGK	IYENDKEVIFIS
	SKKNDTPKELLDGOFRGE-F						
AfloOBP 11/1-111 SD I DEFRELTSKYRKK	CISETKTTAEVVEATEYGE - F	PDDEKLKCYFNCV	LEKYNVMKKNGKIKYNL	LKTV I PEAFKE I GHE	M I D T CSS I DSNDK	CEKSEMEMK	MFEVNP I
AmelOBP 11/1-116 SDIDEFREMTSKYRKK	CIGETKTTIEDVEATEYGE-F	PEDEKLKCYFNCVI	LEKFNYMKKNGKIRYNLI	LKKVIPEAFKEIGVE	MIDS <mark>C</mark> SNVDSSDK	CEKSFMFMK	MYEVNPIAFIAP
seed Amel d3cz1a/1-116 WVPPEVFDLVAEDKAF	CMSEHGTTQAQ IDDVDKGN - L	VNEPS I T <mark>O</mark> YMY <mark>O</mark> LI	LEAFS LVDDE ANVDED IN	MLGL L PDOLQERAQS	VMGK <mark>C</mark> LPTSGSDN	ONK I YNLAK	VQESAPDVWFVI
AmelOBP 1/1-116 WVP PEVFDLVAEDKAF	MSEHGTTQAQ IDDVDKGN - L	VNEPS I TOYMYCL	LEAFS LVDDE ANVDED IN	MLGL · · · · LPDQLQERAQS	VMGKCLPTSGSDN	ONKIYNLAK	VQESAPDVWFVI
AfioOBP 1/1-116 WVP PEVFDMVAEDKAP	CMGEHGTTQAQ IDDVDKGN - L	VNEPS I T <mark>C</mark> YMY <mark>C</mark> LI	LEAFS LVDDDANVDEDM	MLGL L PDHLQERAQS	I MGKCLPTSGSDN	ONK I YN LAK	VQESAPDVLLFL
AfloOBP 10/1-116 FVSDEMIATAASVVNA	CQTQTGVATVD I E AVRNGQ-W	PETROLK <mark>O</mark> YMY <mark>O</mark> LV	WEQFGLVDDKRELSLNG	MLTF FQPAYRAEVQK	A I S E <mark>C</mark> KG I AKGDN	CEYAYRFNK	YAELSPRTYYLF
AmelOBP 10/1-116 FVSDEMIATAASVVNA	QTQTQVATVD I E AVRNGQ-W	PETROLK <mark>O</mark> YMY <mark>O</mark> LV	WEQFGLVDDKRELSLNG	MLTF FQPAYRAEVQK	A I S E <mark>C</mark> KG I AKGDN	CEYAYRFNK	YAELSPRTYYLF
seed Cqui d3ogna/1-116 YPPPELLEALKPLHD	CAKKTGVTDEAIIEFSDGK-I	HEDEK LK <mark>O</mark> YMN <mark>O</mark> LI	FHEAKVVDDNIGDVHLEKI	LHDS LPNSMHD I AMH	MGK R <mark>C</mark> L YP EGENL	CEKAFWLHK	WKQADP KHY FL V
AfloOBP 9/1-106DIKKE	CRKESKVSWAALKKMKAGDME	QDDQNLK <mark>C</mark> YLK <mark>C</mark> FI	MTKHG I LDKNIAE VDVQKA	ALRH LPRSMQDSTKK	L FNK <mark>C</mark> KS I ENDDP	CEKAFQLVK	YVEFHPEIVPFL
	CRKESKVSWAALKKMKAGDME						
AfloOBP 13/1-113 EES ITKLRKIES\	CAEENGIDLQKADDVKKGIFD	KNDEK LACY I DCM	LKKVGFVNADTTFNEEK	FRERT-TKLIDSEQVINR	LVNN <mark>C</mark> KD I TESNS	CKKSSKLLR	FIDNNLMK-IFE
	CAEENGIDLKKADDVKKGIFD						
	CSTETGIDQQKANDIVQGNVD						
	/ <mark>C</mark> KTETGIDQQKANDVIEGNID						VSKYKTMKVDFL
	[<mark>C</mark> KAESGIDEQKANDVHEGSFD						
	CAESGIDQQTVDDINEVNED						
	CKTESGIDQQTVDDINEVNFD						FGKYKTMKVLNL
	CKTEFD I DEQKADDVNEA.TFD						LEKYKTMKIINL
	CRIETGIDEQKENDFRNGIID						FEKFITLNIIST
	CKIETGIDEQKENNIRDGIVD						
	CRIETS IDQQKEDDFRDGNID				LITE <mark>C</mark> SAISDADL		
	CRIDSGIDEKKEDDFRNGIID						
AfloOBP 15like/1-93	SEIVDDVNENNIN						
	OMTETGANOQIIDDINNGIVY						FFKYKTINILNS
AfloOBP 16like/1-93	SEIVDDVNSGKIN						
	CKTESGVDQQIVDDVNSGKIN						
	CVGETGTSQK I IDEVYNGNVN						
	OMKEIGTAQQIIDDINEGKIN						TKEKTINILNS
	MAKTGINKQI INDVNDGKIN						
	CADELHISEDIATNIQAAKNG GADELHISEDIATNIQAAKNG						
	CLEGENLTFDDVNSLIEDKSE						
	GLKQENLNLDD IDSLLEDESE						
	CSEKAGFSLSDLKSI YEGKGE						
	CSQKAGFDLSDLKSMYESNSE						
	OMDRSNMT FHELMKLRDSNEE						
	OVDRSNMTFHELKKLRDSNEE						
	OVIHMGLSIKDFMKMOELNIK						
seed Lmad dlp28a/1-111 SSTQS YKD AMGPL VRE							
seed Bmor d2wga/1-120 EVMSHVTAHFGKTLEE							
cood Atra d/inua/1.120 ELMKDLS INEGKALD1	CKKELDL PDS INFDEYKEWKE	ITNRI TGOALKOLS	SEKLEMUDADGKI HHGNU	AREEAMKH, GDAMAKOLVD		OMEVISIAMO	EKKETHKWARNM
AmelCSP 1/1-98 MRHNY I V I L - I	SLI TWTY AFFLY SDK YDNU	ANDRI RNOYYDOF					FITNEPEKEVGA
Ame/CSP 3/1-99MKVSIICLVLM	AA I VL VAARPDSYTSK FDNVI	HSDRLLNNYFK	MDEGROTAEGNELK ····	RVLPDALAT		REVIKKVIK	LVENKPELLANV
AmelCSP 6/1-96 MKIYILLFVLV			LDEGPCTNEGRELK	KILPDALST	GONKONEKO	HTANKVVN	LKTKRPKDLSNN
AmelCSP 4/1-99MKTILIALVP	CFLLGEVFSEDKYTTKYDDIL	NTERLLNAYVNOL	LDQGP CTPDAAELK	RNLPDALEN	ECSPCSEKQ		LIDNKPEILESY
AmelCSP 5/1-89 MKIKILLFFT	LSLLTWTYAEELYSDKYDNIL AAIVLVAARPDSYTSKFDNVL - TITCVIAED-YTTKYDDIL CFLLGEVFSEDKYTTKYDDIL LALINVKAQDD	KDRP Y VQ <mark>K</mark> QL H <mark>C</mark> I	LDRGH <mark>C</mark> DVIGKKIK	· · · · · · · · · ELLPEVLNN	HONROTSRO	GIANTLIP	MQQNYPYEIL
AmeiCSP 2/1-97 MASAIKALLIN	GALFIYTVTAETEEGQSGQLL	SDORY LR OLKOAI	LGEAP ODP VGRRLK	SLAP LVLRG	A <mark>C</mark> PQ <mark>C</mark> SPEE	RQIKKVLS	IQRTYPKEIV
-1							

Figure 2: Multiple sequence alignment of OBPs from *Apis florea*. AfloOBPs. The alignment also contains OBPs from its phylogenetic neighbour *Apis mellifera* (AmelOBP). Chemosensory

proteins from Apis mellifera (AmelCSPs) are present as an outgroup.

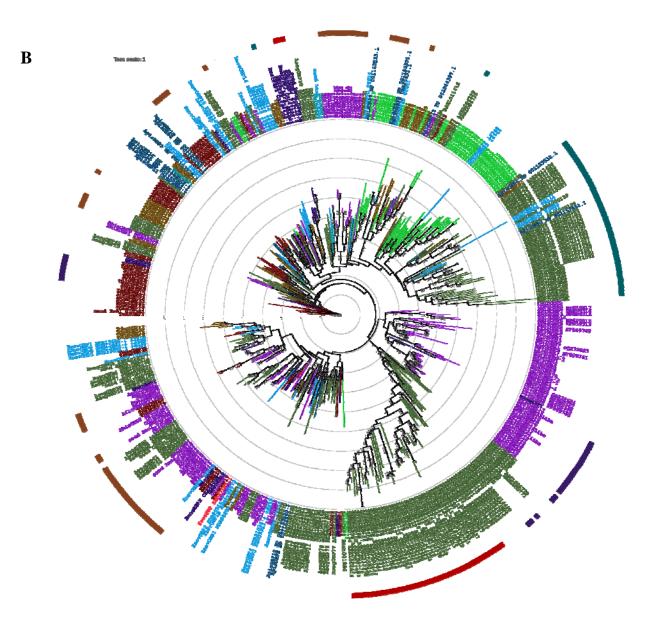


Figure 3: Phylogenetic tree of Apis florea OBPs

Rooted phylogeny (**A**) of OBPs in sister species, *Apis florea* (Aflo; in pink) and *Apis mellifera* (Amel; in purple). Members of the alignment template are colored in green, whereas the outgroup consisting of *Apis mellifera* chemosensory proteins (AmelCSP) is colored in red. The bootstrap values of the branches are indicated on the nodes in percentage values. **Unrooted phylogeny** (**B**) of OBPs from representative members of **11 insect orders** represent clade denoting Classic subfamily is colored in **brown**, Atypical in **red**, Minus-C in **violet** and Plus-C in **cyan**. The outer

> circle denotes members clades. The inner branch colors and label colors are colored as per order. Hymenoptera is denoted in **violet**. The bootstrap values of the branches are indicated on the nodes in percentage values.

Tables

Sr.no.	Order	Reference		
1.	Archaeognatha	Missbach et al, 2015		
2.	Blattaria	Xu et al, 2009		
3.	Coleoptera	Xu et al, 2009; Gu et al, 2015		
4.	Diptera	Manoharan et al, 2013; Hekmat-Scafe et al, 2002,		
		NCBI		
5.	Hemiptera	Xu et al, 2009; Zhou et al, 2010		
6.	Hymenoptera	Xu et al, 2009; Donnell et al, 2013; Gress et al,		
		2014; Li <i>et al</i> , 2015		
7.	Isoptera	Terrapon <i>et al</i> , 2014; NCBI		
8.	Lepidoptera	Gong et al, 2009; Xu et al, 2009; Li et al, 2015		
9.	Orthoptera	Xu et al, 2009		
10.	Thysanoptera	NCBI		
11.	Zygentoma	Missbach <i>et al</i> , 2015		

Table 1: List of insect orders represented in the phylogenetic tree of insect OBPs: The protein

 sequences of OBPs were obtained from an exhaustive literature survey referenced alongside.

AfleODD	Scaffold ID	Gene model	Complete /Partial/	Langth	Ortholog
AfloOBP	Scarrold ID	Gene model	Pseudo	Length	AmelOBP
		accomplanaet(isin(221407	1 Scuub		
		complement(join(321407			
		73213993,3213864321	Partial	127	
AfloOBP1_NP_	NW_003791204.1-	3776,32137133213611,			
001011590.1	3214074 - 3213446	32134083213408))			AmelOBP1
		complement(join(374444			
		374517,374689374806			
		,374889374980,375124.	Complete	143	
		.375226,375362375403		115	
AfloOBP2_NP_	NW_003789385.1-))			
001011591.1	375403-374446				AmelOBP2
		complement(join(369650			
		369653,369330369393			
		,369053369144,368830.	Complete	156	
AfloOBP3_12_X	NW_003789385.1-	.368938,368623368599			AmelOBP3_I2
P_006567396.1	369653-368622))			ABD92639.1
		complement(join(366944			
		367050,367140367251			
		,367460367551,367726.	Complete	137	
AfloOBP4_NP_	NW_003789385.1-	.367780,368089368133			AmelOBP4
001011589.1	368133-366967))			AF393495 ASP4
		complement(join(398924			
		399009,399126399237			
		,399337399425,399513.	Complete	144	
AfloOBP5_NP_	NW_003789385.1-	.399588,399776399844			AmelOBP5
001011588.1	399844 - 398926))			AF393497 ASP5
AfloOBP7_NP_	NW_003789385.1-	complement(join(371156	Complete	151	AmelOBP7

001035310.1	372608-371170	371244,371730371829			ABD92640.1
		,371911372029,372168.			
		.372267,372564372608			
))			
		complement(join(377590			
		377714,377823377934	Complete	134	
AfloOBP8_2_N	NW_003789385.1-	,378006378094,378338.	compiete		AmelOBP8_2
P_001164515.1	378413-377643	.378413))			AF339140 ASP8
		complement(join(398113			
		398042,397868397949			
AfloOBP8_2like		,397534397622,397343.	Complete	145	
_XP_006567383	NW_003789385.1-	.397454,397134397155			
.1	398107-397133))			Amel OBP8_2
		join(61897546189807,6			
		1898866189943,619006	Complete	122	
AfloOBP9_NP_	NW_003791127.1-	26190256,6190355619	Complete	133	AmelOBP9
001035315.1	6189754 - 6190511	0419,61904886190514)			ABD92641.1
		join(20897242089792,2			
		0901282090215,209029			
		72090349,2090443209	Complete	150	AmelOBP10
AfloOBP10_XP	NW_003790158.1-	0599,20908292090893,			ABD92642.1
_006566010.1	2089723 - 2091001	20909872091004)			
		join(20920962092170,2			
		0922402092315,209238			AmelOBP11
AfloOBP11_NP	NW_003790158.1-	32092471,2092568209	Partial	137	<u>ABD92643.1</u>
_001035316.1	2092095 - 2092843	2673,20927792092843)			
AfloOBP12_NP	NW_003791605.1-	join(886573886608,886			AmelOBP12_2
_001035319.1	886575 - 887634	884886977,887165887	Partial	153	ABD92644.1

		280,887359887488,887			
		555887637)			
		join(17920261792073,1			
		7930491793124,179320		122	AmelOBP13
AfloOBP13_NP	NW_003791127.1-	61793297,1793406179	Complete	133	<u>ABD92645.1</u>
_001035314.1	1792025 - 1793722	3508,17936461793725)			
		join(17989931799043,1			
		8000731800145,180022	Complete	136	AmelOBP14
AfloOBP14_NP	NW_003791127.1-	31800314,1800408180	Complete	130	<u>ABD92646.1</u>
_001035313.1	1798992 - 1800750	0513,18006681800753)			
		join(18148601814953,1			
AfloOBP15-		8150441815150,181504	Partial	05	
like_NP_001035	NW_003791127.1-	91815143,1815267181	Fattai	95	
298.1	1814859 - 1815150	5353)			AmelOBP15-like
		join(18106071810679,1			
		8107521810843,181094	Partial	119	AmelOBP16
AfloOBP16_NP	NW_003791127.1-	21811047,1811185181	Partial	119	<u>ABD92648.1</u>
_001035297.1	1810606 - 1811267	1270)			
		join(18166371816687,			
		18176471817719,			
		18177921817883,	Complete	136	
AfloOBP17_NP	NW_003791127.1-	18179901818095,			
_001035296.1	1816636 - 1817724	18182061818291)			AmelOBP17
		join(18177641817883,1			
	NW_003791127.1-	8179901818095,181820	Partial	94	
AfloOBP17-like	1817787 - 1818285	61818291)			AmelOBP17-like
		join(18317951831845,1			AmelOBP19
AfloOBP19_NP	NW_003791127.1-	8334471833519,183361	Complete	136	<u>ABD92651.1</u>
_001035299.1	1831794 - 1834099	31833704,1833789183			

		3894,18340191834102)			
AfloOBP19-		join(18346151834704)			
like_NP_001035	NW_003791127.1-	possible isoform of	Partial	37	
295.1_B	1834614 - 1834698	previous			AmelOBP19
		join(18213781821428,1			
AfloOBP21-		8224391822511,182258	Complete	127	
like_NP_001035	NW_003791127.1-	21822674,1822765182	Complete	137	
296.1	1821377 - 1823025	2870,18229461823031)			AmelOBP21
		join(18373841837434,1			
		8384501838522,183859	Complete	136	AmelOBP21
AfloOBP21_NP	NW_003791127.1-	31838684,1838771183	Complete	150	<u>ABD92653.1</u>
_001035296.1	1837383 - 1839033	8876,18389541839039)			

 Table 2: OBPs from Apis florea annotated in our study have been listed with the scaffold identity,

 coding exons, complete or partial status of predicted protein sequence, length of protein sequence

 and its ortholog in Apis mellifera.

Supplementary Materials:

a. Supplementary File 1- SI_Table1

Table of OBPs from reference organism *Apis mellifera* derived from various literature sources and re-annotated to obtain a standard dataset

b. Supplementary File 2- SI_Table2

Table of predicted OBPs from Apis florea with annotation

c. Supplementary_File 3- SI_Table3

Table of blastp alignment hits obtained with query as our annotated set of AfloOBPs against Non-Redundant database.

Author ORCIDs

- 1. Bhavika Mam: https://orcid.org/0000-0002-3130-0925
- 2. Snehal Karpe: https://orcid.org/0000-0001-6062-7786
- 3. Ramanathan Sowdhamini: https://orcid.org/0000-0002-6642-2367

Funding:

BM acknowledges support from NCBS-TIFR and the Tata Education and Development Trust. SDK acknowledges support from Shyama Prasad Mukherjee Fellowship from Council of Scientific and Industrial Research (CSIR) and Bridging Postdoctoral Fellowship from NCBS-TIFR. RS acknowledges support and funding from JC Bose fellowship and from the DBT-Bioinformatics Centre (BT/PR40187/BTIS/137/9/2021).

Conflicts of Interest:

The authors declare no conflict of interest.

Ethics Approval/ declarations:

Not applicable

Data Availability Statement:

All the main data generated or analysed during this study are included in this published article [and its supplementary information files]. Related datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability: Not applicable

Authors' contributions:

RS and SK conceived this research and designed experiments; BM co-designed experiments for protein sequence annotation, performed experiments, analysis, and wrote first draft of the paper. All authors read and approved the final manuscript.

Acknowledgments

BM acknowledges Prof. (Dr.) Axel Brockmann and Prof. (Dr.) Shannon Olsson for valuable comments during the course of the study. All authors acknowledge NCBS for infrastructural support.

References

- Bhavika Mam, Ramanathan Sowdhamini. SoCCer: A pipeline to identify classes of soluble proteins in chemical communication in insect genomes, 03 September 2020, PREPRINT (Version 1) available at Research Square. DOI: 10.21203/rs.3.pex-1095/v1
- Forêt S, Maleszka R. Function and evolution of a gene family encoding odorant bindinglike proteins in a social insect, the honey bee (*Apis mellifera*) 2006. *Genome Res.* 16(11):1404-1413. DOI:10.1101/gr.5075706
- Forêt S, Wanner KW, Maleszka R, 2007. Chemosensory proteins in the honey bee: Insights from the annotated genome, comparative analyses and expressional profiling. Insect Biochem Mol Biol. 37(1):19-28. DOI: 10.1016/j.ibmb.2006.09.009. Erratum in: Insect Biochem Mol Biol. 2015 Oct; 65:107. PMID: 17175443.
- Gandhimathi A, Nair AG, Sowdhamini R, 2012. PASS2 version 4: an update to the database of structure-based sequence alignments of structural domain superfamilies. Nucleic Acids Res: D531-4. DOI: 10.1093/nar/gkr1096.
- Graham LA, Davies PL. The odorant-binding proteins of *Drosophila melanogaster*: annotation and characterization of a divergent gene family 2002. Gene. 292(1-2):43-55. DOI: 10.1016/s0378-1119(02)00672-8.
- 6. Gupta M 1986. A quantitative study and ultrastructure of flagellar sensillae of *Apis florea*F. (Hymenoptera: Apidae). *Proc. Indian Acad. Sci. (Anim. Sci.)*, 95: 5: 595-603.
- Gupta M, 1992. Scanning electron microscopic studies of antennal sensilla of adult worker *Apis florea* F (Hymenoptera: Apidae). *Apidologie*, Springer Verlag, 23 (1), 47-56.
- Halling L, Oldroyd B, Wattanachaiyingcharoen, W *et al.* 2001. Worker policing in the bee *Apis florea*. *Behav Ecol Sociobiol* 49, 509–513. DOI: 10.1007/s002650100325

- He P, Li ZQ, Zhang YF, Chen L, Wang J, Xu L, Zhang YN and He M. 2017. Identification of odorant
 binding and chemosensory protein genes and the ligand affinity of two of the encoded proteins suggest a complex olfactory perception system in *Periplaneta americana*. *Insect Mol Biol*, 26: 687-701. DOI: 10.1111/imb.12328
- Hekmat-Scafe DS, Scafe CR, McKinney AJ, Tanouye MA 2002. Genome-wide analysis of the odorant-binding protein gene family in *Drosophila melanogaster*. *Genome Res*. 12(9):1357-1369. DOI:10.1101/gr.239402
- Henikoff S, Henikoff, J.G, 1992. Amino Acid Substitution Matrices from Protein Blocks. *PNAS*. 89 (22): 10915–1091910919. DOI:10.1073/pnas.89.22.10915
- 12. Hepburn, RH, Radloff S, Otis G, Fuchs S, Verma L, Tan K, *et al.*, 2005. *Apis florea*: morphometrics, classification and biogeography. *Apidologie*, 36(3), 359-376.
- Hildebrand JG, and Shepherd, GM, 1997. Mechanisms of olfactory discrimination: Converging evidence for common principles across phyla. *Annu. Rev. Neurosci.* 20, 595– 631. DOI: 10.1146/annurev.neuro.20.1.595
- 14. Karpe SD, Dhingra S, Brockmann A. and Sowdhamini R. 2017. Computational genomewide survey of odorant receptors from two solitary bees *Dufourea novaeangliae* (Hymenoptera: Halictidae) and *Habropoda laboriosa* (Hymenoptera: Apidae). *Sci. Rep*, 7, 10823.
- 15. Karpe S.D., Jain R., Brockmann A. and Sowdhamini R. 2016. Identification of Complete Repertoire of *Apis florea* Odorant Receptors Reveals Complex Orthologous Relationships with *Apis mellifera*. Genome Biology and Evolution, 8, 2879–2895.

- Karpe SD, Tiwari V, Ramanathan S. 2021. InsectOR—Webserver for sensitive identification of insect olfactory receptor genes from non-model genomes. PLOS ONE 16(1): e0245324. DOI: 10.1371/journal.pone.0245324
- 17. Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Res.* 30:3059–3066.
- 18. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Mol. Biol. Evol.* 30:772–80.
- Kumar N, Nayyar K, Sharma R and Anudeep 2014. Ultramorphology of antennal sensilla of open-nesting honey bees *Apis florea F*. and *Apis dorsata F*. (Hymenoptera: Apidae) J. Appl. & Nat. Sci. 6 (1): 315-319.
- Larter NK, Sun JS, Carlson JR, 2016. Organization and function of *Drosophila* odorant binding proteins. Elife. 5:e20242. DOI: 10.7554/eLife.20242
- 21. Letunic I and Bork P, 2006. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. *Bioinformatics* 23(1):127-8
- 22. Letunic I and Bork P 2016. Interactive Tree Of Life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. *Nucleic Acids Res* DOI: 10.1093/nar/gkw290
- 23. Manoharan M, Ng Fuk Chong M, Vaïtinadapoulé A, Frumence E, Sowdhamini R, Offmann B. 2013 Comparative genomics of odorant binding proteins in *Anopheles gambiae*, *Aedes aegypti*, and *Culex quinquefasciatus*. *Genome Biol Evol*. 5(1):163-180. DOI:10.1093/gbe/evs131
- Moritz, RF et al. 2010. Invasion of the Dwarf Honeybee *Apis Florea* into the Near East. *Biological Invasions* 12.5: 1093-9.

- 25. Nielsen H, Engelbrecht J, Brunak S and von Heijne G 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering, 10:1-6.
- Oldroyd B, and Nanork P 2009. Conservation of Asian Honey Bees. *Apidologie* 40.3: 296–312.
- 27. Otis GW 1991. Revised distribution of three recently recognised species of honey bees Asia. *Honeybee Sci* 15:167-170.
- Page RE, and Robinson G 1991. The genetics of division of labour in honey bee colonies.
 Adv insect physiol 23: 117-169.
- Petersen TN, Brunak S, von Heijne G and Nielsen H 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. *Nature Methods*, 8:785:786. DOI: 10.1038/nmeth.1701
- 30. Slater GSC, Birney E. 2005. Automated generation of heuristics for biological sequence comparison. *BMC Bioinformatics* 6:31.
- 31. Stamatakis A 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics*. 22:2688–90.
- 32. Stamatakis A 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics*. 30:1312–3.
- 33. Suwannapong G, Seanbualuang P & Benbow ME 2011. Using sensillum potential analysis to quantify pheromone sensing of the antennal sensilla of *Apis florea Fabricius* (1787), foragers and guards. *Journal of Asia-Pacific Entomology*, 14(1), 7–10.
- 34. The UniProt Consortium 2019. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47: D506-515.

- 35. Vogt GR, Große-Wilde E, Zhou JJ, 2015. The Lepidoptera Odorant Binding Protein gene family: Gene gain and loss within the GOBP/PBP complex of moths and butterflies, Insect Biochemistry and Molecular Biology: 62: 142-153. DOI:10.1016/j.ibmb.2015.03.003.
- 36. Missbach C, Vogel H, Hansson BS, Groβe-Wilde E, 2015. Identification of Odorant Binding Proteins and Chemosensory Proteins in Antennal Transcriptomes of the Jumping Bristletail *Lepismachilis y-signata* and the Firebrat *Thermobia domestica:* Evidence for an Independent OBP–OR Origin, *Chemical Senses*: 40:9, 615: 626. DOI: 10.1093/chemse/bjv050
- 37. Whelan S, Goldman N 2001. A General Empirical Model of Protein Evolution Derived from Multiple Protein Families Using a Maximum-Likelihood Approach, *Molecular Biology and Evolution*, 18:5: 691–699. DOI: 10.1093/oxfordjournals.molbev.a003851
- Wigglesworth VB 1965. The Principles of Insect Physiology. Methuen Co Ltd, London, 6th edn
- Wongsiri S, et al. 1997. Comparative biology of *Apis andreniformis* and *Apis florea* in Thailand. *Bee World* 78.1: 23-35.
- 40. Wu YR and Kuang B, 1987. Two species of small honeybee a study of the genus *Micrapis*. *Bee World*. 68: 153–55. DOI: 10.1080/0005772X.1987.11098924
- 41. Xu, Y. L., He, P., Zhang, L., Fang, S. Q., Dong, S. L., Zhang, Y. J., & Li, F. 2009. Large-scale identification of odorant-binding proteins and chemosensory proteins from expressed sequence tags in insects. *BMC genomics*, 10, 632. DOI: 10.1186/1471-2164-10-632
- 42. Zhou YN, Xie S, Chen JN, et al. 2020. Expression and functional characterization of odorant-binding protein genes in the endoparasitic wasp Cotesia vestalis. Insect Science. DOI: 10.1111/1744-7917.12861.