
Attention improves information flow between 
neuronal populations without changing the 
communication subspace 
 

 

Authors: Ramanujan Srinath, Douglas A. Ruff, Marlene R. Cohen 

Lead Contact: Ramanujan Srinath 

Affiliations: Department of Neuroscience and Center for the Neural Basis of Cognition, 

University of Pittsburgh, Pittsburgh, PA, USA 

Email: ramanujan@pitt.edu, ruffd@pitt.edu, cohenm@pitt.edu 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437940doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437940
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1 

Summary 1 

Visual attention allows observers to flexibly use or ignore visual information, suggesting that 2 

information can be flexibly routed between visual cortex and neurons involved in decision-3 

making. We investigated the neural substrate of flexible information routing by analyzing the 4 

activity of populations of visual neurons in the medial temporal area (MT) and oculomotor 5 

neurons in the superior colliculus (SC) while rhesus monkeys switched spatial attention. We 6 

demonstrated that attention increases the efficacy of visuomotor communication: trial-to-trial 7 

variability of the population of SC neurons was better predicted by the activity of MT neurons 8 

(and vice versa) when attention was directed toward their joint receptive fields. Surprisingly, this 9 

improvement in prediction was not explained or accompanied by changes in the dimensionality 10 

of the shared subspace or in local or shared pairwise noise correlations. These results suggest a 11 

mechanism by which visual attention can affect perceptual decision-making without altering 12 

local neuronal representations. 13 

  14 
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 2 

Introduction 15 

Perhaps the most impressive hallmark of the nervous system is its flexibility. We effortlessly 16 

alternate between relying on or ignoring the same sensory information in different contexts. 17 

Visual attention dramatically affects perception and a wide variety of measures of neural activity 18 

in essentially every visual and visuomotor brain area (for reviews, see (Maunsell, 2015; Moore 19 

and Zirnsak, 2017)). Attention flexibly modulates signatures of neuronal activity including trial-20 

averaged firing rates (Desimone and Duncan, 1995; Maunsell, 2015; Reynolds and Chelazzi, 21 

2004), shared variability between pairs of neurons in the same (Cohen and Maunsell, 2009, 22 

2011; Gregoriou et al., 2014; Herrero et al., 2013; Luo and Maunsell, 2015; Mayo and Maunsell, 23 

2016; Mitchell et al., 2009; Nandy et al., 2017; Ni et al., 2018; Ruff and Cohen, 2014a, 2014b, 24 

2016a, 2019; Verhoef and Maunsell, 2017; Yan et al., 2014; Zénon and Krauzlis, 2012) and 25 

different brain areas (Oemisch et al., 2015; Pooresmaeili et al., 2014; Ruff and Cohen, 2016a; 26 

Ruff et al., 2016), interdependence of neuronal populations on a range of timescales (Azouz and 27 

Gray, 2003; Bichot et al., 2005; Bosman et al., 2012; Briggs et al., 2013; Buffalo et al., 2011; 28 

Buschman and Miller, 2007; Dagnino et al., 2014; Fries, 2015; Fries et al., 2001; Gregoriou et 29 

al., 2009; Klink et al., 2017; Lakatos et al., 2008; Miller and Buschman, 2013; Moore and 30 

Armstrong, 2003; Ruff and Cohen, 2016a, 2017; Saalmann et al., 2007; Salinas and Sejnowski, 31 

2001; Saproo and Serences, 2014; Womelsdorf and Fries, 2007; Womelsdorf et al., 2006a), and 32 

the dimensionality of population activity within each brain area (Cowley et al., 2020; Huang et 33 

al., 2019; Ruff et al., 2020). 34 

 35 

The behavioral effects of attention make it clear that visual information can be flexibly routed: a 36 

stimulus can either guide or be unrelated to a perceptual decision depending on the task 37 

condition (Carrasco, 2011; Egeth and Yantis, 1997; Kohn et al., 2016a; Maunsell, 2015). In the 38 

visual system, neurons in each area send projections to a variety of different sensory, association, 39 

and motor areas, and only a small proportion of neuronal population activity is shared between 40 

even highly connected brain areas (Semedo et al., 2019). Recent work used correlative methods 41 

to identify a functional ‘communication subspace’, which consists of the dimensions of neuronal 42 

population space in which trial-to-trial variability is shared between areas (Semedo et al., 2019, 43 

2020). We similarly adopt the term ‘communication’ to refer to functional communication (i.e., 44 

shared trial-to-trial variability in responses to the same visual stimulus).  45 
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 46 

An exciting possibility is that modulations in the shape or the constitution of this subspace could 47 

be a substrate for flexible, attention-dependent routing of sensory information. Compared to its 48 

behavioral effects, attention has remarkably modest effects on the amount of visual information 49 

encoded in visual cortex (Ruff and Cohen, 2019). Instantiating task or attentional flexibility via 50 

flexible routing rather than information coding could allow the brain to retain irrelevant visual 51 

information for future behavior or memory while the most relevant visual information guides 52 

behavior. 53 

 54 

We investigated three potential mechanisms of flexible information flow between visual cortex 55 

and premotor neurons involved in decision-making. We tested the hypotheses that attention 56 

modulates information flow between areas by (1) changing the way visual or task information is 57 

represented in a local population, (2) changing the communication subspace itself, and/or (3) 58 

changing the efficacy of information transfer (Figure 1d).  59 

 60 

Our strategy was to analyze functional communication between neuronal populations in visual 61 

and premotor areas while animals switched attention toward or away from their joint receptive 62 

fields. We recorded simultaneously from dozens of visual neurons in the medial temporal area 63 

(MT) and oculomotor neurons in the superior colliculus (SC) with overlapping receptive fields 64 

while rhesus monkeys performed a task in which they switched spatial attention, alternatingly 65 

using or ignoring the stimulus in the joint receptive fields of the recorded neurons. We used 66 

recently published methods for analyzing functional relationships between populations of 67 

neurons by assessing the dimensionality of shared variability and the extent to which the activity 68 

of one population could be predicted by the other (Semedo et al., 2019, 2020). We focused on 69 

trial-to-trial fluctuations in responses to the same visual stimulus because these are related to 70 

functional connectivity rather than simply reflecting tuning for similar stimuli (for review, see 71 

(Cohen and Kohn, 2011; Umakantha et al., 2020)), and have been shown to be correlated with 72 

choice behavior (Ni et al., 2018; Ruff et al., 2018). 73 

 74 

We found strong evidence for our third hypothesis, that attention improves the efficacy of 75 

functional communication between visual and premotor neurons. Trial-to-trial variability of the 76 
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population of SC neurons was better predicted by the activity of MT neurons (and vice versa) 77 

when attention was directed inside their joint receptive fields. This enhanced functional 78 

communication was not explained by increases or decreases in private or shared pairwise noise 79 

variability or a change in the number of private or shared dimensions of neuronal population 80 

activity.  81 

 82 

This enhanced functional communication was not restricted to interactions between visual and 83 

premotor neurons. An independent dataset of simultaneously recorded neurons in primary visual 84 

cortex (V1) and in MT revealed that attention also increases functional communication within 85 

visual cortex. Even though the attention-related change in pairwise correlations and response 86 

dimensionality within V1 was small compared to MT or SC, attention significantly enhanced our 87 

ability to predict the responses of single MT neurons from population activity in V1. Similarly, 88 

the effects of attention on functional communication were similar between MT and visual or 89 

motor neurons in the SC. 90 

 91 

Our study provides a blueprint for combining behavioral paradigms that vary cognitive processes 92 

with dimensionality reduction and regression analyses to study how information can be flexibly 93 

routed in the nervous system. We used these methods to demonstrate that attention substantially 94 

improves the prediction performance between areas, more faithfully communicating information 95 

about attended stimuli, independent of changes in pairwise correlations or the dimensionality of 96 

either the local population or the shared variability. These results are the first demonstration of 97 

how attention affects the activity of distinct but connected populations of neurons in a way that 98 

affects the functional communication of visual information. They suggest a mechanism by which 99 

cognitive processes can affect perceptual decision making in ways that are independent of 100 

changes to the local neuronal representations. 101 

 102 

Results 103 

We compared evidence consistent with several potential mechanisms for flexible routing of 104 

information. We chose a widely studied cued direction change detection task to study the 105 

behavioral effects of attention on visual perception, and three brain regions that are known to 106 

contribute to motion perception and visually-guided decision making – primary visual cortex 107 
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(V1), the middle temporal area (MT), and the superior colliculus (SC). While rhesus monkeys 108 

performed the motion change detection task (Figure 1a), we recorded simultaneously from either 109 

dozens of neurons in MT and SC (Figure 1b) with overlapping receptive fields (Figure 1c; 110 

different aspects of these data were previously reported in Ruff and Cohen, 2019), or from 111 

several dozen neurons in V1 and a single MT neuron (Figure 6; different aspects of these data 112 

were previously reported in Ruff and Cohen, 2016a, 2016b). During the simultaneous MT-SC 113 

recordings, the monkey was cued as to which of two stimuli was most likely to change during a 114 

block of trials. This cued stimulus was placed either inside the overlapping receptive fields (RFs) 115 

of the recorded MT and SC neurons or in the opposite hemifield (Figure 1c). Throughout this 116 

manuscript, attend in refers to the trials where attention was directed toward the joint RFs and 117 

attend out refers to trials where attention was directed to the opposite hemifield. The monkey 118 

was rewarded for making a saccade to the location of the direction change, which occurred at a 119 

random and unsignaled time. The ability of the animal to detect the median difficulty changes in 120 

grating direction is enhanced by ~ 25% on average across sessions when attention was directed 121 

to the location of the change (cued 76.5% detected, uncued 51.8% detected) (Ruff and Cohen, 122 

2019). We analyzed the spike counts of each visually responsive multi-unit recorded from MT 123 

and SC during presentations of identical Gabor stimuli before the direction change (excluding 124 

the first presentation in each trial to remove adaptation effects). We also analyzed spike counts of 125 

each SC unit with elevated firing rates before saccade onset to the contralateral visual field. In 126 

the V1-MT data set, we tested our hypotheses on the responses of groups of V1 neurons whose 127 

receptive fields overlapped either of two small stimuli, both of which were inside the RF of the 128 

MT neuron (Ruff and Cohen, 2016a, 2016b). 129 

 130 

Signatures of population interactions that underlie attentional mechanisms 131 

We tested the following non-mutually exclusive hypotheses (schematized in Figure 1d) about 132 

how attention might modulate information flow within and between areas. (a) Attention 133 

primarily modulates communication between areas by changing the dimensionality of either the 134 

private or the shared subspace (Figure 1d, left column). (b) Attention improves the fidelity of 135 

communication within local populations; this would be observable as an improvement in the 136 

ability to predict the activity of one subset of a neurons in a population from the activity of a 137 

different subset of neurons in the same area (Figure 1d, middle column) (c) Attention improves 138 
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the fidelity of communication across brain regions; this would be evident in the improved 139 

accuracy of prediction of neural activity of one region using the activity of the other and vice 140 

versa (Figure 1d right column).  141 

 

Figure 1: 

 (0.75-page width – 1.5 column) 
Behavioral task, 
recording sites, 
receptive fields, and 
schematic of 
hypotheses.  
a: Schematic of the 
motion direction 
change detection task. 
The monkeys were 
cued in blocks of 
trials to expect 
changes in motion 
direction at one of 
two spatial locations 
(cue was 80% valid). 
The monkey started 
the trial by fixating a 
central spot. Two 
small Gabor stimuli 

synchronously flashed on for 200ms and off for a randomized period of 200-400ms. One of the 
stimuli was positioned inside the joint receptive fields of the MT and SC neurons, and the other 
was placed in the opposite hemifield. Both stimuli moved in a direction that was chosen to drive 
the MT population well. After a randomized number of stimulus presentations (between 2 and 
13), the direction of one of the stimuli changed. The monkeys were rewarded for making a 
saccade to the direction change in either location. We analyzed neuronal responses to all 
identical stimulus presentations except the first to minimize the effect of adaptation. 
b: Illustration of recording locations. Populations of MT and SC neurons were recorded with 
linear 24-channel moveable probes from the right hemisphere of two monkeys as they were 
doing the behavioral task described in (a). 
c: Receptive field locations of recorded units from an example recording session. The dots 
represent the receptive field centers of 28 MT (red) and 26 SC (blue) units. The circles represent 
the size and location of the median receptive field from each area. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437940doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437940
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

d: Schematics describing the hypotheses about attention-related changes in information flow 
between two areas. Each icon depicts the response space of the source area (the responses of the 
first n neurons or principal components, for instance), and orange and blue surfaces that 
represent two subspaces for the private or shared fluctuations in neural activity respectively. The 
two rows of icons represent the attended and unattended conditions (when attention was directed 
toward or away from the receptive fields of the recorded neurons), and each column describes 
the expected result of each of the following hypothesis. (left) Attention could alter the 
dimensionality of the private, shared, or both subspaces. If attention only modified local 
representations, then the number of private dimensions that explain the local neural fluctuations 
would change. (middle) Alternatively, attention could modulate information flow by enhancing 
or diminishing the extent to which neural activity in a target population tracks the neural activity 
of its source. If attention acted via this mechanism locally, then prediction would improve in 
private dimensions. (right) If attention modulated functional communication by modulating 
information flow across areas, then prediction would improve in shared dimensions. 
 

Prediction of SC activity from MT activity using linear models improves with attention 142 

Testing the predictions of our hypotheses requires calculating the ability to predict the activity of 143 

one population of neurons from another and identifying the dimensions of neural population 144 

space through which functional communication occurs. We plot the results of these analyses for 145 

one representative session in Figure 2. We used ridge regression to impose a sparse mapping 146 

between random subsets of MT neurons and the full populations of SC neurons in each attention 147 

condition (see Methods and Semedo et al, 2019).  148 

 149 

Several features of this example recording session were typical of our data set. First, no subset of 150 

the recorded MT neurons could effectively predict SC neural activity; the prediction accuracy 151 

monotonically increased with the addition of MT neurons. Second, the accuracy of prediction 152 

was significantly improved in the attend in trials vs attend out trials across all sub-selections of 153 

the MT population. Third, attention also improved the ability to predict random subsets of SC 154 

neurons from the full population of recorded MT neurons (Figure 2b). 155 

 156 

To determine the relationship between these measures of functional communication between 157 

neuronal populations in MT and the SC and more well-studied effects of attention, we next 158 

calculated traditional metrics neuronal activity like pairwise spike count correlations (Figure 2c) 159 

and population firing rate (Figure 2d). For this session, attention significantly decreased spike 160 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437940doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437940
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

count correlations in both MT and SC but did not have an effect on variability shared between 161 

pairs of neurons in different brain areas. Attention also significantly increased mean firing rates 162 

in this session. Firing rate and correlation changes across sessions are detailed in Figure S1. 163 

 164 

For the example session, we observed no attention-related change in the population 165 

dimensionality in MT (~ 5 dimensions; Figure 2e) and SC (~ 3.5 dimensions; Figure 2g) defined 166 

as the smallest number of dimensions that captured 95% of the variance in the shared covariance 167 

matrix (assessed using factor analysis; (Cunningham and Yu, 2014); also see Methods for code 168 

and other resources). 169 

 170 

We next tested whether, as between two areas of visual cortex (Semedo et al., 2019), interactions 171 

between MT and the SC are limited to a subset of dimensions of neural population space. For the 172 

example session in Figure 2, only 2-3 dimensions of MT activity (identified using reduced rank 173 

regression; see Methods; defined at the number of dimensions at which the curves in Figure 2f 174 

reach asymptote) predicted SC activity at least as well as a full linear model (fit using ridge 175 

regression; see Methods). The prediction accuracy for the attend in trials was significantly better 176 

than the attend out trials irrespective of the number of predictive dimensions (the black line is 177 

always above the gray line in Figure 2f). 178 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437940doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437940
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

Figure 2: 

(full page width – 2 column)  

 
Attention improves prediction of SC activity from MT activity, increases firing rate, and 
decreases spike-count correlations in an example recording session. 
a: For an example session, the prediction accuracy of 1-26 randomly sampled (without 
replacement) MT neurons predicting the activity of a population of 21 SC neurons in the two 
attention conditions (attend in refers to the trials in which attention was directed within the joint 
RFs of the MT and SC neurons, and attend out refers to trials in which attention was directed in 
the opposite hemifield). Prediction was performed using a linear model with ridge regression 
and prediction performance was defined as the average cross-validated normalized square error 
(NSE) for the smallest ridge parameter for which the performance was within 1 SEM of the peak 
performance. Each point represents the mean prediction performance for n MT neurons 
predicting the full population of SC neurons. Error bars represent the standard error of the 
mean across random subsamples of n neurons. 
b: Same as (a) but for predicting random subsets of SC neurons using the activity of the full 
population of MT neurons, showing that the effect of attention on MT-SC communication is not 
limited to a subpopulation of the either the MT or SC neurons recorded in this session. 
c: Spike count correlation (rSC) defined as the correlation between the responses of pairs of 
neurons to all stimulus presentations for all MT neurons (325 pairs, red), SC neurons (210 pairs, 
blue), and MT-SC pairs (546 pairs, black). Attention decreases spike count correlations in MT (p 
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= 1.2x10-10; Wilcoxon signed rank test (WSRT)) and SC (p = 0.0206; WSRT) but has no effect on 
pairwise correlations across areas (p = 0.2; WSRT) for this recording session. See Figure S1 for 
rSC for all pairs across recording sessions. 
d: Neuronal firing rates increase with attention in MT (p = 8.3x10-6; WSRT) and SC (p = 0.04; 
WSRT) for this session. See Figure S1 for firing rates for all neurons across sessions. 
e: Factor analysis of MT population responses for this session reveals that 90% of the variance 
in the MT response fluctuations can be accounted for by ~ 5 dimensions. The number of 
population dimensions is greater for the attend in condition vs the attend out condition. The 
arrow in the icon signifies that the MT population (source) is being used to predict the SC 
population (target): henceforth labeled as MT ➔ SC prediction. 
f: Predicting SC activity from MT responses using reduced-rank regression (RRR; black and 
gray lines) and ridge regression (triangle) reveals that the prediction performance for a matched 
number of trials is dramatically better for the attend in condition (black) vs the attend out 
condition (gray). The optimum number of dimensions (circle) for the reduced-rank regression 
was defined as the lowest number of dimensions for which prediction performance was within 1 
SEM of peak performance. This performance is at least as good as the performance of the ridge 
regression performance that uses all the source dimensions for prediction (the difference 
between the RRR prediction and the ridge regression prediction was not significant across 
sessions; data not shown). The number of source dimensions required for optimum regression 
performance was 3 for attend in and 2 for attend out suggesting that fewer dimensions are 
required for communication between MT and SC than the total number of population 
dimensions.  
g: Factor analysis of SC neurons reveals that 90% of the variance in the SC response 
fluctuations can be accounted for by 3-4 dimensions. For this session, the number of population 
dimensions is greater for the attend out condition vs the attend in condition. 
 

Attention improves prediction accuracy for inter-areal communication channels 179 

Testing our hypothesized mechanisms of information flow (Figure 1) requires determining how 180 

attention affects the dimensionality and informativeness of interactions within and between 181 

populations of neurons in MT and the SC. We therefore fit linear models for repeated random 182 

splits of the populations of recorded MT and SC neurons in all four directions – MT ➔ SC, MT 183 

➔ MT, SC ➔ MT, and SC ➔ SC. We depict the effect of attention on these four communication 184 

channels (for the same single session as in Figure 2) in the form of mean prediction accuracy 185 

across all tested population splits (Figure 3c-f). For this session, the prediction performance 186 

improves with attention for all functional communication channels except within MT where it 187 

depreciates. We estimated the population dimensionality as of each of the randomly split 188 
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populations of MT and SC neurons using factor analysis to compare with number of predictive 189 

dimensions (Figures 3a, b). Consistent with result for the full population above, the number of 190 

dimensions within each area is not affected by attention. 191 

 
Figure 3: 

(full page width – 2 column)  

 
Randomly partitioned populations of MT and SC neurons predict activity within and across 
areas better with attention for the same example session. To compare prediction performance 
for inter- and intra-areal interactions, we randomly split both the populations of MT and SC 
neurons into two halves each – the target and source halves – as indicated in the icons. Each 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437940doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437940
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

source half was used to predict the activity of both target halves using both the full linear model 
(ridge regression) and the reduced-rank regression (RRR) model. This split was done 20 times 
and the mean performance across the random splits is shown in c-f. Error bars indicate the SEM 
across these splits. 
a: Factor analysis of MT neurons reveals that 95% of the variance in the MT response 
fluctuations can be accounted for by ~ 4 dimensions on average across all splits for this session. 
The number of population dimensions is greater for the attend in condition vs the attend out 
condition. 
b: Same as (a) for SC neurons. For this session, SC population fluctuations are captured by ~ 3 
dimensions in both attention conditions. 
c: Average prediction performance for the full model (black and gray triangles) and the RRR 
model (black and grey circles) across random splits of the MT and SC populations. The orange 
circle indicates the average optimum performance and average number of optimum prediction 
dimensions across the random splits. For each session, this point of optimum performance is 
plotted in different comparisons in the following figures. For this session, attention improves MT 
➔ SC prediction performance. For all predictions, the RRR model performs at least on par with 
the full linear model using ridge regression. 
d: same as (c) for MT ➔ MT predictions. For this session, attention degrades prediction 
performance. The average optimum performance and average optimum prediction dimensions 
are indicated with blue circles. 
e: same as (c) for SC ➔ SC predictions. For this session, attention improves prediction 
performance. The average optimum performance and average optimum prediction dimensions 
are indicated with green circles. 
f: same as (c) for SC ➔ MT predictions. For this session, attention improves prediction 
performance. The average optimum performance and average optimum prediction dimensions 
are indicated with pink circles. 
 
Across sessions, prediction performance between MT and the SC improves with attention 192 

without changing the dimensionality of that communication (Figure 4). The number of predictive 193 

dimensions required to account for intra-areal communications was higher than the number of 194 

dimensions for inter areal communication in both attention conditions. Whereas prediction 195 

accuracy for intra-areal communication was consistently high and remained unaffected by 196 

attention, the prediction accuracy for inter-areal communication significantly improved with 197 

attention (Figure 4b, which shows the ratios of the number of predictive dimensions and of the 198 

prediction accuracy in the two attention conditions). Attention does not affect the number of 199 

predictive dimensions required for communication within and across areas (the marginal 200 

distributions of ratios are centered at and not significantly different from 1; Wilcoxon signed 201 
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rank test) but improves the prediction accuracy between MT and the SC (the distributions of 202 

ratios of MT ➔ MT and SC ➔ SC prediction accuracy are centered at and not significantly 203 

different from 1 but the ratios of MT ➔ SC and SC ➔ MT prediction accuracy are significantly 204 

greater than 1; Wilcoxon signed rank test; see also the distributions for each communication 205 

channel in Figure S3). 206 

 
Figure 4: 

(0.5-page width – 1 column) 
Attention improves the accuracy of across 
area prediction but not within area 
prediction without altering the 
dimensionality of the communication 
subspace. Each point of a given color 
represents a recording session. The color 
scheme is depicted in the icon in (c) and is 
consistent with other figures. 
a: Attention does not affect the dimensionality 
of the interaction between MT and SC 
neurons. Each point represents the average 
number of optimum predictive dimensions for 
each session for one of the four predictions – 
MT ➔ SC (orange), MT ➔ MT (blue), SC ➔ 
SC (green), SC ➔ MT (pink) – for the two 
attention conditions. There was so significant 
difference between the number of predictive 
dimensions for any of the four predictions. See 
Figure S5 for a detailed version of this panel. 
(MT-MT mean 3.67, range 1.5-5.2 for attend 
in and mean 3.74, range 1.1-5.3 for attend 
out; SC-SC mean 4, range 2.9-5.3 for attend 
in and mean 3.9, range 2.85-5.7 for attend 
out; MT-SC mean 1.8, range 1-2.5 for attend 

in and mean 1.75, range 1-2.7 for attend out; SC-MT mean 1.6, range 1-2.7 for attend in and 
mean 1.55, range 1-3.15 for attend out) 
b: Attention significantly increases the prediction accuracy of inter-areal but not intra-areal 
interactions. Each point represents the average prediction performance across random splits for 
one of the four predictions. The purple inset affords a zoomed in view of the relevant part of the 
plot which reveals that the points corresponding to the MT ➔ SC (orange) and SC ➔ MT (pink) 
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predictions lie below the unity line. The average prediction accuracies for the attend in trials 
were significantly greater than those for the attend out trials for the MT ➔ SC prediction (p = 
0.0015; Wilcoxon signed-rank test) and for the SC ➔ MT prediction (p = 8.54x10-4; Wilcoxon 
signed-rank test) but not the MT ➔ MT or SC ➔ SC predictions. 
c: The data in (a) and (b) visualized as a ratio of attend in and attend out. The marginal 
distributions of the ratios of prediction accuracy and predictive dimensions for all four 
predictions are also displayed. The mean ratios of prediction accuracy for MT ➔ SC (orange) 
and SC ➔ MT (pink) were significantly greater than 1 (p = 0.0016 and p = 0.012 respectively; t-
test). The colored arrows in the icon indicate the source and target populations for each of the 
four predictions. 
 

While attention is known to affect the mean pairwise spike count correlations within and 207 

between areas (Cohen and Maunsell, 2009; Mitchell et al., 2009; Ruff and Cohen, 2014a, 2016a), 208 

we found that attention-related improvements in prediction accuracy are not contingent on 209 

increases or decreases in spike count correlations. The ratio of prediction accuracies in the two 210 

attention conditions within and between areas was unrelated to the attention-related difference in 211 

mean spike count correlations between pairs of neurons within MT, within SC and between MT 212 

and SC (Figure S3).  213 

 214 

The connectivity and functional roles of populations of SC neurons differ by layer, so we made 215 

use of our recordings that spanned layers to investigate whether functional communication 216 

between MT and the SC depends on layer as well. MT projections to SC predominantly end in 217 

the superficial layers in SC ((Fries, 1984, 1985) but also see (Lock et al., 2003)). Tecto-pulvinar 218 

projections from the superficial and intermediate layers of SC end in the inferior pulvinar which 219 

in turn projects to extra-striate areas (Lyon et al., 2010; Stepniewska et al., 1999). Also, there is 220 

some evidence that extra-striate projecting lateral geniculate nucleus (LGN) neurons do not 221 

receive direct retinal input and are dependent on SC projections across all layers for relaying 222 

visual information to MT (Benevento and Yoshida, 1981; Rodman et al., 1990). Given these 223 

laminar differences in cortical and thalamic inputs to and outputs from SC, we tested whether 224 

there is a difference between the attentional effect on information flow across functional classes 225 

of SC neurons. To classify SC neurons, we calculated an oculo-motor score based on SC neuron 226 

responses to visual stimuli and responses just prior to saccade onset (see Methods) and divided 227 

each population into two groups based on the rank ordering of oculo-motor scores. We then 228 
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further split each SC population randomly as described before to serve as the source and target of 229 

regression with the simultaneously recorded MT population (Figure S4). We found no significant 230 

differences in the effect of attention on either the prediction accuracy or the number of 231 

dimensions required for prediction between the SC populations split by oculo-motor score 232 

(labeled visual and motor for brevity). Compared to random splits of the SC population, when 233 

split by oculo-motor score, the effect of attention on the prediction accuracy of the SC ➔ SC 234 

regression is pronounced (Figure S3c vs Figure S4c). 235 

 236 

Attention does not improve information flow by altering private or communication 237 

subspaces  238 

The attention-related improvement in information flow (as implied by increased prediction 239 

accuracy across MT and SC) could in principle arise by changing the subspaces of activity 240 

responsible for functional communication within or between areas. We did not find evidence that 241 

attention changes the dimensionality of any of these subspaces: there was no attention-related 242 

change in the dimensionality of the local populations of MT and SC neurons (Figure S5a and 243 

S5b respectively) or in the number of predictive dimensions for the various communication 244 

subspaces within and between the two areas (Figure S5c-f). We consistently found that more 245 

dimensions were required to account for intra-areal communication than to account for inter-246 

areal communication (mean 3.6 for MT ➔ MT and 4 for SC ➔ SC; vs 1.8 for MT ➔ SC and 1.6 247 

for SC ➔ MT). This disparity suggests that MT and SC interact via a limited communication 248 

subspace.  249 

 250 

Attention did not affect the dimensionality of the communication subspace. When we compared 251 

the number of dimensions used for private communication with the number of shared dimensions 252 

for MT ➔ MT prediction and MT ➔ SC prediction, we found that significantly fewer 253 

dimensions are required for MT ➔ SC communication than are available, but MT ➔ MT 254 

communication utilizes all available dimensions (Figure 5a). This effect was similar in the two 255 

attention conditions (Figures 5b and c), and we found similar results in the SC ➔ MT direction 256 

when compared with SC ➔ SC communication (Figure 5d-f). We found no relationship between 257 

the functional communication channels when assessed on a session-by-session basis (Figure S6). 258 
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We also did cross-prediction analyses (using the attend in linear model to predict attend out data 259 

and vice versa) to check if the structure of the communication subspace changes while keeping 260 

its dimensionality, in turn causing the prediction accuracy to be better (Figure S7). We found that 261 

while the intra-areal models performed almost as well when swapped, the inter-areal models 262 

suffered a loss in prediction accuracy. This does not necessarily imply that the geometry of the 263 

communication subspaces changes with attention but that linear methods are unable to find a 264 

common subspace between the two attention conditions (also see Discussion). 265 

 
Figure 5: 

(full page width – 2 column) 

 
MT and SC populations interact via a communication subspace, but attention has no effect on 
the dimensionality of the communication subspace. Each point represents a recording session, 
and the color scheme is the same as other figures. Colored + represents the mean of the 
corresponding points. This figure compares the number of factors that explain 95% of the 
variance in the target area (from factor analysis) with the number of dimensions in the source 
area that are sufficient to predict the target area activity (from RR regression). Qualitative 
comparisons between the absolute values of the ‘number of dimensions’ from these two analyses 
in depicted in a, b, d, and e. The effect of attention is depicted in c and f.  
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a: For the attend in condition, the number of private predictive dimensions are greater than the 
number of shared predictive dimensions in MT. Further, for the MT ➔ SC prediction (orange 
points), fewer dimensions are required to predict SC activity than are required to explain 95% of 
the variance in the SC activity, forming a communication subspace in MT that comprises of ~ 2 
shared dimensions that are sufficient to predict the ~ 4-dimensional activity in SC. For the MT 
➔ MT prediction, the number of predictive dimensions is similar to the number of population 
dimensions i.e., the predictive dimensions in MT are as large as possible and closely match the 
complexity of the target population, unlike the MT ➔ SC prediction.  
b: Same as (a) for the attend out condition. 
c: Data in (a) and (b) presented as a ratio to compare the effect of attention on the 
communication subspace in MT. 
d: For the attend in condition, the number of private predictive dimensions are greater than the 
number of shared predictive dimensions in SC. For the SC ➔ MT prediction (pink points), fewer 
dimensions are required to predict MT activity than are required to explain 95% of the variance 
in the MT activity i.e., a communication subspace exists in SC that comprises of ~ 2 shared 
dimensions that are sufficient to predict the ~ 3.5-dimensional activity in MT. 
e: Same as (d) for the attend out condition. 
f: Data in (d) and (e) presented as a ratio to compare the effect of attention on the 
communication subspace in SC. 
 

Attention improves information flow between V1 and MT 266 

Both MT and SC exhibit relatively large attention-related changes in a number of measures of 267 

neuronal activity (Goldberg and Wurtz, 1972; Ignashchenkova et al., 2004; Krauzlis et al., 2013; 268 

Recanzone and Wurtz, 2000; Seidemann and Newsome, 1999; Womelsdorf et al., 2006b). 269 

Attention-related improvements in information flow may in principle be exclusive to pairs of 270 

regions that individually show significant changes in local representations. We tested this 271 

hypothesis by analyzing previously published simultaneous recordings of populations of neurons 272 

in V1 (which tend to show very modest effects of attention) and a single MT neuron (Ruff and 273 

Cohen, 2016a, 2016b; Ruff et al., 2016). As with the MT➔ SC results, we found that attention 274 

dramatically improves V1 ➔ MT prediction accuracy (Figure 6c; because we only recorded one 275 

MT neuron at a time, it was not possible to compute MT➔ V1 prediction accuracy). These 276 

results demonstrate that even though the effect of attention on V1 was small, attention-related 277 

effects on inter-areal communication are not contingent on large effects of attention in individual 278 

regions. 279 
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Figure 6: 

(full page width – 2 column) 

 
Attention enhances prediction accuracy between V1 and MT.  
a: Schematic of the motion direction change detection task used during the V1-MT recordings. 
The monkeys were instructed to attend to changes in motion direction at one of three spatial 
locations while ignoring changes at the other two locations in blocks of 50-100 trials. The 
monkey started the trial by fixating a central spot. Two or three small Gabor stimuli 
synchronously flashed on for 200ms and off for a randomized 200-400ms period. Two of the 
stimuli were positioned inside the joint receptive fields (RFs) of the V1 and MT neurons, and the 
other was in the opposite hemifield. Trials during which attention was directed into the MT RF 
towards either of the two spatial locations were considered attend in trials, and trials in which 
attention was directed to the opposite hemifield were considered attend out trials. In blocks when 
the monkey was cued to attend to one of the two locations inside the RFs, the third stimulus 
wasn’t presented. One of the two stimuli in the RF moved in the preferred direction of recorded 
MT neuron and the other moved in the anti-preferred direction. When presented, the third 
stimulus moved in the preferred direction of the MT neuron. After a randomized number of 
stimulus presentations (between 2 and 13), the direction of one of the stimuli changed. The 
monkeys were rewarded for making a saccade to the direction change in the cued location. 
Premature saccades or saccades to changes in motion direction at the un-cued location were not 
rewarded. We analyzed all identical stimulus presentations except the first to minimize the effect 
of adaptation. 
b: RF locations of recorded units from an example recording session. The gray dots represent 
the RF centers of 96 V1 neurons. The dotted circle represents the size and location of the RF for 
the recorded MT neuron. The size and locations of the stimuli were selected such that they lie 
within the MT RF. 
c: Attention improves the performance of V1 ➔ MT prediction. Each dot represents the cross-
validated normalized r2 for a linear model of the MT neuron’s activity from V1 population 
activity using ridge regression for one recording session. The prediction accuracy on attend in 
trials was significantly greater than the accuracy on attend out trials (p = 0.0159; Wilcoxon 
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signed-rank test). The value of the ridge parameter was chosen to be the smallest value for which 
the model performance was within 1 S.E.M. of the peak performance. 
 

Discussion 280 

Our results show that attention changes the functional communication between populations of 281 

visual and premotor neurons. We demonstrated that attention changes the extent to which the 282 

activity of populations of neurons in the SC and be predicted by neuronal population in MT, and 283 

vice versa. These changes in information flow are not accompanied by changes in the 284 

dimensionality of the subspace of activity that is shared between areas, and they are independent 285 

of changes in firing rates, noise correlations, or population activity within each brain area. These 286 

results suggest that changes in information flow may mediate behavioral flexibility and place 287 

important constraints on models of flexible neural circuits. 288 

 289 

How attention-related increases in functional communication fit in with hypothesized 290 

mechanisms underlying attention 291 

Previous studies have focused on a small number of hypothesized mechanisms by which 292 

attention might improve perception (Driver, 2001; Lavie, 2010; Peelen and Kastner, 2014; Ruff 293 

et al., 2018). The most studied hypothesis is that attention improves perception by improving 294 

information encoding (Cohen and Maunsell, 2009; Mitchell et al., 2007, 2009; Ruff and Cohen, 295 

2014a). The observed attention-related changes in the responses of individual neurons and in 296 

correlations between visual neurons appear consistent with this hypothesis. However, neuronal 297 

populations typically encode more than enough sensory information to account for 298 

psychophysical performance (Kanitscheider et al., 2015; Kohn et al., 2016b; Parker and 299 

Newsome, 1998; Ruff and Cohen, 2014b, 2019), and the changes in trial-by-trial fluctuations 300 

may not reflect changes in information coding that are behaviorally-relevant (Baruni et al., 2015; 301 

Moreno-Bote et al., 2014). An alternate theory is that attention selectively improves the 302 

communication of sensory information to the neurons involved in perceptual decision-making. 303 

Physiological studies along these lines have primarily focused on changes in synchrony or 304 

coherence between areas on very short timescales (one or a few milliseconds, for review see 305 

(Womelsdorf and Fries, 2007)) or using human imaging data to assess functional connectivity 306 

over multiple seconds (Indovina and Macaluso, 2004; Ozaki, 2011; Rossi et al., 2014). However, 307 
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co-variability on short timescales is mathematically nearly independent of correlations on the 308 

timescale of hundreds of milliseconds (Bair et al., 2001), and unlike fluctuations on very short or 309 

very long timescales, response fluctuations on the timescale of hundreds of milliseconds covary 310 

with perceptual decisions (Nienborg and Cumming, 2010; Nienborg et al., 2012). 311 

 312 

Recently, we showed that attention is associated with only modest changes in either information 313 

coding in visual cortex or the way information is read out by premotor neurons on the timescale 314 

of perceptual decisions (Ruff and Cohen, 2019). Instead, our multi-neuron, multi-area recordings 315 

suggest that attention reshapes population activity in visual cortex which changes the visual 316 

information that guides behavior via relatively fixed readout mechanisms. Our current results 317 

suggest a functional implication of this reshaping, changing the information that is shared 318 

between sensory neurons and the premotor neurons involved in decision-making, without 319 

substantially changing the geometry of the subspace of activity that is shared between them.  320 

 321 

The communication subspace as a mechanism for flexible behavior  322 

Many recent studies have shown that the activity of populations of neurons in many areas is 323 

generally confined to a subspace of population activity that is much lower dimensional than the 324 

number of recorded neurons (Cowley et al., 2016; Cunningham and Yu, 2014; Elsayed and 325 

Cunningham, 2017; Elsayed et al., 2016; Golub et al., 2016; Jazayeri and Afraz, 2017; Kaufman 326 

et al., 2014; Kiani et al., 2007; Miri et al., 2017; Morcos and Harvey, 2016; Pandarinath et al., 327 

2018; Pitkow and Angelaki, 2017; Ruff et al., 2018; Sadtler et al., 2014; Yu et al., 2009). The 328 

divergent anatomical connections between even the most highly interconnected brain areas have 329 

long suggested that only a portion of the information encoded in each area is shared between 330 

areas. 331 

 332 

A recent set of studies used recordings from multiple populations of neurons to establish that 333 

functional communication between different brain areas in the motor (Kaufman et al., 2014) or 334 

visual system (Semedo et al., 2019, 2021) is confined to a subspace of activity that is even lower 335 

dimensional than the activity within each area. Our results are consistent with the proposal in 336 

these that this limited communication subspace is an attractive mechanism for behavioral 337 

flexibility (Kaufman et al., 2014; Semedo et al., 2019). Because only a subset of information is 338 
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shared, reshaping activity within the source area (as in Ruff and Cohen, 2019) and/or having a 339 

fixed but nonlinear subspace (proposed in Semedo et al., 2019) would change the information 340 

that is functionally communicated to a target area. Using cross-prediction analyses, we found 341 

that these linear methods reveal a difference in the structure of the communication subspace 342 

across attention conditions, but this observation may be consistent with a fixed, non-linear 343 

communication subspace, information flow could be improved by shifting the alignment of the 344 

shared fluctuations along the non-linearity (Figure S7). This mechanism is particularly attractive 345 

because changes in functional communication could occur without relying on changes in the 346 

weights relating one population to another, which may rely on synaptic plasticity mechanisms 347 

that occur over longer than behaviorally relevant timescales (Egeth and Yantis, 1997).  348 

 349 

Our results demonstrate that the amount of information shared via the communication subspace 350 

between visual areas (V1 and MT, Figure 6) or between visual and premotor areas (MT and the 351 

SC, Figure 4) is in fact flexible. In future studies, it will be interesting to test the limits of this 352 

flexibility, such as whether this mechanism might mediate flexible communication of different 353 

stimulus features or information accumulated on different timescales that must mediate more 354 

complex forms of behavioral flexibility.  355 

 356 

Constraints on mechanistic models 357 

Measurements of the activity of large populations has proven critical for constraining 358 

mechanistic models. Phenomenological models can explain attention-related changes in firing 359 

rates (Boynton, 2009; Ecker et al., 2016; Gilbert and Sigman, 2007; Maunsell, 2015; 360 

Navalpakkam and Itti, 2005; Reynolds and Heeger, 2009), but these do not provide insight into 361 

circuit mechanisms. A staggering variety of biophysical models can recreate the effects of 362 

attention on the trial-averaged responses of individual neurons (Ardid et al., 2007; Buia and 363 

Tiesinga, 2008; Deco and Thiele, 2011; Huang et al., 2019; Kanashiro et al., 2017; Silver, 2010; 364 

Sutherland et al., 2017). We and others have shown that attention-related changes in correlated 365 

variability that resides in a low dimensional subspace of population activity provides much 366 

stronger constraints on circuit models (Huang et al., 2019; Kanashiro et al., 2017). 367 

 368 
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The observations that functional communication between areas is lower dimensional than 369 

activity within each area (Kaufman et al., 2014; Semedo et al., 2020) and our observation that 370 

attention changes this communication will further constrain circuit models. In particular, many 371 

models (Brunel and Wang, 2001; Huang et al., 2019; Kanashiro et al., 2017; Machens et al., 372 

2005; Rubin et al., 2015) and experiments (Fu et al., 2014; Karnani et al., 2016; Kuchibhotla et 373 

al., 2017) implicate inhibition in the flexibility of neuronal populations, but whether these 374 

mechanisms readily create low dimensional and flexible communication subspaces is unknown. 375 

It is possible that the complementary influence of different subtypes of inhibitory interneurons 376 

may underlie the flexible functional communication we observed (Cardin et al., 2009; Herrero et 377 

al., 2008; Roberts et al., 2005; Veit et al., 2017).  378 

 379 

Concluding remarks 380 

The hallmark of the nervous system is its flexibility. Flexible behavior must rely, on some level, 381 

on flexible information flow. Attention, which changes the behavioral importance of different 382 

objects, features, or locations, is a good model of flexible information flow. Our results 383 

demonstrate that this flexibility is instantiated, at least in part, by changes in the information that 384 

is shared between different stages of the visuomotor pathway. These results lay the groundwork 385 

for establishing the role of flexible inter-area communications in a variety of sensory, cognitive, 386 

and motor computations.  387 
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KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Experimental Models: Organisms/Strains  

Rhesus Macaques (Macaca 

mulatta) 

University of Pittsburgh and 

Carnegie Mellon University 
N/A 

Software and Algorithms 

MATLAB MathWorks 
mathworks.com/products/matlab.ht

ml 

Psychophysics Toolbox v3 (Brainard, 1997) psychtoolbox.org  

Data Acquisition 

Plexon 24-channel linear 

probes 

Plexon Inc 

Dallas, TX 75206 USA 

plexon.com/products/plexon-s-

probe/  

Blackrock 10x10 array 
Blackrock Microsystems LLC 

Salt Lake City, UT 84108 USA 
blackrockmicro.com 

Ripple Neuromed 
Ripple Neuromed 

Salt Lake City, UT 84106 USA 
rippleneuromed.com 

EyeLink 1000 Eye tracking 

system 

SR Research 

Ottawa, Ontario, Canada., K2L 

2B9 

sr-research.com 

Plexon Offline SorterTM 3.3.2  
Plexon Inc 

Dallas, TX 75206 USA 
plexon.com/products/offline-sorter 

 

RESOURCE AVAILABILITY 399 

Lead Contact  400 

Requests for resources should be directed to and will be fulfilled by the Lead Contact, 401 

Ramanujan Srinath (ramanujan@pitt.edu). 402 

Materials Availability  403 

This study did not generate new unique reagents.  404 

Data and Code Availability 405 
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The data and MATLAB code that support the findings of this study have been deposited in a 406 

public Github repository https://github.com/ramanujansrinath/mt-sc-comm-data. MATLAB code 407 

for reduced-rank regression and factor analysis has been publicly available by Byron Yu and can 408 

be downloaded from https://users.ece.cmu.edu/~byronyu/software.shtml. Further information 409 

and requests for data or custom MATLAB code should be directed to and will be fulfilled by the 410 

Lead Contact, Ramanujan Srinath (ramanujan@pitt.edu). 411 

 412 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 413 

The electrophysiological data in this manuscript comes from two previously reported 414 

experiments (Ruff and Cohen, 2016a, 2019). In both experiments, two adult male rhesus 415 

monkeys (Macaca mulatta, 8 and 9 kg) were used. We implanted each animal with a titanium 416 

head post before behavioral training. We identified each cortical area by visualizing the sulci 417 

during array implantation, using stereotactic coordinates, and by observing the transition of grey 418 

and white matter signals on the movable probes. All animal procedures were approved by the 419 

Institutional Animal Care and Use Committees of the University of Pittsburgh and Carnegie 420 

Mellon University. 421 

 422 

METHOD DETAILS 423 

Electrophysiological Recordings and Behavioral Task 424 

Our methods for presenting visual stimuli and monitoring behavior have been described 425 

previously. Briefly, we presented visual stimuli using custom software (written in MATLAB 426 

using the Psychophysics Toolbox v3 (Brainard, 1997) on a cathode-ray tube monitor (calibrated 427 

to linearize intensity; 1,024 × 768 pixels; 120 Hz refresh rate) placed 54 cm from each animal. 428 

We monitored eye position using an infrared eye tracker (EyeLink 1000; SR Research) and 429 

recorded eye position and pupil diameter (1,000 samples/s), neuronal responses (30,000 430 

samples/s) and the signal from a photodiode to align neuronal responses to stimulus presentation 431 

times (30,000 samples/s) using hardware from Ripple. All spike sorting was done offline 432 

manually using Offline Sorter (version 3.3.2; Plexon). We based our analyses on both single 433 

units and multiunit clusters and use the term unit to refer to either.  434 

 435 
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MT-SC recordings: We implanted two recording chambers on the right hemisphere that granted 436 

access to MT and SC for recordings with linear 24-channel moveable probes (Plexon; 437 

interelectrode spacing in MT = 50μm, SC = 100μm) and simultaneously recorded activity from 438 

neurons in MT and SC that had overlapping spatial receptive fields (Figure 1). To account for 439 

visual latencies in the two areas, spikes were counted between 50 and 250ms after stimulus 440 

onset. We only analyzed a recorded MT unit if its stimulus-driven firing rate was 10% higher 441 

than its firing rate as measured in the 100ms before the onset of the first stimulus. We only 442 

analyzed a recorded SC unit if its stimulus-driven firing rate was 10% higher than its firing rate 443 

as measured in the 100ms before the onset of the first stimulus or if its response during a 100ms 444 

epoch before a saccade on hit (correct) trials to the contralateral side was 10% larger than that 445 

same baseline. The dataset consisted of a total of 306 responsive MT units (6-29 units per 446 

session, mean 20.4) and 345 responsive SC units (12-29 units per session, mean 23) across 15 447 

recording sessions. Each session began with receptive field mapping using a delayed-saccade 448 

task, and direction tuning during passive fixation, followed by multiple blocks of the following 449 

attention task. Each block began with a set of trials that instructed the monkey to attend to one of 450 

two spatial locations on the screen – either within the joint receptive fields of the neurons or in 451 

the opposite hemifield. Following that, each trial began when the monkey acquired fixation on a 452 

central spot within a 1.25° fixation window after which two peripheral drifting Gabor stimuli 453 

(one overlapping the receptive fields of the recorded neurons, the other in the opposite visual 454 

hemifield) synchronously flashed on (for 200ms) and off (for a randomized period between 200 455 

and 400ms) between 3-12 times before, at a random, unsignaled time, the direction of one of the 456 

stimuli changed from that of the preceding stimulus. The monkey reported the orientation change 457 

by making a saccade to the changed stimulus within 450ms and received a juice reward. Each 458 

block consisted of approximately 100 completed trials (i.e., trials that ended in a hit or miss) 459 

after which the cued location of the orientation change switched to the other hemifield. Stimulus 460 

presentations during the response period of which the monkey made a micro-saccade were 461 

excluded from analysis. Neural responses to all stimulus presentations after the first (to minimize 462 

the effect of adaptation) and before the orientation change were analyzed. For each session, 463 

stimulus presentations were sampled such that the number of presentations was equal for each 464 

attention condition. Each session yielded 547-1909 (mean 1277) presentations for each attention 465 
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condition. For each session, SC neurons were divided evenly into oculo-motor (visual for 466 

brevity) and motor neurons based on an oculo-motor score calculated as  467 

scorevis/mot = Rvis-Rmot/Rvis+Rmot 468 

where Rvis is the average neural response to the onset of the first stimulus, and Rmot is the average 469 

response prior to a saccade to the target in the contralateral hemifield. This score was calculated 470 

for the trials where attention was directed into the joint RFs.  471 

 472 

V1-MT recordings: We implanted a 10x10 chronic microelectrode array (Blackrock 473 

Microsystems) in V1 and a recording chamber to access MT. Each recording session began with 474 

searching a well-isolated MT neuron such that its receptive field (RF) overlapped the population 475 

RF of the V1 neurons and was driven similarly above baseline by a single stimulus flashed in 476 

each of two chosen locations. This dataset consisted of a total of 1631 responsive V1 units and 477 

32 responsive MT units (1 unit per session in MT, 7–83 units per session, mean 51 in V1) across 478 

32 recording sessions. Each block of trials began with a set of trials that instructed the monkey to 479 

attend to one of three spatial locations on the screen – either one of two locations within the 480 

receptive field of the MT neuron or one in the opposite hemifield. Each trial began when the 481 

monkey acquired fixation on a 1° fixation window. For blocks in which attention was directed 482 

within the RF of the MT neuron, two achromatic Gabor stimuli of equal contrast, spatial 483 

frequency, and speed were presented drifting in opposite directions (preferred and null direction 484 

for the MT neuron). For blocks in which attention was directed to the opposite hemifield, a third 485 

drifting Gabor was similarly flashed at the cued location. In these blocks, the contrast of the 486 

stimulus at the cued location was different from the two stimuli within the RF of the MT neuron. 487 

This was done to study the stimulus dependence of spike count correlations across cortical areas 488 

but is not critical to the current analyses as here the comparison is between the trials where 489 

attention is directed either into or out of the RF of the MT neuron regardless of stimulus 490 

parameters or specific location with the RF. After 2-14 presentations of the same stimuli, the 491 

direction of the stimulus at the cued location was changed and the monkey was rewarded for 492 

making a saccade to the changed stimulus within 500ms. As with the MT-SC data, stimulus 493 

presentations during which the monkey made a micro-saccade were excluded from analysis, all 494 

stimulus presentations after the first and before the orientation change were analyzed, and the 495 
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presentations were sampled such that they were equal in the two attention conditions. Each 496 

session yielded 97-1469 (mean 583) presentations for each attention condition. 497 

 498 

QUANTIFICATION AND STATISTICAL ANALYSIS 499 

Subsampling 500 

To test whether attention affects prediction of neural responses within and across areas, we first 501 

sought to check whether or not the number of recorded neurons and trials across the two 502 

attention conditions in the datasets were sufficient for reasonable regression performance. We 503 

used a linear model of the form Y=XB where X and Y are matrices of t x n and t x m dimensions 504 

and B is the weight matrix of dimensions n x m (here, t is the number of stimulus presentations in 505 

a session, m and n are the numbers of neurons in the two areas). We found the ordinary least-506 

squares solution for B by minimizing the squared prediction error as B=(XTX)-1XTY. We sampled 507 

N MT neurons (where N went from 1 to the total number of recorded MT neurons) without 508 

replacement and used ridge regression predict SC responses. We did this subsampling 100 times 509 

for each N. For ridge regression, we chose the value of the regularization parameter (λ) using 10-510 

fold cross-validation. The reported prediction accuracy corresponds to the largest λ for which 511 

mean performance (across folds) was within one SEM of the best performance. We also used the 512 

full MT recorded population to predict the responses of subsets of N SC neurons (where N went 513 

from 1 to the total number of recorded SC neurons) using the same method.  514 

 515 

Noise correlations 516 

The spike count correlation (rSC) was calculated as the correlation coefficient between the 517 

responses of the two units to repeated presentations of the same stimulus. Z-scoring responses 518 

before calculating noise correlations did not qualitatively change the comparisons between noise 519 

correlations and local or shared dimensionality or prediction accuracy. In Figure S1, noise 520 

correlations are computed for each pair in a session using all stimulus presentations in every trial 521 

(except the first), and then pooled across sessions and monkeys to yield 3315 pairs in MT, 3975 522 

pairs in SC, and 6934 pairs across MT and SC. In Figure S3, noise correlations are computed as 523 

above and then averaged for each session. 524 

 525 

Regression 526 
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To find the effect of attention on the ability of MT responses to predict SC responses and vice 527 

versa, we used the same linear model described above using ridge regression. This model is 528 

referred to as the full regression model in the text. To assess whether the SC activity can be 529 

predicted using a subset of MT population response dimensions (in other words, a subspace of 530 

MT activity), we used reduced-rank regression (RRR). The exact description and formulation of 531 

RRR can be found in (Semedo et al., 2019). Briefly, RRR constrains the weight matrix B to be of 532 

a given rank and is solved using singular value decomposition: 533 

YRRR = XBRRR = XBOLSVVT = XBVT 534 

where BOLS is the coefficient matrix for the ordinary least-square solution, BRRR is the coefficient 535 

matrix for the RRR solution, V is a matrix whose columns contain the top principal components 536 

of the optimal linear predictor YOLS=XBOLS. The columns of B define which dimensions of X are 537 

used for generating the prediction i.e., the predictive dimensions. As with the ridge regression 538 

solution above, we used 10-fold cross-validation and found the smallest number of dimensions 539 

for which predictive performance was within one SEM of the peak performance.  540 

 541 

Cross-condition, cross-validated regression 542 

To assess the effect of attention on the structure of the shared subspace between interaction 543 

populations of neurons, we calculated how well the regression weight matrix for one condition 544 

(attend in, say) predicted the responses of the target population in the opposite condition (attend 545 

out). In the first analysis, we simply used the cross-validated optimum number of dimensions to 546 

obtain a weight matrix in one condition and tested it against the trials of the other condition. The 547 

results of this method are depicted in Figure S7a-d. The accuracy of the inter-areal interaction 548 

dropped significantly but the accuracy of the intra-areal interaction was not affected. To assess 549 

whether this was a result of a linear scaling of the weight matrix across conditions due to non-550 

stationarities or other task/stimulus independent factors, we projected the response of the source 551 

population using the weight matrix of the opposite condition before performing RR regression to 552 

obtain the prediction. This was cross-validated in the following way described in pseudo-code 553 

(for the MT ➔ SC interaction, for the attend out trials using the attend out vs attend in models, 554 

but we followed the same process for all potential permutations of conditions and areas). 555 

For each fold, run 1-7: 556 
1. W_out = regress(MTout,train -> SCout,train) 557 
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2. SCout,testPred = predict(MTout,test, W_out) ------------- (A) 558 
3. W_in = regress(MTin,train -> SCin,train) 559 
4. MTout,train’ = project(MTout,train, W_in) 560 
5. MTout,test’ = project(MTout,test, W_in) 561 
6. W_outCross = regress(MTout,train’ -> SCout,train) 562 
7. SCout,testPredCross = predict(MTout,test’, W_outCross)--- (B) 563 

attendOut_NSE_within = NSE(SCout,testPred, SCout,test) 564 
attendOut_NSE_cross = NSE(SCout,testPredCross, SCout,test) 565 
ratio = attendOut_NSE_cross/attendOut_NSE_within 566 

The ratio thus obtained was a cross-validated measure of how well the attend out weight matrix 567 

(W_out) performs compared to the weight matrix (W_outCross) that is trained to predict the same 568 

activity projected through the attend in weight matrix (W_in) first. We ran this for 10-folds for 569 

each random split of each population (described above) and evaluated the ratio of the normalized 570 

square error of prediction using both the matrices. This ratio is a quantitative measure of how 571 

well the cross-condition weight matrix performs relative to the within-condition weight matrix 572 

and values substantially lower than 1 would indicate a drastic drop in performance and, 573 

therefore, that the linear communication subspace between the two interacting populations is 574 

qualitatively different in their structure. We found this to be true for inter-areal interactions but 575 

not within-area interactions (Figure S7 e-h). 576 

 577 

Factor Analysis 578 

We used factor analysis (FA) to assess the dimensionality of neural activity within an area. FA is 579 

a static dimensionality reduction technique that does not assume the same noise variance for all 580 

recorded neurons and calculates the dimensions of greatest covariance (instead of variance). As 581 

with RRR, the details of this analysis can be found in previous publications (Everitt, 1984; 582 

Semedo et al., 2014; Yu et al., 2009). We followed the same steps as previously published work 583 

to estimate the dimensionality: (1) we found the number of dimensions mpeak that maximized the 584 

cross-validated log-likelihood of the observed residuals; (2) we fitted a FA model with mpeak 585 

dimensions and chose m, using the eigenvalue decomposition, as the smallest dimensionality that 586 

captured 95% of the variance in the shared covariance matrix. These population dimensions (m) 587 

and predictive dimensions as determined from RRR are determined by different techniques and 588 

therefore, wherever applicable, we have used these techniques to evaluate only the change of 589 
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dimensionality (private or shared) between the two attention conditions instead of comparing 590 

absolute values.  591 
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Supplementary Figures 
Figure S1 – related to figure 2: 

(0.5-page width – 1 column) 

Effect of attention on aggregate noise 
correlations and firing rates for all neurons 
and pairs across all recording sessions. 
Error bars are standard error of the mean. 
a: Spike count correlations (rSC) for 3315 MT 
neuron pairs (red), 3975 SC neuron pairs 
(blue), and 6934 MT-SC pairs (gray) for 
attend in and attend out conditions. rSC was 
calculated as the Pearson correlation between 
spike counts during all identical stimulus 
presentations except the first presentation after 

the beginning of the trial. Attention increases spike count correlations in SC pairs (p=2.7x10-69; 
Wilcoxon signed rank test) and MT-SC pairs (p=9.1 x10-224; Wilcoxon signed rank test) and has 
no effect on MT pairs (p=0.8; Wilcoxon signed rank test). The disparity between these results 
and previously published results is largely due to the selection of stimulus presentations. Here, 
we chose all presentations in a trial to increase statistical power in regression and factor analyses, 
whereas previous publications chose only the stimulus presentation before the orientation change 
to compare rSC with behavioral outcomes.  
b: Average firing rate across all presentations for 306 MT neurons (red) and 345 SC neurons 
(blue). Attention significantly increases firing rates of neurons in both MT (p=8.87x10-14; 
Wilcoxon signed rank test) and SC (p=5.88x10-42; Wilcoxon signed rank test). 
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Figure S2 – related to figure 4: 

(0.75-page width – 1.5 column) 

Attention improves 
prediction accuracy 
but not predictive 
dimensions for inter-
areal 
communication. 
Each point represents 
a recording session, 
and the color scheme 
is the same as other 
figures and redundant 
with the plot labels. + 
represents the mean 
of the points. (same 
data as Figure 4c 
plotted separately for 
each prediction) 
a: Prediction 
accuracy and 
predictive dimensions 
presented as ratios 

between attend in and attend out conditions for the prediction of SC activity from MT activity. 
Each dot represents the average prediction accuracy and average predictive dimensions across 
100 predictions of a random half of the SC population predicted by a random half of the MT 
population in that session. Attention increases prediction accuracy of MT ➔ SC predictions 
(p=0.0032; t-test) while having no effect on the number of predictive dimensions. 
b: Same as (a) but for MT ➔ MT predictions. Each dot represents the average prediction 
accuracy and average predictive dimensions across 100 predictions of a random half of the MT 
population predicted by the other half of the same population in that session. Attention has no 
effect on prediction accuracy or predictive dimensions. 
c: Same as (b) but for SC ➔ SC predictions. Attention has a small but significant effect on the 
prediction accuracy (p=7.9x10-4; t-test) but no effect on predictive dimensions. 
d: Same as (a) but for SC ➔ MT predictions. Attention increases prediction accuracy of SC ➔ 
MT predictions (p=0.0142; t-test) while having no effect on the number of predictive 
dimensions.  
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Figure S3 – related to figure 4: 

(full page width – 2 column)  

 
Attention-related changes in spike count correlations do not predict the improvement in 
communication efficacy across areas. Each panel illustrates how the differences of noise 
correlations of MT neuron pairs (a-e), SC neuron pairs (f-j), and MT-SC neuron pairs (k-o) 
between attend in and attend out conditions relate to the ratio of accuracies for within and across 
area response predictions. Each point represents a recording session, and the color scheme is the 
same as other figures and redundant with the plot labels. + represents the mean of the points. 
a: No relationship between the effect of attention on the average accuracy of MT ➔ SC 
predictions for each session and the effect on the average spike count correlations for MT neuron 
pairs for the same session. 
b: Same as (a) for MT ➔ MT predictions. 
c: Same as (a) for SC ➔ SC predictions. 
d: Same as (a) for SC ➔ MT predictions. 
e: Histogram of the difference of rSC of MT neuron pairs between the two attention conditions. 
Dotted line represents the mean of -0.0035. 
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f-g: Same as a-e, but for comparing prediction accuracies with session-wise average spike count 
correlations for SC neuron pairs. Dotted line in the histogram in (g) represents the mean of 
0.0369. 
k-o: Same as a-e, but for comparing prediction accuracies with session-wise average spike count 
correlations for MT and SC neuron pairs. Dotted line in the histogram in (o) represents the mean 
of 0.0350. A weak relationship may be observed in (k) and (n) but the adjusted r2 for linear 
model fits are low (0.303 and 0.145 respectively) and not significant vs constant model.  
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Figure S4 – related to figure 4: 

(full page width – 2 column) 

 
Both oculo-motor and motor neurons in SC contribute similarly to the attention-related 
improvement in prediction performance between MT and SC. For each session, SC neurons 
were ordered by an oculo-motor score (described in text and methods) and split evenly into “SC 
visual” and “SC motor” populations. (Oculo-motor SC neurons are labeled “SC visual” for 
brevity.) Each point represents a recording session, and the color scheme is the same as other 
figures and redundant with the plot labels. + represents the mean of the points. 
a: Average accuracy of predictions of randomly split SC populations of either oculo-motor 
neurons or motor neurons from the same population of randomly sampled MT populations 
presented as a ratio of the two attention conditions. (In each iteration, 50% of randomly sampled 
(without replacement) MT neurons were used to predict 50% of randomly sampled SC neurons 
from the top half of the oculo-motor index distribution and 50% of randomly sampled SC 
neurons from the bottom half of the distribution. So, effectively, only 25% of the SC neurons 
were used for predictions in these regressions as compared to 50% in other analyses.) The 
prediction accuracy of both oculo-motor SC and motor SC neural activity from MT neuron 
activity is similarly elevated with attention. Compare with figure 4c and supplementary figure 
4a-a. (p = 0.0031 for MT ➔ SC motor, p = 0.0071 for MT ➔ SC visual, p = 0.52 for the ratio of 
the two; one-sample t-test for the ratios) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437940doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437940
http://creativecommons.org/licenses/by-nc-nd/4.0/


b: Same as (a) for SC oculo-motor or motor ➔ MT predictions. As with (a), prediction accuracy 
is similarly enhanced with attention. Compare with figure 4c and supplementary figure 4a-d. (p = 
0.0309 for SC motor ➔ MT, p = 0.0052 for SC visual ➔ MT, p = 0.456 for the ratio of the two; 
one-sample t-test for the ratios) 
c: Same as (a) for recurrent connections between SC oculo-motor and SC motor populations. As 
with (a), prediction accuracy is enhanced with attention. Compare with figure 4c and 
supplementary figure 4a-c. (p = 0.0047 for SC motor ➔ SC visual, p = 0.0013 for SC visual ➔ 
SC motor, p = 0.0495 for the ratio [SC visual ➔ SC motor] / [SC motor ➔ SC visual]) 
d: Same as (a) but for the ratio of the average number of predictive dimensions between the two 
attention conditions for the MT ➔ SC oculo-motor or SC motor predictions. Attention has no 
effect on the dimensionality of the shared subspace between MT and SC populations. Compare 
with figure 4c and supplementary figure 4a-a. (p > 0.05 for all ratios; t-test) 
e: Same as (b) for the ratio of the average number of predictive dimensions between the two 
attention conditions for the SC oculo-motor or SC motor predictions ➔ MT predictions. 
Compare with figure 4c and supplementary figure 4a-d. (p > 0.05 for all ratios; t-test) 
f: Same as (c) for the ratio of the average number of predictive dimensions between the two 
attention conditions for the recurrent connections between the SC oculo-motor and SC motor 
populations. Compare with figure 4c and supplementary figure 4a-c. (p > 0.05 for all ratios; t-
test) 
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Figure S5 – related to figure 5: 

(full page width – 2 column)

 
Attention does not alter the dimensionality of the response space in SC or MT, or the 
dimensionality of the shared communication subspace. Each point represents a recording 
session, and the color scheme is the same as other figures and redundant with the plot labels. + 
represents the mean of the points. 
a: Attention does not affect the population dimensionality of the MT populations. Each point 
represents the average number of dimensions (factors) required to explain 95% of the variance in 
the MT activity for one session. On average, fluctuations in MT activity are largely restricted to 
~ 3.5 dimensions. 
b: Attention does not affect the population dimensionality of the SC populations. Same as (a) for 
the SC population. On average, fluctuations in SC activity are largely restricted to ~ 4.2 
dimensions. 
c-f: Attention does not affect the number of dimensions required to optimally predict target 
activity for any of the four predictions. Same data as figure 4a split into four panels for clarity.  
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Figure S6 – related to figure 5: 

(full page width – 2 column) 

 
Detailed comparison of attention-related changes in MT and SC population dimensions 
and predictive dimensions different predictions. Each point represents a recording session, 
and the color scheme is the same as other figures and redundant with the plot labels. Colored + 
represents the mean of the corresponding points. 
a: Number of population dimensions or factors from factor analysis for the MT and SC 
populations in each session for attend in and attend out conditions. 95% of the variance in the 
MT and SC population activity can be explained with approximately 3.5 and 4.3 dimensions 
respectively in both attention conditions. 
b: Same as (a) expressed as a ratio of population dimensions in attend in and attend out 
conditions. Attention has no effect on the number of dimensions required to explain 95% of the 
variance in activity in this dataset. 
c: Number of predictive dimensions that are “shared” between MT and SC (orange axis) vs the 
number of dimensions that are “private” in MT (blue axis) in the two attention conditions. The 
number of MT dimensions required to predict SC activity (~ 2) is lower than the number of MT 
dimensions required to predict MT activity (~ 4). 
d: Same as (c) expressed as a ratio of predictive dimensions in attend in and attend out 
conditions. 
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e: Same as (c) but for the number of dimensions in SC population activity that is sufficient to 
explain MT activity. Number of dimensions “shared” between SC and MT (~ 2) in SC activity is 
lower than the number of “private” SC dimensions (~ 4). 
f: Same as (e) expressed as a ratio of predictive dimensions in attend in and attend out 
conditions. 
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Figure S7 – related to figure 5: 

(0.75-page width – 1.5 column) 

Cross-predicting 
activity for attend in 
trials using attend 
out model and vice 
versa reveals that 
the linear subspaces 
for across area 
communication are 
not identical. While 
the dimensionality of 
the communication 
subspace is not 
affected by attention, 
it is possible that the 
structure of the 
subspace changes 
while keeping its 
dimensionality, in 
turn causing the 
prediction accuracy to 
be better. To test this 
hypothesis, we used 
the weights of the 
linear model that 
corresponded to the 
optimum number of 
predictive dimensions 
in the attend in 
condition and used it 
to predict the target 
responses in the 
attend out condition 
and vice versa. We 
observed a marked 
drop in performance 
for cross-prediction 
for inter-areal 
communication in 
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both directions but not intra-areal communication (a-d). To test whether this drop was due to a 
linear scaling of the weights across conditions and to cross-validate the cross-predictions, we 
projected the source activity through the weight matrix of the opposite attention condition and 
then fit a linear model to the target activity (see Methods for the details of the algorithm) and 
plotted the cross-validated cross-prediction performance normalized by the cross-validated 
performance of the true model. We observed a reduction in performance for the inter-areal 
predictions, albeit milder than earlier estimates (e-f). The intra-areal communication channels 
remained unaffected. While it may be possible that inter-areal communication indeed utilizes a 
different assortment of shared dimensions across attention conditions, we assert that these linear 
methods afford us a partial view of the effect of attention on the communication between areas. 
Each point represents the mean prediction accuracy of a recording session, and the color scheme 
is the same as other figures and redundant with the plot labels. 
a: We plotted the average cross-prediction accuracy (triangles) for each session and each 
communication channel across random splits against the true prediction accuracy (circles) i.e., 
the cross-validated prediction accuracy of the attend in models with the attend in trials etc. The 
linear model trained to predict SC activity using MT responses in the attend in condition 
performs significantly (p = 2.62x10-4; Wilcoxon rank sum test) worse when used to predict the 
SC responses for trials in the opposite attend out condition; the same is true for the reverse – 
using the attend out model to predict the attend in responses (p = 2.33x10-5; Wilcoxon rank sum 
test). Circles represent mean cross-validated prediction accuracy across random splits MT and 
SC neurons (same points as figure 4a). For each random split, the linear model of the opposite 
set of trials was used to predict the responses; the mean accuracy this out-of-set prediction across 
all random splits is represented by the triangles. Each circle-triangle pair is connected by a line 
and represents the change in prediction performance for a single session. The projections of each 
line on the cardinal axes are shown on the top and right of the plot, ordered by the prediction 
accuracy. Out-of-set prediction accuracies are always lower (p = 2.62x10-4; Wilcoxon rank sum 
test) and not significantly different from 0 (p = 0.07; t-test), which may mean that the model is 
unable to do better than guessing the target variance based on the mean of the target population 
activity (see Semedo et al., 2019 for more details). Both out-of-set models are similarly affected, 
evident from the consistent slope of the lines. This drastic drop in performance suggests that the 
shared communication subspace between MT and SC is different across attention conditions. 
b: Out-of-set mean accuracies for the MT ➔ MT prediction are not significantly different (p = 
0.68 for the attend in model and p = 0.65 for the attend out model for attend in vs attend out 
trials; Wilcoxon rank sum test) suggesting not only that attention does not affect prediction 
performance within MT, but also that the same axes of fluctuations within the MT population 
activity are used for communication within MT thereby using the same private communication 
subspace.  
c: Same as (b) but for SC ➔ SC prediction. The out-of-set prediction is not significantly 
different (p = 0.046 for the attend in model and p = 0.097 for the attend out model for attend in 
vs attend out trials; Wilcoxon rank sum test). 
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d: Same as (a) but for SC ➔ MT predictions. The out-of-set prediction is significantly worse for 
both the attend in model (p = 0.0011; Wilcoxon rank sum test) and the attend out model (p = 
0.0016; Wilcoxon rank sum test). 
e: To control for the case where the prediction weights across conditions may be linearly scaled 
and thereby produce significantly worse predictions, the following procedure was used (these 
steps are for comparing the MT ➔ SC attend in weights with the attend out trials, but the same 
procedure applies for all possible permutations of conditions and populations). The pseudo-code 
for this cross-validated cross-prediction method can be found in Methods. First, the MT ➔ SC 
prediction weights were found for a set of attend out training trials (W_out) and the SC activity 
was predicted for the test trials (SCout,testPred). Similarly, the prediction weights for the 
training set of attend in trials was found (W_in). Then W_in was used to project the attend out 
MT activity for both training and test trials and then used to predict SC activity in the attend out 
condition for the test trials (SCout,testPredCross). After finding predictions across all folds, 
the normalized square error was found and compared for the within and across condition 
predictions. The ratio of the across/within condition prediction for the attend in trials for each 
session is plotted against the ratio of the across/within condition prediction for the attend out 
trials. This comparison between these variables demonstrates the ability of the same 
communication subspace being applied to the trials in the opposite condition and therefore a ratio 
substantially lower than 1 would indicate that the populations communicate using different 
subspaces in the different conditions. The cross-prediction accuracy is significantly lower for 
both attend in and attend out models tested with attend out and attend in trials respectively. 
f: same as e, but for MT ➔ MT interactions. As in b, the performance of the model from the 
opposite condition does not reduce prediction performance significantly. 
g: same as e, but for SC ➔ SC interactions. While the cross-prediction accuracy was not 
significantly different across the two attention conditions in c, the performance of the model was 
lower in each session. Here, the cross-validated cross-performance shows little difference in the 
ratio, which provides more evidence for the hypothesis that attention does not alter the 
dimensionality or structure of the SC-SC communication subspace. 
h: same as e, but for SC ➔ MT interactions. As in e, SC ➔ MT cross-prediction accuracy is 
significantly lower for both attend in and attend out models tested with attend out and attend in 
trials respectively. This difference in the structure or the constitution of the communication 
subspace between MT and SC between attention conditions may be evidence for attention either 
(a) altering the weights of interareal communication at a fast trial-to-trial timescale by unknown 
mechanisms, or (b) the inability of linear methods like FA and RRR to describe potentially non-
linear response spaces and the non-linear dynamics of intra- and inter-areal interactions. 
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