

Viola: a structural variant signature extractor with user-defined classifications 1

Itsuki Sugita1,2, Shohei Matsuyama2, Hiroki Dobashi2, Daisuke Komura1,* and Shumpei Ishikawa1,* 2

1Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, 3

Bunkyo-ku, 1130033, Tokyo, Japan 4

2Faculty of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 1138510, Tokyo, 5

Japan 6

*Correspondence: kdais-prm@m.u-tokyo.ac.jp, ishum-prm@m.u-tokyo.ac.jp 7

Summary 8

Here, we present Viola, a Python package that provides structural variant (SV; large scale genome 9

DNA variations that can result in disease, e.g., cancer) signature analytical functions and utilities for 10

custom SV classification, merging multi-SV-caller output files, and SV annotation. We demonstrate 11

that Viola can extract biologically meaningful SV signatures from publicly available SV data for cancer 12

and we evaluate the computational time necessary for annotation of the data. 13

 14

Availability: Viola is available on pip (https://pypi.org/project/Viola-SV/) and on GitHub 15

(https://github.com/dermasugita/Viola-SV). 16

Contact: kdais-prm@m.u-tokyo.ac.jp 17

 18

1. Introduction 19

Somatic mutations in cancer are the cumulative result of DNA aberrations caused by diverse mutational 20

processes. Recently, large scale studies of human cancer have revealed characteristic patterns of mutation 21

types, i.e., mutational signatures, arising from specific processes of single nucleotide variant formation. These 22

studies often provide theoretical explanations for known mutational processes and their consequences, e.g., 23

C>A substitutions and CC>TT alterations caused by smoking and ultraviolet light exposure, respectively. 24

Structural variants (SVs) are another type of DNA mutation, defined as events larger than 50-bp in size or 25

involving multiple chromosomes, occupying non-negligible proportions of mutations in cancer cells (Mills et 26

al., 2011; Yi and Ju, 2018). Signature analysis of SVs may potentially provide novel insights into 27

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted April 1, 2021. ; https://doi.org/10.1101/2021.03.31.437648doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437648

 2

carcinogenesis. The development of high-throughput sequencing technologies and powerful SV callers has 28

improved the accuracy of SV event identification. Several mechanisms of SV formation have also been 29

identified (Yi and Ju, 2018). Therefore, research on SV signatures is gradually becoming realistic. 30

To date, several attempts have been made to decompose SV patterns into SV signatures, but an established 31

method has yet to be realized. Previous studies have mainly classified SVs according to segment size and 32

revealed an association between small tandem duplications and BRCA1 mutations (Li et al., 2020; Nik-Zainal 33

et al., 2016). However, a consensus has not been achieved on a precise SV classification method. 34

SVs can be classified by metrics other than length. Li et al. (2020) also used replication timing and common 35

fragile sites (CFSs). Interestingly, the biological meaningfulness of replication timing and CFSs has been 36

reported, e.g., the signatures of medium-sized (50–500 kb) tandem duplications occurring at the site of late 37

replication timing have been associated with CDK12 driver mutations, whereas CFS signatures have been 38

associated with gastrointestinal cancer. Other SV classification methods, such as microhomology and 39

association of transposons, have yet to be considered in detail; therefore, further analysis is required to 40

identify a suitable SV classification method for signature analysis. 41

At present, very few tools are available for SV signature analysis. To the best of our knowledge, 42

pyCancerSig (Thutkawkorapin et al., 2020), which is the first tool that can handle SVs for cancer mutation 43

signature analysis, is the only SV signature analysis tool currently available. However, pyCancerSig has 44

limitations in SV classifications as it only supports traditional SV classes, i.e., deletion, duplication, inversion, 45

and translocation, and length-based classification. 46

The time-consuming nature of parsing variant call format (VCF) files is also an obstacle to SV analysis. 47

VCF is the de facto standard format by which genetic variant data are recorded with high human readability. 48

However, from a data management perspective, VCF can be a bottleneck for analysis owing to its complex 49

structure. For SVs in particular, accurate interpretation of VCF records at the single nucleotide level requires 50

considerable learning costs. Difficulties with VCF interpretation cannot be ignored because even a 1-bp error 51

in positioning SVs can have critical consequences, e.g., in microhomology analysis. 52

Merging SV calls from different callers is also an issue in SV analysis. Precision of SV detection can be 53

improved by merging the results of multiple SV callers (Cameron et al, 2019; Kuzniar et al., 2020); however, 54

different SV callers use different ways to represent VCF files, which makes integration challenging. 55

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted April 1, 2021. ; https://doi.org/10.1101/2021.03.31.437648doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437648

 3

Here, we present Viola, a highly customizable and flexible Python package that supports SV signature 56

analysis with user-defined SV classification, matrix-generation functions, and a file exportation system that is 57

compatible with external statistical utilities and facilitates interpretation of results. Viola accepts VCF files 58

from four popular SV callers, namely Manta, Delly, Lumpy, and Gridss, and can also read BEDPE format 59

(Cameron. et al., 2017; Chen et al., 2016; Layer et al., 2014; Rausch et al., 2012). Viola also provides an 60

intuitive VCF file manager for filtering, annotating, converting VCF to BEDPE, and multicaller merging. 61

Fig.1. Visualization of the data flow in the main analysis scenarios. (A) Process of feature matrix 62

generation from multiple samples. (B) Overview of VCF merging system. 63

 64

2. Implementation 65

2.1 Data Structure 66

Viola converts input SV data files, such as VCF and BEDPE files, into our original Python classes. 67

Instances of these classes store SV data as a set of tidy rectangular tables linked via identifiers such as SV ID 68

output by the SV callers (Supplementary Figure S1). These tables follow the principles of tidy data, i.e., each 69

SV record is a row, each variable is a column, and each type of observational unit is a table (Wickham, 2014). 70

A

B

Analysis Scenario 1 – Signature Analysis

VCF file

VCF file

VCF file

Viola.Vcf
object

Viola.Vcf
object

Viola.Vcf
object

Viola.Multi
Vcf object

Custom SV
classification

Filtering

Annotation

• Matrix Generation
• Signature

Extraction

BED file

FASTA
file

Sample01

Sample02

Sample03

Analysis Scenario 2 – VCF merging

VCF file
(Manta)

VCF file
(Delly)

VCF file
(Lumpy)

Viola.Vcf
object

Viola.Vcf
object

Viola.Vcf
object

VCF file
(Gridss)

Viola.Vcf
object

Merge Viola.Vc
f object

VCF file
(Merged)Sample

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted April 1, 2021. ; https://doi.org/10.1101/2021.03.31.437648doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437648

 4

Consequently, storage of multiple values in one element is avoided, in contrast to the INFO and FORMAT 71

columns of a VCF file. Hence, a specific single value can be accessed by simply specifying the row and 72

column of the table of interest; this provides freedom in data handling without the need for cumbersome 73

codes. 74

 75

2.2 User Interface 76

Viola is written in the Python. Although it is intended for use within Python scripts, some features are 77

available from the command line. 78

Viola supports SV signature analysis with user-defined SV classes (Figure 1A; Supplementary Figure S1A, 79

B). A simple feature matrix based on traditional SV types and SV length, output by the SV caller can be 80

generated from the command line. Advanced uses such as annotation, filtering, and multicaller intersection, 81

which are required to generate a complex feature matrix, are supported within Python scripts. In combination 82

with these functions, it is possible to define a wide variety of SV classes, such as “Duplications located on 83

CFS sites” and “Deletions less than 50 kb in size, located on the early replication timing zones.” These 84

operations can be implemented with simple syntax and are designed to refine the SV classification by trial and 85

error (Supplementary Figure S2B). 86

From an internal data structure perspective, user-defined SV classes are interpreted as new INFO entries of 87

the VCF file. Hence, users can output new VCF or BEDPE files with annotation of novel SV classes as well 88

as generating a signature-analysis-ready feature matrix according to these additional SV classes. 89

Alongside signature analysis, Viola has the following features: 90

l Support of well-known SV callers including Manta, Delly, Lumpy, and Gridss. The notation has been 91

unified as much as possible to facilitate subsequent processing including merging (Figure 1B). 92

l Fast annotation methods that utilize the interval tree algorithm. Source files in BED format are 93

acceptable; thus, information such as gene names, CFSs, replication timing, and copy number can be 94

annotated if they can be expressed in BED format. 95

l An intuitive method for filtering SV records. In addition to filtering for genomic coordinates and INFO 96

fields, filtering for FORMAT fields is possible. 97

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted April 1, 2021. ; https://doi.org/10.1101/2021.03.31.437648doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437648

 5

l Estimations of the length and sequence of microhomology from SV breakpoint positions. Where SV 98

callers do not return microhomology information or publicly available SV data does not contain such 99

information, Viola can estimate microhomology using the reference sequence. 100

The use of these characteristics is described in detail in the official Viola documentation, which is available 101

online (https://dermasugita.github.io/ViolaDocs/docs/html/index.html). 102

 103

2.3 Custom SV Classification Overview 104

With Viola, any information in the INFO field of the VCF can be used for SV classification. Many SV 105

callers write the SV type and length in the INFO field by default making it easy to classify by these variables. 106

For BEDPE files that do not define a field corresponding to the INFO field in a VCF file, Viola will 107

automatically generate INFO fields such as SV length and type. Additionally, new INFO fields can be added 108

using BED file annotation and microhomology prediction. BED files can be used to annotate genes, CFSs, 109

replication timing, copy numbers, etc., which individually or in combination can be used to classify SVs. 110

 111

3. Application 112

3.1 Matrix Generation with Simple Code 113

We ran Viola to generate an SV feature matrix using public BEDPE files reported in a PCAWG study (Li et 114

al., 2020). First, we downloaded 2,748 BEDPE files from the ICGC data portal and used Viola to read 2,605 115

of these files that were not empty as a MultiBedpe instance. Second, the instance was successfully annotated 116

by CFSs and replication timing BED files that we built according to the PCAWG study. We defined 25 SV 117

classes according to CFSs, replication timing, and SV length and then generated a 2,605 × 25 feature matrix. 118

These operations were written in only 11 lines of the Python code, excluding code for custom SV definitions 119

(Supplementary Figure S2A). The matrix generated here can be easily reproduced by following the tutorial in 120

the Viola official document. 121

 122

3.2 Signature Extraction Analysis 123

We extracted nine SV signatures from the generated matrix using a function of Viola that simultaneously 124

performs non-negative matrix factorization (NMF) and cluster stability evaluation (Supplementary Figures S3 125

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted April 1, 2021. ; https://doi.org/10.1101/2021.03.31.437648doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437648

 6

and S4). Several signatures, including the signatures of CFSs, small deletions (<50 kb), and small duplications 126

(<50 kb), were comparable to those in the PCAWG study (Li et al., 2020). We further explored the 127

association between each of the nine signatures and driver mutations of three well-known DNA repair genes: 128

BRCA1, BRCA2, and CDK12 (Supplementary Table S1). These genes were significantly associated with the 129

small duplication signature, small deletion signature, and medium-large duplication signature, as expected 130

from previous studies (Li et al., 2020; Menghi et al., 2018; Nik-Zainal et al., 2016; Popova et al., 2016) 131

(Supplementary Table S1). 132

 133

3.3 Multicaller VCF Merging 134

We synthesized VCF files that mimicked the output from Manta, Delly, Lumpy, and Gridss. These files 135

shared several SVs recorded with errors within 100 bp of each other. Four VCF files were read as the object 136

of Viola and then merged, with 100 bp being specified as the option for proximity. The identifier was added 137

as a new INFO and the same SVs were given the same ID. We removed SV records called by only one SV 138

caller. Finally, all shared SVs were merged as expected and successfully exported as a VCF file 139

(Supplementary Data 1). 140

 141

3.4 Annotation Performance 142

We tested the performance of the annotations on 2,605 BEDPE files using 18 lines of CFS BED files. In total, 143

618,492 break-ends were annotated according to whether each was present or absent on the CFS. On average, 144

this took 7.5 min to complete using a single thread on an Ubuntu x86_64 server (Intel Core i7-8700K CPU at 145

3.70 GHz). 146

 147

4. Conclusion 148

We developed Viola, a tool for SV signature analysis that allows highly customizable SV classification. This 149

tool also overcomes the difficulty of parsing current VCF files as well as the problem of different notations 150

derived from different callers. Viola will help stimulate research in the SV field to better understand the 151

biological significance of SVs. 152

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted April 1, 2021. ; https://doi.org/10.1101/2021.03.31.437648doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437648

 7

Acknowledgements 153

We thank Enago (www.enago.jp) for the English language review. 154

Financial Support: This work was supported by AMED P-CREATE (JP20cm0106551) and KAKENHI 155

Grant-in-Aid for Scientific Research (A) (16H02481) to S. Ishikawa. 156

Conflict of Interest: none declared. 157

References 158

Cameron,D.L. et al. (2019) Comprehensive evaluation and characterisation of short read general-purpose 159

structural variant calling software. Nat. Commun., 10, 3240. 160

Cameron,D.L. et al. (2017) GRIDSS: sensitive and specific genomic rearrangement detection using positional 161

de Bruijn graph assembly. Genome Res., 27, 2050–2060. 162

Beroukhim,R. et al. (2010) The landscape of somatic copy-number alteration across human cancers. Nature, 163

463, 899–905. 164

Chen,X. et al. (2016) Manta: rapid detection of structural variants and indels for germline and cancer 165

sequencing applications. Bioinformatics, 32, 1220–1222. 166

Kuzniar,A. et al. (2020) sv-callers: a highly portable parallel workflow for structural variant detection in 167

whole-genome sequence data. PeerJ, 8, e8214. 168

Layer,R.M., Chiang,C., Quinlan,A.R. and Hall,I.M. (2014) LUMPY: a probabilistic framework for structural 169

variant discovery. Genome Biol., 15, R84. 170

Li,Y. et al. (2020) Patterns of somatic structural variation in human cancer genomes. Nature, 578, 112–121. 171

Menghi,F. et al. (2018) The tandem duplicator phenotype is a prevalent genome-wide cancer configuration 172

driven by distinct gene mutations. Cancer Cell, 34, 197–210.e5. 173

Mills,R.E. et al. (2011) Mapping copy number variation by population-scale genome sequencing. Nature, 470, 174

59–65. 175

Nik-Zainal,S. et al. (2016) Landscape of somatic mutations in 560 breast cancer whole-genome sequences. 176

Nature, 534, 47–54. 177

Popova,T. et al (2016) Ovarian cancers harboring inactivating mutations in CDK12 display a distinct genomic 178

instability pattern characterized by large tandem duplications. Cancer Res., 76, 1882–1891. 179

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted April 1, 2021. ; https://doi.org/10.1101/2021.03.31.437648doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437648

 8

Rausch,T. et al (2012) DELLY: structural variant discovery by integrated paired-end and split-read analysis. 180

Bioinformatics, 28, i333–i339. 181

Thutkawkorapin,J. (2020) pyCancerSig: subclassifying human cancer with comprehensive single nucleotide, 182

structural and microsatellite mutational signature deconstruction from whole genome sequencing. BMC 183

Bioinformatics, 21, 128. 184

Wickham,H. (2014) Tidy Data. J. Stat. Softw., 59, 1–23. 185

 186

Supplementary Information 187

Supplementary Figure S1. Data structure of a viola.Vcf object. The upper part of the figure shows an 188

example of a Manta-like VCF. As shown in the lower part of the figure, the viola.Vcf object holds the 189

Positions Table

Filters Table Formats Table

INFO fields Table

Structure of VCF file

Structure of viola.Vcf class

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted April 1, 2021. ; https://doi.org/10.1101/2021.03.31.437648doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437648

 9

information of a VCF file in several rectangular tables. The tables are related to each other by VCF IDs. The 190

grey columns are the primary key or composite primary key of the table. The header information of the VCF 191

is also stored as tables (not shown). Abbreviations: POS: start position of the SV; END: end position of the 192

SV; SVLEN: length of the SV; SVTYPE: type of SV; CIPOS: confidence interval around POS; CIEND: 193

confidence interval around END; MATEID: ID of mate break end; SU: count of supporting reads of the SV; 194

PR: count of paired end reads supporting the SV; SR: count of split reads supporting the SV. 195

Supplementary Figure S2. Example code for feature matrix generation. (A) (1) Import Viola package. (2) 196

Read BEDPE files under the “pcawg” directory as viola.MultiBedpe object. (3 and 4) Load common fragile 197

site and replication timing BED/BEDGRAPH for annotation*. (5 and 6) Annotate “pcawg_bedpe” variable 198

with the BED/BEDGRAPH loaded above. (7) Obtain mean replication timing for each SV breakpoint. (8–11) 199

Classify custom SV type according to the definition file and export feature matrix. (B) Definition file for 200

custom SV classification. Each SV class definition consists of a line specifying the SV class name, lines 201

describing the conditions, and a line passing the set operation of the conditions. Note that the file content 202

shown here is part of all SV definitions used in this study. (C) File tree of this analysis. 203

* Currently, a clear distinction between BED and BEDGRAPH files is not made in relation to the annotation 204

of Viola objects since only the first four columns of these files are used for annotation purposes. 205

 206

sv_class_definition.txt
(subset)

File Tree BC

signature_analysis_demo.ipynbA

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted April 1, 2021. ; https://doi.org/10.1101/2021.03.31.437648doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437648

 10

Signature Extraction Procedure 207

Here, we describe how SV signatures were extracted from the PCAWG dataset. To determine the number 208

of signatures, K, we evaluated the stability of signatures derived from non-negative matrix factorization 209

(NMF) and its reconstruction error. Detailed steps are provided below. 210

 211

1) Generate a new 2,605 × 25 matrix, �̇�, by bootstrapping the original matrix M. Here each element �̇�!,# 212

of �̇� is chosen with a probability of 𝑚!,#/∑ 𝑚!,#!,# , where 𝑚!,# is each element of M while ∑ �̇�!,#!,# =213

	∑ 𝑚!,#!,# . 214

2) Apply NMF to the bootstrapped matrix �̇� to obtain an exposure matrix, �̇�, with 2,605 × K and a 215

signature matrix, �̇�, with K × 25. �̇� and �̇� are initialized by a non-negative double singular 216

decomposition method with zeros filled with the average of �̇�. Kullback–Leibler divergence is used for 217

loss function. 218

3) Perform step 1 and 2 for 100 iterations to obtain 100K signatures. 219

4) Use a K-means method for clustering 100K signatures into K clusters with the constraint that signatures 220

from the same iteration should not been assigned to the same cluster. The average silhouette score is 221

calculated for stability evaluation. 222

5) The average signature matrix 𝑃* is constructed with K × 25. Each row of 𝑃* is the centroid of the 223

K-means clustering performed in step 4. The average exposure matrix 𝐸* is then calculated by NMF 224

using the original matrix M and 𝑃* , where the matrix 𝑃* is not updated while NMF. Finally, the 225

Kullback–Leibler divergence of M and 𝐸* 	×	𝑃* was calculated as reconstruction error. 226

 227

Steps 1–5 were conducted for each K ranging from 2 to 13 (Supplementary Figure S3). 228

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted April 1, 2021. ; https://doi.org/10.1101/2021.03.31.437648doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437648

 11

Supplementary Figure S3. Average silhouette score of K-means clusters and reconstruction error for 229

the number of signatures (K). After a manual assessment of each K with reference to the stability score and 230

reconstruction error, we chose K = 9 as the number of signatures. Extracted signatures are shown in 231

Supplementary Figure S4. 232

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted April 1, 2021. ; https://doi.org/10.1101/2021.03.31.437648doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437648

 12

Supplementary Figure S4. Nine signatures extracted from the PCAWG dataset using Viola. 233

 234

Statistical testing of the association between signatures and driver mutations 235

We obtained several signatures that were comparable with those in the PCAWG report such as the small 236

deletion signature and medium-large duplication signature. Statistical significance was tested for the effect of 237

driver mutations in BRCA1, BRCA2, and CDK12 on the nine signatures. The p value of each signature was 238

calculated using a linear model that considered the histological type of each sample (Supplementary Table 239

S1). 240

 241

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted April 1, 2021. ; https://doi.org/10.1101/2021.03.31.437648doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437648

 13

Supplementary Table S1. Statistical significance of the effect of driver mutations in BRCA1, BRCA2, 242

and CDK12 on nine signatures. Negative log p values are shown (*p < 0.01). 243

BRCA1 BRCA2 CDK12
Fragile Site 0.205 0.527 0.192

Small Deletion 0.084 23.278* 0.750
Medium-Large Deletion 0.401 1.142 0.036

Small Duplication 26.030* 1.579 1.055
Medium Early Duplication 0.389 0.421 0.057
Medium-Large Duplication 0.663 1.526 6.251*

Translocation 0.122 0.218 0.950
Small Inversion 0.729 0.520 0.128

Large Events 2.877* 2.042* 0.479
 244

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted April 1, 2021. ; https://doi.org/10.1101/2021.03.31.437648doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.31.437648

