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Summary 8 

Here, we present Viola, a Python package that provides structural variant (SV; large scale genome 9 

DNA variations that can result in disease, e.g., cancer) signature analytical functions and utilities for 10 

custom SV classification, merging multi-SV-caller output files, and SV annotation. We demonstrate 11 

that Viola can extract biologically meaningful SV signatures from publicly available SV data for cancer 12 

and we evaluate the computational time necessary for annotation of the data. 13 

 14 

Availability: Viola is available on pip (https://pypi.org/project/Viola-SV/) and on GitHub 15 

(https://github.com/dermasugita/Viola-SV). 16 

Contact: kdais-prm@m.u-tokyo.ac.jp 17 

 18 

1. Introduction 19 

Somatic mutations in cancer are the cumulative result of DNA aberrations caused by diverse mutational 20 

processes. Recently, large scale studies of human cancer have revealed characteristic patterns of mutation 21 

types, i.e., mutational signatures, arising from specific processes of single nucleotide variant formation. These 22 

studies often provide theoretical explanations for known mutational processes and their consequences, e.g., 23 

C>A substitutions and CC>TT alterations caused by smoking and ultraviolet light exposure, respectively. 24 

Structural variants (SVs) are another type of DNA mutation, defined as events larger than 50-bp in size or 25 

involving multiple chromosomes, occupying non-negligible proportions of mutations in cancer cells (Mills et 26 

al., 2011; Yi and Ju, 2018). Signature analysis of SVs may potentially provide novel insights into 27 
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carcinogenesis. The development of high-throughput sequencing technologies and powerful SV callers has 28 

improved the accuracy of SV event identification. Several mechanisms of SV formation have also been 29 

identified (Yi and Ju, 2018). Therefore, research on SV signatures is gradually becoming realistic. 30 

To date, several attempts have been made to decompose SV patterns into SV signatures, but an established 31 

method has yet to be realized. Previous studies have mainly classified SVs according to segment size and 32 

revealed an association between small tandem duplications and BRCA1 mutations (Li et al., 2020; Nik-Zainal 33 

et al., 2016). However, a consensus has not been achieved on a precise SV classification method. 34 

SVs can be classified by metrics other than length. Li et al. (2020) also used replication timing and common 35 

fragile sites (CFSs). Interestingly, the biological meaningfulness of replication timing and CFSs has been 36 

reported, e.g., the signatures of medium-sized (50–500 kb) tandem duplications occurring at the site of late 37 

replication timing have been associated with CDK12 driver mutations, whereas CFS signatures have been 38 

associated with gastrointestinal cancer. Other SV classification methods, such as microhomology and 39 

association of transposons, have yet to be considered in detail; therefore, further analysis is required to 40 

identify a suitable SV classification method for signature analysis. 41 

At present, very few tools are available for SV signature analysis. To the best of our knowledge, 42 

pyCancerSig (Thutkawkorapin et al., 2020), which is the first tool that can handle SVs for cancer mutation 43 

signature analysis, is the only SV signature analysis tool currently available. However, pyCancerSig has 44 

limitations in SV classifications as it only supports traditional SV classes, i.e., deletion, duplication, inversion, 45 

and translocation, and length-based classification. 46 

The time-consuming nature of parsing variant call format (VCF) files is also an obstacle to SV analysis. 47 

VCF is the de facto standard format by which genetic variant data are recorded with high human readability. 48 

However, from a data management perspective, VCF can be a bottleneck for analysis owing to its complex 49 

structure. For SVs in particular, accurate interpretation of VCF records at the single nucleotide level requires 50 

considerable learning costs. Difficulties with VCF interpretation cannot be ignored because even a 1-bp error 51 

in positioning SVs can have critical consequences, e.g., in microhomology analysis. 52 

Merging SV calls from different callers is also an issue in SV analysis. Precision of SV detection can be 53 

improved by merging the results of multiple SV callers (Cameron et al, 2019; Kuzniar et al., 2020); however, 54 

different SV callers use different ways to represent VCF files, which makes integration challenging. 55 
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Here, we present Viola, a highly customizable and flexible Python package that supports SV signature 56 

analysis with user-defined SV classification, matrix-generation functions, and a file exportation system that is 57 

compatible with external statistical utilities and facilitates interpretation of results. Viola accepts VCF files 58 

from four popular SV callers, namely Manta, Delly, Lumpy, and Gridss, and can also read BEDPE format 59 

(Cameron. et al., 2017; Chen et al., 2016; Layer et al., 2014; Rausch et al., 2012). Viola also provides an 60 

intuitive VCF file manager for filtering, annotating, converting VCF to BEDPE, and multicaller merging.  61 

Fig.1. Visualization of the data flow in the main analysis scenarios. (A) Process of feature matrix 62 

generation from multiple samples. (B) Overview of VCF merging system. 63 

 64 

2. Implementation 65 

2.1 Data Structure 66 

Viola converts input SV data files, such as VCF and BEDPE files, into our original Python classes. 67 

Instances of these classes store SV data as a set of tidy rectangular tables linked via identifiers such as SV ID 68 

output by the SV callers (Supplementary Figure S1). These tables follow the principles of tidy data, i.e., each 69 

SV record is a row, each variable is a column, and each type of observational unit is a table (Wickham, 2014). 70 
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Consequently, storage of multiple values in one element is avoided, in contrast to the INFO and FORMAT 71 

columns of a VCF file. Hence, a specific single value can be accessed by simply specifying the row and 72 

column of the table of interest; this provides freedom in data handling without the need for cumbersome 73 

codes. 74 

 75 

2.2 User Interface 76 

Viola is written in the Python. Although it is intended for use within Python scripts, some features are 77 

available from the command line. 78 

Viola supports SV signature analysis with user-defined SV classes (Figure 1A; Supplementary Figure S1A, 79 

B). A simple feature matrix based on traditional SV types and SV length, output by the SV caller can be 80 

generated from the command line. Advanced uses such as annotation, filtering, and multicaller intersection, 81 

which are required to generate a complex feature matrix, are supported within Python scripts. In combination 82 

with these functions, it is possible to define a wide variety of SV classes, such as “Duplications located on 83 

CFS sites” and “Deletions less than 50 kb in size, located on the early replication timing zones.” These 84 

operations can be implemented with simple syntax and are designed to refine the SV classification by trial and 85 

error (Supplementary Figure S2B). 86 

From an internal data structure perspective, user-defined SV classes are interpreted as new INFO entries of 87 

the VCF file. Hence, users can output new VCF or BEDPE files with annotation of novel SV classes as well 88 

as generating a signature-analysis-ready feature matrix according to these additional SV classes. 89 

Alongside signature analysis, Viola has the following features: 90 

l Support of well-known SV callers including Manta, Delly, Lumpy, and Gridss. The notation has been 91 

unified as much as possible to facilitate subsequent processing including merging (Figure 1B). 92 

l Fast annotation methods that utilize the interval tree algorithm. Source files in BED format are 93 

acceptable; thus, information such as gene names, CFSs, replication timing, and copy number can be 94 

annotated if they can be expressed in BED format. 95 

l An intuitive method for filtering SV records. In addition to filtering for genomic coordinates and INFO 96 

fields, filtering for FORMAT fields is possible. 97 
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l Estimations of the length and sequence of microhomology from SV breakpoint positions. Where SV 98 

callers do not return microhomology information or publicly available SV data does not contain such 99 

information, Viola can estimate microhomology using the reference sequence. 100 

The use of these characteristics is described in detail in the official Viola documentation, which is available 101 

online (https://dermasugita.github.io/ViolaDocs/docs/html/index.html). 102 

 103 

2.3 Custom SV Classification Overview 104 

With Viola, any information in the INFO field of the VCF can be used for SV classification. Many SV 105 

callers write the SV type and length in the INFO field by default making it easy to classify by these variables. 106 

For BEDPE files that do not define a field corresponding to the INFO field in a VCF file, Viola will 107 

automatically generate INFO fields such as SV length and type. Additionally, new INFO fields can be added 108 

using BED file annotation and microhomology prediction. BED files can be used to annotate genes, CFSs, 109 

replication timing, copy numbers, etc., which individually or in combination can be used to classify SVs. 110 

 111 

3. Application 112 

3.1 Matrix Generation with Simple Code 113 

We ran Viola to generate an SV feature matrix using public BEDPE files reported in a PCAWG study (Li et 114 

al., 2020). First, we downloaded 2,748 BEDPE files from the ICGC data portal and used Viola to read 2,605 115 

of these files that were not empty as a MultiBedpe instance. Second, the instance was successfully annotated 116 

by CFSs and replication timing BED files that we built according to the PCAWG study. We defined 25 SV 117 

classes according to CFSs, replication timing, and SV length and then generated a 2,605 × 25 feature matrix. 118 

These operations were written in only 11 lines of the Python code, excluding code for custom SV definitions 119 

(Supplementary Figure S2A). The matrix generated here can be easily reproduced by following the tutorial in 120 

the Viola official document. 121 

 122 

3.2 Signature Extraction Analysis 123 

We extracted nine SV signatures from the generated matrix using a function of Viola that simultaneously 124 

performs non-negative matrix factorization (NMF) and cluster stability evaluation (Supplementary Figures S3 125 
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and S4). Several signatures, including the signatures of CFSs, small deletions (<50 kb), and small duplications 126 

(<50 kb), were comparable to those in the PCAWG study (Li et al., 2020). We further explored the 127 

association between each of the nine signatures and driver mutations of three well-known DNA repair genes: 128 

BRCA1, BRCA2, and CDK12 (Supplementary Table S1). These genes were significantly associated with the 129 

small duplication signature, small deletion signature, and medium-large duplication signature, as expected 130 

from previous studies (Li et al., 2020; Menghi et al., 2018; Nik-Zainal et al., 2016; Popova et al., 2016) 131 

(Supplementary Table S1). 132 

 133 

3.3 Multicaller VCF Merging 134 

We synthesized VCF files that mimicked the output from Manta, Delly, Lumpy, and Gridss. These files 135 

shared several SVs recorded with errors within 100 bp of each other. Four VCF files were read as the object 136 

of Viola and then merged, with 100 bp being specified as the option for proximity. The identifier was added 137 

as a new INFO and the same SVs were given the same ID. We removed SV records called by only one SV 138 

caller. Finally, all shared SVs were merged as expected and successfully exported as a VCF file 139 

(Supplementary Data 1). 140 

 141 

3.4 Annotation Performance 142 

We tested the performance of the annotations on 2,605 BEDPE files using 18 lines of CFS BED files. In total, 143 

618,492 break-ends were annotated according to whether each was present or absent on the CFS. On average, 144 

this took 7.5 min to complete using a single thread on an Ubuntu x86_64 server (Intel Core i7-8700K CPU at 145 

3.70 GHz). 146 

 147 

4. Conclusion 148 

We developed Viola, a tool for SV signature analysis that allows highly customizable SV classification. This 149 

tool also overcomes the difficulty of parsing current VCF files as well as the problem of different notations 150 

derived from different callers. Viola will help stimulate research in the SV field to better understand the 151 

biological significance of SVs. 152 
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Supplementary Information 187 

Supplementary Figure S1. Data structure of a viola.Vcf object. The upper part of the figure shows an 188 

example of a Manta-like VCF. As shown in the lower part of the figure, the viola.Vcf object holds the 189 

Positions Table

Filters Table Formats Table

INFO fields Table

Structure of VCF file

Structure of viola.Vcf class
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information of a VCF file in several rectangular tables. The tables are related to each other by VCF IDs. The 190 

grey columns are the primary key or composite primary key of the table. The header information of the VCF 191 

is also stored as tables (not shown). Abbreviations: POS: start position of the SV; END: end position of the 192 

SV; SVLEN: length of the SV; SVTYPE: type of SV; CIPOS: confidence interval around POS; CIEND: 193 

confidence interval around END; MATEID: ID of mate break end; SU: count of supporting reads of the SV; 194 

PR: count of paired end reads supporting the SV; SR: count of split reads supporting the SV. 195 

Supplementary Figure S2. Example code for feature matrix generation. (A) (1) Import Viola package. (2) 196 

Read BEDPE files under the “pcawg” directory as viola.MultiBedpe object. (3 and 4) Load common fragile 197 

site and replication timing BED/BEDGRAPH for annotation*. (5 and 6) Annotate “pcawg_bedpe” variable 198 

with the BED/BEDGRAPH loaded above. (7) Obtain mean replication timing for each SV breakpoint. (8–11) 199 

Classify custom SV type according to the definition file and export feature matrix. (B) Definition file for 200 

custom SV classification. Each SV class definition consists of a line specifying the SV class name, lines 201 

describing the conditions, and a line passing the set operation of the conditions. Note that the file content 202 

shown here is part of all SV definitions used in this study. (C) File tree of this analysis. 203 

* Currently, a clear distinction between BED and BEDGRAPH files is not made in relation to the annotation 204 

of Viola objects since only the first four columns of these files are used for annotation purposes. 205 

 206 

sv_class_definition.txt
(subset)

File Tree BC

signature_analysis_demo.ipynbA
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Signature Extraction Procedure 207 

Here, we describe how SV signatures were extracted from the PCAWG dataset. To determine the number 208 

of signatures, K, we evaluated the stability of signatures derived from non-negative matrix factorization 209 

(NMF) and its reconstruction error. Detailed steps are provided below. 210 

 211 

1) Generate a new 2,605 × 25 matrix, �̇�, by bootstrapping the original matrix M. Here each element �̇�!,# 212 

of �̇� is chosen with a probability of 𝑚!,#/∑ 𝑚!,#!,# , where 𝑚!,# is each element of M while ∑ �̇�!,#!,# =213 

	∑ 𝑚!,#!,# . 214 

2) Apply NMF to the bootstrapped matrix �̇� to obtain an exposure matrix, �̇�, with 2,605 × K and a 215 

signature matrix, �̇�, with K × 25. �̇� and �̇� are initialized by a non-negative double singular 216 

decomposition method with zeros filled with the average of �̇�. Kullback–Leibler divergence is used for 217 

loss function. 218 

3) Perform step 1 and 2 for 100 iterations to obtain 100K signatures. 219 

4) Use a K-means method for clustering 100K signatures into K clusters with the constraint that signatures 220 

from the same iteration should not been assigned to the same cluster. The average silhouette score is 221 

calculated for stability evaluation. 222 

5) The average signature matrix 𝑃* is constructed with K × 25. Each row of 𝑃* is the centroid of the 223 

K-means clustering performed in step 4. The average exposure matrix 𝐸* is then calculated by NMF 224 

using the original matrix M and 𝑃* , where the matrix 𝑃*  is not updated while NMF. Finally, the 225 

Kullback–Leibler divergence of M and 𝐸* 	×	𝑃* was calculated as reconstruction error. 226 

 227 

Steps 1–5 were conducted for each K ranging from 2 to 13 (Supplementary Figure S3). 228 
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Supplementary Figure S3. Average silhouette score of K-means clusters and reconstruction error for 229 

the number of signatures (K). After a manual assessment of each K with reference to the stability score and 230 

reconstruction error, we chose K = 9 as the number of signatures. Extracted signatures are shown in 231 

Supplementary Figure S4. 232 
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Supplementary Figure S4. Nine signatures extracted from the PCAWG dataset using Viola. 233 

 234 

Statistical testing of the association between signatures and driver mutations 235 

We obtained several signatures that were comparable with those in the PCAWG report such as the small 236 

deletion signature and medium-large duplication signature. Statistical significance was tested for the effect of 237 

driver mutations in BRCA1, BRCA2, and CDK12 on the nine signatures. The p value of each signature was 238 

calculated using a linear model that considered the histological type of each sample (Supplementary Table 239 

S1). 240 

 241 
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Supplementary Table S1. Statistical significance of the effect of driver mutations in BRCA1, BRCA2, 242 

and CDK12 on nine signatures. Negative log p values are shown (*p < 0.01). 243 
 

BRCA1 BRCA2 CDK12 
Fragile Site 0.205 0.527 0.192 

Small Deletion 0.084 23.278* 0.750 
Medium-Large Deletion 0.401 1.142 0.036 

Small Duplication 26.030* 1.579 1.055 
Medium Early Duplication 0.389 0.421 0.057 
Medium-Large Duplication 0.663 1.526 6.251* 

Translocation 0.122 0.218 0.950 
Small Inversion 0.729 0.520 0.128 

Large Events 2.877* 2.042* 0.479 
 244 
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