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Abstract 

 

The composition of TX-TL cell-free expression systems are adjusted by adding macromolecular crowding 

agents and salts. However, the effects of these cosolutes on the dynamics of individual gene expression 

processes have not been systematically quantified. Here, we carry out kinetic mRNA and protein level 

measurements on libraries of genetic constructs using the common cosolutes PEG-8000, Ficoll-400, and 

magnesium glutamate. By combining these measurements with biophysical modeling, we show that 

cosolutes have differing effects on transcription initiation, translation initiation, and translation 

elongation rates with trade-offs between time-delays, expression tunability, and maximum expression 

productivity. We also confirm that biophysical models can predict translation initiation rates in TX-TL 

using E. coli lysate. We discuss how cosolute composition can be tuned to maximize performance across 

different cell-free applications, including biosensing, diagnostics, and biomanufacturing.   

 

Introduction 

 

Cell-free expression systems combine in vitro transcription and translation (TX-TL) within a reconstituted 

cellular environment, enabling the expression of RNAs and proteins in an open biochemical system. Due 

to the ease of introducing novel components, and subsequent shortening of the design-build-test cycle, 

these systems have been harnessed across many synthetic biology applications. New genetic parts are 

rapidly characterized in organism-specific environments
1-5

. Enzymes can quickly be expressed or 

combined to prototype synthetic metabolic pathways with maximal productivity
6, 7

. Engineered state-

switching RNAs and proteins are expressed, stored, and activated to detect viral nucleic acids, 

pollutants, and biomarkers of interest
8-11

. While the cell-free application space has grown considerably 

over the past few years, our understanding of how the cell-free environment affects genetic circuit and 

pathway function has not kept pace. This technical debt could limit future application development by 

reducing our ability to engineer more complex genetic systems inside cell-free environments. 

 

Notably, the compositions of cell-free systems are chemically distinct from any in vivo environment. 

Overall, lysate-based cell-free systems are 20 to 30-fold more dilute than their corresponding cellular 

systems, though several salts, small molecules, and macromolecular crowding agents are added at much 

higher concentrations than typically found inside cells
12-15

. There are now several recipes for different 

cell-free systems, optimized for different purposes, making it difficult to interpret quantitative 

measurements and compare results across systems
12, 14

. Changes in solute composition have a poorly 

understood effect on the many steps in gene expression, particularly on the quantitative activities of 

promoters, ribosome binding sites, and other genetic parts
16-19

. Currently, it remains challenging to 

predict how these physio-chemical solute effects alter genetic part activities. For example, existing 

biophysical models of translation initiation rate do not take into account differences in solute 

composition
20, 21

. Consequently, the concentrations of these components are often empirically tuned to 

maximize a desired functionality, for example, in vitro protein expression titers or genetic circuit signal 

amplification
19, 22, 23

.  
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Figure 1. Measurements and models to characterize the effects of cosolutes on cell-free TX-TL assays. 

(A) Crowders and salts used in this study. (B) Sequence and structural differences for two ribosome 

binding site libraries. The SD RBS library varies translation initiation rates through changes to the Shine-

Dalgarno sequence, while the Standby site RBS library varies translation initiation rates by altering the 

structural geometry of the upstream standby site. (C) The dynamics of mRNA and protein levels were 

measured using RT-qPCR and spectrophotometry, across several genetic constructs and cosolute 

compositions, during cell-free TX-TL assays. mRFP1 expression dynamics were fitted to a 4-parameter 

logistic equation (red solid line). The first derivative of this equation (gray solid line) was used to 

determine the maximum expression rate. Error bars indicate 95% confidence intervals. (D) Biophysical 

modeling is used to distinguish the effects of cosolutes on mRNA dynamics, translation initiation rates, 

and translation elongation rates. 

 

Here, as part of an effort to develop a more comprehensive mechanistic understanding of cell-free 

solvent effects, we systematically characterize how cell-free composition controls transcription, 

translation initiation, and translation elongation rates, as experimentally verified by dynamic mRNA level 

and protein level measurements. We developed a Markov model of translation that combines a 

statistical thermodynamic model of translation initiation (the RBS Calculator) with a thermodynamic 

model of solute-RNA interactions. We show that changes in cell-free composition can have differing 

effects on translation initiation versus elongation, leading to translation elongation becoming a rate-

limiting step to protein expression. The developed model explains how changing the concentrations of 

commonly added solutes and crowding agents collectively control cell-free protein expression levels. 
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Finally, we suggest how TX-TL reaction compositions could be tuned for various cell-free applications, 

including genetic system prototyping, biomanufacturing, and sensing.  

 

Results & Discussion 

 

Kinetic Characterization of Genetic Systems in TX-TL with Varied Cosolute Compositions 

 

We selected PEG-8000 (PEG), Ficoll-400 (Ficoll), and magnesium glutamate (Mg-glut) as three cosolutes 

commonly added to cell-free expression systems (Figure 1A). PEG is a polymer of ethylene glycol with an 

average molecular weight of 8 kDa and a hydrodynamic radius of about 2.6 nm
15

. Ficoll is a branched 

polysaccharide polymer with an average molecular weight of 400 kDa and a hydrodynamic radius of 

about 10 nm. Both PEG and Ficoll are crowding agents that reduce the total volume available to other 

macromolecules, greatly increasing effective concentrations inside cell-free expression reactions. Mg-

glut is a commonly added salt that increases Mg
2+

 concentration, which has significant effects on nucleic 

acid interactions and mRNA folding.  

 

We then constructed a series of genetic systems expressing mRFP1 utilizing rationally designed 

ribosome binding sites (RBSs) with varied translation initiation rates. Two types of synthetic RBSs were 

designed, each varying a distinct interaction responsible for ribosome recruitment (Figure 1B). In the 

first set, the synthetic RBSs utilize different Shine-Dalgarno sequences with systematically varied 

hybridization energies to the 3’ end of the 16S rRNA, though they all contain an upstream insulating 

mRNA structure and an unstructured region at the beginning of the protein coding sequence (CDS). 

These SD RBS library variants were previously characterized using in vivo E. coli cultures , where they 

varied mRFP1 expression levels by 1649-fold with well-predicted translation initiation rates (RBS 

Calculator model v2.1; R
2
 = 0.99, p = 9x10

-7
)

24
. In the second set, the synthetic RBSs utilize different 

standby site sequences with varied structural geometries, followed by a canonical Shine-Dalgarno 

sequence (9 nucleotides long), an optimal spacer, and a small mRNA structure inside the beginning of 

the CDS. These Standby site RBS library variants were also previously characterized using in vivo E. coli 

cultures, varying mRFP1 expression by 40-fold with similarly well-predicted translation initiation rates 

(RBS Calculator model v2.1; R
2
 = 0.94, p = 4x10

-4
)

20
. All genetic systems utilized the J23100 promoter, 

which has a moderate transcription initiation rate. 

 

The purpose of the Standby site RBS library variants is to vary how fast a 30S ribosomal subunit can 

initially bind to the mRNAs’ standby sites. Once a 30S ribosomal subunit is bound, these RBSs all have 

strong 16S rRNA binding sites, facilitating a rapid transition to forming a 30S pre-initiation complex (PIC) 

and initiating translation. In contrast, the SD RBS library variants all have a highly accessible upstream 

standby site, but the differences in their 16S rRNA binding sites lead to different transition rates in 30S 

PIC formation. Overall, the Standby site RBS library varies the rate of the first key step of translation 

initiation (a 2
nd

 order binding event) whereas the SD RBS library varies the rate of the second key step in 

translation initiation (a 1
st
 order sliding event).  

 

For each of these genetic systems, we then carried out kinetic mRNA level and mRFP1 fluorescence level 

measurements during 10-hour cell-free expression assays, adding 2 nM circular plasmid template, and 

using baseline or systematically varied cosolute compositions (Methods) (Figure 1C). For each cosolute 

composition, mRNA level measurements were performed (N = 3 biological replicates) using RT-qPCR 

with a temporal resolution of 1 hour. mRFP1 fluorescence level measurements were performed (N = 6 

biological replicates) using spectrophotometry with a temporal resolution of 10 minutes. Notably, during 
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our RT-qPCR measurements, we found that endogenous 16S rRNA degrades over time. Therefore, as our 

internal control, we instead added a synthetic spike-in RNA at fixed concentration to each reaction 

immediately before RNA extraction (Methods). From these measurements, we determined the 

dynamics of the mRNA and protein levels, including the time to reach maximum mRNA levels, the first 

derivative (slope) of the mRFP1 fluorescence levels, and the apparent translation rates of the mRNAs. 

For the purpose of slope calculations, we found that mRFP1 fluorescence levels fit well to a generalized 

logistic growth curve, which accounts for background autofluorescence and time delays (Methods).  

From these measurements, we determined how the concentrations of PEG, Ficoll, and Mg-glut 

differentially controlled the genetic system variants’ expression dynamics, including delays in mRNA 

synthesis, maximum mRNA levels, translation initiation rates, and translation elongation rates (Figure 

1D). 

 

 

 
 

Figure 2. Cosolute effects on mRNA levels and translation rates. (A) Relative mRNA levels were 

measured when using 4% PEG-8000, 4% Ficoll-400, or 16.67 mM Mg-glut, as compared to a baseline 
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composition. Data points are replicate mRNA level measurements from a SD RBS library variant (blue), a 

Standby Site RBS library variant (green), or the average across all replicates from both RBS library 

variants (black circles). Error bars represent the 95% confidence interval of at least 7 biological 

replicates. (B) Measured in vivo expression levels were compared to cell-free expression levels across SD 

RBS library variants (blue) and Standby site RBS library variants (green). (C) Translation rates for all RBS 

library variants at various cosolute compositions were compared to the translation rates at the baseline 

composition. Data points include 4% PEG-8000 (black circles), 4% Ficoll-400 (gray circles), and 16.67 mM 

Mg-glut (white circles). The dotted line indicates no differences. For (B) and (C), data points and error 

bars represent the mean and 95% confidence interval of at least 6 biological replicates. 

 

Cosolute Composition Differentially Controls Dynamics of mRNA and Protein Levels 

 

We first measured the mRNA level dynamics of two selected genetic system variants in TX-TL reactions 

with modified compositions of 4% w/v PEG, 4% w/v Ficoll, or 16.67 mM Mg-glut, as compared to the 

baseline composition. The baseline solution contains 8.67 mM Mg-glut, as TX-TL reactions containing 

less Mg-glut were unable to support robust expression from the weaker RBSs, but does not contain any 

PEG or Ficoll. The selected genetic system variants included a Standby Site RBS library variant and a SD 

RBS library variant with similar predicted translation initiation rates. Notably, we did not find any 

appreciable difference in mRNA dynamics across these genetic system variants. However, we found that 

changing the cosolute composition had distinct effects on transcription delays and mRNA maximum 

levels (Figure 2A). Overall, PEG had the highest impact on altering the mRNA maximum level, increasing 

it by about 6.8-fold, followed by Mg-glut (2.5-fold) and Ficoll (1.9-fold). PEG also had the highest impact 

on variability in maximum mRNA levels across replicates; its average coefficient of variation across all 

time points was 0.53, which is about 2-fold higher than the baseline composition and other tested 

cosolutes. Interestingly, the addition of PEG or Ficoll increased the time needed to reach maximum 

mRNA levels, due to an apparent delay in mRNA synthesis. The time delay was about 2.5 hours for PEG 

and 1.3 hours for Ficoll as compared to the baseline composition. In contrast, the addition of Mg-glut 

did not cause any appreciable difference in time delay.  

 

We then measured the maximum synthesis rates of mRFP1 mRNA and protein for all genetic system 

variants – 7 Standby Site RBS library variants and 7 SD RBS library variants – during TX-TL reactions, using 

modified compositions of either 4% w/v PEG, 4% w/v Ficoll, or 16.67 mM Mg-glut, as compared to the 

baseline composition. We also measured these genetic system variants’ in vivo mRFP1 expression levels 

in E. coli DH10B during steady-state cultures maintained in the exponential growth phase (Methods). 

Notably, at the baseline TX-TL composition, the genetic system variants’ protein synthesis rates 

(expression rates) were highly correlated to their in vivo expression levels (R
2 

= 0.96, p = 5x10
-10

, Figure 

2B), though the dynamic ranges were starkly different. Changing the RBS sequence varied in vivo 

expression levels by 717-fold, while the same RBS sequences varied in vitro expression levels by only 

67.9-fold.  

 

We then examined how cosolute composition affected the genetic system variants’ apparent translation 

rates. To calculate the apparent translation rates, we divided the measured protein synthesis rates by 

the measured mRNA levels. Surprisingly, we found that adding PEG or Ficoll greatly distorted the 

tunability of apparent translation rates as compared to the baseline composition or in vivo 

measurements. RBS library variants with the lowest measured translation rates (at the baseline 

composition) had the highest increases in protein synthesis rates (8.8-fold when adding 4% w/v PEG or 

3.7-fold when adding 4% w/v Ficoll) (Figure 2C). However, this distortion was diminished when using 

RBS library variants with high measured translation rates. In contrast, adding additional Mg-glut had no 
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appreciable effect on the RBSs’ translation rates, which remained correlated with their in vivo 

expression levels. Overall, depending on the cosolute added to TX-TL, there are extremely large changes 

in maximum mRNA levels, delays in mRNA synthesis, apparent translation rates, and expression 

tunability. 

 

 
 

Figure 3. The effects of tuning cosolute composition on the maximum expression rate and peak 

expression time in cell-free assays. (A) The maximum expression rate was determined for all RBS library 

variants using either 1%, 2%, or 3%, or 4% PEG-8000 (top); 1%, 2%, 3%, or 4% Ficoll-400 (middle); or 

10.67, 12.67, 14.67, or 16.67 mM Mg-glut (bottom). Data points of increasing composition are white 

circles, light blue squares, blue down-triangles, or dark blue up-triangles. Data points and error bars 
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represent the mean and 95% confidence interval of at least 6 biological replicates. (B) The average peak 

expression time for all tested RBSs was determined when varying cosolute compositions. Data points 

and error bars represent the mean and 95% confidence interval for 14 genetic systems with 6 biological 

replicates each. 

 

Cosolute Composition Controls the Magnitude and Timing of Protein Expression Levels 

 

Our next objective was to systematically vary cosolute composition and quantify their effects on the 

magnitude, timing, and tunability of protein expression levels across all 14 genetic system variants with 

varied RBS sequences. We first found that increasing PEG from 0 to 4% w/v greatly increased maximum 

protein expression levels by an average of 27.6-fold (Figure 3A, top). Similar to our previous 

measurements of the RBS variants’ apparent translation rates, the cosolute effect was most pronounced 

on the RBS library variants with the lowest translation rates. As a result, the addition of PEG also greatly 

reduced the dynamic range of expression tunability by 3.1-fold. This effect was significant even at 1% 

w/v PEG and was further enhanced at higher PEG concentrations. As before, the addition of Ficoll 

yielded a similar effect with a smaller magnitude; 4% w/v Ficoll increased maximum protein expression 

levels by an average of 3.6-fold and reduced the dynamic range of tunability by 2.1-fold (Figure 3A, 

middle). Interestingly, Mg-glut only increased maximum protein expression levels by 1.9-fold, but 

decreased expression tunability by a larger amount (2.8-fold) (Figure 3A, bottom). The timing of 

expression was also significantly affected by cosolute composition. Systematic increases in PEG 

concentration increased the time needed to reach maximum protein expression by 2.5 hours (Figure 3B, 

top). Similarly, increasing Ficoll concentration resulted in a delay of 1.3 hours to reach maximum protein 

expression levels (Figure 3B, middle). In contrast, changing the Mg-glut concentration had little 

appreciable effect on overall expression timing (Figure 3B, bottom).  

 

Biophysical Modeling Explains Changes in Translation Initiation and Elongation Rates 

 

We next investigated how biophysical modeling can explain both the sequence-dependent and cosolute-

dependent effects on translation initiation and elongation rates. As a baseline, we found that the mRFP1 

expression levels from the 14 genetic system variants, as measured in vivo within E. coli DH10B cells, 

were highly proportional to the RBS Calculator v2.1 model’s predicted translation initiation rates, 

suggesting that translation initiation was a key rate-limiting to protein production (Figure 4A, R
2
 = 0.813, 

p = 1x10
-5

 , N = 14). However, when expressing the same genetic systems in TX-TL, we found that the 

level of proportionality was reduced when adjusting the composition to either baseline, 4% w/v PEG, 4% 

w/v Ficoll, or 16.67 mM Mg-glut (overall R
2
 = 0.63, p = 2x10

-13
 , N = 64 conditions, Figure 4E). Overall, we 

found that the cosolute composition had a large impact on the proportionality constant relating model-

predicted translation initiation rates to measured expression levels. We also observed a plateau effect 

whereby higher translation initiation rates did not yield appreciably higher mRFP1 expression levels 

(Figure 4E). Together with our prior measurements (Figure 2), these observations suggested that the 

composition of the TX-TL reaction has distinct effects on the magnitudes of both the translation 

initiation and translation elongation steps, potentially making translation elongation a rate-limiting step 

during protein expression.   

 

We therefore augmented the RBS Calculator model to explicitly include the apparent translation 

elongation rate of the protein’s coding sequence. As the starting point, the RBS Calculator calculates the 

ribosome’s binding free energy (ΔGtotal) using a 5-term free energy model
20, 21, 25, 26

  and then predicts a 

protein coding sequence’s translation initiation rate (rinit) according to:  
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 ����� � �� exp��	
�������         Equation 1 

 

where the 30S ribosomal subunit’s binding free energy (ΔGtotal) depends only on the mRNA’s sequence 

and c1 is a proportionality constant that accounts for extrinsic differences here influenced by the 

cosolute composition. After the 30S ribosomal subunit binds to the mRNA, it recruits the 50S ribosomal 

subunit, forms the 70S initiation complex, and initiates translation. Translation continues with a highly 

processive cycle with elongation rates that depend on codon identities, charged tRNA availabilities, and 

the cosolute composition. As soon as an elongating ribosome clears the ribosome binding site, a new 

30S ribosomal subunit may bind to initiate a new cycle of translation, leading to polysome multi-

ribosome dynamics.  

 

Here, our objective is to determine how the cosolute composition affects the translation elongation 

rate, averaged over the codons in the mRFP1 protein coding sequence. We designated this averaged 

translation elongation rate as relong and formulated the simplest possible two-state model (Figure 4B) 

that accounts for how rinit and relong together control the translation rate (rTL), according to the equation: 

 ��	 � 
����

��
�����
������

          Equation 2 

 

where relong is c2, a single cosolute-dependent coefficient that quantifies how the cosolute composition 

affects the average translation elongation rate of the mRFP1 coding sequence.  

 

We then carried out a model identification procedure to determine the coefficients c1 and c2 for each 

cosolute condition (Methods), yielding a mean and confidence interval for each coefficient value. The 

parameterized two-state model (Equation 2) clearly shows how cosolute composition can negatively 

affect translation elongation rates, resulting in lower translation rates than otherwise predicted by the 

RBS Calculator model (Figure 4C). Overall, by including translation elongation, the two-state model is 

now able to accurately predict mRFP1 expression levels across all 14 genetic systems and 4 cosolute 

compositions (R
2
 = 0.81, p = 4x10

-21
 , N = 64, Figure 4F). 

 

More importantly, the fitted model shows us how each cosolute affected each translation step, 

providing an explanation for the observed phenomenon. For example, 4% w/v PEG and 4% w/v Ficoll 

increased the apparent translation initiation rates by 7.94-fold and 2.85-fold, respectively (Figure 4D). In 

contrast, 16.67 mM Mg-glut did not appreciably change the initiation rate (1.18-fold increase), 

consistent with our prior measurements (Figure 3). Surprisingly, all of the cosolutes had a negative 

impact on translation elongation rates. 16.67 mM Mg-glut had the largest effect; it lowered the 

apparent translation elongation rate by 5.6-fold whereas 4% w/v PEG and 4% w/v Ficoll lowered it by 

1.82-fold and 2.23-fold, respectively. As a result, the model shows why adding a cosolute decreases the 

overall expression tunability when utilizing different RBS sequences. For 4% w/v PEG, the model shows 

that the increase in initiation rate and decrease in elongation rate yields the observed plateau effect 

whereby RBSs that bind better to ribosomes (strong RBSs) do not yield appreciably more protein than 

weak RBSs. For 4% w/v Ficoll, a similar plateau effect is predicted, though with lower overall amounts of 

expressed protein.  For 16.67 mM Mg-glut, the model shows that expression tunability is limited by 

primarily making translation elongation a rate-limiting step in protein production. 
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Figure 4. Biophysical modeling quantifies effects of cosolutes on gene expression processes. (A) 

Predicted translation initiation rates were compared to measured in vivo translation rates for SD RBS 

library variants (blue) and Standby Site RBS library variants (green). (B) A simplified two-state model is 

used to distinguish cosolute effects on translation initiation and translation elongation steps. (C) The 

parameterized model shows how cosolute-mediated changes in translation initiation and translation 

elongation control protein expression levels. (D) Measurements were used to identify parameter values 

c1 (gray bars) and c2 (purple bars), which quantify cosolute effects on translation initiation and 

translation elongation. Error bars are 95% confidence intervals for the fitted parameters. (E) Measured 

translation rates are insufficiently predicted by translation initiation rate alone in vitro.  (F) Accounting 

for cosolute effects on both translation initiation and translation elongation rates increases predictive 

accuracy of model. Circles and error bars for (A), (C), (E), and (F) represent the mean and 95% 

confidence interval of at least 6 measurements.  
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Figure 5. Crowding affects both translation initiation and molecular diffusion. (A) PEG and Ficoll bind to 

the 27-nt ribosomal footprint region of an mRNA with free energy ΔGcrowd, which increases a ribosome’s 

ability to bind and initiate translation. (B) Scaled Particle Theory is used to calculate the enhancement of 

translation rates by varying PEG-8000 (black) and Ficoll-400 (gray) concentrations. (C) The Stokes-

Einstein-Huggins equation is used to calculate the decrease in relative diffusion rates when varying PEG-

8000 (black) and Ficoll-400 (gray) concentrations.  

 

Physical Modeling Connects Cosolute Intrinsic Characteristics to Extrinsic Effects on 

Translation 

 

To better understand why PEG, Ficoll, and Mg-glut can have such distinct effects on gene expression, we 

next applied physical modeling to calculate how cosolute composition affects the kinetic and 

thermodynamic properties of these non-ideal liquids (Figure 5). We first investigated how PEG and Ficoll 

composition affects the rate of diffusion inside TX-TL reactions. The rate of diffusion affects all binding 

interactions inside TX-TL, but will particularly affect the charging and loading of tRNAs during translation 

elongation, which are the slowest and most diffusion-limited steps in protein expression
27, 28

 .  

 

To do this, we combined the Stokes-Einstein equation with the Huggins equation to calculate how a 

cosolute’s intrinsic viscosity and its concentration control the solution’s diffusion coefficient, yielding: 

 
�

�	
� �1 � ���� � ����������        Equation 3 

 

where D is the diffusion coefficient of the TX-TL solution with cosolute present at concentration c, Do is 

the diffusion coefficient in the absence of cosolute, [η] is the intrinsic viscosity of the cosolute (in a 

dilute solution), and kH is the Huggins coefficient of the cosolute. The intrinsic viscosities of PEG and 

Ficoll are 17 mL/g and 24 mL/g , respectively
29

. Typical Huggins coefficients vary from 0.3 to 0.5; here, in 

the absence of direct measurements, we assume that PEG and Ficoll both have a Huggins coefficient of 

0.4. Using Equation 3, we calculated that 4% w/v PEG and 4% w/v Ficoll reduce the TX-TL diffusion 

coefficient by 2.2-fold and 1.8-fold, respectively (Figure 5C). This reduction in the diffusion coefficient is 

quantitatively similar to the observed reduction in translation elongation rates for both PEG and Ficoll 

(Figure 4D). 

 

Next, we considered how the divalent salt Mg-glut affects interactions during TX-TL expression. Notably, 

it has been determined that excess amounts of free Mg
2+

 will inhibit tRNA translocation through the 70S 

ribosome during translation elongation
30

. The amount of free Mg
2+

 is greatly determined by the 

concentration of other metabolites in TX-TL that act as chelators, such as glutamate (Kd = 15.1 mM)
31

 

and phosphoenolpyruvate (Kd = 11 mM)
32

. Taking into account the concentrations of these chelators, we 

calculate that the concentration of free Mg
2+

 is 0.79 mM in the baseline TX-TL composition (no added 

Mg-glut). The free Mg
2+

 then increases to 1.45 mM when adding additional Mg-glut to 16.67 mM. 

Doubling the free Mg
2+

 concentration results in at least a 2-fold reduction in ribosome translocation 

rate
30

, suggesting a causal mechanism for the observed inhibition of translation elongation at high Mg-

glut concentrations (Figure 4D).  

 

Finally, we considered how PEG and Ficoll affect the thermodynamics of ribosome-mRNA interactions 

during translation initiation. As crowding agents, PEG and Ficoll interact with other chemical 

components in solution, reducing the amount of free volume available to them, and promoting the 

formation of more compact states that take up less space. In this way, the magnitude of the crowding 
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effect depends on the size and shape of the interacting components, particularly larger macromolecules 

(e.g. mRNAs). Qualitatively, the addition of a crowding agent favors the formation of the 30S:mRNA 

complex as the bound state takes up less space in solution as compared to a free 30S subunit and a free 

mRNA. Here, we leveraged Scaled Particle Theory (SPT)
33

 to quantitatively calculate the thermodynamic 

free energies between crowding agents and solution components to determine the magnitude of this 

crowding effect. To do this, we first assume that each particle is a hard body sphere and then leverage 

prior measurements to determine their sizes. The cosolutes each have a defined radius (PEG Rc = 2.6 nm, 

Ficoll Rc = 10 nm), and vary in volume fraction (φC, unitless) in a composition
34

. As a particle, the 30S 

ribosomal subunit  has a radius of about Rm = 11 nm
35, 36

. We then consider only the portion of the 

mRNA that binds to the 30S ribosomal subunit during translation initiation – a 27-nucleotide region 

called the ribosome footprint – and its defined radius (Rm = 1.75 nm)
37

. We then use SPT to calculate the 

positive free energy (ΔGSPT) when crowding agent binds to either the 30S ribosomal subunit, the 27-nt 

mRNA region, or the bound 30S:mRNA complex, according to the equation: 

Δ���� ���⁄ � � ln�1 � ��� � 3 ��1 � ��

����

� 3 � ��1 � ��

�� ����

� 92 � ��1 � ��
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Equation 4 

where kBT is the Boltzmann constant multiplied by the system temperature. ΔGSPT is positive as it 

requires an input of energy to add a 30S or mRNA particle into a crowded solution with limited free 

space. We then calculate the difference in free energy when considering a 30S:mRNA particle added to a 

crowded solution versus a free 30S subunit and a free mRNA added to a crowded solution, according to 

Equation 5: 

 Δ��
��� �  Δ����,���:���� � Δ����,��� � Δ����,����     Equation 5 

 

The quantity ΔGcrowd is the negative free energy that quantifies how the addition of crowding agent 

promotes the formation of the more compact 30S:mRNA complex. Because the ribosome is so much 

larger than the mRNA, here we assume that the 30S:mRNA particle has the same radius as the 30S 

particle. Therefore, ΔGcrowd simplifies to −ΔGSPT,mRNA. In Figure 5B, we show how ΔGcrowd becomes more 

negative as more crowding agent is added, leading to higher translation initiation rates. We calculate 

that 4% PEG and 4% Ficoll increase a mRNA’s translation initiation rate by 4.8-fold and 1.7-fold, 

respectively. These calculations agree with our empirical measurements shown in Figure 4D. 
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Figure 6. Trade-offs between cell-free expression timing, tunability, and magnitude. (A) Several cell-free 

applications require rapid turn-on times, high tunability, and high dynamic range in expression levels. 

When tuning cell-free composition, there is a trade-off between a rapid turn-on time and expression 

tunability.  (B) Several cell-free applications require high production rates of protein. Here, cell-free 

composition can be tuned to maximize protein expression, though sacrificing expression tunability. 

Circles in (A) and (B) are base composition (red) or increasing concentrations of PEG (black), Ficoll (gray), 

or Mg-glut (white). Circles and error bars represent the mean and 95% confidence interval at least 6 

biological replicates.  

 

Discussion 

 

Cell-free expression systems are now commonly used for biomanufacturing, diagnostic assays, and 

genetic part characterization
1, 2, 8, 38-44

. However, the amounts of cosolute added to prepared cell-free 

assays can vary considerably across protocols, without a clear understanding of how cosolute 

composition will affect the performance metrics for each of these applications
14, 45

. For example, when 

using cell-free expression to manufacture proteins, it is highly desirable to adjust cosolute concentration 

to maximize the amount of protein produced, though it less important to activate protein production as 

rapidly as possible
46

. In contrast, when using cell-free expression as a diagnostic assay, it is more 

important to rapidly activate production of the observable output
42

. Expression tunability is another 

important performance metric when multiple proteins need to be expressed at different rates.  
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Here, we investigated how the concentrations of three cosolutes (PEG, Ficoll, and magnesium 

glutamate) affected the dynamics of transcription, translation initiation, and translation elongation 

across 14 genetic systems with varied genetic parts. Overall, we found that all cosolutes increased 

transcription rates, with PEG having the highest impact. All cosolutes decreased translation elongation 

rates, with Mg-glut having the highest impact. However, only PEG and Ficoll increased translation 

initiation rates with PEG having the highest impact. Altogether, the addition of cosolutes increased 

protein synthesis rates, though the magnitude of improvement depended on which genetic parts were 

used. When using weak ribosome binding sites, the addition of PEG or Ficoll increased the apparent 

translation initiation rate, resulting in higher protein expression. However, when using stronger 

ribosome binding sites, the addition of any cosolute lowered the translation elongation rate, causing it 

to become the rate-limiting step during protein production and creating a plateau in the protein 

synthesis rate. We then applied theory from physical chemistry to explain how the cosolutes’ intrinsic 

differences in viscosity, size, and charge could be responsible for these effects through alteration of the 

cell-free assay’s solvent properties.  

 

From these results, we observe distinct trade-offs between timing, expression tunability, and maximum 

protein production that affect how cosolute composition directly impacts an application’s performance 

metrics (Figure 6). Adding PEG or Ficoll will lead to much higher protein production rates, though at the 

cost of introducing a substantial time delay and limiting the ability to tune protein expression levels by 

varying translation rates. In contrast, Mg-glut has a much smaller effect on all these performance 

criteria. With these trade-offs in mind, it becomes possible to rationally tune cosolute composition 

towards maximizing performance metrics for a particular application. In a biomanufacturing application 

where only a single protein needs to be expressed, adding a large amount of PEG will increase the 

overall protein production rate and titer. However, when multiple proteins need to be expressed at 

different levels, the PEG and Ficoll concentrations can be tuned to achieve the minimum level of 

expression tunability, while maximizing the overall protein production rates. In contrast, for a diagnostic 

application where the time delay becomes more important, the absence of any additional cosolute may 

instead be the optimal choice.  

 

Finally, our results show that it can be highly misleading to utilize cell-free systems to characterize 

genetic parts for later re-use in in vivo systems. The cosolute composition of all cell-free systems are 

distinct from the in vivo environment, and these differences play an important role in controlling 

transcription and translation rates. First, differences in genetic part activities (e.g. the translation rates 

of ribosome binding sites) are often compressed inside cell-free expression systems, leading to lower 

changes in protein expression levels than otherwise expected. Second, because cosolutes decrease a 

mRNA’s translation elongation rate, the role of synonymous codon usage in protein coding sequences 

could play an even greater role in cell-free expression systems, particularly when using strong ribosome 

binding sites and/or high PEG/Ficoll concentrations. While we can apply theory from physical chemistry 

to calculate and predict how cosolute composition controls genetic part activities in cell-free systems, 

we should never assume that in vivo and cell-free systems will yield quantitatively equivalent results. 

  

Methods 

 

Crude cell lysate preparation  

Crude cell lysate was prepared according to a previously published protocol, with the following 

modifications
12

. 20 L of Escherichia coli BL21 with the Rosetta2 plasmid encoding rare tRNAs was 

cultured in a Micros 30-liter fermentor (New Brunswick) in 2XYT+P medium until the cells reached an 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 2, 2021. ; https://doi.org/10.1101/2021.04.02.438196doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.02.438196


OD600 of 1.5-2.0. The cell pellet was then collected in a T-1-P Laboratory continuous flow centrifuge 

(Sharples), and resuspended in 1 mL S30A buffer per gram of cell pellet. The resuspended cells were run 

through a M110-EH-30 microfluidizer (Microfluidics Corp.) at 20,000 PSI twice to ensure complete lysis. 

The lysate was clarified by centrifugation at 12,000xg for 30 minutes at 4C. The clarified lysate was then 

incubated for 80 minutes at 37 minutes while undergoing orbital shaking to perform the runoff reaction. 

After incubation, the lysate was centrifuged again for at 12,000xg for 30 minutes at 4C.  

 

Following lysis, clarification, and the runoff reaction, the lysate was diafiltered with a Pellicon Biomax 10 

kDa MWCO 0.005 m
2
 ultrafiltration module. Six retentate volumes of buffer S30B were run against the 

lysate at 4C. After diafiltration, the retentate was centrifuged for 30 minutes at 12,000xg at 4C. The 

protein concentration of the retentate was quantified using a Bradford BSA Protein Assay Kit assay (Bio-

Rad). The retentate was aliquoted and flash-frozen in liquid nitrogen, and stored at -80C.  

 

Cell-free expression reactions 

Cell-free expression reactions were assembled on ice according to previously published protcols, with 

the following modifications
12, 45

. Amino acid and energy solutions were prepared separately, and 

combined with crude cell extract to reach the following final concentrations: 7.4 mg/mL protein (1/3
rd

 

total reaction volume), 1.5 mM each amino acid (except for leucine at 1.25 mM), 50 mM HEPES, 1.5 mM 

ATP and GTP, 0.9 mM CTP and UTP, 0.2 mg/ml tRNA, 0.26 mM CoA, 0.33 mM NAD, 0.75 mM cAMP, 

0.068 mM folinic acid, 1 mM putrescine, and 30 mM PEP. Unless otherwise indicated, 4 mM additional 

magnesium glutamate *(8.67 mM total), 80 mM additional potassium glutamate (100 mM total), and no 

crowding agents were added to each reaction. Plasmid DNA containing an RBS variant controlling the 

expression of an mRFP1 reporter was either miniprepped and ethanol precipitated, or midiprepped and 

isopropanol precipitated, and added to the reaction to a final concentration of 2 nM. 5 uL reactions 

were incubated at 29°C for 12 hours in a 96-well polypropylene conical bottom plate sealed with a plate 

storage mat (Corning) in a TECAN Spark microplate reader. mRFP1 fluorescence was measured every 10 

minutes, using 584nm/60nm ex/em with a 5 nm bandwidth.  

 

RT-qPCR 

5 uL TXTL reactions, assembled as above, were incubated at 29C in 96-well Costar conical-bottom plates 

in a TECAN Spark.After incubating for the given amount of time, reactions in microcentrifuge tubes were 

flash-frozen in liquid nitrogen, while reactions in 96-well plates were directly processed. To each 

reaction, 500 pM iclR normalization control RNA was. Total RNA, including the normalization control, 

was extracted using a Norgen Total RNA Extraction kit, after which any remaining plasmid DNA was 

removed via digestion with TurboDNase (Invitrogen). RNA integrity was verified via agarose gel 

electrophoresis. RNA was then diluted to 100 ng/uL, and 25 ng/uL yeast tRNA was added. First-strand 

cDNA synthesis was performed using a High-Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems). qPCR reactions were assembled using PowerUp SYBR Green Master Mix (Applied 

Biosystems) and primer sets for mRFP1 and iclR, and run in a StepOnePlus Real-Time PCR System 

(Applied Biosystems). Melting curve analysis was performed to confirm product homogeneity. RNA 

levels were calculated using a variant on the ddCt method, accounting for differences in probe 

efficiency.  

 

Fluorescence time-course data analysis 

 

To determine the time-course rates of gene expression, we fit the fluorescence production timecourse 

for each TXTL reaction to a generalized logistic growth model of the form
47

:  
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Where A is the upper asymptote, Ti is the time at inflection, kU is the relative maximum growth rate, and 

d is a parameter controlling the inflection value. The generalized logistic curve allows for a variable 

amount of asymmetry about the inflection point, which better describes the behavior of fluorescent 

protein production over time in the cell-free expression system used here. Timecourses were corrected 

for background fluorescence by subtracting out the average fluorescence from 30-80 minutes. Fitting 

was performed using scipy’s curve_fit module. The rate of fluorescence production was calculated as the 

gradient of the fit fluorescence timecourse.   
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