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Significance statements: 

 

• A comparative analysis of 10 different machine learning (ML) approaches 

identifies most accurate and sensitive algorithms in big data (>490 million 

datapoints) analyses; 

• Ensemble ML (Random Forest, ADA Boost and Gradient boost) models trained 

on 392,684,052 datapoints from human pancreatic scRNA-seq studies, identify 

features (genes) that predict insulin transcription in a separate (N=2,913) 

dataset;   

• In silico validation of identified features confirmed predictors of insulin gene 

transcription; 

• Known and novel key variables associated with insulin transcription are 

dysregulated in a Type 1 diabetes mouse model that shows transient β-cell 

dedifferentiation and in β-cells of individuals with type 2 diabetes. 
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Abstract 

Machine learning (ML) workflows enable unprejudiced/robust evaluation of complex 

datasets and are increasingly sought in big data analyses. Here, we analyzed over 

490,000,000 data points to compare 10 different ML algorithms in a large (N=11,652) 

training dataset of human pancreatic single-cell transcriptomes to identify features 

(genes) associated with the presence or absence of insulin transcript(s). Prediction 

accuracy/sensitivity of models were tested in a separate validation dataset (N=2,913) 

and the performance of each ML-workflow assessed. Overall, Ensemble ML workflows, 

and in particular, Random Forest ML algorithm delivered high predictive power in a 

receiver operator characteristic (ROC) curve analysis (AUC=0.83) at the highest 

sensitivity (0.98), compared to other algorithms. The top-10 features, (including IAPP, 

ADCYAP1, LDHA and SST) common to the three Ensemble ML workflows were 

significantly dysregulated in scRNA-seq datasets from Ire-1αβ-/- mice that demonstrate 

de-differentiation of pancreatic β-cells as well as in pancreatic single cells from 

individuals with Type 2 Diabetes. Our findings provide a direct comparison of ML 

workflows in big data analyses, identify key determinants of insulin transcription and 

provide workflows for other regulatory analyses to identify/validate novel 

genes/features of endocrine pancreatic gene transcription.  

 

Recent years have witnessed a surge in single-cell transcriptomic technologies; many already 

generating newer data and insights to address specific biological questions. Machine learning 

(ML) algorithms offer an unbiased mathematical workflow that facilitates the identification 

of complex relationships across variables. ML workflows involve an orderly set of 

instructions using automated, unbiased ‘learning’ processes usually targeted towards 

developing (training) a model that can be validated in a separate (test) dataset1. One goal of 

ML algorithms is to analyze big data to identify variables that cannot be recognized through 

conventional biostatistical techniques.  

Currently, several ML algorithms are available to researchers handling big data in omics-

based high content analyses. These can be broadly divided into two categories: supervised 
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and unsupervised algorithms2. Supervised methods (such as decision tree) derive 

relationships between one dependent and multiple independent variables using a training set 

and then apply that knowledge in the testing set for predictive/efficacy analysis. 

Unsupervised methods derive patterns/data clusters amongst all available variables. ML 

algorithms have been used to unravel patterns or to build associations or for predictions in 

several biological processes such as determining DNA methylation states in single cells3, 

identifying signatures of lipid or metabolite species4,5 or microRNAs6 in predicting transition 

from gestational diabetes to type 2 diabetes as well as in genetic studies7. There are multiple 

ML algorithms available and it may present a challenge to select the most appropriate method 

for a particular dataset to answer a specific question. We, therefore, decided to compare 

different ML methodologies to (i) rank different ML methods for their performance on a 

large dataset (of 490,855,065 scRNA-sequencing data points) and (ii) understand the most 

important variables associated with insulin transcription.  

Previous studies8-11 from several laboratories have identified master regulatory transcription 

factors that regulate the embryonic development of insulin-producing islet β-cells. Although 

transcription factor-mediated insulin transcription regulation is a well-known mechanism 

during the development of insulin-producing cells, it is also recognized that active genes 

localized on different chromosomal regions can dynamically regulate gene transcription in 

post-natal life12. One approach to identify genes associated with insulin gene transcription is 

through single-cell (sc)RNA-seq-based big data analysis. 

Here, we examined the performance of 10 different ML algorithms in a curated human 

pancreatic single-cell sequencing dataset of 490,855,065 data points (N=14,565 single cells 

and 33,701 expressed gene features). The aims of this study were (i) to provide a comparative 

account of the predictive potential of 10 different commonly used ML workflows 
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(Supplementary Table 1), and (ii) to use existing scRNA-seq datasets in identifying genes 

(variables) associated with or important for determining insulin transcript-containing cells.  

 

Results  

Machine learning (ML) algorithms yield varying performance outputs. 

The scRNA-seq data were obtained from public databanks (GSE84133, GSE85241, E-

MTAB-5061, GSE83139, GSE81608) of human pancreatic single-cell transcriptomes. We 

first randomized this available pancreatic scRNA-seq transcriptomic data and allocated 80% 

of samples to a discovery/training set (Training; N=11,652 samples) and remaining into a 

validation/testing set (Test; N=2,913 samples) as outlined in Figure 1. With the availability 

of several ML algorithms (Supplementary Table 1), we probed the discovery data using 10 

different ML workflows (Figure 2A) to identify features highly associated with the presence 

of insulin transcripts in a single cell. Genes (features) identified as the most 

important/predictive variables for each of these ML workflows were used to identify insulin 

transcript-containing cells from the validation set (remainder 20% of the samples). Validation 

results of the identified gene features from each of the 10 ML workflows are presented in the 

form of a receiver operator characteristic (ROC) curve (Figure 2B). The top three ML 

algorithms; Gradient boosting, Random Forest and ADA boost (all Ensemble workflows), 

demonstrated similar performance returning an AUC of between 0.83 – 0.86. A confusion 

matrix is presented below each ROC curve dataset (Figure 2B) to present the false-positive 

and false-negative predictions within every workflow. These analyses show that although 

Ensemble machine learning workflows are the best in predicting insulin-transcribing cells, 

other workflows, such as logistic regression, also perform closely similar to the Ensemble 

methods. 
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Ensemble ML workflows to identify genes associated with insulin transcription. 

The scRNA-seq datasets obtained from public databanks of human pancreatic single-cell 

transcriptomes were classified as insulin-transcribing (1) or those with no insulin (0) (Figure 

3A). As described earlier, all the three Ensemble ML workflows presented with an AUC that 

was better than any of the other ML workflows tested in our ROC curve analysis. Ensemble 

workflows also presented with high accuracy (>87%), precision (>0.89), and sensitivity 

(>0.95), which was comparable to other popular workflows such as logistic regression 

(Figure 3B). As Ensemble ML workflows such as Random Forest use a collection of 

decision trees (forest), we decided to compare the performance of the top three (Ensemble) 

workflows to a single (Decision tree) algorithm. The relative contribution of the top 10 

features (genes) from each of these ML workflows are presented as radar plots (Figure 3C), 

whilst the longer list of genes ranked by their importance is presented in Supplementary 

Table 2. IAPP, ADCYAP1, LDHA and SST were common to all three Ensemble workflows. 

To compare the expression of these features (genes) identified through each of the Ensemble 

and Decision Tree classifier, we examined the expression of genes identified to be associated 

with insulin transcription to those in a separate islet β-cell dataset (Figure 3D).  

 

Insulin-associated genes are dysregulated during β-cell dedifferentiation. 

Dedifferentiation of β-cells, characterized by the loss of expression of key β-cell maturation 

marker genes with an accompanying reduction in insulin secretion, has been observed in 

mouse models of type 1 (T1D) and type 2 (T2D) diabetes, as well as in individuals with 

diabetes13-16. We questioned if the expression of gene variables identified and validated (in 

silico) as being predictive of insulin gene transcription (Figure 3B) are dysregulated in a 

mouse model of T1D with evidence of islet dedifferentiation. Transient dedifferentiation of 
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islet β-cells was recently reported in an established T1D preclinical mouse model upon β-

cell-specific deletion of a key stress response gene, Ire1α, (Ire1αβ-/-)17.  These mice also 

demonstrated reduced β-cell number as well as diminished expression of insulin transcripts in 

β-cells compared to control (Ire-1αfl/fl) mice. Therefore, we evaluated the expression of 25 

gene transcripts that made up the top-10 features across the four different ML workflows 

(Figure 3C). Twelve of these features were not significantly regulated between Ire1αβ-/- and 

Ire1αfl/fl islets. However, the remaining thirteen features (listed in Figure 3C) were 

significantly dysregulated in β-cells of Ire-1αβ-/-  mice that were undergoing dedifferentiation. 

De-differentiating β-cells showed significant downregulation of five key genes; Iapp, MafA, 

Pcsk1n, Atp5e and Ldha, whilst all other insulin-associated gene transcripts showed 

significantly higher levels.  In Type 2 diabetes (T2D) it is known that INS transcript 

expression is reduced, therefore we validated the top gene features common (IAPP, SST, 

MAFA, ADCYAP1 and LDHA) in three of the ML workflows analysed using a separate 

publicly available single-cell RNA-seq dataset from non-diabetic (ND) vs T2D adult human 

pancreas (GSE15412618). Four of the five genes (IAPP, SST, MAFA, ADCYAP1), were 

significantly lower in T2D insulin-transcribing cells compared to ND insulin-transcribing 

cells (Supplementary Table 3).  

 

Discussion: 

In this study, we compared the performance characteristics of 10 different ML algorithms, 

(Supplementary Table 1) that are currently used in big data analyses. We analyzed a 

scRNA-seq dataset that was randomly split to a larger (80%; 392,684,052 data points) 

training set involving model learning, and then a smaller (20%; 98,171,013 data points) 

validation set. All algorithms identified a set of genes (features) that identify insulin-
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production (1) defined as the presence of one or more transcripts of insulin in a sample, or no 

insulin production (0) from the 11,652 single cells analysed in the training test. We validated 

the predictive features identified through each ML workflow in the validation/test set of 

2,913 single cell transcriptomes. ML workflows that returned high performance (based on 

AUC, sensitivity/specificity) were selected and the top 10 genes (ranked by their importance) 

in each of those ML methods were re-validated in discrete mouse and human datasets that 

model beta cell dedifferentiation (Figure 3D, Supplementary Table 3). 

Our analysis provides two major outcomes that are of interest to a broad range of data 

analysts and biologists. First, a comparison of the ML algorithms identified Ensemble-based 

ML methods as the best performing algorithms in our analyses. Logistic regression 

performed closest to Ensemble methods, in line with previous reports in clinical datasets19. 

We then compared Ensemble methodologies to Decision tree algorithm. Decision tree offers 

the often-desired simplistic model generation method as compared to Ensemble methods such 

as Random Forest. However, the latter builds multiple decision trees independently and offers 

an overall learning model that is closest to the best possible prediction. Indeed, Decision tree 

was determined to be a weaker predictor than the Random Forest as the latter reduces 

variance using different sample sets (bootstrap) in training, randomizing feature subsets, and 

combining the predictive learning by building multiple decision trees. Random Forest 

prediction outcomes were similar to gradient boosting, which also builds a set of decision 

trees, but one tree at a time. The bagging and boosting approach used in ADA/Gradient 

boosting methods seems to have offered better accuracy and performance in insulin 

prediction analysis than those observed using Random Forest, whereas the Random Forest 

algorithm offered the highest sensitivity (Figure 3B) amongst all methodologies tested. 

The other outcome from this analysis is the identification of genes that are associated with 

and predictive of insulin gene transcription. Since bulk RNA-sequencing studies do not offer 
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the desired single-cell resolution to identify transcriptional regulation at a cellular level, our 

analyses provide a firsthand view of insulin gene transcriptional determinants identified 

through an unbiased, big data machine learning approach. The top three methodologies 

(based on high AUC values) belonged to Ensemble machine learning workflow. Weighted 

relative importance of the top-10 most important features are compared (Figure 3C), and a 

longer list of all the gene features identified through the four ML workflows is provided in 

Supplementary Table 2. Interestingly, five genes were common to the top 10 features from 

all of the algorithms compared – IAPP, ADCYAP1, MAFA, SST and LDHA. The top-ranked 

gene associated with insulin gene transcription across all the Ensemble workflows was IAPP.  

Islet amyloid polypeptide (IAPP) and insulin are known to be expressed in pancreatic islet β-

cells and co-secreted in response to changes in glucose concentration20,21. Their mRNA levels 

are also regulated by glucose. The promoters of both these genes share similar cis-acting 

sequence elements, and both bind the master regulatory transcription factor PDX120. FoxA2 

(HNF-3β) negatively regulates IAPP promoter activity22 and has also been shown to suppress 

insulin gene expression23. Although insulin gene expression is known to be regulated by 

several islet-enriched transcription factors, MafA is the most well recognized β-cell-specific 

activator of insulin gene expression24. The selection of MAFA as a key feature by three of the 

compared ML approaches tested through this analysis is therefore not surprising. The 

inclusion of SST in the top three gene features is intriguing. Somatostatin expression is 

known to be important in control of insulin release and ablation of somatostatin-expressing 

delta cells impairs pancreatic islet function and cause neonatal death in rodents25. SST 

analogs were shown to inhibit the release of insulin via the activation of both ATP sensitive 

K+ channels and G protein-coupled inward rectifier K+ channels26. Another candidate that 

was identified through these analyses is MTRNR2L8, a neuroprotective and antiapoptotic 

peptide derived from a portion of the mitochondrial MT-RNR2 gene and reported in fetal as 
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well as adult beta cells27. ADCYAP1 stimulates insulin secretion in a glucose-dependent 

manner28 and genetic screening in type 2 diabetes Caucasians indicated the presence of two 

SNPs in exons 3 and 5 to be associated with type 2 diabetes29. Finally, LDHA, which was also 

selected through these unbiased analyses across the top-three ML workflows is a pancreatic 

β-cell disallowed gene30-32 and human LDHA levels are predictive of insulin transcription33. 

Together, these algorithms help in identifying a set of genes expressed in or disallowed from 

insulin-producing pancreatic β-cells.   

Mouse models often provide the validation to understand mechanisms that cannot be tested in 

through human studies. The Ire1αβ-/- mouse model offers a unique model, wherein pancreatic 

β-cells transiently dedifferentiate during early post-natal life, allowing these knockout mice 

escape immune-mediated β-cell destruction and T1D in later life17.  Analysis of islet single 

cell sequencing data from this model identified genes that were significantly dysregulated in 

β-cells of Ire1αβ-/- mice when compared to control (Ire1αfl/fl) mice. Eight of thirteen features 

(from the Top 10 features in each of the four ML workflows, Figure 3E), which showed 

significant dysregulation between Ire1αβ-/- and Ire1αβfl/fl mice are upregulated in β-cells of 

Ire1αβ-/- mice. T2D islet single cell validation also revealed down-regulation of four common 

gene features (IAPP, SST, MAFA and ADCYAP1 identified across our three top ML 

workflows) in T2D compared to ND insulin transcribing cells. Interestingly, Delta Like Non-

Canonical Notch Ligand 1 (DLK1) was also significantly downregulated in T2D compared to 

ND insulin transcribing cells. The imprinted region of chromosome 14q32.2, contains 

microRNA cluster of DLK1-MEG3 which are highly expressed and more specific in human 

β-cells compared to α-cells. Previous study had also shown that in Type 2 diabetes (T2D) 

human islets, the MEG3-microRNA locus expression levels are significantly lower34. The 

14q32 locus of microRNAs (such as coexpression of miR-376a and miR-432) also have been 

shown to target and suppress the expression of IAPP34. 
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Strength and Limitation: This is a first demonstration comparing multiple ML algorithms to 

identify key genes associated with insulin transcription using a large dataset of over 490 

million data points. As anticipated, Ensemble methods perform better than most other 

workflows and identified a set of genes that corroborate with previous reports of 

transcriptional regulation of insulin in mouse and human β-cells. These findings indicate that 

unbiased ML workflows for big data analyses can generate biologically meaningful results, 

when applied to large training datasets. Our study provides the codes/scripts for other 

researchers to use in existing as well as emerging datasets for identification of gene 

candidates associated with other genetic pathways (eg. related to GCG or GCK) in future or 

to genes recognized to be associated with Type 2 diabetes GWAS datasets. We recognize that 

there are several limitations: we are unsure as to why some other well know candidates (such 

as Pdx1, and NeuroD) were not selected by our top predictive models. An explanation is that 

we used a whole pancreatic single cell dataset and that the predictive models generated 

through filtering out β-cells may be more enriched for known pro-endocrine gene regulators 

such as PDX1.  The other explanation is that although PDX1 is a key regulator, the transcript 

levels analysed in these datasets using multiple scRNA-seq technologies may not be 

sufficient considering the sequencing depth offered by some of these scRNA-seq workflows. 

We recognize that exhaustive (eg. LOOCV35) as well as non-exhaustive cross-validation 

approaches (such as K-fold cross-validation36) were not performed here.  Such cross-

validation approaches, although useful in assessing how results will generalize to an 

independent dataset, are mostly used in the validation of much smaller datasets.  In big data 

analyses, the use of such cross-validation methodologies would limit the analyses to only 

those with an access to high-end cluster computing.  The 10 different ML scripts used in 

these analyses are designed to work on a high-end personal computing device (i7 processor 
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with 4 cores and 32GB RAM or better).  We believe that the application of such ML 

algorithms to the expanding scRNA-seq datasets would lead to the confirmation/validation of 

current as well as identification of novel determinants of gene transcription, thereby 

accelerating innovation in discovery of gene targets in biology and medicine.   
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Figure 1: Comparative analysis of scRNA-seq datasets  

 

 

Five different human pancreatic single-cell(sc)RNA-sequencing datasets (GSE84133, 
GSE85241, E-MTAB-5061, GSE83139, GSE81608) were curated to test the performance of 
10 different machine learning (ML) algorithms. A training set comprising randomly selected 
80% datasets (N=11,652 samples) were used in the learning phase (Training set; top panel).  
Ten ML workflows used in this study are symbolically illustrated as coloured heads. Each of 
the workflows aimed to identify a list of weighted features that accurately identify the 
presence (1; “insulin-positive”) or absence (0;insulin-negative) of insulin gene transcripts. 
Learning outcomes were validated (bottom-left panel) in 20% (N=2,913) of the total samples, 
and the top three ML algorithms providing the best area under the curve (AUC) in a receiver 
operator characteristic (ROC) curve analysis were selected to understand the importance of 
the selected features (genes) in each ML-workflow. Since our ML workflows identified genes 
associated with insulin gene transcription, we analyzed the expression of these genes in the 
Ireαβ-/- mouse pancreatic scRNA-seq dataset (GSE144471) profiling dedifferentiating 
pancreatic β-cells.  
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Figure 2: Study design and performance of different ML workflows. 

 
 

A flowchart of our analytical plan is presented in (A). Previously published datasets of 
single-cell RNA-sequencing analyses from pancreatic islet cell preparations were randomly 
divided into a training (N=11,652) and a validation (N=2,913) set. The learning phase 
(Training) involved identifying features (genes) and their associated weights/coefficients in 
each of the ten machine learning (ML) methods (listed 1-10) used. Weighted features were 
used in the prediction of insulin transcription (across 10 ML algorithms) to test the 
performance of these models in an independent validation set of samples (N=2,913). ROC 
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curve plots for each ML algorithm using validation set data are presented in (B). The area 
under the curve (AUC) for the tested workflows are presented along with a confusion matrix 
below the plot. Percent values are rounded off to the nearest integer (and hence may not sum 
up to an absolute 100%) and represent true negative (red), true positive (green), false positive 
(yellow) and false negative (blue) samples identified in the validation set. 
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Figure 3: Performance and application of learned features in understanding insulin 
gene transcription. 

 

 
 (A) A 2D clustering of pancreatic single cells assessed in this study using UMAP (Uniform 
Manifold Approximation and Projection plot). Cellular subtypes based on the UMAP 
clustering algorithm are labelled and graded (scale, inset) as per the level of insulin gene 
transcripts. (B) The performance of learnt models on accurately identifying insulin-positive 
(1) and insulin-negative (0) single cells from the validation dataset are presented. (C) Relative 
weighted rank contributions of the top 10 genes in each of the four listed ML algorithms are 
presented as spider plots plotted in the order of importance (starting clockwise at 12-O’clock 
position). Percent representation of each of the genes indicates their relative contribution in 
the set on the spider plot with a logarithmic scale (center=1% and outer circle=100%). A 
comparison of the gene features identified by the top three ensemble workflows is presented 
along with those identified by the Decision Tree classifier. (D) Pathways targeted by features 
from each of the four selected ML methods (RF: Random Forest; GB: Gradient Boosting; 
ADAB: ADA Boost; DT: Decision Tree) identified using gene ontology (GO) function 
analysis are presented in the Venn diagram. Number of GO terms enriched and common for 
top features (genes) in each ML method are plotted. (E) All significantly dysregulated genes 
identified from and common to the four ML algorithms presented herein were assessed in the 
scRNA-seq dataset from Ire1αβ-/- mice.  Bubble plot presenting fold-change and statistical 
significance (q-value) for each of the genes in Ire1αfl/fl and Ire1αβ–/– mice are shown. Blue 
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colour represents downregulation while red colour indicates increased abundance of 
transcripts in Ire1αβ-/- mice compared to control.  
 

Methods 

Pancreatic single-cell (sc)RNA sequencing datasets and analyses.  

Human pancreatic single-cell sequencing datasets:  

The pancreatic single-cell sequencing dataset (N=14,890) was extracted using the Panc8 data 

containing multiple publicly available scRNA-seq transcriptomes (GSE84133, GSE85241, E-

MTAB-5061, GSE83139, GSE81608). Analysis was carried out by using R studio version 

1.2.5033 using the SeuratData (version 0.2.1) and Seurat (3.2.3). Data normalization across 

multiple datasets in Panc8 are described previously37. Single-cell selection criteria involved 

all cells that contained transcript data (samples with all zeros eliminated). Single-cell datasets 

were randomly split to 80% samples selected in a training set with the remaining 20% 

retained for validation. ML-based identification of features predicting insulin transcript was 

carried by data scientists blinded to gene variables and sample information. Analytical plan 

(80/20 discovery and validation) were predetermined and gene identifiers/sample details were 

provided once models were ranked following in silico validation. 

Ire1αβ-/- mouse pancreatic single-cell dataset:   

Single-cell RNA-seq dataset from pancreatic islets of Ire1αfl/fl (N=1,163 single-cell 

transcriptomes from 1 mouse) and Ire1αβ–/– (N=1,683 single-cell transcriptomes from 2 mice) 

were obtained through GSE14447117. The β-cells (Ire1αfl/fl: 830 cells; Ire1αβ–/–: 816 cells) 

were separated from the dataset and the expression values of selected genes were evaluated in 

the β-cell population.  

T2D pancreatic single-cell (sc)RNA sequencing dataset:  
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Pancreatic single-cell normalized read dataset of adult ND (N=4) and T2D (N=10) donors 

were obtained from GSE154126 (PMID: 32739450). The adult ND (N=296) and T2D 

(N=505) insulin transcribing cells were compared and used for validation.  

De-identified datasets were shared with data scientists. A random number generator function 

was used to allocate 80% of samples to a training set. Analyses were carried using Python 

(Ver:3.4), wherein the data file was imported into the data frame, transposed, edited to delete 

INS and INS-IGF2 columns from the data frame and labelled (label=0 where INS=0 and 

label=1 where INS>0). Classifiers were initialized and model trained using the discovery 

(80%) data set. Predictive analyses were then carried out on the validation (20%) set and the 

resulting accuracy metrics were saved to compare the feature importance. Classifiers selected 

(Random Forest, Gradient Boosting, Decision Tree Classifier, Logistic Regression, 

Multinomial Naive Bayes Classifier, ADA Boost Classifier, Linear Discriminant Analysis, 

Ridge Classifier, KNeighbors Classifier and Linear Support Vector Classifier) were analysed 

on the same set and codes for these analyses will be made available through GitHub on 

publication.   

Pathway analysis. To analyze enrichment for β-cell pathways lists of pancreatic single-cell 

features generated by ML algorithms (Random forest, Gradient boosting, Decision tree 

classifier and ADA Boost classifier)were compared with β cell-expressed genes (from E-

GEOD-20966) using Gene Ontology over-representation analysis on Pantherdb.org38. Pre-

analytic workflows included cleaning up entries not mapping to protein-coding gene symbols. 

To analyze for overrepresentation among β-cell pathways lists of machine learning predicted 

genes were compared with β-cell expressed genes (N=13,165 from E-GEOD-20966) using 

Gene Ontology (GO)-analysis on Pantherdb.org38. Preanalytical workflows included cleaning 

up entries not mapping to protein-coding gene symbols in E-GEOD-20966. Gene lists for 

each ML algorithm consisted of the top 100 genes as predictors of insulin expression, which 
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were compared against the data set of β-cell expressed genes. Overrepresentation analysis 

using GO categories for biological processes (GO: BP) was performed using binomial testing 

using false-detection-rate to correct for multiple testing. Lists of significantly enriched 

pathways associated with each ML algorithm were compared using Venn diagrams39.  

 

Statistical analysis: The R software (ver. 3.6.1; R Foundation for Statistical Computing, 

Vienna, Austria) was used to create the categorical bubble plot using the packages ggplot2 

(3.3.3), ggpubr (0.4.0) and proto (1.0.0). Statistical software, Microsoft Excel (ver. 2016; 

Microsoft, Redmond, WA, USA), the R software (ver. 3.6.1; R Foundation for Statistical 

Computing, Vienna, Austria) and/or GraphPad Prism (ver. 8.4.1; GraphPad Software, San 

Diego, CA, USA) were used for univariate test comparisons and Benjamini-Hochberg 

method for multiple testing.  
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Supplementary Table 1. 

# Workflow Build Description 
1  Random 

Forest 
Ensemble Random Forest classifier is a meta-estimator that fits 

several decision trees on various sub-samples of datasets 
and uses an average to improve the predictive accuracy of 
the model and controls over-fitting. The sub-sample size 
is always the same as the original input sample size but 
the samples are drawn with replacement. Reduction in 
over-fitting and Random Forest classifier is more 
accurate than decision trees in most cases. 

    
2  Gradient 

Boosting 
Ensemble The idea behind "gradient boosting" is to take a weak 

hypothesis or weak learning algorithm and make a series 
of tweaks to it that will improve the strength of the 
hypothesis/learner. This type of Hypothesis Boosting is 
based on the idea of Probability Approximately Correct 
Learning (PAC). 

    
3  Adaptive 

Boosting 
(Adaboost) 

Ensemble For AdaBoost, many weak learners are created by 
initializing many decision tree algorithms that only have 
a single split. The instances/observations in the training 
set are weighted by the algorithm, and more weight is 
assigned to instances that are difficult to classify. More 
weak learners are added into the system sequentially, and 
they are assigned to the most difficult training instances. 
In AdaBoost, the predictions are made through majority 
vote, with the instances being classified according to 
which class receives the most votes from the weak 
learners. 

    
4 Ridge 

Classifier 
Regularization Ridge classifier first converts binary targets to [-1, 1] and 

then treats the problem as a regression task, optimizing 
the same objective as above. The predicted class 
corresponds to the sign of the regressor’s prediction. For 
multiclass classification, the problem is treated as multi-
output regression, and the predicted class corresponds to 
the output with the highest value. 

    
5  Logistic 

Regression 
Regression Logistic regression is a machine learning algorithm for 

classification. In this algorithm, the probabilities 
describing the possible outcomes of a single trial are 
modelled using a logistic function. It is most useful for 
understanding the influence of several independent 
variables on a single outcome variable. 

    
6  Naive Bayes Bayesian Naive Bayes algorithm based on Bayes’ theorem with the 

assumption of independence between every pair of 
features. Naive Bayes classifiers work well in many real-
world situations such as document classification and 
spam filtering. This algorithm requires a small amount of 
training data to estimate the necessary parameters. Naive 
Bayes classifiers are extremely fast compared to more 
sophisticated methods. 
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7  Decision Tree 

Classifier 
Decision Tree Given data of attributes together with its classes, a 

decision tree produces a sequence of rules that can be 
used to classify the data. Decision Tree is simple to 
understand and visualise, requires little data preparation, 
and can handle both numerical and categorical data. 

    
8  K-Nearest 

Neighbours 
Instance-based Neighbours based classification is a type of lazy learning 

as it does not attempt to construct a general internal 
model but simply stores instances of the training data. 
Classification is computed from a simple majority vote of 
the k nearest neighbours of each point. This algorithm is 
simple to implement, robust to noisy training data, and 
effective if training data is large. 

    
9  Linear 

Discriminant 
Analysis 
(LDA) 

Dimensionality 
Reduction 

 It is a classifier with a linear decision boundary, 
generated by fitting class conditional densities to the data 
and using Bayes’ rule. The model fits a Gaussian density 
to each class, assuming that all classes share the same 
covariance matrix. The fitted model can also be used to 
reduce the dimensionality of the input by projecting it to 
the most discriminative directions, using the transform 
method. 

    
10  Linear 

Support 
Vector 
Classifier 

Support Vector 
Machines 
(SVM) 

Support vector machine is a representation of the training 
data as points in space separated into categories by a clear 
gap that is as wide as possible. New examples are then 
mapped into that same space and predicted to belong to a 
category based on which side of the gap they fall. 
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Supplementary Table 2.  

Rank 

Gradient Boost Random Forest ADA Boost Decision tree 

1 

IAPP IAPP IAPP MTRNR2L8 

2 

MTRNR2L8 ADCYAP1 SST IAPP 

3 

MTRNR2L1 MAFA ATP5E MAFA 

4 

RPS15 SST LDHA GSTA1 

5 

SST DLK1 ADCYAP1 RPS15 

6 

MAFA PCSK1N GPX4 MAB21L3 

7 

ADCYAP1 HADH DOCK10 XIST 

8 

NPTX2 PCSK1 CAPN13 CRP 

9 

LDHA MALAT1 KCNA5 RPL35 

10 

MAB21L3 LDHA RPL23AP32 SST 

11 

PCSK1N NPTX2 NPM3 NPTX2 

12 

DDX3Y CD99 GGPS1 CNPY3 

13 

MIF C1QL1 RHOBTB1 PCSK1N 

14 

RBP4 EEF1A2 SIX3 TP73-AS1 

15 

ATP5E CD151 RPL13AP17 CCDC28A 

16 

RPS28 GNAS STMN3 IGSF3 

17 

CRP RBP4 DDX6 RPL26 

18 

GSTA1 MIF PLSCR4 HADH 

19 

MAST1 EEF2 FAM163A MZT2B 

20 

CD24 UCHL1 ZNF578 RPL36A 

21 

RPS18 IGF2 MTRNR2L8 MIR663A 

22 

AES LRRFIP1 RPL27A MARK2 

23 

PRSS8 HNRPDL CST3 ZNF682 

24 

TRIM47 UGDH-AS1 PRRC2C C6orf1 

25 

CD151 MTRNR2L2 MTRNR2L6 BNIP2 

26 

GPX4 RPS17 KCTD21 EEF1A2 

27 

HADH MAB21L3 ARPC3 KIAA1161 

28 

ATP5MD TMEM66 KCTD1 TGFBI 

29 

MYO6 RPL3 LINC00342 RPS4Y1 

30 

L1TD1 ITGB1 ADSSL1 AHSA2 

31 

TTTY15 ABHD2 DLK1 RNFT2 

32 

XIST ERO1LB STRN NFASC 

33 

CST3 ANXA4 SNHG14 PHC2 

34 

LOC101929224 TTR MYL6 CCNG2 

35 

DLK1 ABCC8 LINC00294 BMS1 

36 

RPL8 YWHAZ FXYD3 RSBN1 

37 

LINC01550 GPX4 WSCD2 SDF2L1 

38 

C4BPB ATP5E HIST1H1E LINC01858 

39 

MTRNR2L10 CD59 CACNA2D3 FTH1 

40 

PRRC2C HNRNPU DCTN4 FBXL18 

41 

UBL7-AS1 KCNQ1OT1 MAFA EIF1B 

42 

GNAS MTRNR2L1 H1FX BBX 

43 

ATAD2 PRRC2C TTTY15 TAF7 
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44 

AL353803.1 WSCD2 ANO6 FXYD6 

45 

HSPA6 TOMM6 SUPT20H IRF2BP2 

46 

UCHL1 NLRP1 S100A14 NMB 

47 

LOC100287177 UGGT1 LYPD3 TMA7 

48 

THSD7A SRRM2 SCARF1 KLF7 

49 

LINC00342 RPS15 SMC3 RPL17 

50 

RPS4Y1 CPE MAST1 KIAA1919 

51 

GGPS1 CCAR1 CCDC38 SRPR 

52 

GCG SCGN ZNF790-AS1 GNG5 

53 

ZFP36L1 H3F3A MARS RASGRF1 

54 

BRWD3 PFKFB2 ZNF787 CXCL3 

55 

SACS ANKRD12 AKAP1 ZPBP 

56 

IVNS1ABP WAC-AS1 UGT2B17 ADCYAP1 

57 

ITGB1 LPP CA5BP1 PNMA3 

58 

BBS12 GCG TRAPPC12 PPP1CB 

59 

PCDHA8 C17orf76-AS1 PRPF19 ALDOA 

60 

EDA RPS18 RAB30-AS1 CHGA 

61 

GAD2 ZC3HAV1 RDH13 C2CD2L 

62 

BRI3 TMSB4X HADH DOT1L 

63 

PRSS3P2 RPL36A-HNRNPH2 DENND6A IGIP 

64 

RPS29 RPL8 RPS29 HERPUD1 

65 

TP73-AS1 RHOC ATAD2 TMEM254 

66 

MTHFD1 REG3A SLC16A3 EDARADD 

67 

GOLIM4 STX16 RPS15 GADD45B 

68 

AC025254.1 YWHAB DROSHA FOXA3 

69 

PTBP2 SRSF11 WBP11 SLC35B4 

70 

SERINC1 RNASEK SEZ6 ABHD5 

71 

KCNJ2 PKD1P1 SNORA79 MALL 

72 

PSAP PEMT FAM83H LOC101928069 

73 

EHF MYO10 MTCH2 RPS20 

74 

AKR7A2 FTL FAM114A1 SRP9 

75 

PKD1P1 C1orf127 PITPNA A1BG 

76 

AC025259.3 LINC00657 LHPP DDAH1 

77 

MYOF RPL13AP20 BRPF3 C7orf65 

78 

PRPF19 ERO1B IFITM1 TRIM33 

79 

MIR663A PTPRN BSG ARHGAP35 

80 

YPEL3 SCG5 CSDE1 YOD1 

81 

EIF3J-DT MYO6 MTHFD1 LRRC10 

82 

AC098934.2 PPIA WBP1 PIGK 

83 

38596 TM4SF1 EHBP1 SERTM1 

84 

CPEB3 FXYD2 C4BPB SERPINB6 

85 

LOC100506476 U2AF1 NEURL3 ING2 

86 

CENPC1 PTP4A2 EFNB3 GLTSCR2 

87 

BAI2 PPP1R1A RBP4 SURF1 

88 

UEVLD LOC643406 LINC00657 LOC100507463 

89 

MX1 GAD2 SPNS1 CYP2R1 
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Supplementary Table 3 

Gene 
transcript P-value ND T2D 

INS <0.0001 9.31 ± 0.29 6.52 ± 0.19 
IAPP <0.0001 6.88 ± 0.28 4.56 ± 0.20 

ADCYAP1 <0.0001 3.24 ± 0.24 1.81 ± 0.16 
MAFA 0.0021 0.89 ± 0.10 0.71 ± 0.08 

SST <0.0001 5.23 ± 0.25 3.02 ± 0.16 
LDHA 0.2679 6.67 ± 0.26 6.85 ± 0.19 

 

Supplementary Table 3: The key genes common in all top three ML workflows (Figure 

2C) with INS gene accessed in Avrahami et al single-cell RNA-seq data (GSE15412618) 

between adult non-diabetic (ND; N=296) vs T2D (N=505) insulin transcribing single cells. 

Data are presented as log₂ transformed normalized reads mean + SEM. The P-values were 

calculated with the Mann-Whitney test. Genes with significant P-value (P<0.05) show here, 

remain significant after adjusting for multiple testing using the Benjamini-Hochberg method 

(FDR=0.05, on 21,153 tests). 
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