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Abstract—Single-cell RNA sequencing (scRNA-seq) technolo-

gies promise to characterize the transcriptome of genes at cellular 

resolution, which shed light on unfolding cell heterogeneity and 

diversity. Fast-growing scRNA-seq profiles require efficient clus-

tering algorithms to identify the same type of cells. Although many 

methods have been developed for cell clustering, existing cluster-

ing methods are limited to extract the representations from ex-

pression data of individual cells, while ignoring the high-order 

structural relations between cells. Here, we proposed GraphSCC, 

a robust graph artificial intelligence model to cluster single cells 

by accounting for structural relations between cells. The represen-

tation learned from the graph convolutional network, together 

with another representation output from a denoising autoencoder 

network, are optimized by a dual self-supervised module for better 

cell clustering. The experimental results indicate that GraphSCC 

model outperforms state-of-the-art methods in terms of various 

evaluation metrics on both simulated and real datasets. Further 

visualizations show that GraphSCC provides representations for 

better intra-cluster compactness and inter-cluster separability.   

Keywords—Single-cell RNA-seq Clustering, Graph Convolu-

tional Network, Denoising Autoencoder, Self-supervised Learning. 

I.  INTRODUCTION 

Single-cell analysis is a valuable tool for discovering cellu-
lar heterogeneity in complex tissues and diseases[1, 2]. Cluster-
ing is an essential step in single-cell analysis, since each cell 
cluster represents a distinct cell state or type in transcriptome 
space. Despite the significant improvements in measuring 
scRNA-seq technologies and advances of many clustering 
methods, it remains challenging for clustering cells based on 
scRNA-seq data [3]. Concretely, scRNA-seq data often con-
tains dropout events and substantial noise due to biological and 
experimentally technical factors, such as amplification bias, the 
low RNA capture rate [4], and cell cycle effects [5]. A dropout 
event is defined as missed gene measurements, resulting in a 
‘false’ zero count observation [6]. Thus, solving the dropout 
events and substantial noises is important for improving clus-
tering analyses.  

Several imputation methods have been developed for solv-
ing the dropout events of scRNA-seq data.  Early methods are 
often based on statistical models, e.g., CIDR [7],  scImpute [8],   
MAGIC [9], and SAVER [10]. Due to deep learning techniques 
achieving state-of-art results in many areas, several researchers 
developed neural-network-based imputation methods. For ex-
ample, DCA [6] reconstructs the scRNA-seq data through the 
autoencoder optimized by a loss function of the zero-inflated 
negative binomial (ZINB) [11]. DeepImpute uses highly corre-
lated genes and sufficient reads coverage to recovery missing 
values[12]. GraphSCI employed graphical neural network to 
capture the relations between genes for accurate imputations 
[13].  Although the imputed scRNA-seq data help improve the 

clustering results, the results remain unsatisfactory. These im-
putation methods are not optimized for cell clustering, and the 
imputed data by imputation methods may produce false-posi-
tive gene-gene correlations.[14].   

 Recently, a few clustering methods have been specifically 
designed for scRNA-seq data. For example, the spectral clus-
tering method SIMLR learns a robust distance metric to fit the 
structure of scRNA-seq data[15]. Seurat3.0 applies the Louvain 
algorithm [16] to cluster cells depended on the low-dimensional 
scRNA-seq data [17]. DendroSplit through feature selection in 
scRNA-seq data to uncover multiple levels of biologically 
meaningful cell populations [18]. ScDeepCluster is a deep 
learning embedded clustering method, which accounts for the 
overdispersion and sparsity of the scRNA-seq when clustering 
[19]. There are a few tools had been developed for dividing sin-
gle cells into hierarchies or groups, such as SC3[20], 
RaceID[21], SNN-Cliq[22], BISCUIT[23], and pcaReduce[24]. 
However, most of these methods rely on only the data of indi-
vidual cells without explicitly considering structural relations 
between cells.  

The Graph Convolutional Networks (GCN) can efficiently 
capture structural information[25]. In recent years, GCN and its 
variants [26, 27] have been successfully applied to a wide range 
of applications, including protein prediction [28], traffic predic-
tion [29] and drug design[30]. Xie et al. developed a deep em-
bedding method for clustering analysis  (DEC)[31] by unsuper-
vised manner, which uses an auxiliary target distribution to it-
eratively refines clusters by learning highly confident assign-
ments. DEC and its variant IDEC[32]  have been successfully 
used in molecular biology[19, 33]. Recently, Bo et al. devel-
oped a Structural Deep Clustering Network (SDCN)  for inte-
grating structural information between objects[34]. Theoreti-
cally, they have proved that the inclusion of GCN enables a 
high-order regularization constraint to learn better representa-
tions that help improve the clustering results, and SDCN out-
performed other methods in many types of datasets. 

Inspired by these works, we present a robust graph-based 
artificial intelligence model, GraphSCC, to integrate structural 
information in the clustering of scRNA-seq data. Meanwhile, 
we employed a denoising autoencoder network to obtain low 
dimensional representations for capturing local structural. A 
dual self-supervised module was then employed to optimize the 
representations and the clustering objective function iteratively 
in an unsupervised manner. The results show that the 
GraphSCC outperforms state-of-the-art methods on both real 
datasets and simulated. Furthermore, GraphSCC provides rep-
resentations for better intra-cluster compactness and inter-clus-
ter separability in the 2D visualization.  
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The advantages of GCN is its native learnable properties of 
aggregating and propagating attributes to obtain relations over 
the whole cell-cell graph. Thus, the learned graph representa-

tions can be treated as high-order representations between cells. 

The superior performance of GraphSCC in cell cluster predic-
tion benefits from (i) we synergistically determine cell clusters 
based on the integration of high-order topological relations be-
tween cells and characteristics of individual cells, and (ii) we 
apply the dual self-supervised module to iteratively refine clus-
ters by learning from highly confident assignments using an 
auxiliary target distribution. 

TABLE I. THE LIST OF DTATSETS USED IN THIS STUDY. 

Datasets GSE/ID #Cells #Genes #Cell types 

Baron Human GSE84133 8569 20125 14 

Baron Mouse GSE84133 1886 14878 13 

Darmanis GSE67835  466 22088 9 

Deng GSE45719  268 22431 6 

Goolam E-MTAB-3321  124 41427 5 

Klein GSE65525 2717 24175 4 

Li GSE81861 561 55186 9 

Romanov GSE74672 2881 24341 7 

Segerstolpe E-MTAB-5061 3514 25525 15 

Zeisel GSE60361 3005 19972 9 

Biase GSE57249 56 25733 4 

Tasic GSE71585 1679 24150 18 

Treutlein GSE52583  80 23271 5 

Xin GSE81608 1600 39851 8 

Yan GSE36552 90 20214 6 

II. MATERIALS AND METHODS 

A. Datasets and Preprocessing 

Simulated Data：We applied a generally used R package Splat-

ter to generate simulated scRNA-seq count  data [35]. For all 
simulated data, we set 2000 cells composed of 2000 genes with 
four groups of the same numbers, i.e., 500 cells per group. Fol-
lowing the previous study[19], we set 𝑑𝑟𝑜𝑝𝑜𝑢𝑡. 𝑚𝑖𝑑 = 2 , 
𝑑𝑟𝑜𝑝𝑜𝑢𝑡. 𝑠ℎ𝑎𝑝𝑒 = −1(fixed dropout rates at 45%), and used 
default values for other parameters. To simulate various clus-
tering signal strengths, we generated datasets with different 
de.fracScale in {0.2, 0.225, 0.25, 0.275, 0.3,0.325,0.35,0.4} . 
The de.fracScale is the parameter sigma of a log-normal distri-
bution to control multiplicative differential expression factors. 
To avoid random fluctuations, we repeatedly generated 20 da-
tasets for each setting with different random seeds, and reported 
the average results. 

Real Data： We downloaded 15 datasets of human and mouse 

scRNA-seq involved in various tissues and different biological 

processes as used in the previous study[36] from the Hemberg 

group (https://hemberg-lab.github.io/scRNA.seq.datasets/). 

The datasets contain different scales of cells from dozens to 

thousands derived from various single-cell RNA-seq tech-

niques. The detail information of datasets was listed in TABLE 

I. The data type of top 10 datasets is raw read counts, and the 

last 5 datasets are normalized counts. 

Preprocessing：We normalized simulated scRNA-seq counts 

using the transcripts per million (TPM) method [37] and then 
scaled the value of each gene to [0, 1]. For real datasets, we 
followed Seurat3.0's procedure to normalize and select the top 
2000 highly variable genes for scRNA-seq data and then scale 
each gene's value to [0,1]. Note that for real datasets normalized 
by FPKM, we first converted them to TPM by Eq. (1) as pro-
posed by [38], and then preprocess the data as above. 

𝑇𝑃𝑀𝑖 =  (
𝐹𝑃𝐾𝑀𝑖

∑ 𝐹𝑃𝐾𝑀𝑗𝑗

) × 106 (1) 

B. GraphSCC Architecture 

GraphSCC network consists of three components as shown 
in Fig. 1: Denoising Autoencoder (DAE), Graph Convolutional 
Network (GCN), and Dual Self-supervised Module (DSM).  
DAE network learns robust low-dimensional representations 
that could reconstruct the inputs. GCN optimized the represen-
tations with constraints from structural information between 
cells. DSM applied to cluster the cells according to the learned 
representations by DAE and GCN. 

1. DAE Networks 

The gene expression is represented by the matrix 𝑋 ∈ ℝ𝑁 ×𝑑, 
where N is the number of single-cell and d is the dimension of 
expressed genes. DAE encodes gene expression matrix to 
fixed-size vector representations for reserving local structure. 
DAE is a variant version of autoencoder that is input with cor-
rupted data and outputs the fit data. Concretely, at encoding 

layer ℓ the output 𝐻(ℓ) is computed as: 

𝐻(ℓ) = ∅(𝑊𝑒
(ℓ)

𝐻(ℓ−1) + 𝑏𝑒
(ℓ)

) (2) 

where ∅ is the activation function, 𝑊𝑒
(ℓ)

 and 𝑏𝑒
(ℓ)

 are the weight 

matrix and bias parameters, respectively. 𝐻(0) = 𝑋 + 𝜖, and 𝜖  

is the Gaussian noise. The decoded layers are caculated as: 

𝐻(ℓ) = ∅(𝑊𝑑
(ℓ)

𝐻(ℓ−1) + 𝑏𝑑
(ℓ)

) (3) 

where ∅  is the activation function,  𝑊𝑑
(ℓ)

 and 𝑏𝑑
(ℓ)

 are the 

weight matrix and bias parameters, respectively，and the out-

put of the last layer is the reconstructed data 𝑋̃. The encoder and 

decoder networks are both fully connected neural networks us-

ing the RELU activation function. The weight and bias param-

eters are optimized using the following loss function:  

𝑳𝒓𝒆𝒔 =
1

𝑁
∑ ∑(𝑋𝑖𝑗 − 𝑋̃𝑖𝑗)

2
𝑑

𝑗=1

𝑁

𝑖=1

(4) 

2. KNN Graph 

The GCN graph was constructed by KNN, where the cell 
similarity is calculated by the dot product function as: 

𝑠𝑖𝑗 =  
𝑥𝑖 .𝑥𝑗

|𝑥𝑖||𝑥𝑗|
 (5)

where 𝑥𝑖 and 𝑥𝑗 are the embedded features for cells 𝑖 and 𝑗, the 

embedded features  𝑥𝑖 and 𝑥𝑗 obtained from the representation 

𝐻(𝐿) of pre-train DAE, and |𝑥𝑖|  𝑎𝑛𝑑 |𝑥𝑗| are the corresponding 
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Fig. 1. The framework of our proposed GraphSCC consisting of the Denoising Autoencoder (DAE), Graph Convolutional Network (GCN), and Dual Self-Super-

vised Module (DSM). The ⊕ is the residual connection block on the initial representation 𝑍(0). 

 

modules, respectively. According to the similarity matrix 𝑆 ∈
ℝ𝑁 ×𝑁, the most similar cells of every cell are selected as its 
neighbors to construct the adjacency matrix 𝐴 for GCN. For all 
datasets, the number of each cell's neighbors was at most 1% of 
the total number of cells with a maximum of 20. 

3. GCN Network 

We apply the GCN network to capture structural infor-
mation between cells that the DAE network has ignored. In-
spired by a recent study [39]. We alleviate the well-known 
over-smoothing phenomenon in GCN using the residual con-
nection [25]. Since the large feature dimension d of 𝑋, a lower-

dimensional 𝑍(0)  used as the initial representation of GCN, 
which is extracted from input feature 𝑋 using a fully-connected 
neural network as follows:  

𝑍(0) =  𝜙(𝑊𝑋 + 𝑏) (6) 

where 𝑍(0) ∈ ℝ𝑁 ×𝑚, as the initial representation of GCN, m is 
lower than d. W and b are weight matrix and bias parameters, 
respectively. 

Then, the representation 𝑍(𝑘+1)  learned by GCN can be ob-
tained by the following convolutional operation: 

𝑍(𝑘+1) =   𝜙 (((1 − 𝛼𝑘)𝐷̃−
1
2𝐴̃𝐷̃−

1
2𝑍(𝑘) + 𝛼𝑘𝑍(0)) ((1 − 𝛽𝑘)𝐼𝑁 + 𝛽𝑘𝑊(𝑘))) (7) 

where the hypermeter 𝛼𝑘 > 0 ensures each layer retaining the 

information from input layer 𝑍(0) and the hypermeter 𝛽𝑘 > 0  
ensures the decay of the weight matrix adaptively with stacked 

layers. 𝐴̃ = 𝐴 + 𝐼𝑁  with A as the adjacency matrix obtained 

from the KNN-graph and 𝐼𝑁 is the identity matrix.  𝐷̃ = ∑ 𝐴̃𝑗 𝑖𝑗
 

is the normalization term. The 𝜙 is the RELU activation func-

tion. We set 𝛽𝑘 =
0.5

𝑘
  and 𝛼𝑘 = 0.3 following the previous study 

[39]. 

The last layer in GCN module is connected using a 
𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function: 

𝑍 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊(𝐾)𝑍(𝐾) + 𝑏(𝐾)) (8) 

where the output Z∈ ℝ𝑁×𝑐 could be treated as the probability 

distribution, and c is the number of cell clusters. The result 

𝑧𝑖𝑗 ∈ 𝑍 means the probability cell 𝑖 belongs to cluster center 𝑗. 

4. Dual Self-supervised Module 

We designed the dual self-supervised module to help DAE 

and GCN learn low-dimensional representations for better cell 

clustering. Through the input of 𝐻(𝐿) from DAE, the cells are 

grouped into c clusters corresponding with c cluster centers 

𝑢𝑗  , 𝑗 =  1, . . . , 𝑐 through the K-means algorithm. With the help 

of an auxiliary target distribution, the clusters are refined itera-

tively until convergence by learning from high confidence as-

signments.  

Specifically, for the 𝑖-th single cell and the 𝑗-th cluster, the 

Student’s t-distribution [40] is applied as the kernel to compute 

the similarity between the cluster center vector 𝑢𝑗 and the data 

representation ℎ𝑖 as follows: 

𝑞𝑖𝑗 =  
(1 + || ℎ𝑖 − 𝑢𝑗  ||2 / 𝜐 )

−
𝜐+1

2

𝛴𝑗′(1 +  || ℎ𝑖 − 𝑢𝑗′  ||2 / 𝜐)
−

𝜐+1
2

  
 

  (9) 

where 𝜐 is the degree of freedom of the Student’s t-distribution 
(𝜐 set as 1 in this study), and 𝑞𝑖𝑗  can be regarded as the proba-

bility of  𝑖-th cell belonging to 𝑗-th cluster. Based on the calcu-
lated distribution 𝑄 = [𝑞𝑖𝑗  ], the target distribution 𝑃 = [𝑝𝑖𝑗  ] 
is computed by: 

𝑝𝑖𝑗   =  
𝑞𝑖𝑗 

2 / 𝑓𝑗

𝛴𝑗′  𝑞𝑖𝑗′
2  / 𝑓𝑗′

 (10) 
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The procedure of GraphSCC is also shown in Algorithm 1. 

Algorithm 1: Training process of GraphSCC 

 Input: Gene expression matrix: 𝑋, Adjacent matrix: 𝐴, Num-
ber of clusters: 𝐶, Maximum epochs: Mepochs;  

 Output: Clustering results 𝑅; 

1 Initialize centroid 𝑢 with k-means on the representations 
learned by pre-train DAE; 

2 for epoch in Mepochs do 

3 Generate DAE representations 𝐻(𝐿); 

4         Use  𝐻(𝐿) to compute the distribution 𝑄 via Eq. (9); 

5         Calculate target distribution 𝑃 via Eq. (10); 

6 Calculate the distribution 𝑍 via Eq. (8); 

7 Calculate 𝑳𝒓𝒆𝒔 , 𝑳𝒄𝒍𝒖 , 𝑳𝒈𝒄𝒏 ,  respectively;  

Calculate the total loss function via Eq. (13);  8 Calculate the loss function via Eq. (13) 

9 Back propagation and update parameters;  

10 end 

11 Calculate final clustering results 𝑅 based on distribution 𝑍; 

12 Return 𝑅; 

 

where 𝑓𝑗 = ∑ 𝑞𝑖𝑗𝑖  is soft frequency for cluster j. To better clus-

tering, the loss function could be defined to minimize the Kull-

back-Leibler (KL) divergence between two probability distri-

butions as: 

𝑳𝒄𝒍𝒖 = 𝐾𝐿 (𝑃 ||𝑄) = ∑ ∑ 𝑝𝑖𝑗 log
𝑝𝑖𝑗

𝑞𝑖𝑗
𝑗𝑖

  (11) 

By minimizing the loss 𝐿𝑐𝑙𝑢 between the distribution 𝑄 and 
𝑃, the target distribution 𝑃 helps the DAE module learn better 
low-dimensional representations for clustering cells. Since the 
target distribution 𝑃 is defined by 𝑄,  minimizing 𝐿𝑐𝑙𝑢  is a form 
of self-supervised learning mechanism.  

To combine the structural information between cell-to-cell, 
the target distribution 𝑃 was applied to supervise the updating 
of distribution 𝑍 as follows: 

𝑳𝒈𝒄𝒏 = 𝐾𝐿 (𝑃||𝑍) ∑ ∑ 𝑝𝑖𝑗 log
𝑝𝑖𝑗

𝑧𝑖𝑗
𝑗𝑖

 (12) 

By optimizing the distance between the target distribution 
𝑃 and soft assignments 𝑍, the GCN module's parameters will 
learn useful information from the DAE module. In this way, the 
GCN representations contain both the structural information 
and the characteristic information of data. Since the target dis-
tribution 𝑃 supervises the DAE and GCN modules simultane-
ously, we call it a dual self-supervised mechanism. 

Finally, the total loss function of GraphSCC is defined as: 

𝑳 = 𝑳𝒓𝒆𝒔 + 𝜃𝑳𝒄𝒍𝒖 + 𝜂𝑳𝒈𝒄𝒏 (13) 

where 𝜂 and 𝜃 are two hyper-parameters to balance contribu-
tions from structure information of scRNA-seq data and the 
clustering optimization. We set 𝜃 = 0.1 and 𝜂 = 0.01 for all 
the datasets. 

Since the GCN's representations contain structural infor-
mation and characteristic information, the distribution 𝑍 is used 
as the final clustering results. Thus, the label assigned to cell 
𝑖 is: 

𝑟𝑖 = arg max
𝑗

𝑧𝑖𝑗  (14) 

where 𝑧𝑖𝑗   is computed in Eq. (8) for cell 𝑖 in the 𝑗-cluster. 

 

C. Training and Evaluation 

1. Evaluation Metrics 

The clustering results are evaluated by three commonly 
used metrics, Clustering Accuracy (CA) [41], Normalized Mu-
tual Information (NMI) [42], and Adjusted Rand Index (ARI) 
[43]. The NMI is defined as: 

𝑁𝑀𝐼 =  

𝛴𝑝=1
𝐶𝑈 𝛴𝑞=1

𝐶𝑉  | 𝑈𝑝 ∩ 𝑉𝑞 log
𝑛| 𝑈𝑝 ∩ 𝑉𝑞| 
| 𝑈𝑝 ∩ 𝑉𝑞|

 

max (− ∑ |𝑈𝑝| log
|𝑈𝑝|

𝑛
𝐶𝑈
𝑝=1 , − ∑ |𝑉𝑞| log

|𝑉𝑞|
𝑛

)  
𝐶𝑉
𝑞=1

 (15)  

where 𝑈 and 𝑉 are the predicted and truth assignments of to-
tally n cells into 𝐶𝑉 and 𝐶𝑈 clusters, respectively. The numer-
ator is the mutual information between 𝑈 and 𝑉, and the de-
nominator is the entropy of the clustering 𝑈 and 𝑉. 

The CA is explained as the best match between the pre-
dicted cluster assignments and the truth assignments, calculated 
as: 

𝐶𝐴 = max
𝑚

∑ 1{𝑙𝑖 = 𝑚(𝑢𝑖)}𝑛
𝑖=1

𝑛
 (16) 

Where 𝑛 is the number of data points, and 𝑚 ranges over all 
probable one-to-one mapping between real label  𝑙𝑖  and cluster-
ing assignment 𝑢𝑖. 

The ARI is defined as:  

𝐴𝑅𝐼 =  
(𝑛

2
)(𝑎 + 𝑑) − [(𝑎 + 𝑏)(𝑎 + 𝑐) + (𝑐 + 𝑑)(𝑏 + 𝑑)]

(𝑛
2

) − [(𝑎 + 𝑏)(𝑎 + 𝑐) + (𝑐 + 𝑑)(𝑏 + 𝑑)]
 (17) 

where 𝑎 is the number of cell pairs belonging to the same  group 
in both 𝑈 and 𝑉,  𝑏 is the number of cell pairs belonging to dif-
ferent groups in V and the same group in U,   𝑐 is the number of 
cell pairs belonging to the same group in 𝑉 and different groups 
in 𝑈, and  𝑑 is the number of cell pairs belonging to different 
groups in 𝑈 and different groups in 𝑉.  

2. Implementation 

The GraphSCC model was implemented in python 3 using 
PyTorch. The dimensions of DAE is set to d-512-256-64-10, 
where d is the dimension of the input data, and 10 is the dimen-

sion of the bottleneck latent 𝐻(𝐿). DAE is first pre-trained for 
400 epochs by the optimizer Adam with the initial learning rate 
𝑙𝑟 = 0.0001 and the batch size of the pre-train equaling to 32. 
We used the "Randn" function in PyTorch to generate Gaussian 
noises. Note that, for simulated data, we reduce the noise value 
to 0.2 times its value. We set the layers of GCN as 5, and set 

the dimensions of the initial representation 𝑍(0) and the hidden 
layer of GCN as 256. The optimizer for the clustering stage is 
Adam with setting 𝑙𝑟 =  0.00001, and the clustering training 
epoch is 1000. The training stops until the proportions of cells 
to change clustering assignment (ca) are below a threshold tol 
in 300 consecutive steps. The ca is computed as 𝑐𝑎 =
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#|𝑌𝑐𝑢𝑟𝑟  ≠  𝑌𝑝𝑟𝑒𝑣|

𝑛
 ,  where n is the number of all cells,  𝑌𝑐𝑢𝑟𝑟  is the 

cluster identity gained by the maximum cluster assignment pos-
sibility in the current step, 𝑌𝑝𝑟𝑒𝑣  is the corresponding identity in 

the previous step, and #|𝑌𝑐𝑢𝑟𝑟  ≠ 𝑌𝑝𝑟𝑒𝑣| is the number of cells 

whose  𝑌𝑐𝑢𝑟𝑟  differ from  𝑌𝑝𝑟𝑒𝑣 . We set 𝑡𝑜𝑙 =  0.0001 by de-

fault. For all other competing methods, we use the default pa-
rameters provided in the original articles. All experiments were 
conducted on the Nvidia Tesla P100 (16G).  

3. Hyper-parameters tunning 

There are multiple hyperparameters in our model. Here, we 

tested essential hyperparameters and the scope of values as fol-

lows: 

1) DAE module: The larger bottleneck layer size of DAE 

may explain more variations. Thus, we tested {2, 5, 10, 20, 

32, 64} for the size of the middle layer and found 10 is the 

optimal value. The pre-training epochs may affect the 

clustering centroid initialized by K-means. We tested the 

following settings {50, 100, 200, 400, 600} and found 400 

epochs to be the optimal value. 

2) GCN module: The higher number of GCN layers means 

the deeper information aggregated from the node and edge 

features, while excessive layers may result in tremendous 

computing resources and vanishing gradients. Here, we 

tested the following settings {2, 3, 4, 5, 8, 16} and found 

5 layers to be the optimal value. 

3) Dual self-unsupervised module: The training epochs 

may affect the convergence of the model. Thus, we tested 

the training epochs range from epochs 400 to 1500 with a 

step of 100 and found 1000 epochs can achieve the best 

performance. 

III.  RESULTS 

A. Evaluation of GraphSCC  

To investigate the performance of GraphSCC in different scen-
eries, we employed R package Splatter to generate simulated 
scRNA-seq data with different values of the parameter sigma.  
A greater sigma value means more significant distances be-
tween cells from different cell clusters with lower clustering 
difficulty. As shown in Fig. 2, GraphSCC consistently outper-
formed the competing methods for NMI values. Though meth-
ods Seurat3.0 and IDEC can reach the same NMI value (~0.98) 
as GraphSCC at sigma of 0.4, Seurat3.0 and IDEC have a sharp 
drop to 0.25 and 0.37, respectively at sigma of 0.2. In contrast, 
GraphSCC is much flatter with an NMI value of 0.76 at a sigma 
of 0.2. Methods CIDR, scDeepCluster, and DCA performed 
badly at the sigma of 0.2 with an NMI value below 0.1, but they 
can achieve decent results at the sigma of 0.4 with NMI values 
of 0.72, 0.77, and 0.9, respectively. The SIMLR failed to ex-
plore clustering signals, which is consistent with the previous 
observation [19].  Similar trends could be observed for CA and 
ARI values (Figure S1). 

 

 

Fig. 2.  The average and mean square error values of NMI on 20 groups of 

simulated scRNA-seq data at different sigma values. A higher sigma value 

represents a stronger signal, corresponding to easier datasets. 

 

We further evaluated GraphSCC on real scRNA-seq da-
tasets with different species and tissues (Details in TABLE I). 
As shown in Fig. 3, GraphSCC had superior cell clustering re-
sults compared to other competing methods on all evaluation 
metrics. On average, GraphSCC achieved 0.798, 0.791, and 
0.744 for the CA, NMI, and ARI, respectively (Detail infor-
mation seen in Table S1-3). These are respectively 13.3%, 9%, 
and 19% higher than those achieved by the 2nd best method 
Seurat3.0.  Methods scDeepCluster and SIMLR achieved com-
parable NMI to Seurat3.0 and ranked the 4th and 5th. CIDR has 
an average NMI value of 0.64. IDEC obtained the lowest NMI 
value. These methods had generally similar ranks when meas-
ured by CA or ARI. The consistent superior results of 
GraphSCC over the simulated and real datasets demonstrated 
the robustness of our method.  

B. Illustration of the GraphSCC 

In this section, we visualized the clustering results on three 
datasets with different scale of cells. To illustrate the embedded 
representation effectiveness of GraphSCC, we employed t-
SNE[40]  to visualize embedded representation in the two-di-
mensional (2D) space. As shown in Fig. 4. On the Baron Mouse 
dataset, DCA, CIDR and scDeepCluster showed poor perfor-
mances. Seurat3.0 and SIMLR showed better separation, but 
the beta cells (colored blue) were separated into at least three 
groups and mixed with alpha cells. Compared to Seurat3.0, 
GraphSCC separated beta cells in one group and produced more 
compact clusters for all cell types. Alpha and gamma cells were 
mixed both in GraphSCC and Seurat3.0. Similar trends could 
be observed for other methods (Figure S2-3). 
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Fig. 3. The boxplots of CA, NMI and ARI values for each clustering method on 15 real datasets. 

On the Zeisel dataset, DCA, scDeepCluster, and CIDR 
showed poor performances in classification, which mixed a few 
clusters together. Seurat3.0, SIMLR, and GraphSCC separated 
most cell populations. In comparison, the cell clusters in 
GraphSCC and SIMLR have better intra-cluster compactness 
and inter-cluster separability than Seurat3.0, especially in the 
oligodendrocytes and ca1pyramidal cells. All methods failed in 
separating the ca1pyramidal and s1pyramidal cells. 

On the Baron Human dataset, DCA performed bad and only 
separated three groups. For SIMLR, CIDR, and scDeepCluster, 
at least seven compact clusters of cells were separated, but they 
were underclustering in the alpha cells (colored brown), where 
the cell types were separated into at least three groups. In con-
trast, Seurat3.0 and GraphSCC separated the most cell popula-
tions, while Seurat3.0 mixed a few beta and ductal cells with 
the alpha cells. All methods including GraphSCC separated the 
ductal cells into at least two groups. 

We further visualized the wrongly clustered cells by the 
Sankey river plots on the Baron Mouse dataset as shown in Fig. 
5, where GraphSCC achieved CA, NMI, and ARI values of 0.9, 
0.904, 0.935, respectively. For the beta cell type with the big-
gest portion (47%), GraphSCC can correctly assign 98% cells. 
In contrast, the second best method, Seurat3.0 can correctly as-
sign only 35% cells. Other methods make an accuracy of 34-
67% on the cell type. Two major sources of wrong assignments 
in GraphSCC are the separation of the ductal cells into two clus-
ters and merging of the gamma cells with another cluster. The 
separation of ductal cells was also seen in the SIMLR method, 
and the merging of the gamma cells was seen in the Seurat3.0. 
These similar mistakes may come from the difficulty to cluster 
these cell types. 
 

 

Fig. 4. Comparison of the embedded representations of each method in 2D space using the visualize method t-SNE with each point representing a cell and colors 

for the true cell labels. 
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(a) GraphSCC (b) Seurat3.0 (c) SIMLR 

Fig. 5.  A Sankey river plot shows the match between clustering results and the actual labels on the Baron Mouse for three methods. 

 

 

Figure 6.  Line plots show that the proportion of real marker genes in top10 

genes predicted by GraphSCC and true cell clusters.  And the proportion of 

the sum of each cell's marker genes (obtained from the PanglaoDB database) 
in the whole genes. 

 

C. Selecting Marker Genes and Functional Analysis  

In this section, we selected the most differentially expressed 
genes for each cluster grouped by GraphSCC as the maker 
genes and examined if they are restricted to specific cell-type 
by public databases of cell-type markers. We selected Pangla-
oDB database[44]  as the public dataset, which provides differ-
ent marker genes for the same population. For example, Pangla-
oDB database provides 110 markers for B cells. Besides, we 
conducted an enrichment (GSE) analysis based on the selected 
marker gene set by GraphSCC.  

As recommended in [45], we identify differentially expressed 
genes of each cluster relative to all other clusters using the 
FindAllMarkers function implemented in Seurat 3.0. Con-
cretely, we selected sets of top 10 differentially expressed (DE) 
cluster-specific genes for each cluster. After we get the cluster-
specific genes, we examined whether they are the marker genes 
by searching in PanglaoDB database (we only confirmed the 
cell types found in PanglaoDB database). As seen in Figure 6. , 
the orange line showed the proportion of the marker genes in 
the predicted top 10 cluster-specific genes that can be verified 
in PanglaoDB database.  The results showed that an average of 
46% of predicted cluster-specific genes could be found in the 
PanglaoDB database, which was higher than the proportion of 
the total marker genes in whole genes. We also used the above 
approach to selected the top 10 cluster-specific genes based on 
the gold clusters (clusters consist of true cell type) shown in the 
green line.  We can see, the number of marker genes we pre-
dicted is near to gold clusters, which indicates the accuracy of 
our clusters is high. Similar results were achieved for the top 5 
and 20 cluster-specific genes predicted by GraphSCC (detailed 
information in Figure S4).  Moreover, the detailed cluster-spe-
cific genes for each cell type were listed in the supplement 
top_marker_genes.xls. For cell types that can’t find in Pangla-
oDB database, our predicted genes for each cell type can be 
used as marker genes for further research.  On the other hand, 
we performed functional analysis on the dataset Zeisel.  As 
shown in Fig 7. (A), we selected the top 5 most differentially 
genes for each cell and found that the selected genes were 
highly differentially expressed in GraphSCC predicted cell type. 
Then,  we performed biological pathway enrichment analysis 
based on the differentially expressed genes via the Com-
pareCluster function implemented in clusterProfiler [46] R 
package along with default parameters. As shown in Fig 7. (B), 
each predicted cell type had its highly enriched pathway.  For 
example,  The literature [47] findings suggested that astrocytes 
in vitro may initially deploy cell-type-specific pat-terns of 
mRNA regulatory responses to glucocorticoids and subse-
quently activate additional cell type-independent responses.  
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(A)                                                                                                 (B) 

Fig 7.  Zeisel dataset analysis based on GraphSCC. (A)  Heatmap of DEGs (logFC>0.25) in each cell cluster. (B) enrichment pathways in each cell type 
using the top 5 differentially expressed genes.  

 

D. Contribution of Components to the Clustering  

In this section, we investigated the contributions of compo-
nents for the clustering performance of GraphSCC by conduct-
ing ablation studies on real datasets. As shown in TABLE II, 
the removal of the GCN module caused generally the largest 
drop in the performance with 7.8%, 4.8%, and 10.5% decreases 
in CA, NMI, and ARI, respectively. The changes indicate the 
importance of catching structural relations between cells. The 
removal of the residual connection (GraphSCC-Res) caused the 
2nd biggest decreases in CA and NMI, while the biggest de-
crease in ARI.  The residual connection is a good way to reduce 
the drawback of GCN to produce similar representations be-
tween nodes (cells), as indicated in the previous study [39]. The 
residual connection and more depth layers of GCN helped 
GraphSCC achieve better performance (Figure S5). We also 
clustered the cells based on learned distributions Q and P (de-
noted as GraphSCC (Q) and GraphSCC (P)), and they both 
cause a decrease in performances relative to GraphSCC that is 
based on distribution Z. In summary, the cooperation of the 
modules enables a better clustering of the scRNA-seq data. 

TABLE II.  ABLATION RESULTS ON REAL DATASETS 

Ablation tests CA NMI ARI 

GraphSCC-GCN 0.72 0.743 0.639 

GraphSCC-Res 0.768 0.736 0.672 

GraphSCC (Q) 0.767 0.774 0.70 

GraphSCC (P) 0.772 0.777 0.707 

GraphSCC 0.798 0.791 0.744 

 

IV. DISCUSSION AND CONCLUSION 

This paper presents a structural deep clustering model 
GraphSCC consisting of GCN, DAE, and DSM modules. 
GraphSCC can effectively capture the relations between cells 
and the characteristics of data by learning representations using 
the GCN and DAE modules, respectively. Furthermore, DSM 
was applied to cluster cells based on representations by itera-
tively optimizing the clustering objective function in an unsu-
pervised manner.  We have demonstrated that the clustering 
performance of GraphSCC outperformed the competing meth-
ods on both simulated and real datasets. Furthermore, 
GraphSCC provided representations for better intra-cluster 
compactness and inter-cluster separability in the 2D visualiza-
tion. 

scRNA-seq is a revolutionary tool in biomedical research. 
Recently, many studies had been conducted based on scRNA-
seq technique.  However, before we fully reap the benefit of 
scRNA-seq, many challenges must be overcome. Clustering 
cells into biologically meaningful groups is the critical step in 
scRNA-seq analyses. Through comprehensive evaluations with 
competing methods on real and simulated datasets, we have 
shown that GraphSCC offers stable clustering results based on 
scRNA-seq data. We believe that GrahpSCC will be a valuable 
tool for catching cellular heterogeneity. In the future, for better 
modeling the distribution of scRNA-seq data, we will integrate 
an imputation mechanism into GraphSCC.  We will also apply 
graph transformer models and attention mechanisms to make 
scRNA-seq analyses more explainable. 
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