
Graph Convolutional Network-based Method for Clustering

Single-cell RNA-seq Data

Yuansong Zeng1, Jinxing Lin2, Xiang Zhou1, Yutong Lu1*, Yuedong Yang1,3*
1School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510000, China

2School of Systems Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
3Key Laboratory of Machine Intelligence and Advanced Computing (Sun Yat-sen University), Ministry of Education, China

*yangyd25@mail.sysu.edu.cn; yutong.lu@nscc-gz.cn

Abstract—Single-cell RNA sequencing (scRNA-seq) technolo-

gies promise to characterize the transcriptome of genes at cellular

resolution, which shed light on unfolding cell heterogeneity and

diversity. Fast-growing scRNA-seq profiles require efficient clus-

tering algorithms to identify the same type of cells. Although many

methods have been developed for cell clustering, existing cluster-

ing methods are limited to extract the representations from ex-

pression data of individual cells, while ignoring the high-order

structural relations between cells. Here, we proposed GraphSCC,

a robust graph artificial intelligence model to cluster single cells

by accounting for structural relations between cells. The represen-

tation learned from the graph convolutional network, together

with another representation output from a denoising autoencoder

network, are optimized by a dual self-supervised module for better

cell clustering. The experimental results indicate that GraphSCC

model outperforms state-of-the-art methods in terms of various

evaluation metrics on both simulated and real datasets. Further

visualizations show that GraphSCC provides representations for

better intra-cluster compactness and inter-cluster separability.

Keywords—Single-cell RNA-seq Clustering, Graph Convolu-

tional Network, Denoising Autoencoder, Self-supervised Learning.

I. INTRODUCTION

Single-cell analysis is a valuable tool for discovering cellu-
lar heterogeneity in complex tissues and diseases[1, 2]. Cluster-
ing is an essential step in single-cell analysis, since each cell
cluster represents a distinct cell state or type in transcriptome
space. Despite the significant improvements in measuring
scRNA-seq technologies and advances of many clustering
methods, it remains challenging for clustering cells based on
scRNA-seq data [3]. Concretely, scRNA-seq data often con-
tains dropout events and substantial noise due to biological and
experimentally technical factors, such as amplification bias, the
low RNA capture rate [4], and cell cycle effects [5]. A dropout
event is defined as missed gene measurements, resulting in a
‘false’ zero count observation [6]. Thus, solving the dropout
events and substantial noises is important for improving clus-
tering analyses.

Several imputation methods have been developed for solv-
ing the dropout events of scRNA-seq data. Early methods are
often based on statistical models, e.g., CIDR [7], scImpute [8],
MAGIC [9], and SAVER [10]. Due to deep learning techniques
achieving state-of-art results in many areas, several researchers
developed neural-network-based imputation methods. For ex-
ample, DCA [6] reconstructs the scRNA-seq data through the
autoencoder optimized by a loss function of the zero-inflated
negative binomial (ZINB) [11]. DeepImpute uses highly corre-
lated genes and sufficient reads coverage to recovery missing
values[12]. GraphSCI employed graphical neural network to
capture the relations between genes for accurate imputations
[13]. Although the imputed scRNA-seq data help improve the

clustering results, the results remain unsatisfactory. These im-
putation methods are not optimized for cell clustering, and the
imputed data by imputation methods may produce false-posi-
tive gene-gene correlations.[14].

 Recently, a few clustering methods have been specifically
designed for scRNA-seq data. For example, the spectral clus-
tering method SIMLR learns a robust distance metric to fit the
structure of scRNA-seq data[15]. Seurat3.0 applies the Louvain
algorithm [16] to cluster cells depended on the low-dimensional
scRNA-seq data [17]. DendroSplit through feature selection in
scRNA-seq data to uncover multiple levels of biologically
meaningful cell populations [18]. ScDeepCluster is a deep
learning embedded clustering method, which accounts for the
overdispersion and sparsity of the scRNA-seq when clustering
[19]. There are a few tools had been developed for dividing sin-
gle cells into hierarchies or groups, such as SC3[20],
RaceID[21], SNN-Cliq[22], BISCUIT[23], and pcaReduce[24].
However, most of these methods rely on only the data of indi-
vidual cells without explicitly considering structural relations
between cells.

The Graph Convolutional Networks (GCN) can efficiently
capture structural information[25]. In recent years, GCN and its
variants [26, 27] have been successfully applied to a wide range
of applications, including protein prediction [28], traffic predic-
tion [29] and drug design[30]. Xie et al. developed a deep em-
bedding method for clustering analysis (DEC)[31] by unsuper-
vised manner, which uses an auxiliary target distribution to it-
eratively refines clusters by learning highly confident assign-
ments. DEC and its variant IDEC[32] have been successfully
used in molecular biology[19, 33]. Recently, Bo et al. devel-
oped a Structural Deep Clustering Network (SDCN) for inte-
grating structural information between objects[34]. Theoreti-
cally, they have proved that the inclusion of GCN enables a
high-order regularization constraint to learn better representa-
tions that help improve the clustering results, and SDCN out-
performed other methods in many types of datasets.

Inspired by these works, we present a robust graph-based
artificial intelligence model, GraphSCC, to integrate structural
information in the clustering of scRNA-seq data. Meanwhile,
we employed a denoising autoencoder network to obtain low
dimensional representations for capturing local structural. A
dual self-supervised module was then employed to optimize the
representations and the clustering objective function iteratively
in an unsupervised manner. The results show that the
GraphSCC outperforms state-of-the-art methods on both real
datasets and simulated. Furthermore, GraphSCC provides rep-
resentations for better intra-cluster compactness and inter-clus-
ter separability in the 2D visualization.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 4, 2021. ; https://doi.org/10.1101/2020.09.02.278804doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.02.278804

The advantages of GCN is its native learnable properties of
aggregating and propagating attributes to obtain relations over
the whole cell-cell graph. Thus, the learned graph representa-

tions can be treated as high-order representations between cells.

The superior performance of GraphSCC in cell cluster predic-
tion benefits from (i) we synergistically determine cell clusters
based on the integration of high-order topological relations be-
tween cells and characteristics of individual cells, and (ii) we
apply the dual self-supervised module to iteratively refine clus-
ters by learning from highly confident assignments using an
auxiliary target distribution.

TABLE I. THE LIST OF DTATSETS USED IN THIS STUDY.

Datasets GSE/ID #Cells #Genes #Cell types

Baron Human GSE84133 8569 20125 14

Baron Mouse GSE84133 1886 14878 13

Darmanis GSE67835 466 22088 9

Deng GSE45719 268 22431 6

Goolam E-MTAB-3321 124 41427 5

Klein GSE65525 2717 24175 4

Li GSE81861 561 55186 9

Romanov GSE74672 2881 24341 7

Segerstolpe E-MTAB-5061 3514 25525 15

Zeisel GSE60361 3005 19972 9

Biase GSE57249 56 25733 4

Tasic GSE71585 1679 24150 18

Treutlein GSE52583 80 23271 5

Xin GSE81608 1600 39851 8

Yan GSE36552 90 20214 6

II. MATERIALS AND METHODS

A. Datasets and Preprocessing

Simulated Data：We applied a generally used R package Splat-

ter to generate simulated scRNA-seq count data [35]. For all
simulated data, we set 2000 cells composed of 2000 genes with
four groups of the same numbers, i.e., 500 cells per group. Fol-
lowing the previous study[19], we set 𝑑𝑟𝑜𝑝𝑜𝑢𝑡. 𝑚𝑖𝑑 = 2 ,
𝑑𝑟𝑜𝑝𝑜𝑢𝑡. 𝑠ℎ𝑎𝑝𝑒 = −1(fixed dropout rates at 45%), and used
default values for other parameters. To simulate various clus-
tering signal strengths, we generated datasets with different
de.fracScale in {0.2, 0.225, 0.25, 0.275, 0.3,0.325,0.35,0.4} .
The de.fracScale is the parameter sigma of a log-normal distri-
bution to control multiplicative differential expression factors.
To avoid random fluctuations, we repeatedly generated 20 da-
tasets for each setting with different random seeds, and reported
the average results.

Real Data： We downloaded 15 datasets of human and mouse

scRNA-seq involved in various tissues and different biological

processes as used in the previous study[36] from the Hemberg

group (https://hemberg-lab.github.io/scRNA.seq.datasets/).

The datasets contain different scales of cells from dozens to

thousands derived from various single-cell RNA-seq tech-

niques. The detail information of datasets was listed in TABLE

I. The data type of top 10 datasets is raw read counts, and the

last 5 datasets are normalized counts.

Preprocessing：We normalized simulated scRNA-seq counts

using the transcripts per million (TPM) method [37] and then
scaled the value of each gene to [0, 1]. For real datasets, we
followed Seurat3.0's procedure to normalize and select the top
2000 highly variable genes for scRNA-seq data and then scale
each gene's value to [0,1]. Note that for real datasets normalized
by FPKM, we first converted them to TPM by Eq. (1) as pro-
posed by [38], and then preprocess the data as above.

𝑇𝑃𝑀𝑖 = (
𝐹𝑃𝐾𝑀𝑖

∑ 𝐹𝑃𝐾𝑀𝑗𝑗

) × 106 (1)

B. GraphSCC Architecture

GraphSCC network consists of three components as shown
in Fig. 1: Denoising Autoencoder (DAE), Graph Convolutional
Network (GCN), and Dual Self-supervised Module (DSM).
DAE network learns robust low-dimensional representations
that could reconstruct the inputs. GCN optimized the represen-
tations with constraints from structural information between
cells. DSM applied to cluster the cells according to the learned
representations by DAE and GCN.

1. DAE Networks

The gene expression is represented by the matrix 𝑋 ∈ ℝ𝑁 ×𝑑,
where N is the number of single-cell and d is the dimension of
expressed genes. DAE encodes gene expression matrix to
fixed-size vector representations for reserving local structure.
DAE is a variant version of autoencoder that is input with cor-
rupted data and outputs the fit data. Concretely, at encoding

layer ℓ the output 𝐻(ℓ) is computed as:

𝐻(ℓ) = ∅(𝑊𝑒
(ℓ)

𝐻(ℓ−1) + 𝑏𝑒
(ℓ)

) (2)

where ∅ is the activation function, 𝑊𝑒
(ℓ)

 and 𝑏𝑒
(ℓ)

 are the weight

matrix and bias parameters, respectively. 𝐻(0) = 𝑋 + 𝜖, and 𝜖

is the Gaussian noise. The decoded layers are caculated as:

𝐻(ℓ) = ∅(𝑊𝑑
(ℓ)

𝐻(ℓ−1) + 𝑏𝑑
(ℓ)

) (3)

where ∅ is the activation function, 𝑊𝑑
(ℓ)

 and 𝑏𝑑
(ℓ)

 are the

weight matrix and bias parameters, respectively，and the out-

put of the last layer is the reconstructed data 𝑋̃. The encoder and

decoder networks are both fully connected neural networks us-

ing the RELU activation function. The weight and bias param-

eters are optimized using the following loss function:

𝑳𝒓𝒆𝒔 =
1

𝑁
∑ ∑(𝑋𝑖𝑗 − 𝑋̃𝑖𝑗)

2
𝑑

𝑗=1

𝑁

𝑖=1

(4)

2. KNN Graph

The GCN graph was constructed by KNN, where the cell
similarity is calculated by the dot product function as:

𝑠𝑖𝑗 =
𝑥𝑖 .𝑥𝑗

|𝑥𝑖||𝑥𝑗|
 (5)

where 𝑥𝑖 and 𝑥𝑗 are the embedded features for cells 𝑖 and 𝑗, the

embedded features 𝑥𝑖 and 𝑥𝑗 obtained from the representation

𝐻(𝐿) of pre-train DAE, and |𝑥𝑖| 𝑎𝑛𝑑 |𝑥𝑗| are the corresponding

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 4, 2021. ; https://doi.org/10.1101/2020.09.02.278804doi: bioRxiv preprint

https://hemberg-lab.github.io/scRNA.seq.datasets/
https://doi.org/10.1101/2020.09.02.278804

Q

...

genes
...

...

Noise

Z
(1)

Z
(2)

Z
(K) Z

H
(1)

H
(2)

H
(L)

H
(L)

Lclu = KL(P||Q)

Lgcn = KL(P||Z)

Dual Self-Supervised Module

Graph Convolutional Network

Denoising Autoencoder

ce
lls

X

genesce
lls

X

FC

Z
(0)

FC

Residual connection

P

21
||X ||2

i 1
  



N
L Xres N

Fig. 1. The framework of our proposed GraphSCC consisting of the Denoising Autoencoder (DAE), Graph Convolutional Network (GCN), and Dual Self-Super-

vised Module (DSM). The ⊕ is the residual connection block on the initial representation 𝑍(0).

modules, respectively. According to the similarity matrix 𝑆 ∈
ℝ𝑁 ×𝑁, the most similar cells of every cell are selected as its
neighbors to construct the adjacency matrix 𝐴 for GCN. For all
datasets, the number of each cell's neighbors was at most 1% of
the total number of cells with a maximum of 20.

3. GCN Network

We apply the GCN network to capture structural infor-
mation between cells that the DAE network has ignored. In-
spired by a recent study [39]. We alleviate the well-known
over-smoothing phenomenon in GCN using the residual con-
nection [25]. Since the large feature dimension d of 𝑋, a lower-

dimensional 𝑍(0) used as the initial representation of GCN,
which is extracted from input feature 𝑋 using a fully-connected
neural network as follows:

𝑍(0) = 𝜙(𝑊𝑋 + 𝑏) (6)

where 𝑍(0) ∈ ℝ𝑁 ×𝑚, as the initial representation of GCN, m is
lower than d. W and b are weight matrix and bias parameters,
respectively.

Then, the representation 𝑍(𝑘+1) learned by GCN can be ob-
tained by the following convolutional operation:

𝑍(𝑘+1) = 𝜙 (((1 − 𝛼𝑘)𝐷̃−
1
2𝐴̃𝐷̃−

1
2𝑍(𝑘) + 𝛼𝑘𝑍(0)) ((1 − 𝛽𝑘)𝐼𝑁 + 𝛽𝑘𝑊(𝑘))) (7)

where the hypermeter 𝛼𝑘 > 0 ensures each layer retaining the

information from input layer 𝑍(0) and the hypermeter 𝛽𝑘 > 0
ensures the decay of the weight matrix adaptively with stacked

layers. 𝐴̃ = 𝐴 + 𝐼𝑁 with A as the adjacency matrix obtained

from the KNN-graph and 𝐼𝑁 is the identity matrix. 𝐷̃ = ∑ 𝐴̃𝑗 𝑖𝑗

is the normalization term. The 𝜙 is the RELU activation func-

tion. We set 𝛽𝑘 =
0.5

𝑘
 and 𝛼𝑘 = 0.3 following the previous study

[39].

The last layer in GCN module is connected using a
𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function:

𝑍 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊(𝐾)𝑍(𝐾) + 𝑏(𝐾)) (8)

where the output Z∈ ℝ𝑁×𝑐 could be treated as the probability

distribution, and c is the number of cell clusters. The result

𝑧𝑖𝑗 ∈ 𝑍 means the probability cell 𝑖 belongs to cluster center 𝑗.

4. Dual Self-supervised Module

We designed the dual self-supervised module to help DAE

and GCN learn low-dimensional representations for better cell

clustering. Through the input of 𝐻(𝐿) from DAE, the cells are

grouped into c clusters corresponding with c cluster centers

𝑢𝑗 , 𝑗 = 1, . . . , 𝑐 through the K-means algorithm. With the help

of an auxiliary target distribution, the clusters are refined itera-

tively until convergence by learning from high confidence as-

signments.

Specifically, for the 𝑖-th single cell and the 𝑗-th cluster, the

Student’s t-distribution [40] is applied as the kernel to compute

the similarity between the cluster center vector 𝑢𝑗 and the data

representation ℎ𝑖 as follows:

𝑞𝑖𝑗 =
(1 + || ℎ𝑖 − 𝑢𝑗 ||2 / 𝜐)

−
𝜐+1

2

𝛴𝑗′(1 + || ℎ𝑖 − 𝑢𝑗′ ||2 / 𝜐)
−

𝜐+1
2

 (9)

where 𝜐 is the degree of freedom of the Student’s t-distribution
(𝜐 set as 1 in this study), and 𝑞𝑖𝑗 can be regarded as the proba-

bility of 𝑖-th cell belonging to 𝑗-th cluster. Based on the calcu-
lated distribution 𝑄 = [𝑞𝑖𝑗], the target distribution 𝑃 = [𝑝𝑖𝑗]
is computed by:

𝑝𝑖𝑗 =
𝑞𝑖𝑗

2 / 𝑓𝑗

𝛴𝑗′ 𝑞𝑖𝑗′
2 / 𝑓𝑗′

 (10)

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 4, 2021. ; https://doi.org/10.1101/2020.09.02.278804doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.02.278804

The procedure of GraphSCC is also shown in Algorithm 1.

Algorithm 1: Training process of GraphSCC

 Input: Gene expression matrix: 𝑋, Adjacent matrix: 𝐴, Num-
ber of clusters: 𝐶, Maximum epochs: Mepochs;

 Output: Clustering results 𝑅;

1 Initialize centroid 𝑢 with k-means on the representations
learned by pre-train DAE;

2 for epoch in Mepochs do

3 Generate DAE representations 𝐻(𝐿);

4 Use 𝐻(𝐿) to compute the distribution 𝑄 via Eq. (9);

5 Calculate target distribution 𝑃 via Eq. (10);

6 Calculate the distribution 𝑍 via Eq. (8);

7 Calculate 𝑳𝒓𝒆𝒔 , 𝑳𝒄𝒍𝒖 , 𝑳𝒈𝒄𝒏 , respectively;

Calculate the total loss function via Eq. (13); 8 Calculate the loss function via Eq. (13)

9 Back propagation and update parameters;

10 end

11 Calculate final clustering results 𝑅 based on distribution 𝑍;

12 Return 𝑅;

where 𝑓𝑗 = ∑ 𝑞𝑖𝑗𝑖 is soft frequency for cluster j. To better clus-

tering, the loss function could be defined to minimize the Kull-

back-Leibler (KL) divergence between two probability distri-

butions as:

𝑳𝒄𝒍𝒖 = 𝐾𝐿 (𝑃 ||𝑄) = ∑ ∑ 𝑝𝑖𝑗 log
𝑝𝑖𝑗

𝑞𝑖𝑗
𝑗𝑖

 (11)

By minimizing the loss 𝐿𝑐𝑙𝑢 between the distribution 𝑄 and
𝑃, the target distribution 𝑃 helps the DAE module learn better
low-dimensional representations for clustering cells. Since the
target distribution 𝑃 is defined by 𝑄, minimizing 𝐿𝑐𝑙𝑢 is a form
of self-supervised learning mechanism.

To combine the structural information between cell-to-cell,
the target distribution 𝑃 was applied to supervise the updating
of distribution 𝑍 as follows:

𝑳𝒈𝒄𝒏 = 𝐾𝐿 (𝑃||𝑍) ∑ ∑ 𝑝𝑖𝑗 log
𝑝𝑖𝑗

𝑧𝑖𝑗
𝑗𝑖

 (12)

By optimizing the distance between the target distribution
𝑃 and soft assignments 𝑍, the GCN module's parameters will
learn useful information from the DAE module. In this way, the
GCN representations contain both the structural information
and the characteristic information of data. Since the target dis-
tribution 𝑃 supervises the DAE and GCN modules simultane-
ously, we call it a dual self-supervised mechanism.

Finally, the total loss function of GraphSCC is defined as:

𝑳 = 𝑳𝒓𝒆𝒔 + 𝜃𝑳𝒄𝒍𝒖 + 𝜂𝑳𝒈𝒄𝒏 (13)

where 𝜂 and 𝜃 are two hyper-parameters to balance contribu-
tions from structure information of scRNA-seq data and the
clustering optimization. We set 𝜃 = 0.1 and 𝜂 = 0.01 for all
the datasets.

Since the GCN's representations contain structural infor-
mation and characteristic information, the distribution 𝑍 is used
as the final clustering results. Thus, the label assigned to cell
𝑖 is:

𝑟𝑖 = arg max
𝑗

𝑧𝑖𝑗 (14)

where 𝑧𝑖𝑗 is computed in Eq. (8) for cell 𝑖 in the 𝑗-cluster.

C. Training and Evaluation

1. Evaluation Metrics

The clustering results are evaluated by three commonly
used metrics, Clustering Accuracy (CA) [41], Normalized Mu-
tual Information (NMI) [42], and Adjusted Rand Index (ARI)
[43]. The NMI is defined as:

𝑁𝑀𝐼 =

𝛴𝑝=1
𝐶𝑈 𝛴𝑞=1

𝐶𝑉 | 𝑈𝑝 ∩ 𝑉𝑞 log
𝑛| 𝑈𝑝 ∩ 𝑉𝑞|
| 𝑈𝑝 ∩ 𝑉𝑞|

max (− ∑ |𝑈𝑝| log
|𝑈𝑝|

𝑛
𝐶𝑈
𝑝=1 , − ∑ |𝑉𝑞| log

|𝑉𝑞|
𝑛

)
𝐶𝑉
𝑞=1

 (15)

where 𝑈 and 𝑉 are the predicted and truth assignments of to-
tally n cells into 𝐶𝑉 and 𝐶𝑈 clusters, respectively. The numer-
ator is the mutual information between 𝑈 and 𝑉, and the de-
nominator is the entropy of the clustering 𝑈 and 𝑉.

The CA is explained as the best match between the pre-
dicted cluster assignments and the truth assignments, calculated
as:

𝐶𝐴 = max
𝑚

∑ 1{𝑙𝑖 = 𝑚(𝑢𝑖)}𝑛
𝑖=1

𝑛
 (16)

Where 𝑛 is the number of data points, and 𝑚 ranges over all
probable one-to-one mapping between real label 𝑙𝑖 and cluster-
ing assignment 𝑢𝑖.

The ARI is defined as:

𝐴𝑅𝐼 =
(𝑛

2
)(𝑎 + 𝑑) − [(𝑎 + 𝑏)(𝑎 + 𝑐) + (𝑐 + 𝑑)(𝑏 + 𝑑)]

(𝑛
2

) − [(𝑎 + 𝑏)(𝑎 + 𝑐) + (𝑐 + 𝑑)(𝑏 + 𝑑)]
 (17)

where 𝑎 is the number of cell pairs belonging to the same group
in both 𝑈 and 𝑉, 𝑏 is the number of cell pairs belonging to dif-
ferent groups in V and the same group in U, 𝑐 is the number of
cell pairs belonging to the same group in 𝑉 and different groups
in 𝑈, and 𝑑 is the number of cell pairs belonging to different
groups in 𝑈 and different groups in 𝑉.

2. Implementation

The GraphSCC model was implemented in python 3 using
PyTorch. The dimensions of DAE is set to d-512-256-64-10,
where d is the dimension of the input data, and 10 is the dimen-

sion of the bottleneck latent 𝐻(𝐿). DAE is first pre-trained for
400 epochs by the optimizer Adam with the initial learning rate
𝑙𝑟 = 0.0001 and the batch size of the pre-train equaling to 32.
We used the "Randn" function in PyTorch to generate Gaussian
noises. Note that, for simulated data, we reduce the noise value
to 0.2 times its value. We set the layers of GCN as 5, and set

the dimensions of the initial representation 𝑍(0) and the hidden
layer of GCN as 256. The optimizer for the clustering stage is
Adam with setting 𝑙𝑟 = 0.00001, and the clustering training
epoch is 1000. The training stops until the proportions of cells
to change clustering assignment (ca) are below a threshold tol
in 300 consecutive steps. The ca is computed as 𝑐𝑎 =

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 4, 2021. ; https://doi.org/10.1101/2020.09.02.278804doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.02.278804

#|𝑌𝑐𝑢𝑟𝑟 ≠ 𝑌𝑝𝑟𝑒𝑣|

𝑛
 , where n is the number of all cells, 𝑌𝑐𝑢𝑟𝑟 is the

cluster identity gained by the maximum cluster assignment pos-
sibility in the current step, 𝑌𝑝𝑟𝑒𝑣 is the corresponding identity in

the previous step, and #|𝑌𝑐𝑢𝑟𝑟 ≠ 𝑌𝑝𝑟𝑒𝑣| is the number of cells

whose 𝑌𝑐𝑢𝑟𝑟 differ from 𝑌𝑝𝑟𝑒𝑣 . We set 𝑡𝑜𝑙 = 0.0001 by de-

fault. For all other competing methods, we use the default pa-
rameters provided in the original articles. All experiments were
conducted on the Nvidia Tesla P100 (16G).

3. Hyper-parameters tunning

There are multiple hyperparameters in our model. Here, we

tested essential hyperparameters and the scope of values as fol-

lows:

1) DAE module: The larger bottleneck layer size of DAE

may explain more variations. Thus, we tested {2, 5, 10, 20,

32, 64} for the size of the middle layer and found 10 is the

optimal value. The pre-training epochs may affect the

clustering centroid initialized by K-means. We tested the

following settings {50, 100, 200, 400, 600} and found 400

epochs to be the optimal value.

2) GCN module: The higher number of GCN layers means

the deeper information aggregated from the node and edge

features, while excessive layers may result in tremendous

computing resources and vanishing gradients. Here, we

tested the following settings {2, 3, 4, 5, 8, 16} and found

5 layers to be the optimal value.

3) Dual self-unsupervised module: The training epochs

may affect the convergence of the model. Thus, we tested

the training epochs range from epochs 400 to 1500 with a

step of 100 and found 1000 epochs can achieve the best

performance.

III. RESULTS

A. Evaluation of GraphSCC

To investigate the performance of GraphSCC in different scen-
eries, we employed R package Splatter to generate simulated
scRNA-seq data with different values of the parameter sigma.
A greater sigma value means more significant distances be-
tween cells from different cell clusters with lower clustering
difficulty. As shown in Fig. 2, GraphSCC consistently outper-
formed the competing methods for NMI values. Though meth-
ods Seurat3.0 and IDEC can reach the same NMI value (~0.98)
as GraphSCC at sigma of 0.4, Seurat3.0 and IDEC have a sharp
drop to 0.25 and 0.37, respectively at sigma of 0.2. In contrast,
GraphSCC is much flatter with an NMI value of 0.76 at a sigma
of 0.2. Methods CIDR, scDeepCluster, and DCA performed
badly at the sigma of 0.2 with an NMI value below 0.1, but they
can achieve decent results at the sigma of 0.4 with NMI values
of 0.72, 0.77, and 0.9, respectively. The SIMLR failed to ex-
plore clustering signals, which is consistent with the previous
observation [19]. Similar trends could be observed for CA and
ARI values (Figure S1).

Fig. 2. The average and mean square error values of NMI on 20 groups of

simulated scRNA-seq data at different sigma values. A higher sigma value

represents a stronger signal, corresponding to easier datasets.

We further evaluated GraphSCC on real scRNA-seq da-
tasets with different species and tissues (Details in TABLE I).
As shown in Fig. 3, GraphSCC had superior cell clustering re-
sults compared to other competing methods on all evaluation
metrics. On average, GraphSCC achieved 0.798, 0.791, and
0.744 for the CA, NMI, and ARI, respectively (Detail infor-
mation seen in Table S1-3). These are respectively 13.3%, 9%,
and 19% higher than those achieved by the 2nd best method
Seurat3.0. Methods scDeepCluster and SIMLR achieved com-
parable NMI to Seurat3.0 and ranked the 4th and 5th. CIDR has
an average NMI value of 0.64. IDEC obtained the lowest NMI
value. These methods had generally similar ranks when meas-
ured by CA or ARI. The consistent superior results of
GraphSCC over the simulated and real datasets demonstrated
the robustness of our method.

B. Illustration of the GraphSCC

In this section, we visualized the clustering results on three
datasets with different scale of cells. To illustrate the embedded
representation effectiveness of GraphSCC, we employed t-
SNE[40] to visualize embedded representation in the two-di-
mensional (2D) space. As shown in Fig. 4. On the Baron Mouse
dataset, DCA, CIDR and scDeepCluster showed poor perfor-
mances. Seurat3.0 and SIMLR showed better separation, but
the beta cells (colored blue) were separated into at least three
groups and mixed with alpha cells. Compared to Seurat3.0,
GraphSCC separated beta cells in one group and produced more
compact clusters for all cell types. Alpha and gamma cells were
mixed both in GraphSCC and Seurat3.0. Similar trends could
be observed for other methods (Figure S2-3).

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 4, 2021. ; https://doi.org/10.1101/2020.09.02.278804doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.02.278804

Fig. 3. The boxplots of CA, NMI and ARI values for each clustering method on 15 real datasets.

On the Zeisel dataset, DCA, scDeepCluster, and CIDR
showed poor performances in classification, which mixed a few
clusters together. Seurat3.0, SIMLR, and GraphSCC separated
most cell populations. In comparison, the cell clusters in
GraphSCC and SIMLR have better intra-cluster compactness
and inter-cluster separability than Seurat3.0, especially in the
oligodendrocytes and ca1pyramidal cells. All methods failed in
separating the ca1pyramidal and s1pyramidal cells.

On the Baron Human dataset, DCA performed bad and only
separated three groups. For SIMLR, CIDR, and scDeepCluster,
at least seven compact clusters of cells were separated, but they
were underclustering in the alpha cells (colored brown), where
the cell types were separated into at least three groups. In con-
trast, Seurat3.0 and GraphSCC separated the most cell popula-
tions, while Seurat3.0 mixed a few beta and ductal cells with
the alpha cells. All methods including GraphSCC separated the
ductal cells into at least two groups.

We further visualized the wrongly clustered cells by the
Sankey river plots on the Baron Mouse dataset as shown in Fig.
5, where GraphSCC achieved CA, NMI, and ARI values of 0.9,
0.904, 0.935, respectively. For the beta cell type with the big-
gest portion (47%), GraphSCC can correctly assign 98% cells.
In contrast, the second best method, Seurat3.0 can correctly as-
sign only 35% cells. Other methods make an accuracy of 34-
67% on the cell type. Two major sources of wrong assignments
in GraphSCC are the separation of the ductal cells into two clus-
ters and merging of the gamma cells with another cluster. The
separation of ductal cells was also seen in the SIMLR method,
and the merging of the gamma cells was seen in the Seurat3.0.
These similar mistakes may come from the difficulty to cluster
these cell types.

Fig. 4. Comparison of the embedded representations of each method in 2D space using the visualize method t-SNE with each point representing a cell and colors

for the true cell labels.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 4, 2021. ; https://doi.org/10.1101/2020.09.02.278804doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.02.278804

(a) GraphSCC (b) Seurat3.0 (c) SIMLR

Fig. 5. A Sankey river plot shows the match between clustering results and the actual labels on the Baron Mouse for three methods.

Figure 6. Line plots show that the proportion of real marker genes in top10

genes predicted by GraphSCC and true cell clusters. And the proportion of

the sum of each cell's marker genes (obtained from the PanglaoDB database)
in the whole genes.

C. Selecting Marker Genes and Functional Analysis

In this section, we selected the most differentially expressed
genes for each cluster grouped by GraphSCC as the maker
genes and examined if they are restricted to specific cell-type
by public databases of cell-type markers. We selected Pangla-
oDB database[44] as the public dataset, which provides differ-
ent marker genes for the same population. For example, Pangla-
oDB database provides 110 markers for B cells. Besides, we
conducted an enrichment (GSE) analysis based on the selected
marker gene set by GraphSCC.

As recommended in [45], we identify differentially expressed
genes of each cluster relative to all other clusters using the
FindAllMarkers function implemented in Seurat 3.0. Con-
cretely, we selected sets of top 10 differentially expressed (DE)
cluster-specific genes for each cluster. After we get the cluster-
specific genes, we examined whether they are the marker genes
by searching in PanglaoDB database (we only confirmed the
cell types found in PanglaoDB database). As seen in Figure 6. ,
the orange line showed the proportion of the marker genes in
the predicted top 10 cluster-specific genes that can be verified
in PanglaoDB database. The results showed that an average of
46% of predicted cluster-specific genes could be found in the
PanglaoDB database, which was higher than the proportion of
the total marker genes in whole genes. We also used the above
approach to selected the top 10 cluster-specific genes based on
the gold clusters (clusters consist of true cell type) shown in the
green line. We can see, the number of marker genes we pre-
dicted is near to gold clusters, which indicates the accuracy of
our clusters is high. Similar results were achieved for the top 5
and 20 cluster-specific genes predicted by GraphSCC (detailed
information in Figure S4). Moreover, the detailed cluster-spe-
cific genes for each cell type were listed in the supplement
top_marker_genes.xls. For cell types that can’t find in Pangla-
oDB database, our predicted genes for each cell type can be
used as marker genes for further research. On the other hand,
we performed functional analysis on the dataset Zeisel. As
shown in Fig 7. (A), we selected the top 5 most differentially
genes for each cell and found that the selected genes were
highly differentially expressed in GraphSCC predicted cell type.
Then, we performed biological pathway enrichment analysis
based on the differentially expressed genes via the Com-
pareCluster function implemented in clusterProfiler [46] R
package along with default parameters. As shown in Fig 7. (B),
each predicted cell type had its highly enriched pathway. For
example, The literature [47] findings suggested that astrocytes
in vitro may initially deploy cell-type-specific pat-terns of
mRNA regulatory responses to glucocorticoids and subse-
quently activate additional cell type-independent responses.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 4, 2021. ; https://doi.org/10.1101/2020.09.02.278804doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.02.278804

(A) (B)

Fig 7. Zeisel dataset analysis based on GraphSCC. (A) Heatmap of DEGs (logFC>0.25) in each cell cluster. (B) enrichment pathways in each cell type
using the top 5 differentially expressed genes.

D. Contribution of Components to the Clustering

In this section, we investigated the contributions of compo-
nents for the clustering performance of GraphSCC by conduct-
ing ablation studies on real datasets. As shown in TABLE II,
the removal of the GCN module caused generally the largest
drop in the performance with 7.8%, 4.8%, and 10.5% decreases
in CA, NMI, and ARI, respectively. The changes indicate the
importance of catching structural relations between cells. The
removal of the residual connection (GraphSCC-Res) caused the
2nd biggest decreases in CA and NMI, while the biggest de-
crease in ARI. The residual connection is a good way to reduce
the drawback of GCN to produce similar representations be-
tween nodes (cells), as indicated in the previous study [39]. The
residual connection and more depth layers of GCN helped
GraphSCC achieve better performance (Figure S5). We also
clustered the cells based on learned distributions Q and P (de-
noted as GraphSCC (Q) and GraphSCC (P)), and they both
cause a decrease in performances relative to GraphSCC that is
based on distribution Z. In summary, the cooperation of the
modules enables a better clustering of the scRNA-seq data.

TABLE II. ABLATION RESULTS ON REAL DATASETS

Ablation tests CA NMI ARI

GraphSCC-GCN 0.72 0.743 0.639

GraphSCC-Res 0.768 0.736 0.672

GraphSCC (Q) 0.767 0.774 0.70

GraphSCC (P) 0.772 0.777 0.707

GraphSCC 0.798 0.791 0.744

IV. DISCUSSION AND CONCLUSION

This paper presents a structural deep clustering model
GraphSCC consisting of GCN, DAE, and DSM modules.
GraphSCC can effectively capture the relations between cells
and the characteristics of data by learning representations using
the GCN and DAE modules, respectively. Furthermore, DSM
was applied to cluster cells based on representations by itera-
tively optimizing the clustering objective function in an unsu-
pervised manner. We have demonstrated that the clustering
performance of GraphSCC outperformed the competing meth-
ods on both simulated and real datasets. Furthermore,
GraphSCC provided representations for better intra-cluster
compactness and inter-cluster separability in the 2D visualiza-
tion.

scRNA-seq is a revolutionary tool in biomedical research.
Recently, many studies had been conducted based on scRNA-
seq technique. However, before we fully reap the benefit of
scRNA-seq, many challenges must be overcome. Clustering
cells into biologically meaningful groups is the critical step in
scRNA-seq analyses. Through comprehensive evaluations with
competing methods on real and simulated datasets, we have
shown that GraphSCC offers stable clustering results based on
scRNA-seq data. We believe that GrahpSCC will be a valuable
tool for catching cellular heterogeneity. In the future, for better
modeling the distribution of scRNA-seq data, we will integrate
an imputation mechanism into GraphSCC. We will also apply
graph transformer models and attention mechanisms to make
scRNA-seq analyses more explainable.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 4, 2021. ; https://doi.org/10.1101/2020.09.02.278804doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.02.278804

ACKNOWLEDGMENT

This study has been supported by the National Natural
Science Foundation of China (61772566, 81801132, and
U1611261), Guangdong Key Field R&D Plan
(2019B020228001 and 2018B010109006) and Introducing
Innovative and Entrepreneurial Teams (2016ZT06D211).

AVAILABILITY OF DATA AND MATERIALS

The datasets we used in this study can be available at
https://hemberg-lab.github.io/scRNA.seq.datasets/; All source
code and datasets used in our experiments have been deposited
at https://github.com/biomed-AI/GraphSCC.

REFERENCES

[1] A. A. Kolodziejczyk, J. K. Kim, V. Svensson, J. C. Marioni, and S. A.
Teichmann, "The technology and biology of single-cell RNA

sequencing," Mol Cell, vol. 58, no. 4, pp. 610-20, May 21 2015, doi:

10.1016/j.molcel.2015.04.005.

[2] E. Shapiro, T. Biezuner, and S. Linnarsson, "Single-cell sequencing-

based technologies will revolutionize whole-organism science," Nature
Reviews Genetics, vol. 14, no. 9, pp. 618-630, 2013, doi:

10.1038/nrg3542.

[3] V. Y. Kiselev, T. S. Andrews, and M. Hemberg, "Challenges in
unsupervised clustering of single-cell RNA-seq data," Nat Rev Genet,

vol. 20, no. 5, pp. 273-282, May 2019, doi: 10.1038/s41576-018-0088-

9.
[4] F. A. Wolf, P. Angerer, and F. J. Theis, "SCANPY: large-scale single-

cell gene expression data analysis," Genome Biol, vol. 19, no. 1, p. 15,

Feb 6 2018, doi: 10.1186/s13059-017-1382-0.
[5] F. Buettner et al., "Computational analysis of cell-to-cell heterogeneity

in single-cell RNA-sequencing data reveals hidden subpopulations of

cells," Nature biotechnology, vol. 33, no. 2, pp. 155-160, 2015.
[6] G. Eraslan, L. M. Simon, M. Mircea, N. S. Mueller, and F. J. Theis,

"Single-cell RNA-seq denoising using a deep count autoencoder," Nat

Commun, vol. 10, no. 1, p. 390, Jan 23 2019, doi: 10.1038/s41467-018-
07931-2.

[7] P. Lin, M. Troup, and J. W. Ho, "CIDR: Ultrafast and accurate

clustering through imputation for single-cell RNA-seq data," Genome
Biol, vol. 18, no. 1, p. 59, Mar 28 2017, doi: 10.1186/s13059-017-1188-

0.

[8] W. V. Li and J. J. Li, "An accurate and robust imputation method
scImpute for single-cell RNA-seq data," Nat Commun, vol. 9, no. 1, p.

997, Mar 8 2018, doi: 10.1038/s41467-018-03405-7.

[9] D. van Dijk et al., "Recovering Gene Interactions from Single-Cell Data
Using Data Diffusion," Cell, vol. 174, no. 3, pp. 716-729 e27, Jul 26

2018, doi: 10.1016/j.cell.2018.05.061.

[10] M. Huang et al., "SAVER: gene expression recovery for single-cell
RNA sequencing," Nat Methods, vol. 15, no. 7, pp. 539-542, Jul 2018,

doi: 10.1038/s41592-018-0033-z.

[11] D. Risso, F. Perraudeau, S. Gribkova, S. Dudoit, and J. P. Vert, "A
general and flexible method for signal extraction from single-cell RNA-

seq data," Nat Commun, vol. 9, no. 1, p. 284, Jan 18 2018, doi:

10.1038/s41467-017-02554-5.
[12] C. Arisdakessian, O. Poirion, B. Yunits, X. Zhu, and L. X. Garmire,

"DeepImpute: an accurate, fast, and scalable deep neural network

method to impute single-cell RNA-seq data," Genome Biology, vol. 20,
no. 1, 2019, doi: 10.1186/s13059-019-1837-6.

[13] J. Rao, X. Zhou, Y. Lu, H. Zhao, and Y. Yang, "Imputing Single-cell

RNA-seq data by combining Graph Convolution and Autoencoder
Neural Networks," biorxiv, 2020, doi: 10.1101/2020.02.05.935296.

[14] T. S. Andrews and M. Hemberg, "False signals induced by single-cell

imputation," F1000Res, vol. 7, p. 1740, 2018, doi:
10.12688/f1000research.16613.2.

[15] B. Wang, D. Ramazzotti, L. De Sano, J. Zhu, E. Pierson, and S.

Batzoglou, "SIMLR: a tool for large-scale single-cell analysis by multi-
kernel learning," bioRxiv, p. 118901, 2017.

[16] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, "Fast

unfolding of communities in large networks," Journal of statistical

mechanics: theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

[17] A. Butler, P. Hoffman, P. Smibert, E. Papalexi, and R. Satija,

"Integrating single-cell transcriptomic data across different conditions,

technologies, and species," Nat Biotechnol, vol. 36, no. 5, pp. 411-420,
Jun 2018, doi: 10.1038/nbt.4096.

[18] J. M. Zhang, J. Fan, H. C. Fan, D. Rosenfeld, and D. N. Tse, "An

interpretable framework for clustering single-cell RNA-Seq datasets,"
BMC Bioinformatics, vol. 19, no. 1, p. 93, Mar 9 2018, doi:

10.1186/s12859-018-2092-7.

[19] T. Tian, J. Wan, Q. Song, and Z. Wei, "Clustering single-cell RNA-seq
data with a model-based deep learning approach," Nature Machine

Intelligence, vol. 1, no. 4, pp. 191-198, 2019, doi: 10.1038/s42256-019-

0037-0.
[20] V. Y. Kiselev et al., "SC3: consensus clustering of single-cell RNA-seq

data," Nat Methods, vol. 14, no. 5, pp. 483-486, May 2017, doi:

10.1038/nmeth.4236.
[21] D. Grun et al., "Single-cell messenger RNA sequencing reveals rare

intestinal cell types," Nature, vol. 525, no. 7568, pp. 251-5, Sep 10

2015, doi: 10.1038/nature14966.

[22] C. Xu and Z. Su, "Identification of cell types from single-cell

transcriptomes using a novel clustering method," Bioinformatics, vol.

31, no. 12, pp. 1974-80, Jun 15 2015, doi:
10.1093/bioinformatics/btv088.

[23] S. Prabhakaran, E. Azizi, A. Carr, and D. Pe’er, "Dirichlet process

mixture model for correcting technical variation in single-cell gene
expression data," in International Conference on Machine Learning,

2016, pp. 1070-1079.

[24] J. Žurauskienė and C. Yau, "pcaReduce: hierarchical clustering of single
cell transcriptional profiles," BMC Bioinformatics, vol. 17, no. 1, pp.

140-140, 2016.

[25] T. N. Kipf and M. Welling, "Semi-supervised classification with graph
convolutional networks," arXiv preprint arXiv:1609.02907, 2016.

[26] M. Defferrard, X. Bresson, and P. Vandergheynst, "Convolutional

Neural Networks on Graphs with Fast Localized Spectral Filtering,"
2016.

[27] P. Velikovi, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y.
Bengio, "Graph Attention Networks," 2017.

[28] J. Chen, S. Zheng, H. Zhao, and Y. Yang, "Structure-aware Protein

Solubility Prediction From Sequence Through Graph Convolutional
Network And Predicted Contact Map," bioRxiv, 2020.

[29] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, "Attention based

spatial-temporal graph convolutional networks for traffic flow
forecasting," in Proceedings of the AAAI Conference on Artificial

Intelligence, 2019, vol. 33, pp. 922-929.

[30] Y. Song, S. Zheng, Z. Niu, Z.-H. Fu, Y. Lu, and Y. Yang,
"Communicative Representation Learning on Attributed Molecular

Graphs," presented at the IJCAI, 2020.

[31] J. Xie, R. Girshick, and A. Farhadi, "Unsupervised deep embedding for
clustering analysis," in International conference on machine learning,

2016, pp. 478-487.

[32] X. Guo, L. Gao, X. Liu, and J. Yin, "Improved deep embedded
clustering with local structure preservation," in IJCAI, 2017, pp. 1753-

1759.

[33] X. Li et al., "Deep learning enables accurate clustering with batch effect
removal in single-cell RNA-seq analysis," Nature communications, vol.

11, no. 1, pp. 1-14, 2020.

[34] D. Bo, X. Wang, C. Shi, M. Zhu, E. Lu, and P. Cui, "Structural Deep
Clustering Network," presented at the Proceedings of The Web

Conference 2020, 2020.

[35] L. Zappia, B. Phipson, and A. Oshlack, "Splatter: simulation of single-
cell RNA sequencing data," Genome Biol, vol. 18, no. 1, p. 174, Sep 12

2017, doi: 10.1186/s13059-017-1305-0.

[36] M. Krzak, Y. Raykov, A. Boukouvalas, L. Cutillo, and C. Angelini,
"Benchmark and Parameter Sensitivity Analysis of Single-Cell RNA

Sequencing Clustering Methods," Front Genet, vol. 10, p. 1253, 2019,

doi: 10.3389/fgene.2019.01253.
[37] B. Li, V. Ruotti, R. M. Stewart, J. A. Thomson, and C. N. Dewey,

"RNA-Seq gene expression estimation with read mapping uncertainty,"

Bioinformatics, vol. 26, no. 4, pp. 493-500, 2010.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 4, 2021. ; https://doi.org/10.1101/2020.09.02.278804doi: bioRxiv preprint

https://hemberg-lab.github.io/scRNA.seq.datasets/
https://github.com/biomed-AI/GraphSCC
https://doi.org/10.1101/2020.09.02.278804

[38] L. Pachter, "Models for transcript quantification from RNA-Seq," arXiv

preprint arXiv:1104.3889, 2011.

[39] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, "Simple and Deep

Graph Convolutional Networks," arXiv preprint arXiv:2007.02133,

2020.

[40] L. v. d. Maaten and G. Hinton, "Visualizing data using t-SNE," Journal
of machine learning research, vol. 9, no. Nov, pp. 2579-2605, 2008.

[41] H. W. Kuhn, "The Hungarian method for the assignment problem,"

Naval research logistics quarterly, vol. 2, no. 1‐2, pp. 83-97, 1955.

[42] A. Strehl and J. Ghosh, "Cluster ensembles---a knowledge reuse

framework for combining multiple partitions," Journal of machine
learning research, vol. 3, no. Dec, pp. 583-617, 2002.

[43] W. M. Rand, "Objective criteria for the evaluation of clustering

methods," Journal of the American Statistical association, vol. 66, no.
336, pp. 846-850, 1971.

[44] O. Franzén, L.-M. Gan, and J. L. Björkegren, "PanglaoDB: a web server

for exploration of mouse and human single-cell RNA sequencing data,"
Database, vol. 2019, 2019.

[45] M. D. Luecken and F. J. Theis, "Current best practices in single-cell

RNA-seq analysis: a tutorial," Mol Syst Biol, vol. 15, no. 6, p. e8746,
Jun 19 2019, doi: 10.15252/msb.20188746.

[46] G. Yu, L.-G. Wang, Y. Han, and Q.-Y. He, "clusterProfiler: an R

package for comparing biological themes among gene clusters," Omics:
a journal of integrative biology, vol. 16, no. 5, pp. 284-287, 2012.

[47] B. S. Carter, F. Meng, and R. C. Thompson, "Glucocorticoid treatment

of astrocytes results in temporally dynamic transcriptome regulation and
astrocyte-enriched mRNA changes in vitro," Physiological genomics,

vol. 44, no. 24, pp. 1188-1200, 2012.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 4, 2021. ; https://doi.org/10.1101/2020.09.02.278804doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.02.278804

