
  

  

Abstract – Robotic exoskeletons require human control and 
decision making to switch between different locomotion modes, 
which can be inconvenient and cognitively demanding. To sup-
port the development of automated locomotion mode recognition 
systems (i.e., high-level controllers), we designed an environment 
recognition system using computer vision and deep learning. We 
collected over 5.6 million images of indoor and outdoor real-
world walking environments using a wearable camera system, of 
which ~923,000 images were annotated using a 12-class hierar-
chical labelling architecture (called the ExoNet database). We 
then trained and tested the EfficientNetB0 convolutional neural 
network, designed for efficiency using neural architecture 
search, to predict the different walking environments. Our envi-
ronment recognition system achieved ~73% image classification 
accuracy. While these preliminary results benchmark Efficient-
NetB0 on the ExoNet database, further research is needed to 
compare different image classification algorithms to develop an 
accurate and real-time environment-adaptive locomotion mode 
recognition system for robotic exoskeleton control. 

I. INTRODUCTION 

The state-of-the-art in robotic exoskeleton control for hu-
man locomotion uses a hierarchical architecture, including 
high, mid, and low-level controllers [1]-[2]. The high-level 
controller is responsible for determining the user’s locomotor 
intent (e.g., climbing stairs, sitting down, or level-ground 
walking). The mid-level controller converts the locomotor ac-
tivity from the high-level controller into mode-specific refer-
ence trajectories (i.e., the desired device state for each locomo-
tion mode); this control level typically includes individual fi-
nite-state machines with discrete mechanical impedance pa-
rameters like stiffness and damping coefficients, which are 
manually tuned for different locomotor activities. The low-
level controller calculates the error between the measured and 
desired device states and commands the robotic actuators to 
minimize the error via reference tracking and closed-loop 
feedback control [1]-[2]. 

High-level transitions between different locomotor activi-
ties remains a significant challenge. Most commercial exoskel-
etons require users to perform exaggerated movements or use 
hand controls to manually switch between locomotion modes 
[1]-[2]. Although accurate, such manual high-level control and 
decision making can be inconvenient and cognitively demand-
ing. Researchers have been working on developing automated 
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locomotion mode recognition systems using pattern recogni-
tion algorithms and data from wearable sensors like inertial 
measurement units (IMUs) and surface electromyography 
(EMG) [1]-[2]. Whereas mechanical and inertial sensors re-
spond to the user’s movements, the electrical potentials of bi-
ological muscles, as recorded using surface EMG, precede 
movement initiation and thus could predict locomotion mode 
transitions with small prediction horizons. Several researchers 
have combined mechanical sensors with EMG for automated 
intent recognition [3]-[5]; such neuromuscular-mechanical 
data fusion has shown to improve the locomotion mode recog-
nition accuracies and decision times compared to implement-
ing either system individually. However, these measurements 
are user-dependent, and surface EMG require calibration and 
are susceptible to fatigue, motion artifacts, changes in elec-
trode-skin conductivity, and crosstalk between muscles [1]. 

Information about the walking environment can supple-
ment these automated locomotion mode recognition systems 
based on neuromuscular-mechanical data. Environment sens-
ing and classification would precede modulation of the user’s 
muscle activations and/or walking biomechanics, therein al-
lowing for more accurate and robust high-level transitions be-
tween different locomotor activities. Studies have shown that 
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Fig. 1 Photograph of the lead author wearing our robotic exoskeleton 
with environment sensing superimposed. 
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supplementing an automated high-level controller with terrain 
information improved the classification accuracies and deci-
sion times compared to excluding the environmental context 
[4]-[5]. Common wearables used for environment sensing in-
clude radar detectors [6], laser rangefinders [4]-[5], [7], RGB 
cameras [8]-[13], and 3D depth cameras [14]-[19] (Fig. 1). 

For classifying images of walking environments, research-
ers have used support vector machines [16]-[17] and convolu-
tional neural networks (CNNs) [8], [10], [12]-[13], [18]-[19]. 
Although CNNs typically outperform support vector machines 
for image classification, deep learning requires significant and 
diverse training data to prevent overfitting and promote gener-
alization. To date, researchers have each individually collected 
training data to develop their image classification algorithms. 
These repetitive measurements are time-consuming and inef-
ficient, and individual private datasets have prevented compar-
isons between classification algorithms from different re-
searchers [20]. We hypothesized that, by curating the largest 
and most diverse image dataset of walking environments, we 
could develop an environment recognition system using state-
of-the-art convolutional neural networks to predict different 
real-world environments for robotic exoskeleton control; mak-
ing the dataset open-source would also facilitate comparisons 
between next-generation environment recognition systems.     

II. METHODS 

A. Experimental Dataset 
One participant (without an exoskeleton) was instrumented 

with a wearable smartphone camera system (iPhone XS Max) 
(Fig. 2). Unlike limb-mounted systems [6]-[12], [16]-[17], 
[19], our chest-mounted camera can provide more stable video 
recording and allow users to wear pants and dresses without 
obstructing the field-of-view. The chest-mount height was 
~1.3 m from the ground when the participant stood upright. 
The smartphone weighs ~0.21 kg and has an onboard re-
chargeable lithium-ion battery, 512-GB of memory storage, 
and a 64-bit ARM-based integrated circuit (Apple A12 Bionic) 
with six-core CPU and four-core GPU; these hardware speci-

fications can theoretically support onboard real-time infer-
ence. The relatively lightweight and unobtrusive nature of the 
wearable camera system allowed for unimpeded locomotion. 
Ethical review and approval were not required for this research 
in accordance with the University of Waterloo Office of Re-
search Ethics. 

Whereas previous studies have been limited to controlled 
indoor environments and/or prearranged walking circuits [3]-
[9], [14]-[15], [18]-[19], our participant walked around un-
known outdoor and indoor real-world environments while col-
lecting images with occlusions, signal noise, and intraclass 
variations. We collected data at various times throughout the 
day to include different lighting conditions. The field-of-view 
was 1-5 m ahead of the participant. The camera’s pitch angle 
slightly differed between data collection sessions. Images were 
sampled at 30 Hz with 1280×720 resolution. We recorded over 
52 hours of video, amounting to ~5.6 million images (Fig. 2). 
Data were collected throughout the summer, fall, and winter 
seasons to incorporate different weathered surfaces like snow, 
grass, and multicolored leaves. The image database, which we 
named ExoNet, was deposited in the IEEE DataPort repository 
and is now publicly available for download [11]. The file size 
of the uncompressed videos is ~140 GB.  

Since there were minimal differences between consecutive 
images sampled at 30 Hz, we labelled the images at 5 
frames/second. Approximately 923,000 images were manu-
ally annotated using a 12-class hierarchical labelling architec-
ture (Fig. 2). The dataset included: 31,628 images of “incline 
stairs transition wall/door” (I-T-W); 11,040 images of “incline 
stairs transition level-ground” (I-T-L); 17,358 images of “in-
cline stairs steady” (I-S); 28,677 images of “decline stairs tran-
sition level-ground” (D-T-L); 19,150 images of “wall/door 
transition other” (W-T-O); 36,710 images of “wall/door 
steady” (W-S); 379,199 images of “level-ground transition 
wall/door” (L-T-W); 153,263 images of “level-ground transi-
tion other” (L-T-O); 26,067 images of “level-ground transition 
incline stairs” (L-T-I); 22,607 images of “level-ground transi-
tion decline stairs” (L-T-D); 119,515 images of “level-ground 
transition seats” (L-T-E); and 77,576 images of “level-ground 

 

Fig. 2 Development of the ExoNet database, including (left) photograph of our wearable camera system used for large-scale data collection; (middle) 
examples of the high-resolution RGB images of walking environments; and (right) schematic of the 12-class hierarchical labelling architecture [11]. 
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steady” (L-S). These class labels were chosen to encompass 
the different walking environments from the data collection. 
We included the other class to improve image classification 
performance when non-terrain related features like pedestri-
ans, cars, and bicycles were observable. 

Inspired by previous work [3]-[5], [8], our labelling archi-
tecture included both steady (S) and transition (T) states. A 
steady state describes an environment where an exoskeleton 
user would continue to perform the same locomotion mode 
(e.g., an image showing only level-ground terrain). In contrast, 
a transition state describes an environment where an exoskel-
eton high-level controller might switch between different lo-
comotion modes (e.g., an image showing level-ground terrain 
and incline stairs). Manually labelling these transition states 
was relatively subjective. For example, an image showing 
level-ground terrain was labelled “level-ground transition in-
cline stairs” (L-T-I) when an incline staircase was approxi-
mately within the field-of-view and forward-facing. Similar la-
belling was applied to transitions to other conditions. 

B. Convolutional Neural Network 
We used TensorFlow 2.3 and the Keras functional API to 

train and test a convolutional neutral network for environment 
classification. During data preprocessing, the images were 
cropped to an aspect ratio of 1:1 and downsampled to 256x256 
using bilinear interpolation. Random crops of 224x224 were 
used as inputs to the network; this method of data augmenta-
tion helped further increase the sample diversity. We used the 
EfficientNetB0 convolutional neural network developed by 
Google Research [21] for classification (Table 1). Unlike pre-
vious studies that used statistical pattern recognition or ma-
chine learning [14]-[17], deep learning models like Efficient-
NetB0 can automatically and efficiently learn the optimal im-
age features from the training data. The EfficientNetB0 archi-
tecture was designed using a multi-objective neural architec-
ture search that optimized both classification accuracy and 
computational complexity [21]; these operational design fea-
tures are important for real-time exoskeleton control. The final 
densely connected layer of the EfficientNetB0 architecture 
was modified by setting the number of output channels equal 
to the number of environment classes. Softmax was used to 
estimate the probability distribution (i.e., scores) for each en-
vironment. The network contained ~4 million parameters and 
~391 million multiply-accumulate operations (MACs), which 
are representative of the architectural and computational com-
plexities, respectively. 

The ExoNet images were split into training (89.5%), vali-
dation (3.5%), and testing (7%) sets, the proportions of which 
are consistent with ImageNet [22]. We experimented with 
transfer learning of pretrained weights from ImageNet [22] but 
found no additional performance benefit. Dropout regulariza-
tion was applied before the final dense layer to prevent over-
fitting during training such that the network weights were ran-
domly dropped (i.e., activations set to zero) at a rate of 0.5. 
Images were also randomly flipped horizontally during train-
ing to increase stochasticity and promote generalization. We 
trained the network for 40 epochs using a batch size and initial 
learning rate of 128 and 0.001, respectively; these hyperpa-
rameters were experimentally tuned to maximize performance 
on the validation set (Fig. 3). The learning rate was reduced 
during training using a cosine weight decay schedule. We cal-
culated the sparse categorical cross-entropy loss between the 
labelled and predicted classes and used the Adam optimizer 

 
Fig. 3 The loss and image classification accuracies during training and 
validation on the ExoNet database.  
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Table 1. The EfficientNetB0 convolutional neural network used for image classification, including the number of layers, parameters, output channels, 
and input resolution for each stage. For more information on the architecture design, see [21].  

Network Stage Operator Input Resolution Output Channels Number of Layers  Number of Parameters 
1 Conv3x3 224x224x3 32 1 999 
2 MBConv1, 3x3 112x112x32 16 1 1,544 
3 MBConv6, 3x3 112x112x16 24 2 17,770 
4 MBConv6, 5x5 56x56x24 40 2 48,336 
5 MBConv6, 3x3 28x28x40 80 3 248,210 
6 MBConv6, 5x5 14x14x80 112 3 551,116 
7 MBConv6, 5x5 14x14x112 192 4 2,044,396 
8 MBConv6, 3x3 7x7x192 320 1 722,480 
9 Conv1x1 and Pooling  7x7x320 1280 1 414,700 

10 Dense 1280 12 1 15,372 
 



  

[23], which computes gradients using momentum and an adap-
tive learning rate, to update the network weights and minimize 
the loss function. During testing, we used a single central crop 
of 224x224. Training and inference were performed on a Ten-
sor Processing Unit (TPU) version 3-8 by Google Cloud; these 
customized chips can allow for accelerated CNN computations 
with less power consumption.      

III. RESULTS 

The image classification accuracies on the training and val-
idation sets were ~81.2% and ~72.6%, respectively. Table 2 
presents the multiclass confusion matrix, which visually illus-
trates the CNN classification performance during inference. 
The matrix columns and rows are the predicted and labelled 
classes, respectively. The diagonal elements are the individual 
classification accuracies for each environment class, known as 
true positives, and the nondiagonal elements are the misclassi-
fication percentages. Our environment recognition system 
achieved ~73.2% classification accuracy on the testing set, that 
being the percentage of true positives (i.e., 47,265 images) 
from the total number of images (i.e., 64,568 images). 

The network most accurately predicted the “level-ground 
transition wall/door” (L-T-W) class with ~86.5% accuracy, 
followed by “level-ground steady” (L-S) at ~79.9% and “de-
cline stairs transition level-ground” (D-T-L) at ~78.8%. These 
results could be attributed to the class imbalances among the 
training data (i.e., there were significantly more images of L-
T-W environments compared to other classes). However, 
some classes with limited images showed relatively good clas-
sification performance. For instance, the “incline stairs transi-
tion level-ground” (I-T-L) class comprised only ~1.2% of the 
ExoNet database but had ~77.9% classification accuracy. The 
least accurate predictions were for the environment classes 
with other features – “wall/door transition other” (W-T-O) at 
~43.2% and “level-ground transition other” (L-T-O) at 
~47.5%. The average inference runtime was ~2.5 ms/image on 
the Cloud TPU using a batch size of 8. 

IV. DISCUSSION 

Inspired by the human vision-locomotor control system, 
computer vision can provide important environmental context 
and features for robotic exoskeleton control. However, small-
scale and private training datasets have hindered the develop-
ment of image classification algorithms for environment 
recognition [20]. To address these limitations, we developed 

ExoNet - the largest and most diverse open-source dataset of 
wearable camera images of walking environments [11]. Un-
paralleled in both scale and diversity, ExoNet contains over 
5.6 million images of indoor and outdoor real-world environ-
ments, of which ~923,000 images were annotated using a 12-
class hierarchical labelling architecture; these design features 
are important since deep learning requires significant and di-
verse training data. We then trained and tested the Efficient-
NetB0 convolutional neural network [21] on the ExoNet data-
base to predict the different walking environments, therein 
providing a benchmark performance for future comparisons. 
We chose EfficientNetB0 because the architecture design was 
optimized for both classification accuracy and computational 
complexity, the features of which are pertinent to onboard real-
time inference for robotic exoskeleton control. 

Our preliminary environment recognition system achieved 
~73% classification accuracy on ExoNet. However, for envi-
ronment-adaptive control of robotic exoskeletons, near perfect 
classification accuracy is desired since even rare misclassifi-
cations can cause loss-of-balance and injury [24]. Future work 
could use temporal information to improve the classification 
accuracy and robustness. Sequential images could be classified 
using majority voting [5], [16]-[17] or deep learning models 
like transformers or recurrent neural networks (RNNs) [18]. 
RNNs process sequential inputs while maintaining an internal 
hidden state vector that implicitly contains temporal infor-
mation. However, training RNNs can be challenging due to 
exploding and vanishing gradients [25]. While these networks 
were designed to learn long-term dependencies, research has 
shown that they struggle with storing sequential information 
over long periods [25]. To mitigate this issue, RNNs can be 
supplemented with explicit memory modules like long short-
term memory (LSTM) networks. A recent study [18] showed 
that fusing sequential decisions using recurrent neural net-
works or LSTM networks significantly outperformed CNNs 
alone for image classification of walking environments. How-
ever, using temporal information for environment classifica-
tion can lead to longer decision times and therefore impede 
real-time exoskeleton control.  

A potential limitation of the ExoNet database is the 2D na-
ture of the environment information. Whereas an RGB camera 
like ours measures light intensity information [8]-[13], depth 
cameras can also provide distance measurements [14]-[19]. 
Depth cameras work by emitting infrared light and calculating 
distances by measuring the time-of-flight between the camera 

Table 2. The multiclass confusion matrix illustrating the image classification performance for each environment class during inference. The matrix 
columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 78.8 0.6 0.3 0.0 0.0 0.0 1.0 4.5 10.6 0.2 2.6 1.4 
W-S 0.2 72.1 9.2 0.0 0.3 0.2 0.0 0.3 15.2 0.1 1.9 0.5 
W-T-O 0.4 21.9 43.2 0.0 0.4 0.2 0.1 0.1 19.2 0.4 8.8 5.5 
I-S 0.0 0.3 0.1 62.1 33.9 1.9 0.0 0.0 0.5 0.6 0.5 0.0 
I-T-W 0.0 2.0 0.7 16.8 69.0 2.8 0.0 0.2 1.5 5.8 0.6 0.6 
I-T-L 1.0 0.5 0.2 2.5 5.7 77.9 2.2 0.2 6.4 1.5 1.2 0.7 
L-S 0.1 0.4 0.0 0.0 0.0 0.1 79.9 0.3 11.9 0.6 6.4 0.2 
L-T-D 5.5 0.4 0.6 0.0 0.3 0.1 1.0 53.3 28.3 2.8 4.3 3.6 
L-T-W 0.3 1.5 0.4 0.0 0.0 0.1 3.7 0.4 86.5 0.3 4.4 2.3 
L-T-I 0.1 1.0 0.2 1.0 3.9 0.4 3.8 0.7 23.3 49.1 12.1 4.4 
L-T-O 0.3 0.6 1.1 0.0 0.1 0.1 13.7 0.5 28.8 0.7 47.5 6.6 
L-T-E 0.3 0.5 0.3 0.0 0.0 0.1 0.8 0.5 14.0 0.6 10.1 72.7 

 



  

and surrounding environment. One advantage of depth sensing 
is the ability to extract environmental features like step height 
and width, which can improve the mid-level exoskeleton con-
trol. However, depth measurement accuracy typically de-
grades in outdoor lighting conditions and with increasing dis-
tance [16]-[17]. Most environment recognition systems using 
depth cameras have been tested in controlled indoor environ-
ments and/or have had limited capture volumes (i.e., 1-2 m of 
maximum range imaging) [14]-[17]. Moreover, the applica-
tion of depth cameras for environment sensing would require 
robotic exoskeletons to have onboard microcontrollers with 
high computing power and low power consumption; the cur-
rent embedded systems would need significant modifications 
to support real-time processing of depth images [16]. These 
limitations motivated our decision to use RGB images. 

Note that since the environmental context does not explic-
itly represent the user’s locomotor intent, data from computer 
vision should supplement, rather than replace, the locomotion 
mode control decisions based on information from surface 
EMG and/or mechanical and inertial sensors. For instance, im-
ages from our wearable smartphone camera system could be 
fused with the onboard IMU measurements for high-level ex-
oskeleton control. Suppose an exoskeleton user unexpectedly 
stops before ascending an incline staircase; the acceleration 
data would indicate static standing rather than stair ascent, de-
spite the staircase being detected within the field-of-view. The 
onboard IMU measurements could also be used to control the 
camera’s sampling rate [7]-[8]. Whereas fast walking can ben-
efit from higher sampling rates for continuous classification, 
standing still does not necessarily require environment infor-
mation and thus the camera could be powered down, or the 
sampling rate decreased, to lessen the computational and 
memory storage requirements. The optimal method for fusing 
the acceleration data with images for environment-adaptive 
control of robotic exoskeletons remains to be determined. 
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