Title: Selective functional inhibition of a tumor-derived p53 mutant by cytosolic chaperones identified using split-YFP in budding yeast

Running Title: Inhibition of mutant p53 using chaperones

Ashley S. Denney, Andrew D. Weems*, and Michael A. McMurray
Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045

*Present address: Department of Bioinformatics, UT Southwestern Medical Center, TX

For correspondence contact Michael A. McMurray
Michael.Mcmurray@cuanschutz.edu

Keywords: p53, septin, mutant, protein folding, molecular chaperone, heat shock protein 90 (Hsp90), bimolecular fluorescence complementation (BiFC), Saccharomyces cerevisiae
ABSTRACT

Life requires the oligomerization of individual proteins into higher-order assemblies. In order to form functional oligomers, monomers must adopt appropriate three-dimensional structures. Molecular chaperones transiently bind nascent or misfolded proteins to promote proper folding. Single missense mutations frequently cause disease by perturbing folding despite chaperone engagement. A misfolded mutant capable of oligomerizing with wild-type proteins can dominantly poison oligomer function. We previously found evidence that human-disease-linked mutations in *Saccharomyces cerevisiae* septin proteins slow folding and attract chaperones, resulting in a kinetic delay in oligomerization that prevents the mutant from interfering with wild-type function. Here we build upon our septin studies to develop a new approach to identifying chaperone interactions in living cells, and use it to expand our understanding of chaperone involvement, kinetic folding delays, and oligomerization in the recessive behavior of tumor-derived mutants of the tumor suppressor p53. We find evidence of increased binding of several cytosolic chaperones to a recessive, misfolding-prone mutant, p53(V272M). Similar to our septin results, chaperone overexpression inhibits the function of p53(V272M) with minimal effect on the wild type. Unlike mutant septins, p53(V272M) is not kinetically delayed under conditions in which it is functional. Instead, it interacts with wild-type p53 but this interaction is temperature sensitive. At high temperatures or upon chaperone overexpression, p53(V272M) is excluded from the nucleus and cannot function or perturb wild-type function. Chaperone inhibition liberates the mutant to enter the nucleus where it has a slight dominant-negative effect. These findings provide new insights into the effects of missense mutations.
Higher-order protein structures are essential for life. Protein monomers must be synthesized, correctly folded, and efficiently assembled into homo- or hetero-oligomers while avoiding inappropriate interaction with misfolded partners. Quality control at each step is important to ensure these processes are accurate and timely. Molecular chaperones aid in quality control by assisting protein folding through repetitive cycles of client binding and release. A survey of nearly 3,000 human disease-causing missense mutant proteins revealed that ~30% showed increased association with chaperones relative to the wild-type (WT) allele, and this value is likely an underestimate (Sahni et al. 2015). This finding illustrates an important principle: although chaperone binding to WT clients promotes client folding to the native state, in the case of misfolded mutants chaperone engagement does not guarantee that the client will be released in a form that is competent for function. While sequestration of grossly misfolded proteins by chaperones is an established mechanism for maintaining cellular fitness (Escusa-Toret et al. 2013), the idea that persistent chaperone engagement may actually interfere with normal protein function has received much less attention.

Septins are highly conserved cytoskeletal proteins whose assembly into hetero-oligomers is important for various cellular processes (Mostowy and Cossart 2012; Woods and Gladfelter 2021). Septins were originally discovered in Saccharomyces cerevisiae as temperature-sensitive (TS) mutants that failed to complete cytokinesis at high temperature (Hartwell 1971). We previously demonstrated that at low temperatures permissive for cellular function many TS septin mutants are kinetically delayed in their folding, and that this delay has consequences for oligomerization when mutant septin
monomers compete with WT monomers (Johnson et al. 2015), a quality control phenomenon we termed kinetic allele discrimination in oligomerization (KADO) (Schaefer et al. 2016). Exclusion of the mutant septin from septin hetero-oligomers ensures that the mutant allele is recessive and does not interfere with the function of the WT allele (Johnson et al. 2015). We noticed that the excluded mutant persisted in the cytosol complexed with non-septin proteins, and identified these as cytosolic chaperones (Johnson et al. 2015). Deletion of genes encoding some of the same cytosolic chaperones perturbed KADO and allowed TS-mutant septins to incorporate into hetero-oligomers despite the presence of the WT (Johnson et al. 2015). Thus chaperone binding to the mutant septin contributed to the kinetic competition between the two alleles. In the case of a mutant that is non-functional at all temperatures, chaperone deletion converted the otherwise recessive mutant septin to a dominant-lethal allele, presumably by allowing the mutant to incorporate into septin hetero-oligomers and “poison” septin function (Johnson et al. 2015). Finally, chaperone overexpression inhibited septin function in cells in which only the mutant septin allele was expressed, consistent with a model in which chaperone engagement sequesters the mutant protein and blocks its ability to assemble into functional hetero-oligomers (Johnson et al. 2015). One yeast septin mutant subject to KADO carries the same amino acid substitution as a human mutation that blocks septin hetero-oligomerization and prevents septin function in sperm (Kuo et al. 2012; Weems et al. 2014; Johnson et al. 2015). We wanted to understand more about which chaperones bind WT and mutant septins and the extent to which the mechanisms we discovered with mutant yeast septins apply to other disease-linked mutations in oligomeric proteins.
p53 is a transcription factor and tumor suppressor that is mutated in nearly 50% of human tumors (“IARC p53 Database (p53.iarc.fr”). WT p53 exists on a precipice of thermostability, where missense substitutions easily push it “over the edge” in terms of its ability to fold, bind DNA and activate transcription (Bullock et al. 1997). Tumor-derived p53 mutants vary in conformation and function. In “contact” mutants, DNA binding is specifically abrogated by substitutions in the DNA-binding region without global effects on p53 conformation, whereas in “conformational” mutants the entire DNA-binding domain is misfolded. p53 mutants can also be categorized as dominant or recessive in terms of their inhibitory effect on the function of co-expressed WT p53. Although fungi lack p53, yeast has long been an attractive system for characterizing p53 function using transcriptional reporters whose activity depends on p53 oligomerization, nuclear localization, and DNA binding (Sharma et al. 2016; Billant et al. 2017). Analysis using a yeast system of 76 mutants representing 54% of over 15,000 total reported missense mutations in the p53 core domain (“IARC p53 Database (p53.iarc.fr”) found that most were dominant-negative, loss-of-function alleles (Dearth et al. 2007). The remaining one-third failed to interfere with WT function and this recessive class was enriched for TS mutants (Dearth et al. 2007). We wondered if, like the recessive TS septin mutants, kinetic delays in folding/oligomerization or persistent chaperone engagement play a role in this class of p53 mutants. Coupled with the absence in yeast of many factors that exert extrinsic regulation on p53 oligomerization and turnover (e.g. MDM2 (Di Ventura et al. 2008)), the high conservation of all major classes of cytosolic chaperones allows us to focus on effects of mutations on p53 folding, chaperone engagement, and transcriptional activation function.
In this study we set out to determine how chaperone engagement and kinetic delays in folding contribute to the recessive behavior of a TS p53 mutant. Having previously used genetic approaches to find chaperone roles in recessive behavior for septin mutants, we first use mutant septins to test a bimolecular fluorescence complementation (BiFC) screening method to visualize chaperone–client interactions in living cells. We then combine BiFC chaperone screening with genetic and pharmacological manipulation of chaperones to gain a mechanistic understanding of the contributions of protein misfolding and cytosolic chaperones to the ability of a tumor-derived p53 mutant to dominantly interfere with WT function.
MATERIALS AND METHODS

Yeast strains, media, plasmids, and genetic manipulations

Yeast strains are listed in Table 1 and were manipulated using standard techniques (Amberg et al. 2005). Oligonucleotides are listed in Table 2 and plasmids along with construction details are listed in Table 3. Yeast cells were cultivated in liquid or solid (2% agar) plates of rich or synthetic (Drop Out Mix Minus various ingredients; United States Biological, Salem, MA) medium containing total 2% sugar (glucose, raffinose, or galactose) or 4% sugar (2% each raffinose and galactose), as needed to maintain plasmid selection and induce expression from the GAL1/10 promoter. The TH5 strain was propagated on rich or synthetic medium with 100 µg/mL dTMP (TCI America #TCT0845), or on minimal medium containing essential amino acids adenine, histidine, and methionine. Drop out medium containing 5-Fluoro-orotic acid (FOA; United States Biological) was prepared with 50 µg/mL uracil and 0.1% FOA, except for use at 37°C where modified to 0.07% FOA at pH 4.6. Radicicol (AdiopGen #AG-CN2-0021) was dissolved in DMSO to 10 mg/mL. The bacterial strain DH5α (Agilent Technologies, Santa Clara, CA) was used to propagate plasmids.

Genomic or plasmid DNA from yeast was isolated by resuspending cells in 250 µL of P1 (50 mM Tris-HCl, pH 8.0, 10 mM EDTA, 100 µg/mL RNase A), adding 0.5-mm glass beads to displace an additional ~250 µL of volume, and vortexing for 3 min before addition of 250 µL P2 (200 mM NaOH, 1% SDS) and 350 µL N3 (4.2 M guanidine-HCl, 0.9 M potassium acetate, pH 4.8). Lysates were clarified by centrifugation and applied to Zyppy plasmid DNA Miniprep columns (Zymo Research) and DNA was washed and eluted according to the manufacturer’s instructions. Alternatively, DNA was precipitated...
from clarified lysates using sodium acetate and ethanol (Green and Sambrook 2016). Yeast transformation was performed using Frozen-EZ Yeast Transformation Kit II (Zymo Research, Irvine, CA). Bacterial transformation was performed using CaCl$_2$-prepared competent bacterial cells. PCR was performed with Phusion or Q5 high-fidelity polymerase (New England Biolabs, Ipswich, MA) according to the manufacturer’s instructions. Site-directed mutagenesis was performed by Keyclone Technologies (San Marcos, CA).

Microscopy

All micrographs were captured with an EVOSfl (Advanced Microscopy Group, Bothell, WA) all-in-one microscope equipped with an Olympus (Tokyo, Japan) 60x oil immersion objective and YFP, Texas Red, and GFP filters. Cells from mid to late log cultures were either taken directly from liquid cultures, applied to glass slides and covered with a coverslip, or concentrated by centrifugation, spotted to agarose pads, and covered with a coverslip. For septin microscopy, LED intensity was 100% and exposure times ranged from 500 to 1500 msec. For p53 microscopy, LED intensity for YFP and Texas Red ranged from 80-100%, and exposure time ranged from 1000 to 2500 msec, together chosen to produce no more than 10% saturated signal. GFP imaging used 20-30% LED intensity and 30-60 msec exposure. For comparison of samples in an experiment all samples were analyzed using the same intensity and exposure time.

Septin–chaperone BiFC
To measure bud neck BiFC fluorescence (Figure 1C) we used an existing macro (Weems and McMurray 2017) with FIJI software (Schindelin et al. 2012). To measure intracellular BiFC signal not focused on the bud neck, we used FIJI to adjust the brightness/contrast on transmitted light images of fields of cells and then used the Threshold function to create a binary image with cell outlines. The “Fill Holes” process was used to fill cell outlines, and then this binary image was used as a mask to measure the integrated signal intensity and areas for the fluorescence image of the same field of cells. To avoid non-cell particles, measurements were restricted to particles with areas between 500 and 2000 square pixels and circularity 0.5-1.0. Occasional cells (<1%) with extremely bright fluorescence were presumed to be dead and were excluded.

p53–chaperone BiFC

Haploid BY4742 cells carrying relevant plasmids described in figure legends were mated to VN-fusion strains encoding a VN-tagged chaperone. Diploids were inoculated in liquid synthetic medium with 1.9% raffinose and 0.1% galactose lacking leucine and uracil and imaged after growing to OD$_{600}$~1 at 30°C. For each chaperone the series of WT p53, p53(V272M), and p53(R273H) were imaged in parallel. Micrographs were quantified for Venus and mKate2 signal (n=100 cells for each genotype per chaperone) using FIJI software (Schindelin et al. 2012) and a macro that allowed selection and quantification of Venus and mKate2 signals from the same cell location (the cytosol, the nucleus, or both depending on the location of BiFC interactions).

p53–p53 BiFC
Haploid Y0134 cells carrying relevant plasmids described in figure legends were inoculated in liquid synthetic medium with 2% glucose lacking leucine and tryptophan and imaged after growing to OD$_{600} \sim 0.5$ at 37˚. Micrographs were quantified for nuclear Venus and mKate2 signal ($n=100$ cells for each genotype) using FIJI software (Schindelin et al. 2012) and a macro that allowed selection and quantification of Venus and mKate2 signals from the same cell location. Cells were selected for quantification based on the presence of Venus signal, as not all cells with mKate2 signal had generated and matured Venus signal, but all cells with Venus signal had corresponding mKate2 signal.

p53 localization assays

For kinetics of p53 nuclear accumulation, haploid yJM3164 cells carrying relevant plasmids were inoculated from overnight liquid cultures grown at 24˚ in synthetic medium with 2% raffinose lacking tryptophan into fresh medium with 1.9% raffinose and 0.1% galactose and imaged every 30 minutes for 6 hours at 24˚, and finally again at 10 hours. Micrographs were quantified for GFP and mKate2 signal ($n=100$ cells for each genotype per timepoint) using FIJI software (Schindelin et al. 2012) and a macro that allowed selection and quantification of GFP and mKate2 signals from the nucleus. Note that GFP was used here only to verify the location of the nucleus and GFP quantities were not analyzed further.

For steady-state levels of p53 at different temperatures, haploid yJM3164 cells carrying relevant plasmids described in figure legends were inoculated in liquid synthetic
medium lacking leucine and imaged after growing to OD$_{600}$$\sim$0.5 at 30˚ or 37˚.

Micrographs were quantified for GFP and mKate2 signal (n=100 cells for each genotype per temperature) using FIJI software (Schindelin et al. 2012) and a macro that allowed selection and quantification of GFP and mKate2 signals from the nucleus. Note that GFP was used here only to verify the location of the nucleus and GFP quantities were not analyzed further.

For p53 localization with chaperone overexpression, diploid yJM3164 x yJM1838 cells carrying relevant plasmids described in figure legends were inoculated in liquid synthetic medium with 2% galactose and 2% raffinose but lacking leucine and tryptophan and imaged after growing to OD$_{600}$$\sim$1 at 30˚. Micrographs were quantified for GFP and mKate2 signal (n=100 cells per genotype) using FIJI software (Schindelin et al. 2012) and a macro that allowed selection and quantification of GFP and mKate2 signals from the nucleus and cytosol. Note that GFP was used here only to verify the location of the nucleus (and by exclusion, the cytosol) and GFP quantities were not analyzed further.

For p53 localization with Hsp90 inhibition, haploid yJM3164 cells carrying relevant plasmids described in figure legends were inoculated in liquid synthetic medium with 2% glucose lacking leucine and containing 5 µg/mL radicicol or equal volume DMSO and imaged after growing to OD$_{600}$$\sim$0.5 at 37˚. Micrographs were quantified for nuclear GFP and mKate2 signal (n=100 cells per genotype) using FIJI software (Schindelin et al. 2012) and a macro that allowed selection and quantification of GFP and mKate2 signals.
from the nucleus and cytosol. Note that GFP was used here only to verify the location of
the nucleus (and by exclusion, the cytosol) and GFP quantities were not analyzed
further.

Co-IP and immunoblotting

25-mL yeast cultures in liquid synthetic medium lacking leucine and tryptophan
were grown to OD$_{600}$~1 at 30˚ and pelleted. Pellets were washed with Lysis Buffer (20
mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 0.5% Triton X-100, 1 mM DTT) plus
protease inhibitors (Complete EDTA-free; 11 873 580 001, Roche) and frozen in liquid
nitrogen. Pellets were resuspended in 300 µL ice-cold Lysis Buffer plus protease
inhibitors and lysed using 100 µL glass beads and 8 cycles of 30-second on/off
vortexing at 4˚. Lysates were clarified by centrifugation into new tubes. Clarified lysates
were diluted 1:2.5 in Binding Buffer (10 mM Tris-HCl pH 7.4, 150 mM NaCl, 0.5 mM
EDTA, 1 mM DTT) for a total volume of 700 µL “Input”. 25 µl Chromotek GFP-nAb
Magnetic Agarose beads (Chromotek, Germany) were washed three times with Binding
Buffer and combined with 700 µL diluted lysate. Beads were incubated while tumbling
end-over-end for 1 hour at 4˚. “Unbound” fraction was removed and beads washed once
with Binding Buffer and twice with Wash Buffer (10 mM Tris-HCl pH 7.4, 500 mM NaCl,
0.5 mM EDTA, 1 mM DTT). Beads were resuspended and gently pipetted in 50 µL 2x
SDS–PAGE sample buffer plus 5% β-mercaptoethanol and heated at 95˚ for 5 min to
generate the "Bound" fraction. Following SDS-PAGE, proteins were electrophoretically
transferred to PVDF and exposed to mouse anti-p53 (RRID:AB_10986581) and rabbit
anti-Pgk1 primary antibodies. Infrared-labeled anti-mouse (680 nm, RRID:AB_10854088) and anti-rabbit (800 nm, RRID:AB_10697505) secondary
antibodies were applied before scanning on a Licor Odyssey device. Input represents 7% of the amount of total protein used for the amount of immunoprecipitated material loaded on the gel.

For all other immunoblots, cultures were grown to mid-log phase and pellets were washed with 10% trichloroacetic acid (TCA) and frozen in liquid nitrogen, then placed at -70°C. Cell pellets were thawed in 150 μL of 1.85 M NaOH and 7.4% β-mercaptoethanol. 150 μL of 50% TCA was added before incubation on ice for 10 min. Precipitated proteins were pelleted at 4°C at maximum speed for 10 min, washed twice with cold acetone (1 mL each time), and resuspended in 80 μL of 0.1 M Tris base, 5% SDS. After addition of SDS–PAGE sample buffer, the samples were boiled for 5 min before resolution by SDS–PAGE. Membrane processing was the same as described above and also utilized, where indicated, mouse anti-6xHis antibodies (UBPBio #Y1011). Ponceau solution (0.5% w/v, 1% acetic acid), where indicated, was applied for 30 minutes, then washed with water and the membrane allowed to dry before imaging.

Choice of sample sizes and statistical analysis

Sample sizes (number of cells) for fluorescence microscopy were chosen based on our ability to detect changes in subcellular localization in our previous studies (Johnson et al. 2015, 2020; Weems and McMurray 2017). Analysis of effect sizes and generation of effect size plots were performed using DABEST (data analysis with bootstrap-coupled estimation) (Ho et al. 2019) via the online server at http://www.estimationstats.com.

Data availability
Strains and plasmids are available upon request. The authors affirm that all data necessary for confirming the conclusions of the article are present within the article, figures, and tables.

RESULTS

Bimolecular fluorescence complementation (BiFC) as an approach to trap otherwise transient chaperone–client interactions

In principle, the chaperone–septin interactions we found using biochemical approaches (Johnson et al. 2015) could have occurred following cell lysis. To visualize chaperone–septin interactions in intact, living cells, we used a BiFC approach, also called split-YFP. Reconstitution of Venus, a yellow fluorescent protein (YFP) derivative, occurs when two non-fluorescent Venus fragments, V_N and V_C, are brought in close proximity. Fusion of V_N and V_C in parallel to two proteins that directly interact in vivo is typically sufficient to drive Venus reconstitution. Although the interactions driving its folding and chromophore maturation are non-covalent, Venus reconstitution is effectively irreversible in vivo. Consequently, BiFC can be used to generate a stable fluorescent signal from otherwise transient interactions in which the untagged proteins would normally dissociate (Hu et al. 2002). Consequently, BiFC can be used to generate a stable fluorescence signal from otherwise transient interactions. (Chromophore maturation requires considerable additional time after Venus folding, up to 50 minutes (Kerppola 2008), hence signal intensity over time also depends on the half-life of the “crosslinked” fusion proteins.) Since chaperone–client interactions are transient by definition, BiFC is ideally suited for detecting such interactions in vivo.
Venus fragments are misfolded proteins that could act as “chaperone bait” independent of the protein to which they are fused. Indeed, multiple V\textsubscript{C}-tagged chaperones (Hsp12, Hsc82, Hsp82, Hsp104, Ssa1, Ssb1, Ssb2, Sec63, Sis1, and Zuo1) are known to generate BiFC signals when co-expressed with “free” V\textsubscript{N} (Kim \textit{et al.} 2019). We reasoned that the smaller size of V\textsubscript{C} (~120 residues, ~13.5 kDa) compared to V\textsubscript{N} (~190 residues, ~21 kDa) might make it less prone to non-specific chaperone interactions. We therefore mated haploid yeast cells expressing V\textsubscript{C}-tagged septins with haploid cells expressing V\textsubscript{N}-tagged chaperones and after culturing the resulting diploid cells at room temperature (~22˚) we examined them by epifluorescence microscopy. As shown in Figure 1 and summarized in Figure 1A and Table 4, we observed discrete fluorescence signals for multiple cytosolic chaperones. In most cases these signals were found in either of two general subcellular locations. While some diffuse BiFC signal was also faintly visible (see below), we focused first on the much more obvious discrete signals.

The first location of BiFC signal, observed with numerous chaperones, resembled the typical localization observed for native septins: rings at the cortex (Figure 1B, Figure S1A, Table 4). Cortical rings were seen either exclusively at the bud neck, where septin rings are normally found, or faintly at bud necks and more intensely at locations reminiscent of bud-site-selection landmark proteins that persist at previous sites of budding (Figure S1A). In unstressed cells, most fluorescently-tagged cytosolic chaperones are found distributed diffusely throughout the cytosol (Huh \textit{et al.} 2003). We think it is most likely that for the chaperones generating cortical ring fluorescence, BiFC events arose from transient septin–chaperone interactions in the cytosol. The tagged
chaperone was then forced to follow the tagged septin on its subsequent cortical journeys. We interpret BiFC signal at bud necks as representing “crosslinked” septin-VC-chaperone-VN complexes in which the septin incorporated into septin hetero-oligomers and then into septin filaments, with the tagged chaperone becoming tethered to the septin ring. Due to the delay between initial interaction and fluorophore maturation, by microscopy we see only “old” septin–chaperone “crosslinked” complexes that may have already been through multiple rounds of filament polymerization and depolymerization. The appearance of bright cortical rings at sites of prior budding for some chaperones may indicate that those specific septin-chaperone BiFC associations perturbed the disassembly of “old” septin rings that normally follows each cell division, such that new rings are dimmer because they preferentially incorporate “new” or untagged septins.

The second type of discrete BiFC signal was unique to interactions between WT septins and subunits of the cytosolic chaperonin called CCT (chaperonin containing tailless complex polypeptide 1). Co-expression of Cct7-VN with Cdc3-VC Cdc10-VC, or Cdc12-VC generated discrete foci in a subpopulation of cells (Figure S1A and Table 4). We engineered haploid strains carrying Cct7-VN and Cdc3-VC and confirmed that the punctate BiFC signal was not unique to diploid cells (Figure S1A). That these haploids were viable and of normal morphology indicates that the septin–Cct7 BiFC interaction did not perturb essential CCT functions, and that only some of the Cdc3-VC molecules underwent BiFC events, otherwise no Cdc3-VC would have been available to perform septin functions at the bud neck. In stressed cells, other chaperones (e.g., Hsp104) localize to punctate structures together with misfolded proteins, such as the IPOD (insoluble protein deposit) and/or JUNQ (juxtanuclear quality control) (Kaganovich et al.)
but the Cct7–septin BiFC foci did not co-localize with Act1(E364K)-mCherry, a misfolded form of actin that marks these compartments (Figure S1B). CCT subunit C termini project into the center of the chamber (Llorca et al. 1999), hence Cct7-VN– septin-Vc interactions likely occur when septins are inside, as opposed to interacting with the chamber surface. We cannot exclude the alternative possibility that Cct7-VN interacts with septins prior to assembling into a 16-mer. Although each individual CCT subunit is relatively small, the cage-shaped holoenzyme is large (~1 MDa). We interpret the appearance of foci as evidence that following BiFC association the tagged septin remains tethered to the inside of the chamber, and is unavailable for incorporation into septin-based structures. CCT assemblies with septins tethered via BiFC may be unable to fold other proteins, but why they would accumulate together in a single intracellular location is a mystery. The apparent ability of Cdc3-Vc to frequently “escape” Cct7-VN interaction could mean that some Cdc3 never interacts with CCT, that some Cdc3–CCT interactions are too transient for BiFC, and/or that Cdc3–CCT interactions do not always involve the Cct7 subunit.

Individual CCT subunits make client-specific contacts. For example, actin directly contacts only five CCT subunits (Balchin et al. 2018). When CCT is dissociated into individual subunits, Shs1 co-purifies with Cct6 but not with Cct3 (Dekker et al. 2008), suggestive of some specificity in CCT–septin interactions. Indeed, Cct7-VN interacted with Cdc3-Vc, Cdc10-Vc and Cdc12-Vc, but did not exhibit a BiFC signal with Shs1-Vc or its paralog Cdc11-Vc (Table 4). We did not detect punctate septin BiFC signal with VN-tagged Cct2, Cct3, Cct4, or Cct6 in cells cultured at room temperature; Cct1/Tcp1, Cct5, and Cct8 are not in the VN tag collection and thus were not tested. Another
multisubunit chaperone complex, prefoldin, also displayed subunit-specific BiFC interactions with septins (Table 4).

Temperature affects both protein folding and the expression of most chaperones. To ask if our BiFC system was able to capture such changes, we repeated our analysis in cells cultured at 37°C. The spectrum of chaperone interactions at this temperature was mostly unchanged, with a few notable exceptions. At 37°C Cct2, Cct3, and Cct6 showed detectable signal, as discrete puncta similar to what we saw for Cct7 at room temperature (Table 4 and data not shown). Other septin–chaperone BiFC signals decreased at 37°C. Septin interactions with prefoldin subunits almost completely disappeared at 37°C (Table 4). Interactions between some septins (e.g., Cdc10) and the Hsp40 Ydj1 were no longer detectable, and interactions with several cytosolic Hsp70-family chaperones were notably reduced (Table 4). Since many other chaperone interactions, including Hsp70s, were unchanged, an intrinsic reduction in the efficiency of Venus BiFC at 37°C cannot explain the loss of specific chaperone signals. Instead, we attribute these changes to effects of temperature on septin folding – exposing different chaperone-interacting sequences – and/or chaperone expression levels.

Unique interactions between cytosolic chaperones and mutant septins that are kinetically delayed in their folding

Having established that WT septins associate with cytosolic chaperones, we wished to test a prediction from our KADO observations: that a slow-folding mutant septin would display distinct chaperone interactions relative to the WT allele. We previously showed that the D182N substitution in the GTP-binding pocket of septin
Cdc10 renders the mutant protein unable to compete with WT Cdc10 for incorporation into septin complexes, and increases association with the chaperones Hsp104 and Ydj1, according to co-fractionation and co-precipitation using cellular lysates (Johnson et al. 2015). To compare chaperone interactions using BiFC, we introduced the D182N mutation into the Cdc10-V*C strain and mated with strains expressing V*N-tagged chaperones.

In no case did we observe fluorescence in septin rings, which presumably reflects KADO-mediated exclusion of the mutant septin from septin complexes, and instead for some chaperones intracellular fluorescence was observed in other locations, including diffusely throughout the cells or in puncta (Figure 1B and data not shown). To compare chaperone interactions between WT Cdc10 and Cdc10(D182N), we measured intracellular fluorescence using cell outlines, which mostly ignored cortical septin ring signals in WT cells (Figure S1C). Several differences were obvious. Whereas WT Cdc10-V*C generated robust signal with Gim3-V*N, almost no fluorescence was detected with Cdc10(D182N)-V*C (Figure 1C,D). Due to a lack of discrete fluorescence signal, we had not previously called Gim5, another prefoldin subunit, as a septin interactor (Table 4), but quantification revealed diffuse intracellular fluorescence with Cdc10-V*C that decreased drastically for Cdc10(D182N)-V*C (Figure 1C,D). Conversely, little to no BiFC signal was found in cells co-expressing Cdc10-V*C and Cct6-V*N (Figure 1B,C,D), in agreement with our qualitative calls based on discrete signals (Table 4), but Cdc10(D182N)-V*C generated much higher signals, often visible as multiple puncta per cell (Figure 1B,C,D). BiFC signal decreased drastically for the cytosolic Hsp90 isoform Hsp82, but not the more highly expressed isoform Hsc82 (Figure S1D). BiFC signal also
decreased for Ssb2 and Zuo1 (Figure 1C,D), which comprise an Hsp70–Hsp40 pair within the ribosome-associated complex (RAC) of chaperones that engage nascent polypeptides and promote co-translational folding (Gautschi et al. 2002; Preissler and Deuerling 2012; Zhang et al. 2017). For the Hsp40 chaperone Ydj1 the change in BiFC signal was more complex. Two populations of cells, differing in the intensity of BiFC fluorescence, were apparent in cultures of each genotype, but the difference was exaggerated by the D182N mutation in Cdc10, with about half of the cells exhibiting almost no signal and the other half having signal higher than the median signal for WT Cdc10 (Figure 1B,C,D). Since we measured integrated signal density, we considered that differences in cell size could indirectly alter signals between genotypes, but when we corrected for cell size the same changes were still apparent (Figure S1E and data not shown). Finally, Hsp104 BiFC signal was higher with Cdc10(D182N) (Figure 1C,D), recapitulating our published biochemical results (Johnson et al. 2015).

Encouragingly, many of the BiFC differences we saw linked directly to our previous functional studies. The prefoldin subunit Gim3 is required for efficient KADO of Cdc10(D182N), as Cdc10(D182N)-GFP localizes to septin rings in a subset of gim3Δ haploid cells co-expressing WT Cdc10 (Johnson et al. 2015). Ydj1 is also required for Cdc10(D182N) KADO and Ydj1 overexpression inhibits the proliferation of cdc10(D182N) cells (Johnson et al. 2015). Hsp104 is dispensable for septin KADO but Hsp104 overexpression inhibits the function of mutant septins subject to KADO (Johnson et al. 2015). We note that the decreases in Cdc10 interactions with Ydj1 and prefoldin subunits upon introduction of a mutation predicted to affect folding state are qualitatively similar to those observed with WT Cdc10 in cells cultured at 37°C. These
results are consistent with a model in which changes in the folding pathway of Cdc10(D182N) compared to WT Cdc10 correspond to changes in the identity and/or duration of the interactions made with cytosolic chaperones.

To ask if these observations with Cdc10 could be extended to another slow-folding mutant septin, we tested Cdc3(G365R), which we have previously shown is slower to incorporate into septin complexes even at a temperature permissive for function and in the absence of a WT allele of CDC3 (Schaefer et al. 2016). We used a haploid strain carrying an untagged copy of the cdc3(G365R) allele at the CDC3 locus and introduced a V_C-tagged allele of cdc3(G365R) on a low-copy plasmid, or WT CDC3 as a control. We then mated this strain with haploid strains carrying selected V_N-tagged chaperones. This strategy allowed the tagged mutant septin to compete with the substoichiometric molecules of untagged WT Cdc3 and successfully localize to septin rings, as evidenced by bud neck fluorescence in cells co-expressing Hsp82-V_N (Figure 1E). That Cdc3(G365R)-V_C showed clear BiFC signal with Hsp82-V_N suggests that the decrease in Cdc10(D182N)–Hsp82 signal (Figure 1C,D) may be specific to that mutant septin. Examination of septin ring fluorescence in cells expressing V_N-tagged Ydj1 revealed a decrease in BiFC signal for Cdc3(G365R)-V_C compared to Cdc3-V_C (Figure 1E), consistent with our results for Cdc10(D182N) and the decrease in Ydj1 interaction with WT Cdc3 observed at 37°. In summary, among the changes in Cdc10–chaperone interactions observed by BiFC upon introduction of a mutation predicted to slow Cdc10 folding are the two chaperones (Gim3 and Ydj1) that we have already shown to be functionally required for septin KADO, and the two chaperones (Hsp104 and Ydj1) for which we previously found genetic and biochemical evidence of increased physical
associations with the mutant septin (Johnson et al. 2015). We conclude that BiFC is a useful tool to identify candidate chaperones whose expression can influence the function of misfolded mutant proteins.

Co-expression of WT p53 fails to rescue the folding defects of the p53(V272M) mutant at high temperature

Having used mutant septins to establish BiFC as a useful tool, we wanted to identify differential chaperone interactions with mutant alleles of p53. However, our KADO model does not require chaperone interactions (Schaefer et al. 2016). Hence we first addressed other mechanisms that could prevent certain p53 mutants from acting dominantly to inhibit the function of the WT.

It was previously proposed (Dearth et al. 2007) that the reason some misfolded p53 mutants are recessive is because their proper folding is restored via interaction with properly-folded WT p53 molecules in the context of “mixed” hetero-tetramers. The V272M mutant adopts a non-native conformation in a temperature-sensitive manner (North et al. 2002; Blanden et al. 2020) and acts recessively when co-expressed with WT p53 in yeast cells harboring a URA3 reporter gene containing p53 binding sites in the promoter region (Brachmann et al. 1996; Dearth et al. 2007) (see Figure 3). To ask if WT p53 is able to “chaperone” the proper folding of p53(V272M), we used a split-dihydrofolate reductase (split-DHFR) assay (Pittman et al. 2012). Here, p53 is fused between two fragments of DHFR and only folded p53 supports DHFR activity, manifested as proliferation by dfr1Δ yeast cells on medium lacking exogenous dTMP (Figure 2A). As shown in Figure 2B, dfr1Δ cells expressing a split-DHFR construct with
p53(V272M) or p53(Y220C), another recessive and TS mutant (Dearth et al. 2007),
barely proliferated at 37˚C on medium lacking dTMP. Equivalent constructs with WT or
p53(R273H), a contact mutant that folds normally but cannot interact with DNA (Bullock
et al. 1997), supported faster colony growth at all temperatures (Figure 2B). Co-
expressing untagged WT p53 had no obvious effect when proliferation was assessed
using colony growth on solid medium (Figure 2C). We also used a liquid culture growth
assay and here observed a very slight effect of questionable significance (Figure 2D).
Based on these data, we think folding rescue via interaction with WT p53 is unlikely to
explain why the mutants do not act dominantly to interfere with WT function.

High temperature inhibits p53(V272M) nuclear localization and co-assembly with
WT p53

We next asked if kinetic delays during de novo synthesis and/or folding of
p53(V272M) relative to WT p53 might prevent V272M mutant molecules from co-
assembling with WT molecules into dysfunctional oligomers, akin to the KADO
phenomenon we observed for septins. Oligomerization buries a nuclear export signal
and ensures nuclear p53 localization (Stommel et al. 1999). Similar to how we
monitored the kinetics of septin synthesis, folding and assembly by asking how long it
takes a fluorescently-tagged septin to reach the septin ring at the bud neck (Schaefer et
al. 2016), we monitored nuclear mKate2 signal after induction of mKate2-tagged p53 or
p53(V272M). Since steady-state nuclear levels of WT p53 and p53(V272M) were
equivalent at 24˚C (Figure 3A 10-hr timepoint and data not shown), we performed our
experiments at this temperature. Our quantitative analysis demonstrated similar kinetics
of nuclear accumulation for both WT and p53(V272M) (Figure 3A). Effect sizes with
associated 95% confidence intervals for these and other quantifications of p53
fluorescence can be found in Figure S2. These results suggest that at low temperature
mutant p53 is not significantly delayed relative to WT p53 in achieving the
oligomerization-competent conformation required to reach the nucleus.

By contrast, nuclear localization of p53(V272M)-mKate2 was reduced at 30˚ and
greatly reduced at 37˚ (Figure 3B). Temperature had a much smaller effect, if any, on
nuclear levels of WT p53 and the “contact” mutant R273H (Figure 3B). These data point
to a failure in nuclear localization as a major cause of p53(V272M) dysfunction at high
temperature. The inability of V272M to dominantly interfere with WT p53 when the two
alleles are co-expressed may reflect a reduced ability of V272M to co-assemble with
WT molecules into “mixed” oligomers wherein the mutant perturbs WT function. If WT
p53 interacts poorly with p53(V272M) at 37˚ that would additionally explain the results of
our split-DHFR experiments.

We next used BiFC to test for p53–p53 interactions in living cells, using p53-
mKate2-V_C and p53-mKate2-V_N constructs previously validated in mammalian cells
(Gaglia and Lahav 2014). We quantified nuclear signal for total p53 (mKate2
fluorescence) and for p53–p53 BiFC (Venus fluorescence) at 30˚ and 37˚. Whereas
total nuclear p53 and BiFC signals indicative of p53–p53 interactions were
indistinguishable for WT–WT and WT–R273H at 37˚, for WT–V272M both total nuclear
p53 and BiFC signals were reduced (Figure 3C). Since WT p53 also contributed to
nuclear signal, this means that at 37˚ co-expression of the V272M mutant partially
inhibited the nuclear localization of WT p53. By normalizing nuclear BiFC signal to total
nuclear p53 signal, we found that the relative proportion of nuclear p53 present as “mixed” oligomers was much higher for WT–V272M than WT–WT or WT–R273H (Figure 3C). These data indicate that at 37˚ only a small number of V272M molecules are able to interact with WT p53 and remain the nucleus, supporting a model in which at high temperature V272M mostly fails to fold into an oligomerization-competent conformation and thus cannot inhibit WT p53 function.

The V272M mutation converts the dominant R273H mutant to a recessive form

If p53(V272M) is recessive because it misfolds and fails to interact with WT p53, and p53(R273H) is dominant because it interacts with WT p53 to form dysfunctional tetramers, then introducing the V272M mutation should sequester the R273H mutant in the cytosol and render it recessive. Indeed, quantification of nuclear fluorescence revealed that nuclear localization of p53(V272M R273H) was diminished at 30˚ and greatly diminished at 37˚, patterns indistinguishable from that of p53(V272M) (Figure 3B). Like p53(R273H), when expressed alone p53(V272M R273H) was transcriptionally inactive at all temperatures tested (Figure 3D,E). At 30˚, both p53(R273H) and p53(V272M R273H) dominantly inhibited WT p53 function (Figure 3F). However, at 37˚ p53(V272M R273H) was unable to inhibit WT function (Figure 3F), consistent with our prediction. These data point to temperature-induced misfolding and cytosolic sequestration as the major mechanisms by which the V272M mutation perturbs oligomerization and compromises p53 function.
Mutations to Leu344 do not specifically perturb p53 oligomerization in the context of expression in yeast

Our findings demonstrating the effects of V272M on p53 oligomerization led us to ask when during p53 oligomerization the defects occurred. In previous studies, including during cell-free translation in vitro (Nicholls et al. 2002), p53 dimerizes co-translationally (Gaglia and Lahav 2014) such that tetramers assemble from dimers composed of two monomers encoded by the same mRNA. Thus distinct alleles do not “mix” in the dimer form but rather in the tetramer form only. Mutants that block oligomerization before the dimerization (L344P) or tetramerization (L344A) step are useful tools for examining co-translational dimerization, particularly when combined with BiFC: the L344P and L344A mutations eliminate the majority of p53 BiFC signal in mammalian cells co-expressing WT p53-V_C and p53-V_N (Gaglia and Lahav 2014) as illustrated in Figure 4A.

To our surprise, in yeast we observed robust BiFC signal between p53(L344A)-mKate2-V_N and p53(L344A)-mKate2-V_C and, most unexpectedly, between p53(L344P)-mKate2-V_N and p53(L344P)-mKate2-V_C (Figure 4B). Leu 344 lies within a nuclear export signal that is normally buried in the context of a tetramer (Stommel et al. 1999). Presumably because the export signal they expose is non-functional, p53(L344P) and p53(L344A) both localize to the nucleus in mammalian cells, albeit in monomeric and dimeric form, respectively (Gaglia et al. 2013). L344A and L244P also localized primarily to the nucleus in our yeast cells (Figure 4C). In fact, when we quantified nuclear mKate2 fluorescence, we found that the L344A mutant showed even higher total nuclear signal than WT (Figure 4B). Accordingly, normalizing the BiFC signal to total nuclear p53 signal for each cell resulted in BiFC/total p53 ratios for L344A that
were somewhat less than WT (Figure 4B). However, the “monomeric” L344P mutant ratios and the raw BiFC signals for both mutants were equivalent to WT (Figure 4B). We interpret these data as evidence that in yeast cells p53 oligomerization is less sensitive to mutations known to disrupt oligomerization in mammalian cells.

To independently test for co-translational dimerization of WT p53 expressed in yeast cells, we immunoprecipitated p53-mKate2-Venus from lysates of cells co-expressing untagged p53. Whereas in mammalian cells two differentially tagged forms co-precipitate only when residue 344 is Leu (Gaglia and Lahav 2014), we saw evidence of “mixed” complexes (i.e., co-precipitation of untagged WT p53) even in the presence of the L344A mutation (Figure 4D). The L344P mutation for the most part blocked co-IP (Figure 4D), and in the URA3 reporter strain p53(L344P) was functionally dead (Figure 4E). We thus interpret our BiFC data as evidence that the complementation event itself stabilizes otherwise weak interactions between p53(L344P) molecules. In the same assay, p53(L344A) displayed moderate transcriptional activation (Figure 4E). This result is consistent with published yeast reporter experiments (Jordan et al. 2008) and the persistent (albeit reduced) ability of this mutant to bind DNA in vitro (McLure and Lee 1998). Because in our yeast cells the L344A and L344P mutations were not reliable disruptors of dimerization or tetramerization, our experiments were unable to distinguish between co- and post-translational mechanisms of dimerization or determine the point at which oligomerization fails in the V272M mutant.

Cytosolic chaperone-p53 interactions in living cells
Given the evidence that misfolding of p53 mutants is responsible for dysfunction at high temperatures (reviewed in (Bullock and Fersht 2001)) and drives prolonged associations with at least three kinds of cytosolic chaperones (Sepehrnia et al. 1996; Blagosklonny et al. 1996; Singh et al. 2010; Wiech et al. 2012), we used our BiFC approach to systematically identify p53–chaperone interactions. We predicted that the conformationally unstable p53(V272M) would have altered chaperone interactions relative to WT p53 or the “contact” mutant p53(R273H). We used most of the same VN-tagged chaperones as with septins, paired with the p53-mKate2-VC fusion from the p53–p53 BiFC experiments described above. (Note that the VC tag here is slightly larger than the VC tag used with septins.)

We identified interactions between p53 and numerous cytosolic chaperones (Figure 5A, Figure S3A, and summarized in Table 5). To account for differential proteasomal degradation of p53 mutants (Singh et al. 2010), we used the mKate2 tag to normalize the p53-chaperone BiFC signal (Venus YFP) relative to total p53 signal (mKate2), which revealed increased interactions between p53(V272M) and many chaperones relative to WT p53 and p53(R273H) (Figure 5B). Several chaperones – Hsp82, Ssb1, Sis1, and Ydj1 – demonstrated increases in p53(V272M) interaction that were obvious even before normalization (raw values in Figure S3B).

With the exception of Cct7 and Hsp12, and Hsp104, which generated decreased and increased BiFC signal with p53(R273H) compared to WT, respectively, most chaperones interacted in similar ways with p53(R273H) and WT p53, whereas p53(V272M) displayed multiple distinct interactions (Figure 5B and Figure S3B). p53(R273H) specifically abolishes contact with DNA without global conformational
consequences (Ang et al. 2006). On the other hand, p53(V272M) causes misfolding and conformational instability (North et al. 2002; Blanden et al. 2020). These observations are consistent with a model in which chaperones recognize specific, exposed sequences in p53 that are largely buried in the native fold. The V272M mutation results in prolonged exposure of these sequences and thus more opportunities for cytosolic chaperone engagement.

In some cases, we also saw differences in BiFC signal localization. At 30˚, the temperature at which we cultured cells prior to microscopic examination, the mKate2-V\textsubscript{C}-tagged p53 alleles differed in their localization even when no V\textsubscript{N}-tagged chaperone was expressed. WT p53 and the R273H mutant were seen in both the cytosol and the nucleus, whereas the V272M mutant was found almost exclusively in the cytosol (Figure S3A, “No BiFC Control”). These observations agree with prior cell fractionation experiments in mammalian cells, in which WT p53 and p53(R273H) were found almost exclusively in the nuclear fraction, regardless of temperature (Zhang et al. 1994) whereas p53(V272M) showed a distinct shift toward the cytosolic fraction even at low temperatures (Dearth et al. 2007). Most p53–chaperone BiFC signals were in the cytosol, either diffusely, as puncta, or a mixture of both signal types (Table 5). Hsp70 chaperones Ssb1 and Ssb2 generated diffuse cytosolic signal whereas Ssa2, Cct7, and Hsp104 generated exclusively punctate signals (Table 5, Figure 5A, Figure S3A). Multiple p53–Cct7 puncta were seen in some cells (Figure 5A), clearly distinguishing them from septin–Cct7 puncta. Chaperones producing a mixture of both diffuse and punctate cytosolic signal include the Hsp90 isoforms Hsp82 and Hsc82 (with brighter and more numerous puncta for Hsc82) and the Hsp40 family members Sis1, Ydj1, and
Zuo1 (Table 5, Figure 5A, Figure S3A). Sis1 and Hsp12 were unique in producing nuclear signal in addition to cytosolic fluorescence (Figure 5A, Figure S3A). Sis1 generated nuclear signal for WT and p53(R273) but essentially none for p53(V272M) (Figure 5A).

By monitoring the mKate2 signal, we found several cases in which co-expression of a \(V_N \)-tagged chaperone altered the localization of mKate2-V\(C \)-tagged p53 (Figure 5A and Figure S3A). These observations are consistent with a model in which Venus reconstitution trapped the p53 molecules in the location where the chaperone is normally found. Nuclear mKate2 signal for p53(V272M) in cells co-expressing Hsp12-V\(N \) is a particularly striking example (Figure S3A). In all cases, the Venus signal co-localized with the p53 mKate2 signal in the “new” location, further arguing that BiFC events were responsible (Figure 5A and Figure S3A). We interpret these data as evidence that, just as in septin–chaperone BiFC, making permanent an otherwise transient interaction incites a localization “tug-of-war”. For most septin–chaperone interactions, the septin wins; for all p53–chaperone interactions, the chaperone wins.

The results described above point to a number of chaperones as compelling candidates to influence the function of mutant alleles of p53.

Overexpression of specific chaperones inhibits p53(V272M) function

Differences in chaperone engagement might explain functional differences between p53(V272M) and WT p53 if a chaperone sequesters the mutant protein in a non-functional state. We asked if the function of p53 could be aggravated by chaperone overexpression at a permissive temperature, focusing on the chaperones identified by
our BiFC experiments. Plasmids encoding chaperones under control of a galactose-inducible promoter were introduced into a diploid *URA3* reporter strain also carrying a plasmid encoding untagged WT p53 or p53(V272M) under control of a constitutive promoter. Various cytosolic chaperones impeded the transcriptional function of p53(V272M) and, to a generally lesser degree, WT p53 (Figure 6A). Exceptions included Hsf1ΔN, a constitutively active version of the major heat shock transcriptional regulator, where WT p53 and p53(V272M) behaved similarly (Park *et al.* 2006). By contrast, Hsf1ΔN, like expression of specific individual chaperones, inhibits the proliferation of cells with the *cdc10(D182N)* septin mutation (Johnson *et al.* 2015). Hsp90 isoforms Hsp82 and Hsc82 slightly but equivalently impeded mutant p53(V272M) relative to WT p53 although the intensity of signal and number of puncta were increased for endogenous levels of Hsc82 in BiFC experiments. Both Hsp90 isoforms were expressed at similar levels, as assessed by immunoblotting (Figure 6B).

Since the transcriptional activation function we monitor here requires nuclear p53, one way chaperone engagement might inhibit p53(V272M) function is via cytosolic sequestration. We quantified nuclear versus cytosolic p53(V272M)-mKate2-Venus signal in micrographs and found that in most cases chaperone overexpression decreased the nuclear/cytosolic ratio of p53(V272M), with the exception of Ydj1 where the ratio was preserved (Figure 6C). Notably, in this imaging-based approach, cytosolic p53(V272M) levels sometimes also decreased along with nuclear levels relative to empty vector (Figure S4A,B), as illustrated for Sis1 (Figure 6D). However, when we tested Sis1 overexpression by immunoblotting, we saw no clear difference in total p53(V272M) levels relative to the empty vector control (Figure 6D). Our imaging-based
quantification may underestimate total cytosolic levels, since we excluded vacuolar p53
signal seen in some chaperone-overexpressing cells (e.g., Sis1 and Zuo1, Figure 6E).
We interpret these data as evidence that overexpression of specific chaperones
sequesters p53(V272M) outside the nucleus and impedes transcriptional activation.

Overexpression of some chaperones inhibited colony growth in general, even
when we did not select for p53 function, and this effect was independent of the p53
allele expressed (Figure 6A). Overexpression of these same chaperones in cells not co-
expressing p53 has no such effect (Sopko et al. 2006; Johnson et al. 2015). High-level
p53 expression is toxic to yeast and is thought to involve p53 binding to endogenous
yeast genes and thereby perturbing essential gene expression (Inga and Resnick 2001;
Leão et al. 2013; Park et al. 2021). We noticed that the chaperones with the strongest
effect on non-selective growth (i.e., those that induced the most p53 “toxicity”) had the
most p53(V272M) in the nucleus (Figure 6A,C and Figure S4A,B). Conversely, the
chaperones that specifically inhibited p53(V272M) transcriptional activation function and
most strongly decreased the levels of p53(V272M) in the nucleus (Hsp31, Ssa4, Hsp26,
and Cct7) had little to no effect on non-selective growth (Figure 6A,C and Figure
S4A,B). While the details of the underlying mechanism are beyond the scope of this
work, these results support the idea that p53 toxicity in yeast requires nuclear
localization. However, our findings further suggest that canonical transcriptional
activation function is dispensable for toxicity, and that whatever function is responsible
can be modulated by chaperone expression.

Cytosolic compartmentalization of p53 modulates recessive behavior
If association with a specific chaperone mediates cytosolic sequestration, then inhibiting the ability of that chaperone to bind p53 should allow more p53 to reach the nucleus. Indeed, when we inhibited Hsp90 function using radicicol (Sharma and Masison 2011), nuclear levels and nuclear/cytosolic ratios increased for WT p53 and all variants (Figure S4C,D and Figure 7A). As assessed by immunoblotting, total p53 levels were not detectably changed between DMSO- and radicicol-treated cells (Figure 7B). We also observed vacuolar p53 signal in cells treated with radicicol but not with DMSO (Figure 7C), reminiscent of chaperone-overexpressing cells, and this vacuolar signal was not included in our quantification of cytosolic p53 (Figure S4C,D). These findings are consistent with other studies with mammalian cells in which pharmacological Hsp90 inhibition increased nuclear localization of a different p53 mutant (Whitesell et al. 1998). Notably, in that study Hsp90 inhibition did not improve the function of the mutant p53 (Whitesell et al. 1998). We reasoned that the liberation of non-functional mutant p53 from chaperone sequestration might increase the ability of the V272M mutant to interact with WT p53 and dominantly interfere with p53 function. Indeed, activation of the URA3 reporter gene by WT p53 was reduced by the co-expression of p53(V272M) only in the presence of radicicol, as evidenced by a very slight increase in colony growth on FOA-containing medium (Figure 7D). Interestingly, radicicol also increased FOA growth in the absence of any co-expressed p53 mutant (Figure 7D). Considering that even WT p53 is conformationally labile and often samples non-functional conformations (Hainaut et al. 1995; Cañadillas et al. 2006), this result might suggest that Hsp90 inhibition allows molecules of WT p53 in non-functional conformations to translocate to the nucleus,
where they cannot activate transcription but may dominantly interfere with the function of any properly-folded molecules.
DISCUSSION

Chaperone binding to a misfolded protein is widely assumed to either promote proper folding or protect cells from adverse consequences of irreversibly misfolded proteins with no chance of ever reaching a functional state. Accordingly, chaperone upregulation or overexpression should rescue mutant protein function. However, there are some clear examples in which chaperones “inappropriately” sequester otherwise functional proteins, such as the ΔF508 mutant allele of CFTR, the most common mutation causing human cystic fibrosis (Amaral 2006; Balch et al. 2011; Lopes-Pacheco et al. 2015). Conversely, some mutant proteins can fold well enough to hetero-oligomerize with WT partner proteins but carry substitutions that “poison” the function of the hetero-oligomer. Here, chaperone sequestration can render recessive an otherwise dominant-negative mutant. We aimed to developed tools for identifying chaperones that differentially engage misfolding-prone mutant proteins, and use them to test if chaperone association affects the function and dominant-negative effect of a misfolding-prone mutant of p53.

Our BiFC approach identified differential chaperone interactions with mutant septins that matched results from our prior functional studies (Johnson et al. 2015). Other results provide further validation of BiFC as a useful tool. Only two of 11 intended negative controls, Sec63 and Pam18, generated detectable septin BiFC signal (Table 4). The Hsp40 family member Sec63 is normally part of a membrane-associated complex that mediates both co- and post-translational translocation of polypeptides across the ER membrane (Ng and Walter 1994). Sec63 co-purifies with dozens of proteins, many of which are cytosolic (Krogan et al. 2006). We suspect that in its post-
translational role, Sec63 could transiently associate with many cytosolic proteins (including septins), only some of which are ultimately threaded into the ER lumen. Consistent with this interpretation, Sec63-V_C interacts with “free” V_N (Kim et al. 2019). Hence Sec63 is probably not a good negative control. The mitochondrially-localized chaperone Pam18 interacted only with Cdc3 and only at 37˚ (Table 4). While interactions between Cdc12 and Pam18 and between Cdc3 and Hsp78, another mitochondrial chaperone, were reported in high-throughput genetic (Davierwala et al. 2005) and two-hybrid (Wang et al. 2012) screens, we doubt that these interactions are biologically meaningful.

Although many cytosolic chaperones are highly abundant proteins thought to interact with a wide range of cytosolic proteins, only certain of these interacted with septins in our assay. If chaperones merely engaged the V_C portion of the septin-V_C fusions, and not the septins themselves, we might expect a much broader spectrum of cytosolic chaperone BiFC interactions. For example, the Hsp70 Ssa1 is the most abundant chaperone in the cytosol of unstressed yeast cells (Brownridge et al. 2013), but it did not interact with any septin at any temperature. Conversely, its much less abundant, 98%-identical paralog, Ssa2, interacted with all five septins (Table 4). Other studies using the same Ssa1-V_N strain were able to detect BiFC interactions with other proteins (Sung et al. 2013), demonstrating that the Ssa1-V_N fusion is functional. Ssa1 and Ssa2 also have distinct functions in prion propagation (Allen et al. 2005) and the vacuolar import and degradation pathway of gluconeogenic enzyme regulation (Brown et al. 2000; Sharma and Masison 2011). As another example, the Hsp70 Ssz1 forms a ribosome-associated complex with Zuo1 and the other Hsp70s Ssb1 or Ssb2, but Ssz1
appears to have lost its ability to bind nascent substrate polypeptides (Huang et al. 2005). In agreement with this idea, we found that Zuo1-V_N and Ssb1-V_N, but not Ssz1-V_N, interacted with V_C-tagged septins (Table 4). Thus, we are confident that our BiFC results reveal specific associations, not non-specific interactions or promiscuous encounters.

A previous study using a trimolecular fluorescence complementation (TriFC) assay to identify septin-interacting proteins in living yeast cells specifically tested interactions with Hsp82 as a negative control, and found none (Finnigan et al. 2016). We suspect that the septin–Hsp82 interactions we see with BiFC reflect the relatively large sizes of the V_C and V_N tags, the linkers between them, and the C termini of the septins and chaperones to which they were fused, compared with the very small (20-21-residue) tags and linkers (18-33-residue) used in the TriFC system (Finnigan et al. 2016). The TriFC study demonstrated that the small tags and short linkers limit signal generation to interactions occurring within a short distance, such that only septins adjacent to each other in the septin hetero-oligomeric complex generate TriFC signal (Finnigan et al. 2016). In our BiFC system, all septins interact with all septins (our unpublished observations). Accordingly, Hsp82 could probably interact with any part of a septin protein and generate BiFC signal, but would likely need to bind nearby the N or C terminus in order to generate TriFC signal. Since our KADO model predicts that chaperones recognize septins with misfolded GTPase domains (Johnson et al. 2015), which are formed primarily by residues in the middle of septin proteins, using a split-fluorophore approach to identify septin–chaperone interactions may require larger tags and longer linkers.
Accordingly, the drop in specific chaperone BiFC signals we observed for mutant septins relative to their WT counterparts does not necessarily mean those chaperone–septin interactions no longer occurred. Differences in conformation or exposure of chaperone binding sites for a mutant septin may increase the physical distance between the C-terminal V_C tag on the septin and the C-terminal V_N tag on the chaperone beyond the BiFC threshold. These differences may explain diminished BiFC signals for chaperones whose deletions (Ydj1 and Gim3) perturb septin KADO, and whose overexpression (Ydj1) impedes mutant septin function.

The changes in chaperone interactions upon septin mutation were similar to changes for WT septins at high temperature (Table 4). Certain chaperones may recognize non-native conformations that WT proteins only sample at high temperature but mutant proteins readily adopt at low temperature. Recent work on mammalian Hsp90, for example, suggests that client binding depends on the combined probabilities of partial client unfolding, capture by Hsp70 of a transiently exposed site, and further unfolding events that expose adjacent client regions for capture by Hsp90 in complex with co-chaperones (Wang et al. 2020). The mutations we examined could promote any or all of these events. We chose V272M as a representative example of a p53 mutant with global structural instability and temperature-aggravated misfolding, and we have no reason to suspect that other p53 mutants with similar structural defects (manifested as temperature sensitivity, for example) would behave differently.

Alternatively, the presence of a mutant protein might itself alter chaperone expression in ways that mimic the effects of high temperature, such that a different repertoire of chaperones is available for interaction, independent of protein
conformation per se. Indeed, expression of mutant p53 in yeast cells was sufficient to alter chaperone expression without an increase in temperature (Singh et al. 2010). The BiFC tags themselves may also alter chaperone expression: we detected BiFC signals with WT septins for chaperones whose expression in non-stress conditions is normally very low (e.g., Ssa3 (Werner-Washburne et al. 1987), Table 4). The V_C tag itself did not drive chaperone binding, however, since p53-V_C did not interact with Ssa3-V_N (Table 5).

While we think BiFC is a powerful tool for identifying chaperone interactions, chaperone binding assessed by any method does not indicate a functional role for that chaperone in protein folding. Whereas we do not yet know which chaperones are required for native septin folding, p53 folding has been more thoroughly studied and our BiFC interactions include chaperones that have not (yet) been implicated in p53 folding. Chaperones may “sample” a polypeptide during and after synthesis without changing the folding trajectory, and such transient sampling, irreversibly captured by BiFC, may explain at least some of the BiFC interactions we observed. Quantitative increases in chaperone BiFC signal for a mutant septin or p53 relative to WT could mean that otherwise inconsequential sampling by the chaperone of the WT protein has become consequential for the mutant, by altering its folding trajectory or occupying an oligomerization interface long/frequently enough to prevent native oligomerization.

Chaperone binding at the septin–septin G interface and competition with other septins for interaction there is consistent with predictions from our KADO model for mutant septins.

By contrast, most known chaperone binding sites in WT p53 are found in the structurally labile DNA-binding domain (DBD) (Fourie et al. 1997; Müller et al. 2004), as
opposed to the oligomerization domain. If the same sites mediate chaperone binding to p53(V272M), then it seems less likely that chaperone binding directly blocks oligomerization by mutant p53 and, since oligomerization buries the p53 nuclear export signal, indirectly promotes cytosolic sequestration. The three p53 nuclear localization signals are all located near the C terminus and outside the DBD (Shaulsky et al. 1990), hence direct occlusion of these sequences by chaperone binding is also an unlikely mechanism of cytosolic sequestration.

Instead, chaperone binding to the p53 DBD could inhibit nuclear localization of p53 in other ways. In mammalian cells, p53 nuclear localization is controlled by many factors not present in yeast, including the protein MDM2, intermediate filaments, and dynein-mediated transport along microtubules (reviewed in (O’Brate and Giannakakou 2003)). Nonetheless, the same NLS and NES sequences that control p53 nuclear localization in mammalian cells also control p53 nuclear localization when expressed in yeast (Godon et al. 2005). Binding of mammalian Hsp70–Hsp40 to the WT p53 DBD alters its conformation to disfavor DNA binding (Boysen et al. 2019), but an inability to bind DNA cannot explain the cytosolic sequestration of p53(V272M) because the contact mutant R273H does not have the same problems with nuclear retention (Figure 3B). We suspect that cytosolic chaperone–p53 complexes are retained in the cytosol because chaperone binding stabilizes a conformation of p53 in which the NLS is unavailable for proper interaction with the nuclear import machinery. Indeed, experiments in mammalian cells with a different TS p53 mutant, C135V, suggested that at high temperature binding of cytosolic Hsp70 chaperones to the mutant p53 renders the NLS inaccessible without directly occluding it (Akakura et al. 2001). p53 expressed
in yeast can adopt several forms with distinct localization patterns – both punctate and
diffuse, and in the cytosol, vacuole, or nucleus – some of which can be stably
propagated in prion-like ways, suggesting conformational changes in p53 drive the
changes in localization (Park et al. 2021). Since most of the chaperones we
overexpressed are normally found diffusely in the cytosol, we think that the distinct
patterns of p53 mislocalization outside the nucleus upon overexpression of distinct
chaperones (punctate, diffuse, vacuolar) may have more to do with the conformation of
p53 resulting from chaperone interaction than with chaperone binding per se. Along the
same lines, vacuolar p53 upon Hsp90 inhibition probably represents p53 liberated from
Hsp90 but captured by other chaperones and ultimately excluded from the nucleus.

Our findings that overexpression of any one of many distinct chaperones
specifically inhibited the function of p53(V272M) suggest that cytosolic sequestration
was sufficient but not necessary for functional inhibition. For example, Ydj1
overexpression inhibited p53(V272M) function but actually increased nuclear p53 levels
(Figure 6, Figure S4A,B). Hence some conformations of p53 are presumably able to
enter and remain in the nucleus but are unable to function there properly. From a
broader perspective, these functional data with p53(V272M) add to our previous results
with mutant septin function (Johnson et al. 2015) and run counter to the idea that
elevated chaperone expression generally improves the folding and function of mutant
proteins. While chaperone “assistance” with mutant p53 folding and function has been
suggested in studies with other mutants expressed in yeast (including, interestingly,
R273H) (Singh et al. 2010), our data demonstrate that overexpression of the same
chaperone (Ssa2) was inhibitory to V272M function (Figure 6A). This discrepancy may
point to differences in how chaperone binding alters the folding of a contact mutant (R273H) versus a conformational mutant (V272M). The extent and context of chaperone “overexpression” may also be important: the effect of Ssa2 on p53(R273H) was observed not by directly overexpressing Ssa2 but by adding ethanol, which indirectly induced Ssa2 (Singh et al. 2010).

Similarly, some of the chaperones that had a functional effect on p53(V272M) were negative for BiFC interaction (i.e., Ssa4, Hsp26, and Hsp31). One potential explanation for this discrepancy is the high GAL1/10-driven chaperone expression we used in the functional assays, compared to endogenous chaperone levels in BiFC. Finally, whereas the constitutively active Hsf1∆N mutant inhibited the function of a mutant septin (Johnson et al. 2015), it had no effect on WT or mutant p53 (Figure 6A). Hsf1 drives expression of many different chaperones in the context of a balanced response to proteostatic stress (Morimoto 1998). While it may also indirectly upregulate other chaperones, high-level overexpression of a single chaperone perturbs this balance and likely drives p53 toward conformations that are only briefly/rarely sampled in the context of an Hsf1-driven stress response.

Another key point of comparison between our present results and those of prior studies is the effect of chaperone inhibition/deletion. In our earlier septin studies, deleting specific chaperone-encoding genes liberated mutant septins from apparent sequestration and allowed them to oligomerize with other, WT septins (Johnson et al. 2015). We focused on Ydj1 and Gim3 because published positive genetic interactions between ydj1Δ or gim3Δ and TS septin alleles hinted at improved function of the mutant septin when the chaperone was removed (Costanzo et al. 2010). In fact, however, the
double-mutant cells were no more functional than either single mutant; they were merely less dysfunctional than one would have expected if each mutation independently compromised proliferation (Costanzo et al. 2010). Our finding that the Hsp90 inhibitor radicicol promotes nuclear localization of mutant p53 is conceptually similar, if we interpret it as p53 liberation from cytosolic chaperone sequestration but without fixing the folding problems that compromise function.

Indeed, our observation that radicicol also drives WT and R273H molecules of p53 into the nucleus but actually reduces overall p53 function (Figure 7) may explain the unexplained finding (Godon et al. 2005) that various forms of cellular stress (radiation, cadmium, and mercury) promote localization of p53 to the yeast nucleus. If these stressors (all of which are known to induce the heat shock response) generate misfolded or damaged proteins, those proteins may exceed the sequestration capacity of the cytosolic chaperone machinery, and liberate misfolded p53 molecules to enter the nucleus and interfere with the function of properly folded p53. Such a mechanism would be reminiscent of the way proteostatic stress liberates Hsf1 from cytosolic Hsp70–Hsp90 sequestration and allows Hsf1 to trimerize, accumulate in the nucleus and activate chaperone gene expression (Morimoto 1998). Not all ways of inhibiting chaperone sequestration have the same effect, however: deleting the gene encoding the small heat shock protein Hsp26 rescues the function of p53(R273H) expressed in yeast (Singh et al. 2010). Presumably, p53(R273H) is able to achieve a functional conformation without Hsp26 assistance, whereas Hsp90 contribution to p53 folding is indispensable. It follows that liberation of nonfunctional p53 molecules might have implications in chaperone inhibitor therapy. Chaperone upregulation in many tumors
promotes the growth of cancerous cells by enabling “chaperone addicted” oncogenes or otherwise providing proteostatic benefit (Whitesell and Lindquist 2005). In tumor cells, chaperone binding to some p53 mutants protects the mutants from proteolysis (Walerych et al. 2004; Muller et al. 2008). However, if some liberated mutants escape degradation, inhibiting chaperones could permit a shift to dominant-negative p53 activity.

Finally, our findings do not support a KADO model for the recessive behavior of p53(V272M). KADO predicts delayed arrival of mutant V272M molecules in the nucleus and delayed mixing with WT, together with a recessive phenotype at all temperatures. Instead we observed a thermodynamic blockade on the ability of the vast majority of V272M molecules to reach a conformational state competent for nuclear localization. Sparing of WT inhibition by p53(V272M) and p53(V272M R273H) was only achieved at 37°C, a temperature where the mutant was thermodynamically sequestered in the cytosol, rather than simply kinetically delayed in its nuclear arrival. For mutant septins, a poorly defined “window of opportunity” for hetero-oligomerization in the G1 phase of the cell cycle enforces mutant exclusion by KADO (Schaefer et al. 2016). We suspected that co-translational dimerization might represent a p53 “window of opportunity”, whereby a slow-folding mutant would be forced to dimerize post-translationally and miss the chance to form mutant dimers that could mix with WT dimers. However, based on our findings it is unclear if in yeast WT p53 dimerization is co-translational, and there is likely no kinetic “deadline” by which a p53 molecule must fold in order to properly oligomerize. Taken together, this study highlights key differences between septin oligomerization and p53 oligomerization and the effects of TS mutations and chaperone
binding, which helps us understand the general principles underlying dominant and recessive mutant phenotypes.

Acknowledgements

We thank Jeff Moore (University of Colorado Anschutz Medical Campus) for strains yJM3164 and yJM1838. We thank Chandra Tucker (University of Colorado Anschutz Medical Campus) for strain TH5; plasmids HSF1∆N, Pdfr1-DH-p53-FR, and Pdfr1-DH-p53(Y220C)-FR; and access to the Yeast ORF collection. We thank Mark Johnston (University of Colorado Anschutz Medical Campus) for access to the Yeast Deletion collection. We thank Peter Kaiser (University of California Irvine School of Medicine) for strains RBy33 and RBy159. We thank Richard Iggo for plasmid pLS76. We thank Galit Lahav (Harvard Medical School) for plasmids p662, p663, p665, p666, p667, p668, p675, p678, and p679. We thank Bert Vogelstein for plasmids pCMV-p53(R249S) (Addgene plasmid #16438; http://n2t.net/addgene:16438; RRID:Addgene_16438) and RS314-H (Addgene plasmid #17541; http://n2t.net/addgene:17541; RRID:Addgene_17541).

Funding and additional information

This work was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award 5R01GM124024 (to M.A.M.) and Award T32GM008730 (to A.S.D), by the Alzheimer’s Association under award NIRGD-12-241119, and by the Paul R. Ohara II Seed Grant Program and University of Colorado
Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Abbreviations and nomenclature

BiFC = bimolecular fluorescence complementation
DHFR = dihydrofolate reductase
KADO = kinetic allele discrimination in oligomerization
TS = temperature sensitive
WT = wild type
YFP = yellow fluorescent protein

Tables

Table 1 Yeast Strains
Table 2 Oligos
Table 3 Plasmids
Table 4 Septin–chaperone interactions assayed by BiFC
Table 5 p53–chaperone interactions assayed by BiFC

Figure legends
Figure 1. Bimolecular fluorescence complementation reveals septin–chaperone interactions in living cells. (A) Graphical summary of interactions between V_C-tagged septins and V_N-tagged cytosolic chaperones in diploid cells co-expressing untagged versions of all proteins. Chaperones that generated discrete fluorescence signal are in bold and underlined. See Table 4 for full dataset. Chaperones are color-coded by family and chaperones from the same family are drawn as the same shape. (B) Micrographs showing discrete fluorescence signals in diploid cells co-expressing Cdc10-V_C or the D182N mutant derivative with Ydj1-V_N or Cct6-V_N. The fluorescence images were inverted to facilitate viewing. Red arrowheads point to bud neck signal. Strains were diploids made by mating YO1057 with H00385 or H00382. (C) Cellular BiFC signal away from bud necks was quantified for diploid cells co-expressing Cdc10-V_C or Cdc10(D182N)-V_C and the indicated V_N-tagged chaperones. The number of cells analyzed for each genotype ranged from 113 to 460. Strains were diploids made by mating YO1057 or H06530 with H00382, H00392, H00390, H00398, H00384, H00394, H00385, or H00396. (D) For the data in (C), the median difference for comparisons between Cdc10(D182N)-VC and Cdc10-VC are shown in Cumming estimation plots as bootstrap sampling distributions. Each median difference is depicted as a dot. Each 95% confidence interval is indicated by the ends of the vertical error bars. (E) Representative images of diploid cells (strain M-1622 mated with H00398 or H00385) carrying cdc3(G365R) at one allele of CDC3 and WT CDC3 at the other, a V_N-tagged allele of the indicated chaperone at one allele of the chaperone gene locus and an untagged allele at the other, and a low-copy plasmid (G00521 or G00522) encoding...
Cdc3-V\textsubscript{C} or Cdc3(G365R)-V\textsubscript{C}. Plot at right shows quantification of bud neck fluorescence. 20 cells were analyzed for each genotype.

Figure 2. Co-expression of WT p53 fails to rescue the folding defects of the p53(V272M) mutant at high temperature. (A) Illustration of split dihydrofolate reductase (DHFR) p53 construct. TH5 cells are $\Delta dfr1$ and proliferate only when exogenous dTMP is present or p53 folds well enough to reconstitute active DHFR. (B) Colony growth at 30° and 37° by fivefold serially diluted TH5 cells carrying plasmids encoding the indicated p53 split DHFR alleles spotted on solid synthetic medium selective for the plasmids and lacking dTMP. Plasmids were G00598, “DHFR-WT”; G00604, “DHFR-V272M”; G00599, “DHFR-Y220C”; G00605, “DHFR-R273H”. (C) As in (B), but with cells also carrying a plasmid encoding WT p53 (pLS76) or an empty vector (“EV”, pRS415) on solid medium selective for the plasmids and either containing “+” or lacking “-” dTMP at 37°. (D) As in (C) except cells were grown in liquid medium without dTMP at 37° in a flat-bottom 96-well plate. Optical density at 600 nm was recorded at 5-minute intervals over 21 hours for 6 replicate cultures per genotype and plotted as mean (thick line) and upper and lower bounds of the 95% confidence interval (thin lines).

Figure 3. Effects of the V272M and R273H mutations on p53 nuclear localization, oligomerization, and function. (A) Nuclear mKate2 fluorescence in yJM3164 cells carrying a plasmid encoding $GAL1/10$-driven p53-mKate2-V\textsubscript{C} (H3.29) or p53(V272M)-mKate2-V\textsubscript{C} (pMAM67). Cells were imaged at the indicated time points following galactose induction at 24°. Blue lines denote median values. The schematic illustrates
accumulation of nuclear and cytosolic p53 over time. (B) Steady-state nuclear mKate2 fluorescence of yJM3164 cells carrying plasmids encoding the indicated alleles of p53-mKate2-Venus and grown to mid-log phase at 30° or 37°. Blue lines denote median values. Vertical line separates 30° from 37°. Plasmids were pMAM85, “WT”; pMAM87, “R273H”; pMAM86, “V272M”; pMAM104, “V272M R273H”. (C) As in (B) but with cells of strain Y0134 co-expressing two p53 alleles fused to mKate2 and the indicated Venus fragments. Venus fluorescence here indicates physical interaction (BiFC). Left plot, total p53 (mKate2) and BiFC (Venus) nuclear fluorescence. Right plot, BiFC (Venus) nuclear signal normalized to total p53 (mKate2) nuclear signal. Blue lines denote median values. Vertical lines separate genotypes. Bold vertical lines separate 30° from 37°. Plasmids were pMAM98, “WT-VN”; pMAM82, “WT-VC”; pMAM84, “R273H-VC”; pMAM83, “V272M-VC”. (D) Schematic of p53 transcriptional reporter strains RBy33 and RBy159. Binding of properly folded p53 to a repressed promoter activates transcription of the *URA3* gene product, leading to colony growth on medium lacking uracil, or inhibition of growth on medium containing 5-fluoro-orotic acid (FOA). (E) Colony growth at 30° and 37° by RBy33 cells carrying plasmids encoding the indicated alleles of p53 on medium selective for the plasmids “-Leu” or selective for the plasmid and p53 reporter activity “-Leu -Ura”. Plasmids were pLS76, “WT”; pMAM69, “V272M”; pMAM79, “R273H”; pMAM77, “V272M R273H”. (F) Colony growth at 30° and 37° by diploid cells carrying plasmids encoding the indicated alleles of p53, together with WT p53 plasmid, on solid medium selective for the plasmids “-Leu -Trp” or selective for the plasmids and counter-selective for p53 reporter activity “-Leu -Trp + FOA”. Plasmids were pMAM78 and pLS76, “WT”; pMAM69, “V272M”; pMAM79, “R273H”; pMAM77, “V272M R273H”.
Strains were diploids made by mating RBy33 cells carrying pLS76, pMAM69, pMAM79, or pMAM77 with RBy159 cells carrying pMAM78.

Figure 4. Mutations to Leu344 do not specifically perturb p53 oligomerization in the context of expression in yeast. (A) Schematic of oligomerization-disrupting mutants and expected p53 BiFC results. Left, L344 mutations destabilize higher-order p53 oligomerization. Alanine substitution yields dimers but not tetramers and proline substitution yields monomers only. Right, co-expression with co-translational dimerization of p53(L344A)-mKate2-VN and p53(L344A)-mKate2-VC results in VN + VN and VC + VC homodimers, neither of which reconstitute Venus. Venus fluorescence is only observed upon tetramer formation. Adapted from (Gaglia and Lahav 2014). (B) Total p53 (mKate2) and BiFC (Venus) nuclear fluorescence (left plot) as well as BiFC (Venus) nuclear signal normalized to total p53 (mKate2) nuclear signal (right plot) of Y0134 cells carrying plasmids encoding the indicated p53 BiFC alleles. Cells were grown to mid-log phase at 37˚ prior to imaging. Blue lines denote median values. Vertical lines separate genotypes. Plasmids were pMAM98, “WT-VN”; pMAM82, “WT-VC”; pMAM99, “L344A-VN”; pMAM91, “L344A-VC”; pMAM100, “L344P-VN”; pMAM93, “L344P-VC”. (C) Representative micrographs showing nuclear localization of p53(L344A) and p53(L344P) (mKate2 fluorescence, inverted to facilitate viewing) in BiFC experiments. Cells were grown to mid-log phase at 37˚ prior to imaging. Plasmids were pMAM99, “L344A-mKate2-VN”; pMAM91, “L344A-mKate2-VC”; pMAM100, “L344P-mKate2-VN”; pMAM93, “L344P-mKate2-VC”. (D) JTY4202 cells carrying plasmids encoding the indicated alleles of p53 were grown to mid-log phase at 30˚ and lysed.

Figure 5. Cytosolic chaperone-p53 interactions in living cells. (A) Representative micrographs of p53–chaperone BiFC interactions in cells cultured at 30° and expressing Hsp82-VN, Sis1-VN, or Cct7-VN and carrying plasmids encoding the indicated p53-mKate2-VC alleles. Total p53 (mKate2) fluorescence images were false-colored blue and BiFC (Venus) fluorescence images were false-colored orange. Prior to overlay, brightness and contrast were adjusted equivalently for each set of images. Plasmids were pMAM110, “WT”, pMAM112, “R273H”; pMAM111, “V272M”. Strains were diploids made by mating BY4742 cells carrying the plasmids with H00398, H06680, or H00383. (B) BiFC (Venus) signal normalized to total p53 (mKate2) signal in cells cultured at 30° carrying plasmids encoding the indicated p53-mKate2-VC alleles together with the indicated VN-tagged chaperone. Blue lines denote median values. Vertical lines group the samples imaged with the same settings (LED intensity and exposure time). The subcellular location where the BiFC interaction was quantified is indicated below.

Figure 6. Overexpression of specific chaperones inhibits p53(V272M) function. (A) Colony growth at 30˚C of fivefold serially diluted diploid cells carrying plasmids encoding the indicated alleles of p53, together with the indicated GAL1/10-driven chaperone plasmid or an empty vector, on solid galactose medium selective for the plasmids “-Leu-Trp” or selective for the plasmids and p53 reporter activity “-Leu -Trp -Ura”. Plasmids were pLS76, “WT”; pMAM69, “V272M”; pRS424 and pRS314, “Empty Vector”; G00630, “Hsp82”; G00799, “Hsc82”; G00633, “Ssa2”; G00789, “Ssa4”; G00632, “Sis1”; G00353, “Ydj1”; G00061, “Hsf1∆N”; G00631, “Hsp104”; G00634, “Ssb2”; G00620, “Cct7”; G00635, “Zuo1”; G00627, “Hsp12”; G00628, “Hsp26”; G00629, “Hsp31”. Strains were diploids made by mating RBy33 cells carrying pLS76 or pMAM69 with RBy159 cells carrying the GAL1/10-driven chaperone plasmid or empty vector. (B) SDS-PAGE and immunoblot analysis of total protein extracts from diploid cells carrying a plasmid encoding p53(V272M) (pMAM69) together with a GAL1/10-driven Hsp82 plasmid (G00630), a GAL1/10-driven Hsc82 plasmid (G00799), or an empty vector (pRS424, “EV”) grown to mid-log phase at 30˚C in medium with galactose to induce overexpression. The membrane was first probed for hexahistidine-tagged Hsp82 and Hsc82 and subsequently stained with Ponceau. (C) Ratio of nuclear to cytosolic mKate2
signal in diploid cells carrying a plasmid encoding p53(V272M)-mKate2-Venus together with the indicated GAL1/10-driven chaperone plasmid or an empty vector. Cells were grown to mid-log phase at 30° with galactose to overexpress chaperones prior to imaging. “Toxic” denotes chaperones whose overexpression renders p53 inhibitory to colony growth independent of p53 function. Blue lines denote median values. Plasmids were pMAM86, “p53(V272M)”; pRS424, “Empty Vector”; G00353, “Ydj1”; G00630, “Hsp82”; G00633, “Ssa2”; G00799, “Hsc82”; G00634, “Ssb2”; G00631, “Hsp104”; G00632, “Sis1”; G00627, “Hsp12”; G00635, “Zuo1”; G00629, “Hsp31”; G00789, “Ssa4”; G00628, “Hsp26”; G00620, “Cct7”. Strains were diploids made by mating yJM3164 cells carrying pMAM86 with yJM1838 cells carrying the indicated GAL1/10-driven chaperone plasmid or empty vector. (D) Top, nuclear and cytosolic mKate2 fluorescence in diploid cells carrying a plasmid encoding p53(V272M)-mKate2-Venus (pMAM86) and an empty vector (“EV”, pRS424) or a plasmid encoding tandem affinity purification-(TAP-)tagged Sis1 (G00632). Cells were grown to mid-log phase at 30° with galactose to overexpress Sis1 prior to imaging. A single outlier (Y=115) was omitted from the EV Nucleus dataset to facilitate viewing on the Y-axis. Blue lines denote median values. Strains were diploids made by mating yJM3164 cells carrying pMAM86 to yJM1838 cells carrying G00632 or pRS424. Bottom, as in (B) but with diploid cells carrying plasmids encoding the indicated alleles of p53 together with the Sis1-TAP plasmid or an empty vector, as in (A) or the plot above, and probed for p53, the cytosolic protein Pgk1, and hexahistidine-tagged Sis1-TAP. Asterisk, proteolytic degradation products derived from p53-mKate2-Venus. (E) Representative micrographs of vacuolar mKate2 signal in diploid cells expressing p53(V272M)-mKate2-Venus (pMAM86) and GAL1/10-driven Sis1 (G00632).
or GAL1/10-driven ZuO1 (G00616), prepared as in (C). Nucleus (Htb2-mNeon) fluorescence images were false-colored blue and p53 (mKate2) fluorescence images were false-colored orange. Prior to overlay, brightness and contrast were adjusted equivalently for each set of images. Strain was a diploid made by mating yJM3164 cells carrying pMAM86 to yJM1838 cells carrying G00632 or G00616.

Figure 7. Cytosolic compartmentalization of p53 modulates recessive behavior. (A) Ratio of nuclear to cytosolic mKate2 signal in yJM3164 cells carrying plasmids encoding the indicated alleles of p53-mKate2-Venus. Cells were grown to mid-log phase at 37°C with 2.5 µg/mL radicicol or equivalent volume of DMSO prior to imaging. Blue lines denote median values. Vertical lines separate genotypes. Plasmids were pMAM85, “WT”; pMAM86, “V272M”; pMAM87, “R273H”; pMAM104, “V272M R273H”. (B) RBy33 cells carrying plasmids encoding the indicated alleles of p53 were grown to mid-log phase at 30°C and lysed. Proteins were separated by SDS–PAGE. After electrophoretic transfer, the membrane was probed for p53 and the cytosolic protein Pgk1. Plasmids were pLS76, “WT”; pMAM69, “V272M”; pMAM79, “R273H”; pMAM77, “V272M R273H”. (C) Representative micrographs of vacuolar mKate2 signal in yJM3164 cells carrying plasmids encoding the indicated alleles of p53-mKate2-Venus and treated with 5 µg/mL radicicol, prepared as in (A). Nucleus (Htb2-mNeon) fluorescence images were false-colored blue and p53 (mKate2) fluorescence images were false-colored orange. Prior to overlay, brightness and contrast were adjusted equivalently for each set of images. Plasmids were pMAM85, “WT”; pMAM86, “V272M”; pMAM87, “R273H”; pMAM104, “V272M R273H”. (D) Colony growth at 37°C of diploid cells carrying plasmids encoding
the indicated alleles of p53, together with WT p53 plasmid, on solid medium selective for the plasmids “-Leu -Trp” or selective for the plasmids and counter-selective for p53 reporter activity “-Leu -Trp + FOA” and containing the indicated concentration of radicicol or equivalent volume of DMSO. Magnified images were inverted and adjusted for brightness and contrast in an equivalent manner. Plasmids were pLS76, “WT”; pMAM69, “V272M”; pMAM79, “R273H”; pMAM77, “V272M R273H”. Strains were diploids made by mating RBy33 cells carrying pLS76, pMAM69, pMAM79, or pMAM77 with RBy159 cells carrying pMAM78.

Figure S1. Characterization of BiFC signals generated from septin–chaperone interactions. (A) Log-phase cultures of cells of the indicated genotypes were imaged for transmitted light and YFP fluorescence. The transmitted light images were used to generate cell outlines (dashed white lines). Yellow arrowheads indicate discrete BiFC signals. “CDC3-V_C CCT7-V_N” indicates the haploid strain H00526. Other strains were diploids made by mating the haploid strains H00383, H00384, H00387, H00377, YO802 and YO685 in appropriate combinations. (B) Diploid cells co-expressing Cdc10-V_C and Cct7-V_N made by mating strains H00383 and YO1057 and carrying a plasmid encoding Act1(E364K)-mCherry under control of the GAL1/10 promoter (pDK304) were cultured in galactose-containing medium to drive Act1(E364K)-mCherry overexpression and shifted to 37°C for 2 hours, to drive Act1(E364K)-mCherry aggregation, prior to imaging. Shown is a representative overlay image of the transmitted light, YFP, and mCherry signals. (C) Representative images showing cell outlines overlaid on transmitted images (inverted and false-colored blue) used for measuring intracellular fluorescence. (D)
Cellular BiFC signal away from bud necks was quantified for diploid cells co-expressing Cdc10-V_C or Cdc10(D182N)-V_C and the indicated V_N-tagged chaperones. The number of cells analyzed for each genotype ranged from 46 to 460. Strains were diploids made by mating YO1057 or H06530 with H00381, H00383, H00399, H00397, H00393, H00389, H00388, H00403, H00404, or H00395. (E) As in (C) but for the indicated chaperones and the values plotted represent the ratio of signal to area for each cell. Strains were diploids made by mating YO1057 or H06530 with H00382, H00392, H00390, H00398, H00384, H00394, H00385, or H00396.

Figure S2. Effect size estimations of changes in p53 fluorescence signals. (A) For the data in Figure 3A, the median difference for nuclear mKate2 comparisons between p53(V272M) and WT p53 are shown in Cumming estimation plots as bootstrap sampling distributions. Each median difference is depicted as a dot. Each 95% confidence interval is indicated by the ends of the vertical error bars. (B) For the data in Figure 3B, the median difference for nuclear mKate2 comparisons between the indicated p53 mutants and WT p53 are shown in Cumming estimation plots as bootstrap sampling distributions. Each median difference is depicted as a dot. Each 95% confidence interval is indicated by the ends of the vertical error bars. (C) For the data in Figure 3C, the median difference for nuclear total p53 (mKate2) comparisons, nuclear BiFC (Venus) comparisons, and nuclear BiFC/total p53 comparisons between the indicated co-expressed BiFC alleles are shown in Cumming estimation plots as bootstrap sampling distributions. Each median difference is depicted as a dot. Each 95% confidence interval is indicated by the ends of the vertical error bars. (D) For the
data in Figure 4B, the median difference for nuclear total p53 (mKate2) comparisons, nuclear BiFC (Venus) comparisons, and nuclear BiFC/total p53 comparisons between the indicated co-expressed BiFC alleles are shown in Cumming estimation plots as bootstrap sampling distributions. Each median difference is depicted as a dot. Each 95% confidence interval is indicated by the ends of the vertical error bars. (E) For the data in Figure 5B, the median difference for BiFC/total p53 comparisons between p53(R273H) or p53(V272) and WT p53 are shown in Cumming estimation plots as bootstrap sampling distributions. Each median difference is depicted as a dot. Each 95% confidence interval is indicated by the ends of the vertical error bars. (F) For the data in Figure 6C, the median difference for nuclear/cytosolic mKate2 comparisons between chaperone-overexpressing cells and empty vector are shown in Cumming estimation plots as bootstrap sampling distributions. Each median difference is depicted as a dot. Each 95% confidence interval is indicated by the ends of the vertical error bars. (G) For the data in Figure 6D, the median difference for nuclear and cytosolic mKate2 comparisons between Sis1-overexpressing cells and empty vector are shown in Cumming estimation plots as bootstrap sampling distributions. Each median difference is depicted as a dot. Each 95% confidence interval is indicated by the ends of the vertical error bars. (H) For the data in Figure 7A, the median difference for nuclear/cytosolic mKate2 comparisons between radicicol- and DMSO-treated cells are shown in Cumming estimation plots as bootstrap sampling distributions. Each median difference is depicted as a dot. Each 95% confidence interval is indicated by the ends of the vertical error bars.
Figure S3. Extended characterization of cytosolic chaperone-p53 interactions. (A) Representative micrographs of p53–chaperone BiFC interactions in cells expressing Hsc82-V_N, Hsp104-V_N, Ssa2-V_N, Ssb1-V_N, Ssb2-V_N, Ydj1-V_N, Zuo1-V_N, Hsp12-V_N, or in cells expressing empty vector (“No BiFC Control”), and carrying plasmids encoding the indicated p53-mKate2-V_C alleles. Total p53 (mKate2) fluorescence images were false-colored blue and BiFC (Venus) fluorescence images were false-colored orange. Prior to overlay, brightness and contrast were adjusted equivalently for each set of images. Plasmids were pMAM110, “WT”, pMAM112, “R273H”; pMAM111, “V272M”; pRS316 (not labeled). Strains were diploids made by mating BY4742 cells carrying the p53-mKate2-V_C plasmids with H00399, “Hsc82”; H00384, “Hsp104”; H00388, “Ssa2”; H00395, “Ssb1”; H00394, “Ssb2”; H00385, “Ydj1”; H00396, “Zuo1”; or H06684, “Hsp12”. “No BiFC Control” was a diploid made by mating BY4742 cells carrying the p53-mKate2-V_C plasmids with BY4741 cells carrying pRS316. (B) Total p53 (mKate2) and BiFC (Venus) fluorescence in cells cultured at 30˚C carrying plasmids encoding the indicated p53-mKate2-V_C alleles together with the indicated V_N-tagged chaperone. Blue lines denote median values. Vertical lines group the samples imaged with the same settings (LED intensity and exposure time). The subcellular location where the BiFC interaction was quantified is indicated below. Plasmids were pMAM110, “WT”, pMAM112, “R273H”; pMAM111, “V272M”. Strains were diploids made by mating BY4742 cells carrying the plasmids with H00399, “Hsc82”; H00388, “Ssa2”; H00383, “Cct7”; H00384, “Hsp104”; H00398, “Hsp82”; H00395, “Ssb1”; H00394, “Ssb2”; H06680, “Sis1”; H00385, “Ydj1”; H00396, “Zuo1”; or H06684, “Hsp12”.

58
Figure S4. Raw nuclear and cytosolic p53 levels in chaperone-overexpressing cells and Hsp90-inhibited cells. (A) Nuclear and cytosolic mKate2 fluorescence in diploid cells carrying a plasmid encoding p53(V272M)-mKate2-Venus together with the indicated GAL1/10-driven chaperone plasmid or an empty vector. Cells were grown to mid-log phase at 30˚C with galactose to overexpress chaperones prior to imaging. Blue lines denote median values. Vertical lines separate genotypes. Plasmids were pMAM86, “p53(V272M)”; pRS424, “Empty Vector”; G00353, “Ydj1”; G00630, “Hsp82”; G00633, “Ssa2”; G00799, “Hsc82”; G00634, “Ssb2”; G00631, “Hsp104”; G00632, “Sis1”; G00627, “Hsp12”; G00635, “Zuo1”; G00629, “Hsp31”; G00789, “Ssa4”; G00628, “Hsp26”; G00620, “Cct7”. Strains were diploids made by mating yJM3164 cells carrying pMAM86 with yJM1838 cells carrying the indicated GAL1/10-driven chaperone plasmid or empty vector. (B) For the data in (A), the median difference for nuclear mKate2 comparisons between chaperone-overexpressing cells and empty vector are shown in Cumming estimation plots as bootstrap sampling distributions. Each median difference is depicted as a dot. Each 95% confidence interval is indicated by the ends of the vertical error bars. (C) Nuclear and cytosolic mKate2 fluorescence in yJM3164 cells carrying plasmids encoding the indicated alleles of p53-mKate2-Venus. Cells were grown to mid-log phase at 37˚C with the indicated concentration of radicicol or equivalent volume of DMSO prior to imaging. Blue lines denote median values. Vertical lines separate genotypes. Plasmids were pMAM85, “WT”; pMAM86, “V272M”; pMAM87, “R273H”; pMAM104, “V272M R273H”. (D) For the data in (C), the median difference for nuclear mKate2 comparisons between radicicol- and DMSO-treated cells are shown in Cumming estimation plots as bootstrap sampling distributions. Each median difference
is depicted as a dot. Each 95% confidence interval is indicated by the ends of the vertical error bars.

LITERATURE CITED

https://doi.org/10.1074/jbc.M100200200

https://doi.org/10.1534/genetics.104.037168

https://doi.org/10.1007/s10545-006-0251-x

https://doi.org/10.1074/jbc.M604209200

Ho J., T. Tumkaya, S. Aryal, H. Choi, and A. Claridge-Chang, 2019 Moving beyond P
https://doi.org/10.1038/s41592-019-0470-3

Hu C.-D., Y. Chinenov, and T. K. Kerppola, 2002 Visualization of interactions among
bZIP and Rel family proteins in living cells using bimolecular fluorescence
2765(02)00496-3

Huang P., M. Gautschi, W. Walter, S. Rospert, and E. A. Craig, 2005 The Hsp70 Ssz1
Mol. Biol. 12: 497–504. https://doi.org/10.1038/nsmb942

https://doi.org/10.1038/nature02026

IARC p53 Database (p53.iarc.fr),

Inga A., and M. A. Resnick, 2001 Novel human p53 mutations that are toxic to yeast
can enhance transactivation of specific promoters and reactivate tumor p53
mutants. Oncogene 20: 3409–3419. https://doi.org/10.1038/sj.onc.1204457

Cytosolic chaperones mediate quality control of higher-order septin assembly in
Johnson C. R., M. G. Steingesser, A. D. Weems, A. Khan, A. Gladfelter, et al., 2020

Noncanonical DNA motifs as transactivation targets by wild type and mutant p53.
PLoS Genet 4: e1000104. https://doi.org/10.1371/journal.pgen.1000104

https://doi.org/10.1038/nature07195

https://doi.org/10.1146/annurev.biophys.37.032807.125842

https://doi.org/10.1101/gr.231860.117

https://doi.org/10.1038/nature04670

https://doi.org/10.1534/genetics.105.054221

Schaefer R. M., L. R. Heasley, D. J. Odde, and M. A. McMurray, 2016 Kinetic partitioning during de novo septin filament assembly creates a critical G1 "window of opportunity" for mutant septin function. Cell Cycle 0. https://doi.org/10.1080/15384101.2016.1196304

https://doi.org/10.1038/nmeth.2019

https://doi.org/10.1074/jbc.271.25.15084

https://doi.org/10.1073/pnas.1107421108

https://doi.org/10.1093/femsyr/fow083

https://doi.org/10.1128/mcb.10.12.6565

Singh L. R., S. Gupta, N. H. Honig, J. P. Kraus, and W. D. Kruger, 2010 Activation of mutant enzyme function in vivo by proteasome inhibitors and treatments that
induce Hsp70. PLoS Genet 6: e1000807.

https://doi.org/10.1371/journal.pgen.1000807

https://doi.org/10.1091/mbc.E12-05-0396

https://doi.org/10.1101/2020.11.05.370247

Figure 2

A

B

DHFR-WT
DHFR-V272M
DHFR-Y220C
DHFR-R273H

30˚C -dTMP
37˚C -dTMP

DHFR-WT + EV
DHFR-WT + WT
DHFR-V272M + EV
DHFR-V272M + WT
DHFR-Y220C + EV
DHFR-Y220C + WT

C

37˚C +dTMP
37˚C -dTMP

D

DHFR-WT + EV
DHFR-WT + WT
DHFR-V272M + EV
DHFR-V272M + WT
DHFR-Y220C + EV
DHFR-Y220C + WT

Absorbance600

Time (hr)
Figure 3

A

![Diagram showing changes in nuclear fluorescence (A.U.) over time since induction (hr) for WT and various mutant combinations under 30°C and 37°C conditions.](image)

B

![Bar graph comparing nuclear fluorescence (A.U.) at 30°C and 37°C for WT and various mutant combinations.](image)

C

![Graph showing total p53 BiFC and nuclear fluorescence (A.U.) ratios under 30°C and 37°C conditions for WT and various mutant combinations.](image)

D

![Diagram illustrating the repressed promoter with URA3 and p53 binding site.](image)

E

![Plate assay showing colony growth for different WT-V272M-R273H combinations under Leu, Leu-Ura, Leu-Trp, and Leu-Trp + FOA conditions at 30°C and 37°C.](image)

F

![Plate assay showing colony growth for different WT-V272M-R273H combinations under Leu-Trp and Leu-Trp + FOA conditions at 30°C and 37°C.](image)
Figure 4

A

B

C

D

E

Figure 4

A. Schematic representation of protein constructs: WT, L344A, L344P, VN, VC, mKate2, Venus.

C. Western blot images showing p53-mKate2 and L344A-mKate2.

D. Western blot images showing nuclear fluorescence (A.U.).

Figure 5

A

Hsp82 Total p53 BiFC Overlay

WT

R273H

V272M

Sis1 Total p53 BiFC Overlay

WT

R273H

V272M

Cct7 Total p53 BiFC Overlay

WT

R273H

V272M

B

Hsc82 Hsp82 Ssa2 Cct7 Hsp104 Hsp82 Ssb1 Ssb2 Sis1 Ydj1 Zuo1 Hsp12 Hsp12

Diffuse cytosolic Punctate cytosolic Diffuse cytosolic Nuclear

BiFC/total p53

0.0 1.5 3.0 4.5 6.0 7.5

CC-BY-NC 4.0 International license available under a CC-BY-NC 4.0 International license.
Figure 6

A

WT + Empty Vector
V272M + Empty Vector
WT + Hsp82
V272M + Hsp82
WT + Hsc82
V272M + Hsc82
WT + Empty Vector
V272M + Empty Vector
WT + Ssa2
V272M + Ssa2
WT + Ssa4
V272M + Ssa4
WT + Empty Vector
V272M + Empty Vector
WT + Sis1
V272M + Sis1
WT + Ydj1
V272M + Ydj1
WT + Empty Vector
V272M + Empty Vector
WT + Hsf1ΔN
V272M + Hsf1ΔN

B

6xHis
Ponceau

Hsp82
Hsp82
EV
Hsp82
Hsp82
EV

C

Nuclear/cytosolic V272M

D

Ev Nucleus
Sis1 Cytosol
Sis1 Nucleus

Toxic
Non-toxic

E

Htb2
p53
Overlay

V272M + Sis1
V272M + Zuo1

Hsp82
Hsp26
Ssa4
Cct7

Hsp104
Ssa2
Ydj1
Zuo1
Hsp31

WT + Hsp104
V272M + Hsp104
WT + Ssb2
V272M + Ssb2
WT + Cct7
V272M + Cct7
WT + Zuo1
V272M + Zuo1
WT + Hsp12
V272M + Hsp12
WT + Hsp26
V272M + Hsp26
WT + Hsp31
V272M + Hsp31

Hsf1ΔN

p53-mKate2-Venus

p53
Pkg1
Figure 7

A

DMSO 2.5 µg/mL Radicicol
5 µg/mL Radicicol

B

WT + WT
WT + V272M
WT + R273H
V272M R273H

C

Htb2 p53 Overlay

D

WT + WT
WT + V272M
WT + R273H
WT + V272M R273H

-Leu -Trp
+ FOA + DMSO
+ FOA + 2.5 µg/mL Radicicol + 5 µg/mL Radicicol

+Nuclear/cytosolic p53

0.75 1.25 1.75 2.25 2.75

WT V272M R273H V272M R273H

+ FOA

+ 2.5 µg/mL Radicicol

+ 5 µg/mL Radicicol

+ FOA

+ DMSO
Figure S9: Hsc82, Hsp104, Ssa2, Ssb1, Ssb2, Ydj1, Zuo1 and Hsp12 with WT, R273H, V272M combinations. BiFC and Overlay images shown.
Figure S9. Continued

A

No BiFC Control Total p53 BiFC Overlay

WT

R273H

V272M

B

- WT Total p53
- WT BiFC
- R273H Total p53
- R273H BiFC
- V272M Total p53
- V272M BiFC

Fluorescence (A.U.)

Hsc82 Hsc82 Ssa2 Cct7 Hsp104 Hsp82 Ssb1 Ssb2 Sis1 Ydj1 Zuo1 Hsp12 Hsp12

Diffuse cytosolic Punctate cytosolic Diffuse cytosolic Nuclear
Figure S4

A

B

C

D

WT V272M R273H V272M R273H

Cct7 Zuo1 Sis1 Hsp104 Hsp82 Each Minus

Vector

Radicicol 2.5 µg/mL Nuclear p53

DMSO Nuclear p53

Radicicol 2.5 µg/mL Cytosolic p53

DMSO Cytosolic p53

Radicicol 5 µg/mL Nuclear p53

Radicicol 5 µg/mL Cytosolic p53

WT Rad 2.5

Minus WT DMSO

V272M Rad 2.5

Minus V272M DMSO

R273H Rad 2.5

Minus R273H DMSO

V272M R273H

Minus V272M R273H DMSO

WT Rad 5

Minus WT DMSO

V272M Rad 5

Minus V272M DMSO

R273H Rad 5

Minus R273H DMSO

V272M R273H Rad 5

Minus V272M R273H DMSO
<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>BY4741</td>
<td>MATa his3Δ1 leu2Δ0 met25Δ0 ura3Δ0</td>
<td>Saccharomyces cerevisiae (ATCC® 201388™)</td>
</tr>
<tr>
<td>BY4742</td>
<td>MATa his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0</td>
<td>Saccharomyces cerevisiae (ATCC® 201389™)</td>
</tr>
<tr>
<td>MMY0266</td>
<td>MATa cdc10(D182N)-Vc::KanMX his3Δ1 leu2Δ0 met25Δ0 ura3Δ0</td>
<td>(Weems and McMurray 2017)</td>
</tr>
<tr>
<td>YO802</td>
<td>MATa his3 leu2 lys2 trp1 ura3 CDC12-Vc::KanMX</td>
<td>(Oh et al. 2013)</td>
</tr>
<tr>
<td>YO685</td>
<td>MATa his3 leu2 lys2 trp1 ura3 CDC3-Vc::HIS3MX</td>
<td>(Oh et al. 2013)</td>
</tr>
<tr>
<td>YO1057</td>
<td>MATa his3 leu2 lys2 trp1 ura3 CDC10-Vc::TRP1</td>
<td>(Oh et al. 2013)</td>
</tr>
<tr>
<td>YO671</td>
<td>MATa his3 leu2 lys2 trp1 ura3 CDC11-Vc::HIS3MX</td>
<td>(Oh et al. 2013)</td>
</tr>
<tr>
<td>YO619</td>
<td>MATa his3 leu2 lys2 trp1 ura3 SHS1-Vc::HIS3MX</td>
<td>(Oh et al. 2013)</td>
</tr>
<tr>
<td>M-1622</td>
<td>MATa his3 leu2 lys2 trp1 ura3 cdc3(G365R)</td>
<td>(Nagaraj et al. 2008)</td>
</tr>
<tr>
<td>RBY33</td>
<td>MATa his3Δ200 leu2Δ1 lys2Δ202 trp1Δ63 1cUAS53::URA3</td>
<td>(Brachmann et al. 1996)</td>
</tr>
<tr>
<td>RBY159</td>
<td>MATa his3Δ200 leu2Δ1 lys2Δ202 trp1Δ63 1cUAS53::URA3</td>
<td>(Brachmann et al. 1996)</td>
</tr>
<tr>
<td>yJM3164</td>
<td>MATa his3Δ200 HTB2-mNeonGreen::HIS3 leu2Δ1 lys2-801 trp1Δ63 ura3-52</td>
<td>Gift from Jeff Moore</td>
</tr>
<tr>
<td>yJM1838</td>
<td>MATa his3Δ200 leu2Δ1 lys2-801 trp1Δ63 ura3-52</td>
<td>Gift from Jeff Moore</td>
</tr>
<tr>
<td>JTY4204</td>
<td>MATa gal2 leu2 pep4-3 prb1-1122 prc1-451 trp1Δ63 ura3</td>
<td>(Jones 1977)</td>
</tr>
<tr>
<td>TH5</td>
<td>MATa leu2-3,112 trp1 tup1 ura3-52 dfr1::URA3</td>
<td>(Huang et al. 1992)</td>
</tr>
<tr>
<td>Y0134</td>
<td>MATa his3Δ1 leu2Δ0 met25Δ0 trp1Δ::KanMX ura3Δ0</td>
<td>Saccharomyces Genome Deletion Project (Winzeler et al. 1999; Giaever et al. 2002)</td>
</tr>
<tr>
<td>H00398</td>
<td>MATa his3Δ1 HSP82-VN::KURA3 leu2Δ0 met25Δ0 ura3Δ0</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H00399</td>
<td>MATa his3Δ1 HSC82-VN::KURA3 leu2Δ0 met25Δ0 ura3Δ0</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H00384</td>
<td>MATa his3Δ1 HSP104-VN::KURA3 leu2Δ0 met25Δ0 ura3Δ0</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H00387</td>
<td>MATa his3Δ1 HSP104-VN::KURA3 leu2Δ0 met25Δ0 ura3Δ0</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H00388</td>
<td>MATa his3Δ1 leu2Δ0 met25Δ0 SSA2-VN::KURA3 ura3Δ0</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H00403</td>
<td>MATa his3Δ1 leu2Δ0 met25Δ0 SSA3-VN::KURA3 ura3Δ0</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H00404</td>
<td>MATa his3Δ1 leu2Δ0 met25Δ0 SSA4-VN::KURA3 ura3Δ0</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H00395</td>
<td>MAa his3Δ1 leu2Δ0 met25Δ0 SSB1-Vn::KIURA3 ura3Δ0</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H00394</td>
<td>MAa his3Δ1 leu2Δ0 met25Δ0 SSB2-Vn::KIURA3 ura3Δ0</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H00383</td>
<td>MAa C/CT7-Vn::KIURA3 his3Δ1 leu2Δ0 met25Δ0 ura3Δ0</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H00526</td>
<td>C/CT7-Vn::URA3 CDC3-V_C::HIS3MX</td>
<td>Spore clone from YO685 x H00383 cross</td>
</tr>
<tr>
<td>H04802</td>
<td>MAa GIM3-Vn::KIURA3 his3Δ1 leu2Δ0 met25Δ0 ura3Δ0</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H00385</td>
<td>MAa his3Δ1 leu2Δ0 met25Δ0 ura3Δ0 YDJ1-Vn::KIURA3</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H00396</td>
<td>MAa his3Δ1 leu2Δ0 met25Δ0 ura3Δ0 ZUO1-Vn::KIURA3</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H06680</td>
<td>MAa his3Δ1 leu2Δ0 met25Δ0 SIS1-Vn::KIURA3 ura3Δ0</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H06674</td>
<td>MAa APJ1-Vn::KIURA3 his3Δ1 leu2Δ0 met25Δ0 ura3Δ0</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H05926</td>
<td>MAa DPJ1-Vn::KIURA3 his3Δ1 leu2Δ0 met25Δ0 ura3Δ0</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H06675</td>
<td>MAa his3Δ1 leu2Δ0 met25Δ0 ura3Δ0 JJJ1-Vn::KIURA3</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H06685</td>
<td>MAa his3Δ1 leu2Δ0 met25Δ0 ura3Δ0 JJJ2-Vn::KIURA3</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H00400</td>
<td>MAa his3Δ1 leu2Δ0 met25Δ0 ura3Δ0 SSE2-Vn::KIURA3</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>Ho6681</td>
<td>MAa his3Δ1 leu2Δ0 met25Δ0 ura3Δ0 SSZ1-Vn::KIURA3</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H06682</td>
<td>MAa his3Δ1 leu2Δ0 met25Δ0 ura3Δ0 SWA2-Vn::KIURA3</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H06683</td>
<td>MAa his3Δ1 leu2Δ0 met25Δ0 ura3Δ0 SNO4-Vn::KIURA3</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H06684</td>
<td>MAa his3Δ1 leu2Δ0 met25Δ0 ura3Δ0 HSP12-Vn::KIURA3</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H04024</td>
<td>MAa his3Δ1 leu2Δ0 met25Δ0 ura3Δ0 HSP26-Vn::KIURA3</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H00397</td>
<td>MAa his3Δ1 HSP31-Vn::KIURA3 leu2Δ0 met25Δ0 ura3Δ0</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H00397</td>
<td>MAa his3Δ1 HSP32-Vn::KIURA3 leu2Δ0 met25Δ0 ura3Δ0</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H06677</td>
<td>MAa his3Δ1 HSP33-Vn::KIURA3 leu2Δ0 met25Δ0 ura3Δ0</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H06676</td>
<td>MAa his3Δ1 HSP42-Vn::KIURA3 leu2Δ0 met25Δ0 ura3Δ0</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H00401</td>
<td>MAa his3Δ1 leu2Δ0 met25Δ0 PAM18-Vn::KIURA3 ura3Δ0</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H00379</td>
<td>MAa CCT2-Vn::KIURA3 his3Δ1 leu2Δ0 met25Δ0 ura3Δ0</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H00380</td>
<td>MAa CCT3-Vn::KIURA3 his3Δ1 leu2Δ0</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>Registry</td>
<td>Strain Description</td>
<td>Library</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------</td>
<td>---------</td>
</tr>
<tr>
<td>H00380</td>
<td>MATa CCT4-V<sub>N</sub>::KIURA3 his3<sup>Δ1</sup> leu2<sup>Δ0</sup> met25<sup>Δ0</sup> ura3<sup>Δ0</sup></td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H00391</td>
<td>MATa GIM4-V<sub>N</sub>::KIURA3 his3<sup>Δ1</sup> leu2<sup>Δ0</sup> met25<sup>Δ0</sup> ura3<sup>Δ0</sup></td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H00390</td>
<td>MATa GIM5-V<sub>N</sub>::KIURA3 his3<sup>Δ1</sup> leu2<sup>Δ0</sup> met25<sup>Δ0</sup> ura3<sup>Δ0</sup></td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H00393</td>
<td>MATa PFD1-V<sub>N</sub>::KIURA3 his3<sup>Δ1</sup> leu2<sup>Δ0</sup> met25<sup>Δ0</sup> ura3<sup>Δ0</sup></td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H00389</td>
<td>MATa his3<sup>Δ1</sup> leu2<sup>Δ0</sup> met25<sup>Δ0</sup> ura3<sup>Δ0</sup> YKE2-V<sub>N</sub>::KIURA3</td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H00405</td>
<td>MATa his3<sup>Δ1</sup> leu2<sup>Δ0</sup> LHS1-V<sub>N</sub>::KIURA3 met25<sup>Δ0</sup> ura3<sup>Δ0</sup></td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H03367</td>
<td>MATa his3<sup>Δ1</sup> JID1-V<sub>N</sub>::KIURA3 leu2<sup>Δ0</sup> met25<sup>Δ0</sup> ura3<sup>Δ0</sup></td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H03970</td>
<td>MATa his3<sup>Δ1</sup> HLJ1-V<sub>N</sub>::KIURA3 leu2<sup>Δ0</sup> met25<sup>Δ0</sup> ura3<sup>Δ0</sup></td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H05688</td>
<td>MATa his3<sup>Δ1</sup> SEC63-V<sub>N</sub>::KIURA3 leu2<sup>Δ0</sup> met25<sup>Δ0</sup> ura3<sup>Δ0</sup></td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H01527</td>
<td>MATa ECM10-V<sub>N</sub>::KIURA3 his3<sup>Δ1</sup> leu2<sup>Δ0</sup> met25<sup>Δ0</sup> ura3<sup>Δ0</sup></td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H01444</td>
<td>MATa his3<sup>Δ1</sup> leu2<sup>Δ0</sup> met25<sup>Δ0</sup> SSQ1-V<sub>N</sub>::KIURA3 ura3<sup>Δ0</sup></td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H04280</td>
<td>MATa his3<sup>Δ1</sup> JAC1-V<sub>N</sub>::KIURA3 leu2<sup>Δ0</sup> met25<sup>Δ0</sup> ura3<sup>Δ0</sup></td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H05828</td>
<td>MATa his3<sup>Δ1</sup> leu2<sup>Δ0</sup> MDJ1-V<sub>N</sub>::KIURA3 met25<sup>Δ0</sup> ura3<sup>Δ0</sup></td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H01128</td>
<td>MATa his3<sup>Δ1</sup> HSP78-V<sub>N</sub>::KIURA3 leu2<sup>Δ0</sup> met25<sup>Δ0</sup> ura3<sup>Δ0</sup></td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H01128</td>
<td>MATa his3<sup>Δ1</sup> leu2<sup>Δ0</sup> MCX1-V<sub>N</sub>::KIURA3 met25<sup>Δ0</sup> ura3<sup>Δ0</sup></td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
<tr>
<td>H01842</td>
<td>MATa his3<sup>Δ1</sup> HSP60-V<sub>N</sub>::KIURA3 leu2<sup>Δ0</sup> met25<sup>Δ0</sup> ura3<sup>Δ0</sup></td>
<td>S. cerevisiae VN-Fusion Library (Sung et al. 2013)</td>
</tr>
</tbody>
</table>

References:

https://doi.org/10.1073/pnas.93.9.4091

https://doi.org/10.1038/nature00935

<table>
<thead>
<tr>
<th>Oligo</th>
<th>Sequence 5’—3’</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDC3-F2(BiFC)</td>
<td>CCACTCCCCCGTCCCTACAAAGAGAAGGGATTTTACGTGGTCGACGGA-TCCCCGGGTT</td>
</tr>
<tr>
<td>CDC3-R1(BiFC)</td>
<td>TAATAGTGATGTGTGGAAATTTATATGTCTTTATTCGTGGATGAATTCGA-GCTCGTT</td>
</tr>
<tr>
<td>5’TP53fw</td>
<td>AGCCGCAGTCAGATCCTAGC</td>
</tr>
<tr>
<td>midTP53fw</td>
<td>CCTCCTCAGCATCTTTATCCG</td>
</tr>
<tr>
<td>TP53-vn_re</td>
<td>TGGGAGGCTGTCACTGGGAACAAAGAAATGGGAATATCGATTTACTGCTTG-TGGGCGGTT</td>
</tr>
<tr>
<td>TP53-vc_re</td>
<td>TGGGAGGCTGTCACTGGGAACAAAGAAATGGGAATATCGATTTACTGCGTAC-GCTCGTCC</td>
</tr>
<tr>
<td>Pgal-p53-Kate-Vx_re</td>
<td>ACAACAAAACACCAGTGCAGGCCAACTTGTTCAGTGAGCCGAAATGGGA-GTCCTGGGTG</td>
</tr>
<tr>
<td>5_pRS</td>
<td>GTGTCGGGGCTGGCTTTAACTATGCAGCGCATCAGAGCAGATTGTACTGAGATGCAC</td>
</tr>
<tr>
<td>3_pRS</td>
<td>ACAATTTCCTGGATGCGGTATTTTCTCTTTACGATCTGTGCGGTATTTTCACA-CCG</td>
</tr>
<tr>
<td>3_pRS</td>
<td>ACAATTTCCTGGATGCGGTATTTTCTCTTTACGATCTGTGCGGTATTTTCACA-CCG</td>
</tr>
</tbody>
</table>

The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Table 3. Plasmids

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Alias</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>pMVB100</td>
<td>N/A</td>
<td>(Versele et al. 2004)</td>
</tr>
<tr>
<td>pFA6a-Vc-HisMX6</td>
<td>G00019</td>
<td>(Sung and Huh 2007)</td>
</tr>
<tr>
<td>YCpHU-Cdc3-Vc</td>
<td>G00521</td>
<td>pMVB100 was co-transformed into M-1622 with a Vc-HisMX PCR product (primers CDC3-F2(BiFC) and CDC3-R1(BiFC), template pFA6a-Vc-HisMX6) flanked by sequences targeting recombination with the Cdc3 C terminus</td>
</tr>
<tr>
<td>YCpHU-Cdc3(G365R)-Vc</td>
<td>G00522</td>
<td>Created by site-directed mutagenesis from template plasmid YCpHU-Cdc3-Vc</td>
</tr>
<tr>
<td>pCMV-p53(R249S), Neo</td>
<td>G00637</td>
<td>Addgene Plasmid #16438 (Baker et al. 1990)</td>
</tr>
<tr>
<td>pEF1a-p53-mKate2-split_mVenus_C, Hyg</td>
<td>p663</td>
<td>(Gaglia and Lahav 2014)</td>
</tr>
<tr>
<td>pEF1a-p53(L344A)-mKate2-split_mVenus_C, Hyg</td>
<td>p666</td>
<td>(Gaglia and Lahav 2014)</td>
</tr>
<tr>
<td>pEF1a-p53(L344P)-mKate2-split_mVenus_C, Hyg</td>
<td>p668</td>
<td>(Gaglia and Lahav 2014)</td>
</tr>
<tr>
<td>pEF1a-p53-mKate2-split_mVenus_N, Neo</td>
<td>p662</td>
<td>(Gaglia and Lahav 2014)</td>
</tr>
<tr>
<td>pEF1a-p53(L344A)-mKate2-split_mVenus_N, Neo</td>
<td>p665</td>
<td>(Gaglia and Lahav 2014)</td>
</tr>
<tr>
<td>pEF1a-p53(L344P)-mKate2-split_mVenus_N, Neo</td>
<td>p667</td>
<td>(Gaglia and Lahav 2014)</td>
</tr>
<tr>
<td>pEF1a-p53-mKate2-mVenus, Neo</td>
<td>p675</td>
<td>(Gaglia and Lahav 2014)</td>
</tr>
<tr>
<td>pEF1a-p53(L344A)-mKate2-mVenus, Neo</td>
<td>p678</td>
<td>(Gaglia and Lahav 2014)</td>
</tr>
<tr>
<td>pEF1a-p53(L344P)-mKate2-mVenus, Neo</td>
<td>p679</td>
<td>(Gaglia and Lahav 2014)</td>
</tr>
<tr>
<td>Pgal-p53-mKate2-Vc, TRP1</td>
<td>H3.29</td>
<td>Cloned by homologous recombination of Ncol- and Xmal-digested RS314-H with PCR product of p663 (primers 5TP53fw and Pgal-p53-Kate-Vx_re)</td>
</tr>
<tr>
<td>Pgal-p53(V272M)-mKate2-Vc, TRP1</td>
<td>pMAM67</td>
<td>Created by site-directed mutagenesis from template plasmid H3.29</td>
</tr>
<tr>
<td>Pgal-p53(R273H)-mKate2-Vc, TRP1</td>
<td>pMAM68</td>
<td>Created by site-directed mutagenesis from template plasmid H3.29</td>
</tr>
<tr>
<td>Pgal-p53-mKate2-Vc, LEU2</td>
<td>pMAM110</td>
<td>Marker swap (TRP1 to LEU2) of H3.29</td>
</tr>
<tr>
<td>Pgal-p53(V272M)-mKate2-Vc, LEU2</td>
<td>pMAM111</td>
<td>Marker swap (TRP1 to LEU2) of pMAM67</td>
</tr>
<tr>
<td>Pgal-p53(R273H)-mKate2-Vc, LEU2</td>
<td>pMAM112</td>
<td>Marker swap (TRP1 to LEU2) of pMAM68</td>
</tr>
<tr>
<td>Pgal-p53(R273H), TRP1</td>
<td>RS314-H</td>
<td>Addgene Plasmid #17541 (Thiagalingam et al. 1995)</td>
</tr>
<tr>
<td>Padh1-p53-mKate2-Venus, LEU2</td>
<td>pMAM85</td>
<td>Cloned by homologous recombination of SstI-digested pLS76 and SspI-digested</td>
</tr>
<tr>
<td>Padh1-p53(272M)-mKate2-Venus, LEU2</td>
<td>pMAM86</td>
<td>PCR product of p675 (primers MidTP53fw and TP53-vc_re) Cloned by homologous recombination of StuI-digested pMAM69 and SspI-digested PCR product of p675 (primers MidTP53fw and TP53-vc_re)</td>
</tr>
<tr>
<td>Padh1-p53(R273H)-mKate2-Venus, LEU2</td>
<td>pMAM87</td>
<td>PCR product of p675 (primers MidTP53fw and TP53-vc_re) Cloned by homologous recombination of StuI-digested pMAM79 and SspI-digested PCR product of p675 (primers MidTP53fw and TP53-vc_re)</td>
</tr>
<tr>
<td>Padh1-p53(V272M R273H)-mKate2-Venus, LEU2</td>
<td>pMAM104</td>
<td>PCR product of p675 (primers MidTP53fw and TP53-vc_re) Cloned by homologous recombination of StuI-digested pMAM77 and SspI-digested PCR product of p675 (primers MidTP53fw and TP53-vc_re)</td>
</tr>
<tr>
<td>Padh1-p53(L344A)-mKate2-Venus, LEU2</td>
<td>pMAM105</td>
<td>PCR product of p675 (primers MidTP53fw and TP53-vc_re) Cloned by homologous recombination of StuI-digested pLS76 and SspI-digested PCR product of p675 (primers MidTP53fw and TP53re_Vc)</td>
</tr>
<tr>
<td>Padh1-p53(L344P)-mKate2-Venus, LEU2</td>
<td>pMAM106</td>
<td>PCR product of p675 (primers MidTP53fw and TP53re_Vc) Cloned by homologous recombination of StuI-digested pLS76 and SspI-digested PCR product of p675 (primers MidTP53fw and TP53re_Vc)</td>
</tr>
<tr>
<td>Padh1-p53-mKate2-Vc, LEU2</td>
<td>pMAM82</td>
<td>Cloned by homologous recombination of StuI-digested pMAM69 and SspI-digested PCR product of p663 (primers MidTP53fw and TP53re_Vc)</td>
</tr>
<tr>
<td>Padh1-p53(V272M)-mKate2-Vc, LEU2</td>
<td>pMAM83</td>
<td>Cloned by homologous recombination of StuI-digested pMAM69 and SspI-digested PCR product of p663 (primers MidTP53fw and TP53re_Vc)</td>
</tr>
<tr>
<td>Padh1-p53(R273H)-mKate2-Vc, LEU2</td>
<td>pMAM84</td>
<td>Cloned by homologous recombination of StuI-digested pMAM69 and SspI-digested PCR product of p663 (primers MidTP53fw and TP53re_Vc)</td>
</tr>
<tr>
<td>Padh1-p53(L344A)-mKate2-Vc, LEU2</td>
<td>pMAM91</td>
<td>Cloned by homologous recombination of StuI-digested pLS76 and SspI-digested PCR product of p666 (primers MidTP53fw and TP53re_Vc)</td>
</tr>
<tr>
<td>Padh1-p53(L344P)-mKate2-Vc, LEU2</td>
<td>pMAM93</td>
<td>Cloned by homologous recombination of StuI-digested pLS76 and SspI-digested PCR product of p666 (primers MidTP53fw and TP53re_Vc)</td>
</tr>
<tr>
<td>Padh1-p53-mKate2-Vn, LEU2</td>
<td>pMAM90</td>
<td>Cloned by homologous recombination of StuI-digested pLS76 and SspI-digested PCR product of p668 (primers MidTP53fw and TP53re_Vn)</td>
</tr>
<tr>
<td>Padh1-p53(L344A)-mKate2-Vn, LEU2</td>
<td>pMAM92</td>
<td>Cloned by homologous recombination of StuI-digested pLS76 and SspI-digested PCR product of p665 (primers MidTP53fw and TP53re_Vn)</td>
</tr>
<tr>
<td>Construct Name</td>
<td>Source</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>Padh1-p53(L344P)-mKate2-VN, LEU2</td>
<td>pMAM94</td>
<td>Cloned by homologous recombination of StuI-digested pLS76 and SspI-digested PCR product of p667 (primers MidTP53fw and TP53rev VN)</td>
</tr>
<tr>
<td>Padh1-p53-mKate2-VN, TRP1</td>
<td>pMAM98</td>
<td>Marker swap (LEU2 to TRP1) of pMAM90</td>
</tr>
<tr>
<td>Padh1-p53(L344A)-mKate2-VN, TRP1</td>
<td>pMAM99</td>
<td>Marker swap (LEU2 to TRP1) of pMAM92</td>
</tr>
<tr>
<td>Padh1-p53(L344P)-mKate2-VN, TRP1</td>
<td>pMAM100</td>
<td>Marker swap (LEU2 to TRP1) of pMAM94</td>
</tr>
<tr>
<td>Padh1-p53, TRP1</td>
<td>pMAM78</td>
<td>Marker swap (LEU2 to TRP1) of pLS76</td>
</tr>
<tr>
<td>Padh1-p53, LEU2</td>
<td>pLS76</td>
<td>(Ishioka et al. 1993)</td>
</tr>
<tr>
<td>Padh1-p53(V272M), LEU2</td>
<td>pMAM69</td>
<td>Created by site-directed mutagenesis from template plasmid pLS76</td>
</tr>
<tr>
<td>Padh1-p53(R273H), LEU2</td>
<td>pMAM79</td>
<td>Cloned by gap repair of NcoI- and StuI-digested pLS76 with RS314-H</td>
</tr>
<tr>
<td>Padh1-p53(V272M R273H), LEU2</td>
<td>pMAM77</td>
<td>Created by site-directed mutagenesis from template plasmid pMAM69</td>
</tr>
<tr>
<td>Padh1-p53(L344A), LEU2</td>
<td>pMAM114</td>
<td>Cloned by gap repair of NcoI- and StuI-digested pMAM79 with pMAM99</td>
</tr>
<tr>
<td>Padh1-p53(L344P), LEU2</td>
<td>pMAM115</td>
<td>Cloned by gap repair of NcoI- and StuI-digested pMAM79 with pMAM100</td>
</tr>
<tr>
<td>Pgal-HSP82-TAP, URA3</td>
<td>G00613</td>
<td>Yeast ORF Collection (Gelperin et al. 2005)</td>
</tr>
<tr>
<td>Pgal-HSC82-TAP, URA3</td>
<td>G00791</td>
<td>Yeast ORF Collection (Gelperin et al. 2005)</td>
</tr>
<tr>
<td>Pgal-HSP104-TAP, URA3</td>
<td>G00614</td>
<td>Yeast ORF Collection (Gelperin et al. 2005)</td>
</tr>
<tr>
<td>Pgal-SSA2-TAP, URA3</td>
<td>G00622</td>
<td>Yeast ORF Collection (Gelperin et al. 2005)</td>
</tr>
<tr>
<td>Pgal-SSA4-TAP, URA3</td>
<td>G00790</td>
<td>Yeast ORF Collection (Gelperin et al. 2005)</td>
</tr>
<tr>
<td>Pgal-SSB2-TAP, URA3</td>
<td>G00621</td>
<td>Yeast ORF Collection (Gelperin et al. 2005)</td>
</tr>
<tr>
<td>Pgal-HSP12-TAP, URA3</td>
<td>G00617</td>
<td>Yeast ORF Collection (Gelperin et al. 2005)</td>
</tr>
<tr>
<td>Pgal-HSP26-TAP, URA3</td>
<td>G00618</td>
<td>Yeast ORF Collection (Gelperin et al. 2005)</td>
</tr>
<tr>
<td>Pgal-HSP31-TAP, URA3</td>
<td>G00619</td>
<td>Yeast ORF Collection (Gelperin et al. 2005)</td>
</tr>
<tr>
<td>Pgal-SIS1-TAP, URA3</td>
<td>G00615</td>
<td>Yeast ORF Collection (Gelperin et al. 2005)</td>
</tr>
<tr>
<td>Pgal-YDJ1-TAP, URA3</td>
<td>G00353</td>
<td>Yeast ORF Collection (Gelperin et al. 2005)</td>
</tr>
<tr>
<td>Pgal-ZUO1-TAP, URA3</td>
<td>G00616</td>
<td>Yeast ORF Collection (Gelperin et al. 2005)</td>
</tr>
<tr>
<td>Pgal-CCT7-TAP, URA3</td>
<td>G00620</td>
<td>Yeast ORF Collection (Gelperin et al. 2005)</td>
</tr>
<tr>
<td>Pgal-HSP82-TAP, TRP1</td>
<td>G00630</td>
<td>Marker swap (URA3 to TRP1) of G00613</td>
</tr>
<tr>
<td>Pgal-HSC82-TAP, TRP1</td>
<td>G00799</td>
<td>Marker swap (URA3 to TRP1) of G00791</td>
</tr>
<tr>
<td>Pgal-HSP104-TAP, TRP1</td>
<td>G00631</td>
<td>Marker swap (URA3 to TRP1) of G00614</td>
</tr>
<tr>
<td>Pgal-SSA2-TAP, TRP1</td>
<td>G00633</td>
<td>Marker swap (URA3 to TRP1) of G00622</td>
</tr>
<tr>
<td>Pgal-SSA4-TAP, TRP1</td>
<td>G00789</td>
<td>Marker swap (URA3 to TRP1) of G00790</td>
</tr>
<tr>
<td>Pgal-SSB2-TAP, TRP1</td>
<td>G00634</td>
<td>Marker swap (URA3 to TRP1) of G00621</td>
</tr>
<tr>
<td>Pgal-HSP12-TAP, TRP1</td>
<td>G00627</td>
<td>Marker swap (URA3 to TRP1) of G00617</td>
</tr>
<tr>
<td>Pgal-HSP26-TAP, TRP1</td>
<td>G00628</td>
<td>Marker swap (URA3 to TRP1) of G00618</td>
</tr>
<tr>
<td>Pgal-HSP31-TAP, TRP1</td>
<td>G00629</td>
<td>Marker swap (URA3 to TRP1) of G00619</td>
</tr>
<tr>
<td>Pgal-SIS1-TAP, TRP1</td>
<td>G00632</td>
<td>Marker swap (URA3 to TRP1) of G00615</td>
</tr>
<tr>
<td>Pgal-YDJ1-TAP, TRP1</td>
<td>G00800</td>
<td>Marker swap (URA3 to TRP1) of G00353</td>
</tr>
<tr>
<td>Pgal-ZUO1-TAP, TRP1</td>
<td>G00635</td>
<td>Marker swap (URA3 to TRP1) of G00616</td>
</tr>
<tr>
<td>Pgal-CCT7-TAP, TRP1</td>
<td>G00626</td>
<td>Marker swap (URA3 to TRP1) of G00620</td>
</tr>
<tr>
<td>HSFIΔN, TRP1</td>
<td>G00061</td>
<td>(Park et al. 2006)</td>
</tr>
<tr>
<td>pRS305, LEU2</td>
<td>N/A</td>
<td>(Sikorski and Hieter 1989)</td>
</tr>
</tbody>
</table>
Marker swapping was accomplished by PCR with 5 pRS and 3 pRS of the relevant marker gene from pRS 305 for \textit{LEU2}, pRS 306 for \textit{URA3}, or pRS 404 for \textit{TRP1}, followed by co-transformation of the new-marker PCR product and original-marker plasmid into yeast harboring a deletion of the new marker (BY4741 for \textit{LEU2} or \textit{URA3}, Y0134 for \textit{TRP1}). Selection for the new marker was followed by yeast DNA extraction and rescue of the marker-swapped plasmid in DH5\textalpha.

References:

https://doi.org/10.1126/science.2144057

https://doi.org/10.1016/0378-1119(92)90454-w

https://doi.org/10.15252/msb.20145168

Table 4. Septin–chaperone interactions generating discrete BiFC signals

<table>
<thead>
<tr>
<th>Chaperone (family)</th>
<th>Major cellular compartment (minor)</th>
<th>Room temperature Septin BiFC interactions (variable)</th>
<th>37°C Septin BiFC interactions (variable)</th>
<th>Published evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ssa1 (Hsp70)</td>
<td>Cytosol (Nucleus)</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Ssa2 (Hsp70)</td>
<td>Cytosol (Mitochondria)</td>
<td>Cdc3*, Cdc10, Cdc11, Cdc12, Shs1</td>
<td>Cdc3*, Cdc10, Cdc11, Cdc12, Shs1</td>
<td></td>
</tr>
<tr>
<td>Ssa3 (Hsp70)</td>
<td>Cytosol</td>
<td>Cdc3, Cdc10, Cdc11, Cdc12, Shs1 (Cdc10), (Cdc12), (Shs1)</td>
<td>Cdc10, Cdc12</td>
<td></td>
</tr>
<tr>
<td>Ssa4 (Hsp70)</td>
<td>Cytosol</td>
<td>Cdc3, Cdc10, Cdc11, Cdc12, Shs1</td>
<td>Cdc3, Cdc11, Cdc12, Shs1</td>
<td>Sdc3 (P) (Stein et al. 2019)</td>
</tr>
<tr>
<td>Ssb1 (Hsp70)</td>
<td>Cytosol</td>
<td>Cdc3, Cdc10, Cdc11, Cdc12, Shs1</td>
<td>Cdc3, Cdc10, Cdc11, Cdc12, Shs1</td>
<td></td>
</tr>
<tr>
<td>Ssb2 (Hsp70)</td>
<td>Cytosol</td>
<td>Cdc3, Cdc10, Cdc11, Cdc12, Shs1</td>
<td>Cdc3, Cdc10, Cdc11, Cdc12, Shs1</td>
<td></td>
</tr>
<tr>
<td>Sse2 (Hsp70)</td>
<td>Cytosol</td>
<td>Cdc3, Cdc10, Cdc11, Cdc12, (Shs1)</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Ssz1 (Hsp70)</td>
<td>Cytosol</td>
<td>–</td>
<td>Not tested</td>
<td></td>
</tr>
<tr>
<td>Apj1 (Hsp40)</td>
<td>Cytosol (Nucleus, Mitochondria)</td>
<td>–</td>
<td>Not tested</td>
<td></td>
</tr>
<tr>
<td>Djp1 (Hsp40)</td>
<td>Cytosol</td>
<td>Cdc3, Cdc10, (Cdc11), Cdc12, (Shs1)</td>
<td>Not tested</td>
<td></td>
</tr>
<tr>
<td>Jjj1 (Hsp40)</td>
<td>Cytosol (Nucleus, Mitochondria)</td>
<td>–</td>
<td>Not tested</td>
<td></td>
</tr>
<tr>
<td>Jjj2 (Hsp40)</td>
<td>Cytosol (Nucleus)</td>
<td>–</td>
<td>Not tested</td>
<td></td>
</tr>
<tr>
<td>Sis1 (Hsp40)</td>
<td>Cytosol (Nucleus)</td>
<td>Cdc3, Cdc10, Cdc11, Cdc12, Shs1</td>
<td>Not tested</td>
<td></td>
</tr>
<tr>
<td>Swa2 (Hsp40)</td>
<td>Cytosol (ER)</td>
<td>Cdc3, Cdc10, Cdc12, Shs1</td>
<td>Not tested</td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>Location</td>
<td>Membrane Proteins</td>
<td>Cytosol Proteins</td>
<td>Nucleus Proteins</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Ydj1</td>
<td>Membrane</td>
<td>(Cdc12)</td>
<td>(Cdc11),</td>
<td>Cdc10 (F)</td>
</tr>
<tr>
<td></td>
<td>Cytosol (ER Membrane)</td>
<td>(Cdc3), (Cdc10), Cdc11, Cdc12, (Shs1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zuo1</td>
<td>Cytosol (Nucleus)</td>
<td>Cdc3, Cdc10, Cdc11, Cdc12, Shs1</td>
<td>Cdc3, Cdc10, Cdc11, Cdc12, (Shs1)</td>
<td></td>
</tr>
<tr>
<td>Hsp12</td>
<td>Cytosol (Nucleus)</td>
<td>Cdc3, Cdc10, Cdc11, Cdc12, Shs1</td>
<td>Not tested</td>
<td>Cdc3 (F)</td>
</tr>
<tr>
<td>Hsp26</td>
<td>Cytosol (Nucleus)</td>
<td>Cdc3*, Cdc10, Cdc11, Cdc12*, Shs1</td>
<td>Not tested</td>
<td></td>
</tr>
<tr>
<td>Hsp31</td>
<td>Cytosol</td>
<td>(Cdc3), Cdc10, Cdc11, Cdc12, Shs1</td>
<td>(Cdc3), Cdc10, Cdc11, (Cdc12)</td>
<td>Cdc3 (P)</td>
</tr>
<tr>
<td>Hsp32</td>
<td>Cytosol</td>
<td>–</td>
<td>Not tested</td>
<td></td>
</tr>
<tr>
<td>Hsp33</td>
<td>Cytosol</td>
<td>(Cdc3), (Cdc10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hsp42</td>
<td>Cytosol</td>
<td>–</td>
<td>Not tested</td>
<td></td>
</tr>
<tr>
<td>Sno4</td>
<td>Cytosol</td>
<td>–</td>
<td>Not tested</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cdc12 (P)</td>
<td></td>
<td>Shs1 (F)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cdc11 (F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cct2</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cct3</td>
<td>–</td>
<td>(Cdc11*), (Cdc10*), (Cdc12*)</td>
<td></td>
</tr>
</tbody>
</table>

CCT/TRiC (Type II chaperonin):

<table>
<thead>
<tr>
<th>Protein</th>
<th>Location</th>
<th>Membrane Proteins</th>
<th>Cytosol Proteins</th>
<th>Nucleus Proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cct2</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cct3</td>
<td>–</td>
<td>(Cdc11*), (Cdc10*), (Cdc12*)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cdc3 (P) (Stein et al. 2019)
Cdc10 (P) (Stein et al. 2019) (Yam et al. 2008)
Cdc11 (P) (Stein et al. 2019)
Cdc3 (P) (Dekker et al. 2008)
Cdc10 (P) (Dekker et al. 2008)
Cdc3 (P) (Zhao et al. 2005)
Cdc12 (P) (Millson et al. 2005)
Cdc11 (F) (Magtanong et al. 2011)
Cdc12 (F) (Schirmer et al. 2004)
<table>
<thead>
<tr>
<th>Prefoldin/GimC complex:</th>
<th>Cytosol</th>
<th>ER lumen</th>
<th>ER membrane</th>
<th>Mitochondria</th>
<th>Mitochondria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cdc3, Cdc10, Cdc11, Cdc12, Shs1</td>
<td>Cdc3, Cdc10, Cdc11, Cdc12, Shs1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>(Cdc10)</td>
<td>(Cdc10)</td>
<td>–</td>
<td>–</td>
<td>(Cdc10)</td>
<td>(Cdc10)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ΔCct4</th>
<th>ΔCct6</th>
<th>ΔCct7</th>
<th>ΔShs1</th>
<th>ΔCct10</th>
<th>ΔCct11</th>
<th>ΔCct12</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>–</td>
<td>(Cdc10•)</td>
<td>–</td>
<td>–</td>
<td>(Cdc10•)</td>
<td>(Cdc10•)</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>(Cdc3•), (Cdc10•), (Cdc12•)</td>
<td>–</td>
<td>(Cdc10•)</td>
<td>(Cdc11•), (Cdc12•)</td>
<td>(Cdc12•)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lhs1 (Hsp70)</th>
<th>Hlj1 (Hsp40)</th>
<th>Sec63 (Hsp40)</th>
<th>Ecm10 (Hsp70)</th>
<th>Ssq1 (Hsp70)</th>
<th>Jac1 (Hsp40)</th>
<th>Jid1 (Hsp40)</th>
<th>Mdj1 (Hsp40)</th>
<th>Hsp78 (AAA+)</th>
<th>Mox1 (AAA+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER lumen</td>
<td>ER lumen</td>
<td>ER membrane</td>
<td>Mitochondria</td>
<td>Mitochondria</td>
<td>Mitochondria</td>
<td>Mitochondria</td>
<td>Mitochondria</td>
<td>Mitochondria</td>
<td>Mitochondria</td>
</tr>
<tr>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Not tested</th>
<th>Not tested</th>
<th>Not tested</th>
<th>Not tested</th>
<th>Not tested</th>
<th>Not tested</th>
<th>Cdc3 (P) (Wang et al. 2012)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Mcx1 (AAA+)</th>
<th>Hsp60 (Type I chaperonin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitochondria</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>–</th>
<th>Not tested</th>
<th>–</th>
</tr>
</thead>
</table>

Cdc11 (P) (Dekker et al. 2008)
Cdc12 (P) (Dekker et al. 2008)
Shs1 (P) (Dekker et al. 2008)

Cdc3 (P) (Dekker et al. 2008)
Cdc10 (P) (Dekker et al. 2008)
Cdc12 (P) (Dekker et al. 2008)
Shs1 (P) (Dekker et al. 2008)

(Cdc10) (F) (Collins et al. 2007)
<table>
<thead>
<tr>
<th>Pam18 (Hsp40)</th>
<th>Inner mitochondrial membrane</th>
<th>–</th>
<th>Cdc3</th>
<th>Cdc12 (F) (Davierwala et al. 2005)</th>
</tr>
</thead>
</table>

a For multisubunit complexes, cumulative interactions are listed in the same row, and individual tested subunits are listed below.

b Our interpretation of the literature regarding the major subcellular localization for the chaperone in question, with minor localizations given in parenthesis.

c “–”, no discrete signal. *, fluorescence signal appeared as multiple cortical rings. •, punctate signal. Interactions generating fluorescence signal in only a subset of cells are indicated in parenthesis.

d (F), physical; (G), functional. Where the interaction could not be attributed to a specific subunit within a multisubunit chaperone, the septin interactor is listed on the same row as the multisubunit chaperone.

e The published experiment used a combination of anti-Ssb1 and -Ssb2 antibodies (Stein et al. 2019).

References:

Table 5. p53–chaperone interactions assayed by BiFC

<table>
<thead>
<tr>
<th>Chaperone (family)</th>
<th>Major cellular compartment (minor)</th>
<th>p53 BiFC interactions</th>
<th>Published evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ssa1 (Hsp70)</td>
<td>Cytosol (Nucleus)</td>
<td>–</td>
<td>P, F (reviewed in (Zylicz et al. 2001; Wawrzynow et al. 2018)), F for yeast</td>
</tr>
<tr>
<td>Ssa2 (Hsp70)</td>
<td>Cytosol (Mitochondria)</td>
<td>–</td>
<td>Ssa2 (Singh et al. 2010)</td>
</tr>
<tr>
<td>Ssa3 (Hsp70)</td>
<td>Cytosol</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ssa4 (Hsp70)</td>
<td>Cytosol (Nucleus)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ssb1 (Hsp70)</td>
<td>Cytosol</td>
<td>WT, V272M, R273H</td>
<td>–</td>
</tr>
<tr>
<td>Ssb2 (Hsp70)</td>
<td>Cytosol</td>
<td>WT, V272M, R273H</td>
<td>–</td>
</tr>
<tr>
<td>Sse2 (Hsp70)</td>
<td>Cytosol</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ssz1 (Hsp70)</td>
<td>Cytosol</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Apj1 (Hsp40)</td>
<td>Cytosol (Nucleus, Mitochondria)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Djp1 (Hsp40)</td>
<td>Cytosol</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Jjj1 (Hsp40)</td>
<td>Cytosol (Nucleus, Mitochondria)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Jjj2 (Hsp40)</td>
<td>Cytosol (Nucleus)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sis1 (Hsp40)</td>
<td>Cytosol (Nucleus)</td>
<td>WT, V272M, R273H</td>
<td>–</td>
</tr>
<tr>
<td>Swa2 (Hsp40)</td>
<td>Cytosol (ER Membrane)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ydj1 (Hsp40)</td>
<td>Cytosol (ER Membrane)</td>
<td>WT, V272M, R273H</td>
<td>–</td>
</tr>
<tr>
<td>Zuo1 (Hsp40)</td>
<td>Cytosol (Nucleus)</td>
<td>WT, V272M, R273H</td>
<td>–</td>
</tr>
<tr>
<td>Hsp12 (small)</td>
<td>Cytosol (Nucleus)</td>
<td>WT, V272M, R273H</td>
<td>P for human αB-crystallin (Liu et al. 2007)</td>
</tr>
<tr>
<td>Hsp26 (small)</td>
<td>Cytosol (Nucleus)</td>
<td>–</td>
<td>P, F for yeast Hsp26 (Singh et al. 2010)</td>
</tr>
<tr>
<td>Hsp31 (small)</td>
<td>Cytosol</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Hsp32 (small)</td>
<td>Cytosol</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Hsp33 (small)</td>
<td>Cytosol</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Hsp42 (small)</td>
<td>Cytosol</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sno4 (small)</td>
<td>Cytosol</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Hsp82 (Hsp90)</td>
<td>Cytosol (Mitochondria)</td>
<td>WT, V272M, R273H</td>
<td>–</td>
</tr>
<tr>
<td>Hsc82 (Hsp90)</td>
<td>Cytosol</td>
<td>WT, V272M, R273H</td>
<td>–</td>
</tr>
<tr>
<td>Hsp104 (AAA+)</td>
<td>Cytosol (Nucleus)</td>
<td>WT, V272M, R273H</td>
<td>F in yeast (Singh et al. 2010)</td>
</tr>
<tr>
<td>Cct7 (CCT/TRiC; Type II Chaperonin)</td>
<td>Cytosol</td>
<td>WT, V272M, R273H</td>
<td>P, F (Trinidad et al. 2013)</td>
</tr>
<tr>
<td>Gim 3 (Prefoldin/GimC)</td>
<td>Cytosol</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

a Our interpretation of the literature regarding the major subcellular localization for the chaperone in question, with minor localizations given in parenthesis.
b Measured at 30°C. “–” no discrete signal. “•” fluorescence signal appeared as diffuse cytosolic. “••” punctate cytosolic signal. “•••” both diffuse and punctate cytosolic signal. “•••” nuclear signal.

c (P), physical; (F), functional.

References:

