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Abstract

The emergence of genomewide association studies (GWAS) has led to the creation of large repositories of
human genetic variation, creating enormous opportunities for genetic research and worldwide collaboration.
Methods that are based on GWAS summary statistics seek to leverage such records, overcoming barriers
that often exist in individual-level data access while also offering significant computational savings. Here,
we propose a novel framework that can reconstruct allelic and genotypic counts/frequencies for each SNP
from case-control GWAS summary statistics. Our framework is simple and efficient without the need of
any complicated underlying assumptions. Illustrating the great potential of this framework we also propose
three summary-statistics-based applications implemented in a new software package (ReACt): GWAS meta-
analysis (with and without sample overlap), case-case GWAS, and, for the first time, group polygenic risk
score (PRS) estimation. We evaluate our methods against the current state-of-the-art on both synthetic data
and real genotype data and show high performance in power and error control. Our novel group PRS method
based on summary statistics could not be achieved prior to our proposed framework. We demonstrate here
the potential applications and advantages of this approach. Our work further highlights the great potential
of summary-statistics-based methodologies towards elucidating the genetic background of complex disease
and opens up new avenues for research.
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1 Introduction

Genomewide association studies (GWAS) have emerged as a powerful tool, leading to the identification of
thousands of common genetic variants that underlie human complex disorders and traits. They also led to the
creation of large repositories of human genetic variation creating enormous opportunities for further analysis.
However, sharing and transferring of individual-level genotype data is often restricted due to privacy concerns
as well as logistical issues. On the other hand, GWAS summary statistics, typically including information
such as odds ratio (OR)/effect size (beta), standard error (SE), p-values, and case/control sample sizes for
each SNP being analyzed, are often readily accessible [1]. The availability of such alternative sources of
information has spurred intense interest into the development of methodologies seeking to leverage such
records effectively in order to retrieve as much information as possible. Besides overcoming barriers in
individual-level data access, summary-statistics-based methods also offer advantages in computational costs,
which do not scale as a function of the number of individuals in the study [2].
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Summary statistics methodologies have been developed to allow a wide array of statistical analyses,
including effect size distribution estimation [3, 4]; GWAS meta-analysis and fine mapping [5, 6, 7, 8, 9];
allele frequency and association statistic imputation [10, 11]; heritability and genetic correlation estima-
tion [12, 13, 14, 15]; case-case GWAS [16]; and polygenic prediction [17, 18, 19]. Many of these methods
have to incorporate additional information from publicly available sources, such as linkage disequilibrium
(LD) statistics from a reference population [12, 10, 20]. Most of the existing methodologies analyzing GWAS
summary statistics use the summary statistics (OR, SE, p-value) from the input “as is”, without any at-
tempt to recover underlying genotypes, etc. from the summary statistics. Here, we propose a completely
novel and simple framework that requires only the assumption of Hardy-Weinberg Equilibrium (HWE) and
can convert the summary statistics information into case/control allelic counts for each SNP. Our proposed
reconstruction framework provides a completely novel perspective on existing methods and a powerful al-
ternative to summary-statistics-based methods for fixed effect meta-analysis and cc-GWAS. Furthermore,
using our framework, we are able to compute group-wise polygenic risk score (PRS) from summary statistics,
which, to the best of our knowledge, was completely impossible prior to our work.

We describe the mathematical foundations of our new framework and its application to fixed effect meta-
analysis, cc-GWAS, and group-wise PRS estimation. We demonstrate the performance of the proposed
methods using simulated and real data and we compare our approach against current state-of-the-art. Our
methods are implemented in a new software package: Reconstructing Allelic Count (ReACt).

2 Results

2.1 Mathematical foundations

Our framework is motivated by the fact that using summary test statistics from publicly available GWAS
allows us to recover allele counts for both the affected and the alternate allele in cases and controls by solving
a system of non-linear equations. Interestingly, this rather straight-forward observation has not been docu-
mented in prior work. Additionally, assuming that SNPs included in GWAS studies are in Hardy-Weinberg
Equilibrium (HWE), we can also reconstruct the structure of the genotype vectors for publicly available
GWAS studies from just summary statistics. We can leverage this information in multiple applications,
including: (i) the computation of the joint effect of a SNP in a meta-analysis involving multiple studies; (ii)
to obtain the mean polygenic risk score of cases and controls in a population; and (iii) to investigate the
genetic differences between traits using a case-case GWAS. All of these can be done using only summary
statistics, which circumvents the hassle of individual level data sharing and, as an added bonus, considerably
reduces the necessary computational time.

We start by introducing some notation that will be useful in this section. Let a and u represent affected
and unaffected allele counts respectively; let superscripts cse and cnt represent cases and controls respectively;
and let OR, SE, and N be the odds ratio, standard error, and sample sizes obtained from the summary
statistics. Thus, for SNP i, ucnt

i represents the count of the unaffected allele in controls for SNP i; similarly,
acse
i represents the count of the affected allele in cases for SNP i; N cse represents the number of cases, etc.

We now note that the allelic effect of SNP i in case-control GWAS summary statistics can be expressed as
follows:

ORi =
acse
i · ucnt

i

acnt
i · ucse

i

,

SEi =

√
1

acse
i

+
1

ucse
i

+
1

acnt
i

+
1

ucnt
i

.

Additionally, sample sizes can be expressed as:

2N cse = acse
i + ucse

i , and

2N cnt = acnt
i + ucnt

i .

Therefore, solving the system of the above four non-linear equations allows us to recover the allelic counts
of SNP i for affected and unaffected alleles in cases and controls, by solving for the four unknowns acse

i , acnt
i ,
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ucse
i , and ucnt

i . Using these counts, we can trivially obtain allele frequencies in case and control groups and,
importantly, by further assuming that the SNPs strictly follow HWE, we can even compute the genotypic
counts for each genotype from these frequencies. Note that this reverse engineering scheme applies to GWAS
summary statistics generated using a χ2 test or logistic regression, but it does not apply to GWAS summary
statistics generated by other methodologies. See Section 4.1 and Appendix 6.2 for details.

2.2 Fixed effect meta-analysis

2.2.1 Our approach

Armed with allelic and genotypic counts, we can provide a new perspective on fixed-effect GWAS meta-
analysis. Instead of the conventional inverse-variance weighted meta-analysis, we can now compute the joint
effect of a SNP in a meta-analysis using multiple studies by combining the reconstructed allele and genotype
counts from each study and run a complete logistic regression on each SNP. Thus, we can essentially proceed
with the analysis in exactly the same way as standard GWAS (see Section 4.2 for details). Conceptually,
the process is essentially a “mega-analysis” over the combined datasets.

As mentioned in Section 2.1 we can obtain genotypic counts for any SNP over cases and controls from
GWAS summary statistics. Then, combining these counts for all available input studies, along with the trait
status, we can carry out a logistic regression for this SNP as follows:

Pr(yj = 1|gj , sj) = S(β0 + β1gj + β2sj).

In the above yj denotes the binary trait for the jth individual, gj denotes the respective genotype, and S(·)
stands for the standard sigmoid function used in logistic regression. Solving for the coefficients β0, β1, and
β2 we get the overall SNP effect from the “mega-analysis”. In order to take into account between-study
stratification, we introduce an additional variable sj as a covariate, using the overall allele frequencies of
each study to estimate it. (See Section 4.2 for details.)

2.2.2 Fixed effect meta-analysis: performance evaluation

First, we tested the performance of the proposed fixed-effect meta-analysis approach on synthetic data under
various conditions. The simulation was carried out using the Balding-Nichols model, assuming a minor allele
frequency of 0.3. For each setting, we predefined the risk for causal SNPs by setting r = 1.15/1.2/1.3 as well
as the level of population stratification by setting Fst = 0.01/0.05/0.1. Apart from meta-analyzing mutually
exclusive datasets, we also tested the performance of our approach under different extents of sample overlap
between the input studies: When generating input summary statistics, we evaluated scenarios where the
input studies shared Nshr cases and Nshr controls, with the value of Nshr set to zero, 100, and 500 (see
Section 4.4.1 for details). We compared power and type I error rates of our approach vs. state-of-the-art
tools that are currently widely used for fixed-effect meta-analysis, namely METAL [21] and ASSET [22].
Since the latest stable release of METAL does not include an implementation for sample overlap correction,
we used the GitHub version of METAL from [23]. The performance comparison on the meta-analysis of two
studies is plotted in Figures 1, 2 and Table S2. Results on synthetic data indicated that our approach has
comparable performance with the conventional inverse-variance weighted methods ASSET and METAL,
namely ∣∣PowerReACt − PowerASSET/METAL

∣∣ ≤ 0.012,

when there is no sample overlap. In scenarios where there were samples shared across input studies, our
method (regardless of whether the exact size of the sample overlap is known or is estimated) always showed
higher power compared to ASSET, namely

0.014 ≤ PowerReACt − PowerASSET ≤ 0.219

and comparable power to METAL, namely

|PowerReACt − PowerMETAL| ≤ 0.005.

Our advantage in power compared to ASSET was more visible under higher Fst values and larger sample
overlaps. In terms of type I error rates, we observed that all methods showed good control on the error rates,
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while ASSET tended to produce more conservative results. Similar observations can also be made when we
meta-analyzed multiple studies; see Table S3 for details.

Beyond power and type I error, we also analyzed the running time of the different methods (see Ta-
ble S1). Our C implementation of our method in the ReACt software package has not been highly optimized
and yet has a running time that is comparable to METAL and is much faster than ASSET. We further
tested the performance of our method on real genotype data using a myasthenia gravis dataset from dbGaP
(phs000196.v2.p1). The dataset included a total of 964 cases and 1985 controls with 622,328 SNPs after
quality control (see Section 4.4.1 for details). In this experiment, we treated the top 13 SNPs with p-value
stricly less than 10−5 from the overall GWAS as “ground truth” and assessed whether various meta-analysis
method could pick up these 13 SNPs. Each experiment was carried out over ten iterations: in each iteration,
we split the dataset in two equal sized subsets, generated GWAS summary statistics from each of the subsets,
and meta-analyzed the resulting summary statistics. We reported average true positive and false positive
SNPs counts captured by each method over the ten iterations. Table 1 reports our findings and we note
that, perhaps because of the limited power of the dataset or the lack of stratification, the differences in
performance were not as visible as what we observed using synthetic data. All methods showed comparable
power and type I error. More specifically,∣∣PowerReACt − PowerASSET/METAL

∣∣ ≤ 0.031, and∣∣∣Type I ErrorReACt − Type I ErrorASSET/METAL

∣∣∣ ≤ 8 · 10−7.
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(a) Power comparison for fixed-effects meta-analysis between our
method and ASSET/METAL assuming no sample overlap between
two studies (1,000 cases and 1,000 controls in each study).

(b) Power comparison for fixed-effects meta-analysis between our
method and ASSET/METAL assuming 100 control and 100 case
overlap (out of 1,200 cases and 1,200 controls in each study) between
two studies.

(c) Power comparison for fixed-effects meta-analysis between our
method and ASSET/METAL assuming 500 control and 500 case
overlap (out of 2,000 cases and 2,000 controls in each study) between
two studies.

Figure 1: Power of fixed-effect meta-analysis with two input studies under different conditions. We
compare the power of our method vs. ASSET/METAL for a significance threshold p < 5 · 10−5. METAL dev refers
to the latest release in GitHub [23]. Two variants of ReACt are tested: Exact and Est, indicating whether the sample
overlap was exactly known as part of the input or whether it was estimated, respectively. Sample overlap indicates
the number of cases and controls that were shared between two input studies, ie., a sample overlap equal to 100
means that that there are 100 cases and 100 controls shared between two input studies. Total sample sizes for each
input study, including the shared samples, are equal to 2,000 when the sample overlap is equal to zero; 2,400 when
the sample overlap is equal to 100; and 4,000 when the sample overlap is equal to 500. In each case, the sample is
equally split to cases and controls.
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(a) Type I error comparison for fixed-effects meta-analysis between
our method and ASSET/METAL assuming no sample overlap be-
tween two studies (1,000 cases and 1,000 controls in each study).

(b) Type I error comparison for fixed-effects meta-analysis between
our method and ASSET/METAL assuming 100 controls and 100
cases overlap (out of 1,200 cases and 1,200 controls in each study)
between two studies.

(c) Type I error comparison for fixed-effects meta-analysis between
our method and ASSET/METAL assuming 500 controls and 500
cases overlap (out of 2,000 cases and 2,000 controls in each study)
between two studies.

Figure 2: Type I error rate of fixed-effect meta-analysis with two input studies under different condi-
tions. We compared the type I error rate of our method vs. ASSET/METAL for a significance threshold p < 5 ·10−5.
METAL dev refers to the latest release in GitHub [23]. Two variants of ReACt are tested: Exact and Est, indicating
whether the sample overlap was exactly known as part of the input or whether it was estimated, respectively. Sample
overlap indicates the number of cases and controls that were shared between two input studies, ie., a sample overlap
equal to 100 means that there are 100 cases and 100 controls shared between two input studies. Total sample sizes
for each input study, including the shared samples, are equal to 2,000 when the sample overlap is equal to zero; 2,400
when the sample overlap is equal to 100; and 4,000 when the sample overlap is equal to 500. In each case, the sample
is equally split to cases and controls.
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Table 1: Performance of fixed-effect meta-analysis on real genotype data. We applied our method
for fixed-effect meta-analysis to a Myasthenia Gravis GWAS dataset (dbGaP phs000196.v2.p) and compared
the performance of our method vs. ASSET/METAL. SNPs with p-value strictly less than 10−5 in the
primary GWAS summary statistics using all samples were treated as “true signals”. In each iteration of an
experiment, we split the dataset evenly into two, generated GWAS summary statistics for each subset, and
meta-analyzed the summary statistics using our method and ASSET/METAL. We reported the number of
times (out of ten iterations) that a “true signal” got captured using the “significance threshold” p < 10−5

by each method under different sample overlap conditions. METAL dev refers to the latest release in
GitHub [23]. Two variants of ReACt are tested: Exact and Est, indicating whether the sample overlap was
exactly known as part of the input or whether it was estimated, respectively. Sample overlap indicates the
number of cases and controls that were shared between two input studies, ie., 100 sample overlap means
that 100 cases and 100 controls were shared between the two studies when the split was carried out. The
variable P in the table indicates the p-value of the target SNP in the primary GWAS using all samples. True
positive per iteration reports the average number of SNPs with p-value strictly less than 10−5 in the primary
GWAS that were captured in one iteration; and False positive per iteration reports the average number of
extra SNPs being captured in one iteration.

SNP P
number of times the SNP had p-value < 10−5 in meta-analysis

no sample overlapa 100 sample overlapb 500 sample overlapc

Exact ASSET/METAL Exact Est. ASSET METAL Exact Est. ASSET METAL

rs4263037 1.46·10−9 10 10 10 10 10 10 10 10 10 10
rs4369774 2.71·10−9 10 10 10 10 10 10 10 10 10 10
rs11571315 3.62·10−7 10 10 10 10 10 10 10 10 10 10
rs3116513 4.07·10−7 10 10 10 10 10 10 10 10 10 10
rs3115969 1.30·10−6 10 10 9 8 9 9 10 10 10 10
rs11571291 1.56·10−6 10 10 4 4 4 4 9 9 9 9
rs231775 2.02·10−6 10 10 6 6 6 6 10 10 10 10

rs13030124 2.17·10−6 10 10 3 3 3 3 3 3 7 3
rs2844575 5.88·10−6 10 10 8 7 8 8 5 5 5 5
rs2428507 7.17·10−6 8 9 6 6 6 6 1 1 1 1
rs3087243 7.46·10−6 6 7 1 1 1 1 1 1 1 1
rs17273600 7.53·10−6 3 5 2 2 2 2 3 3 3 3
rs2516708 9.20·10−6 8 8 6 6 6 6 1 1 1 1

True positive per iteration 11.5 11.9 8.5 8.3 8.5 8.5 8.3 8.3 8.7 8.3
False positive per iteration 2 2 3 2.5 2.5 3 2.7 2.7 2.3 2.3

a with 482 cases and 992/993 controls from each subset
b out of 532 cases and 1,402/1,403 controls from each subset
c out of 732 cases and 1,242/1,243 controls from each subset

2.3 Group PRS

2.3.1 Our approach

Even though we still cannot compute individual level PRS without access to raw genotypes, we observe that,
under the additive model, the mean and standard deviation of PRS for a population are just functions of
SNP allele frequencies in the target group (see Section 4.3 for details). Therefore, our proposed framework,
which returns estimates of allele frequencies for cases and controls using GWAS summary statistics, also
allows us to estimate means and standard deviations of PRS for case and control groups using the GWAS
summary statistics of the target study. With such information (and a fair assumption of normality in the
underlying PRS distribution), we can further run a t-test in order to get a p-value comparing the difference
of PRS between cases and controls.

More specifically, in the additive model, the mean and variance of PRS for a population can be expressed
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as follows:

mean(PRS) =

∑M
i=1 Sipi
M

, and

Var(PRS) =

∑M
i=1 S

2
i piqi

2M2
.

In the above Si is the weight of SNP i inferred from the base summary statistics (typically Si = log(ORi)
SEi

),
M is the total number of SNPs used in the PRS computation, and pi and qi = 1− pi are allele frequencies
of the affected allele and the unaffected allele for SNP i. Therefore, we can simply use the allele frequencies
of cases and controls that were computed in Section 2.1 in order to get the mean and variance of PRS in
cases and controls. See Section 4.3 for details.

2.3.2 Group PRS: Performance evaluation

We first tested our methods on synthetic data without any confounding factors (ie., no stratification). After
generating GWAS summary statistics for synthetic base and target datasets, we compared the estimated
group means and standard deviations using our method (which operates on summary statistics) with the
real group means and standard deviations of PRS computed from the individual level genotypes using
PRSice2 [24]. The results successfully proved that in this scenario our method is extremely accurate. See
Table 2 which shows typical representative results from our experimental evaluations; essentially identical
results were observed in all our experiments on synthetic data.

We further tested our method on real GWAS data, using GWAS summary statistics for myasthenia gravis
samples from dbGaP as the base study and assessing its predicting power on 196 independent myasthenia
gravis cases and 1,057 ancestry-matched controls from [25] for which we had individual level genotypes
available. We generated GWAS summary statistics for the base study using standard quality controls and
computed GWAS summary statistics for the target dataset as described. We compared the estimated PRS
statistics using our methods with the real PRS statistics computed using PRSice2. The results are shown
in Table 3; note that since real GWAS datasets are subject to within study population stratification, we did
not expect our method to be as accurate as it was on synthetic data without such stratification. There was,
however, very high concordance between the results returned by our methods and ground truth. Finally,
we applied our methods on summary statistics of eight psychiatric disorders. We evaluated their pairwise
PRS predictive power by estimating t-test p-values. For this experiment, we took into account potential
sample overlap between all pairs of base and target studies; see Section 6.3 for details of our sample overlap
correction procedure. Results are shown in Table 4 and we observe that, in general, our results coincide with
pairwise genetic correlation between disorders as discussed in [7].
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Table 2: Estimated and real group mean and standard deviation of PRS for a synthetic target
population. We compared group mean and standard deviation of PRS estimated by ReACt from summary
statistics of synthetic base and target studies to the real group mean and standard deviation of individual
level PRS obtained using summary statistics of the base and individual level genotype of the target computed
by PRSice2. Est stands for estimated. Note that the synthetic data is not subject to clumping since the
simulation model does not generate LD structure.

risk group
Our Method (ReACt) PRSice2

est. group mean est. group sd real group mean real group sd

1.15
cases 0.0009 0.0078 0.0009 0.0076

controls -0.0037 0.0078 -0.0036 0.0081

1.2
cases 0.0016 0.0060 0.0016 0.0059

controls -0.0065 0.0060 -0.0064 0.0061

1.3
cases 0.0021 0.0041 0.0021 0.0040

controls -0.0125 0.0041 -0.0125 0.0040
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Table 3: Estimated and real group mean and standard deviation of PRS for a target population
of Myasthenia gravis cases and controls. We assessed the performance of our method using a Myas-
thenia Gravis GWAS dataset (dbGaP phs000196.v2.p) as the base study, and an independent population
of 196 Myasthenia Gravis cases and 1,057 ancestry-matched controls as the target population. We gener-
ated summary statistics for both base and target populations and estimated group mean PRS and standard
deviation of target PRS using ReACt. We computed the individual level PRS for the target study using
PRSice2. For both methods, we computed PRS using independent SNPs from the base summary statistics
with p-values below various thresholds (P -thres) and compared the performances under each threshold. For
ReACt, mean PRS represents the estimated group mean PRS for cases and controls; p-val are the t-test
p-values comparing PRS distribution in cases and in controls. For PRSice2, mean PRS represents real group
mean PRS computed from individual level data and p-val are the t-test p-values comparing real PRS dis-
tribution in cases and in controls; reg. w/o covariate indicates regression results without covariates, which
include the regression r2 value (reg. r2) and the p-value for the PRS predictor (p-val); reg. w/ top 5PCs
indicates the regression results including the top five PCs as covariate, , which also included the regression
r2 value (reg. r2) and the p-value for the PRS predictor (p-val).

P -thres #SNPs trait
Our method (ReACt) PRSice2

t-test t-test reg. w/o covatiate reg. w/ top 5PCs
mean PRS p-val mean PRS p-val r2 p-val r2 p-val

0.1 18344
cases 0.0000

3.67·10−2 -0.0001
2.52·10−1 0.0010 2.58·10−1 0.0347 1.17·10−1

controls -0.0001 -0.0001

0.01 2776
cases -0.0001

2.09·10−3 -0.0003
2.44·10−2 0.0033 4.24·10−2 0.0384 7.09·10−3

controls -0.0003 -0.0005

0.001 362
cases 0.0054

4.59·10−2 0.0058
4.12·10−2 0.0032 4.65·10−2 0.0355 6.38·10−2

controls 0.0048 0.0052

10−4 49
cases 0.0197

1.09·10−1 0.0208
1.39·10−1 0.0020 1.16·10−1 0.0343 1.72·10−1

controls 0.0183 0.0193

10−5 4
cases 0.0584

7.59·10−3 0.0660
8.01·10−3 0.0053 9.93·10−3 0.0382 8.61·10−3

controls 0.0480 0.0556

10−6 2
cases 0.1177

3.13·10−2 0.1364
1.83·10−2 0.0039 2.70·10−2 0.0370 2.06·10−2

controls 0.1050 0.1234

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2021. ; https://doi.org/10.1101/2021.04.02.438281doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.02.438281
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 4: Using our method to perform PRS comparisons across eight neuropsychiatric disorders.
We further applied our method to the summary statistics of eight neuropsychiatric disorders from PGC (see
table 12 for details). For each disorder, we used PGC GWAS summary statistics to compute the group
mean and standard deviation of PRS for the other seven disorders. All group PRS were estimated using
independent SNPs with p < 10−5in the base summary statistics. We report p-values from a t-test comparing
the group mean PRS of cases against controls in the target study, and cells with deeper blue colors correspond
to lower p-values. The threshold of significance under multiple testing correction is p < 8.93 · 10−4.

Target
OCD TS ED ASD BIP ADHD SCZ MD

B
a
se

OCD - 5.71·10−1 1.26·10−1 7.83·10−2 9.51·10−2 2.64·10−1 4.44·10−1 6.81·10−1

TS 5.17·10−2 - 2.31·10−1 7.78·10−1 3.05·10−1 3.57·10−2 4.50·10−1 5.40·10−3

ED 2.95·10−1 3.31·10−1 - 4.83·10−1 4.29·10−4 6.28·10−4 1.89·10−2 3.27·10−3

ASD 9.95·10−1 7.40·10−3 9.00·10−1 - 1.77·10−1 8.12·10−4 1.17·10−1 3.98·10−13

BIP 3.54·10−3 5.82·10−1 9.84·10−13 4.03·10−7 - 1.29·10−13 1.08·10−79 1.15·10−19

ADHD 2.15·10−1 1.08·10−8 2.32·10−3 2.62·10−45 9.58 ·10−2 - 1.37·10−10 2.88·10−52

SZC 3.23·10−7 9.36·10−1 4.88·10−1 1.28·10−24 1.68·10−133 2.11·10−1 - 7.36·10−94

MD 5.09·10−2 4.48·10−1 3.43·10−1 2.08·10−26 5.35·10−9 6.05·10−21 6.10·10−45 -
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2.4 cc-GWAS

2.4.1 Our approach

Similar to our proposed approach for meta-analysis of multiple GWAS datasets using summary statistics,
we can also carry out cc-GWAS using regression by simply swapping the labels of the phenotypes. Perhaps
the biggest challenge in cc-GWAS is the separation of the differential genetic effects from between-study
stratification. To circumvent this issue, we leverage the difference of SNP effects in control groups to
estimate the extent of stratification (see Section 4.3.3 for details). Therefore, with a slight modification of
the pipeline for meta-analysis of Section 4.2, we introduce an alternate approach for cc-GWAS using our
framework.

The underlying theory is quite straightforward and allows us to estimate the genetic differences between
two traits of interest using their GWAS summary statistics. Using the genotypic counts we can proceed with
logistic regression using only the cases from the two studies:

Pr(ycse
j = 1|gcse

j ) = S(βcse0 + βcse1 gcse
j ).

In the above, ycse
j is the binary indicator variable denoting which trait case j carries and gcse

j is the genotype
of this case. We note that the coefficient βcse1 that is part of the output of this regression is a combination
of both genetic effects and stratification:

βcse1 = βg + βs,

where βg and βs are the genetic effect and stratification coefficients. We are only interested in the genetic
effect βg and therefore we need to remove βs. Towards that end, we estimate βs using the control samples
from the input studies; see Section 4.3.3 for details.

2.4.2 CC-GWAS: Performance evaluation

We first tested the performance of our methods on synthetic data. Simulated data were again generated
under the Balding-Nichols model, with predefined risks for causal SNPs and the extent of the stratification.
Inspired by Peyrot et al. [16] we simulated three types of SNPs: (i) trait differential SNPs (ii) null SNPs;
and (iii) stress SNPs (see Section 4.4.1 for details). We expect our method to pick up type (i) SNPs and
leave the other two. Therefore, in our performance evaluation, we report the power for detecting the type
(i) SNPs and type I error rates for picking up type (ii) and (iii) SNPs. Moreover, since we also expect the
performance of our method, especially in terms of error control, to vary with sample size, the evaluation
was done under different sample sizes in each input study (2,000 cases and 2,000 controls as well as 5,000
cases and 5,000 controls). Power and type I error rates for each type of SNP from the simulation model
under each setting are shown in Table 5. The method’s performance was evaluated for p-values strictly less
than 5 ·10−5. For this threshold, our method showed high power and well-controlled type I errors, especially
under for lower values of Fst. On the other hand, as expected, as stratification increases between two input
studies, the power of our method drop and the type I error rates increased for null SNPs. However, as a
general trend, we also see a decrease in such error rates when we increase the control sample size. Meanwhile,
slightly higher type I error rates for the stress SNPs are observed.

Next, we evaluated the performance of our method on real GWAS summary statistics and compared
our method with the recently released method of [16]. We analyzed BIP [26] and SCZ [27] datasets, for
which case-case GWAS with individual level data was available [28]. We filtered out SNPs that showed
untrustworthy estimates of the stratification effect (SEs > 0.05, see Section 4.3.3 for details). This reduced
our output size from 8,983,436 SNPs being analyzed to 7,110,776 SNPs. Out of those, our analysis revealed
a total of 18 genome-wide significant risk loci, including the two regions identified by [28], namely regions
1q25.1 and 20q13.12). We compared our statistics for SNPs that were also analyzed in [16] and results for
this comparison are shown in Table 6. The two cc-GWAS methods are mostly comparable. By definition,
both we and Peyrot et al. [16] only used summary statistics as input, and could not apply the individual
level quality control steps of [28]. As a result, both methods identified additional significant loci showing
divergent genetic effects between BD and SCZ compared to [28], mainly due to a much larger effective
sample size. Results for all genomewide significant risk loci are shown in Table S5.
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Table 5: Performance of cc-GWAS as implemented in ReACt with different sample sizes. Three
types of SNPs have been simulated: (i) trait differential SNPs; (ii) null SNPs; and (iii) stress SNPs. .
Under each condition, we simulated individual level genotype with these three types of SNPs for N cases
and N controls in each study (N = 2, 000 and N = 5, 000) and generated GWAS summary statistics for
each study. and generated GWAS summary statistics for each study respectively. We subsequently used the
summary statistics to run cc-GWAS in ReACt. We reported the power for detecting type (i) SNPs, and false
positive rates for picking up type (ii) SNPs (Type I err.(ii)) and type (iii) SNPs (Type I err.(iii)) under a
significance threshold p < 5 · 10−5.

risk Fst
2,000 cases, 2,000 controls 5,000 cases, 5,000 controls

Power Type I err.(ii) Type I err.(iii) Power Type I err.(ii) Type I err.(iii)

1.15
0.01 3.67·10−2 2.65·10−5 3.16·10−4 3.51·10−1 1.84·10−5 1.87·10−4

0.05 3.49·10−2 9.80·10−5 5.26·10−4 3.23·10−1 6.33·10−5 3.58·10−4

0.1 2.81·10−2 2.43·10−4 5.02·10−4 2.85·10−1 1.94·10−4 5.21·10−4

1.2
0.01 1.54·10−1 4.69·10−5 2.47·10−4 7.16·10−1 3.47·10−5 2.03·10−4

0.05 1.34·10−1 1.04·10−4 5.14·10−4 6.62·10−1 8.57·10−5 3.77·10−4

0.1 1.23·10−1 2.33·10−4 5.83·10−4 6.03·10−1 1.65·10−4 5.27·10−4

1.3
0.01 5.85·10−1 1.63·10−5 1.57·10−4 9.68·10−1 1.43·10−5 5.46·10−4

0.05 5.41·10−1 5.31·10−5 4.45·10−4 9.21·10−1 7.35·10−5 5.79·10−4

0.1 4.85·10−1 2.63·10−4 6.18·10−4 8.71·10−1 1.67·10−4 6.84·10−4
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Table 6: Comparison of genomic regions showing significant divergent genetic effects between
BD and SCZ as detected by ReACt and ccGWAS by Peyrot et al [16]. We carried out cc-GWAS
with ReACt using summary statistics of BD and SCZ and compared our results with the results from Peyrot
et al. Only SNPs that are analyzed in both studies are included for the comparison. Genomic regions
that are identified to show significant divergent genetic effects between BD and SCZ in either result are
shown. CHR, Start and End are chromosomal and base-pair ranges for the region; SNP, BP and p-value
(ordinary least squares p-values, POLS , for ccGWAS by Peyrot et al.) are properties of the leading SNP
(if the regions is reported genomewide significant) or statistics for the matching SNP (if the region is not
reported as genomewide significant, but is detected by the other method); p-values in red are leading SNPs
that are reported genomewide significant by each method; Regions with CHR, Start and End in red are two
loci that were also identified by the case-case GWAS using individual level data [28].

Region Our method (ReACt) ccGWAS

CHR Start End SNP BP p-value SNP BP p-value(POLS)

1 50826176 51118253 rs6682989 50826176 3.08 ·10−8 - - 6.10 ·10−7

1 98325796 98559093 rs2660304 98512127 4.20 ·10−9 - - 2.20 ·10−9

1 173867252 174643725 rs6701877 174015259 4.02 ·10−8 - - 5.80 ·10−10

2 27498734 27752296 rs113954968 27696207 2.93·10−8 - - 1.10·10−6

3 62563175 62583180 rs1993149 62572944 2.10·10−8 - - 8.10·10−7

3 135807609 136597120 rs9866687 94828190 6.55·10−7 - - 4.00·10−8

3 135807609 136597120 rs7372313 135872958 1.02·10−8 rs1278493 135814009 1.20·10−8

7 28453906 28484317 rs2192303 28478332 3.57·10−8 rs7790864 28478625 2.20·10−8

8 27406353 27453579 rs11778040 27419807 5.39·10−7 - - 4.80·10−8

9 23345347 23362311 rs12554512 23352293 3.58·10−10 - - 4.10·10−8

9 36894685 36963222 rs2039142 36963222 1.95·10−8 - - 2.10·10−6

10 353306 418676 rs35198327 354301 7.69·10−9 - - 1.10·10−7

12 108596308 108633649 rs3764002 108618630 3.28·10−9 - - 6.30·10−11

12 110294902 111212762 rs28637922 110819139 5.11·10−10 - - 8.10·10−12

16 79386766 79463881 rs6564668 79457393 1.86·10−8 rs9319540 79458022 3.70·10−8

19 1812521 1866427 rs1054972 1852582 6.43·10−8 - - 1.80·10−8

20 47511792 47938833 rs6095394 47625544 1.43·10−9 rs11696888 47753265 1.40·10−9
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3 Discussion

Extracting as much information as possible from easily accessible GWAS summary statistics can help ac-
celerate research that aims to elucidate the genetic background of complex disease, allowing fast sharing
of results and datasets while alleviating privacy concerns. Here, we present a simple novel framework to
convert SNP statistics from any case-control GWAS back into allelic counts. When summary statistics are
generated through simple chi-square tests, the counts will be exact. However, that is not the case for most
of the actual GWASs. In practice, this backward reconstruction framework returns “pseudocounts” that
correspond to corrected SNP effects after, for example, stratification correction. Therefore, results will not
be subject to within-study stratification effects, assuming that the input summary statistics have been gen-
erated after stringent quality controls. The framework we propose turns out to be simple, both theoretically
and empirically and could broaden the scope of analyses using summary statistics. Not only does it provide
new perspectives on some of the existing analytic approaches (meta-analysis and cc-GWAS) but it also ex-
pands the potential for novel analyses allowing, for instance, group PRS estimation. We implemented the
aforementioned three applications in a readily available software package called ReACt.

As an alternative for fixed-effect meta-analysis, we notice that reconstructing the allelic counts for each
SNP allows us to run a full logistic regression model, under the assumption of HWE. The performance of
our proposed method turns out to be comparable to conventional approaches while allowing corrections of
sample overlaps. Our approach shows increased power in experiments on synthetic data, especially in cases
where there is larger Fst difference between the input studies. Our method can therefore be considered as a
valid alternative for fixed-effect meta-analysis.

We also propose a novel perspective on case-case association studies (cc-GWAS), allowing an analysis
without the need for complicated assumptions or side information apart from sample sizes. To the best of
our knowledge, the only publication on summary statistics based case-case GWAS was recently contributed
by Peyrot et al [16]. Here, we propose a straightforward idea to conduct the case-case GWAS: our approach
directly compares the reconstructed allele frequencies of each SNP in two groups of cases, without the
requirement to estimate heritabilities or prevalence of disorders as does the method of [16]. Further, we do not
need any extra assumptions on the distribution of SNP effects. ReACt analyzes each SNPs independently
and, as a result, the analysis is not be subject to any LD structure or number of causal SNPs underlying
each disorder. The robustness of our approach is demonstrated by its performance on synthetic data in
various scenarios. Similar to the existing cc-GWAS analysis tools [16], ReACt showed good control of type
I errors in null SNPs (type II SNPs) given sufficiently large control sample sizes for both input studies. It
also shows slightly higher, but under-controlled, type I errors in the stress test SNPs (type III SNPs). As
pointed out by [16], we do not expect the existence of stress SNPs to be particularly common in practice. We
further note that all our experiments on synthetic data were carried out under different levels of population
stratification. As expected, our results indicate that the performance of case-case GWAS can be greatly
affected by the extent of stratification between the two input studies. We tested the performance of our
method for Fst = 0.1, which is a very high end estimate of genetic variation across homo sapiens [29]. Even
so, our method still showed good power and type I error rates. For higher confidence in results, we suggest
larger sample sizes for both cases and controls, especially when there is higher heterogeneity between the
population groups of the two studies. A notable difference between our method and the work of [16] is that
we do not filter for SNPs showing association due to differential tagging effects. While analyzing such SNPs,
our method behaves more like a direct case-case GWAS using individual level data. Our work is an elegant
alternative to [16], offering novel theory and a simple implementation.

Our framework also introduces a novel perspective on case-control PRS. Conventionally, PRS for a target
study is only accessible from individual level genotype data. However, even though getting scores for each
individual is not feasible, we notice that if we only focus on the differentiation between cases and controls,
the group means and standard errors of PRS can in fact be estimated using only summary statistics of
both the base and target studies. With such statistics available, a t-test can be carried out instead place of
logistic regression, which is commonly used for predictability evaluation when the individual level PRS are
available. It is worth noting that, for case-control studies, t-tests and logistic regression are testing the same
hypothesis: whether scores generated from the SNP effect of a base study can differentiate individuals in
the target study, or, equivalently, whether the base study can predict the case/control status of samples in
the target study. We applied our method to summary statistics of eight psychiatric disorders from PGC for
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predicting group PRS and found the results in general concordance with the genetic correlation obtained by
the work of Lee et al [7].

As discussed earlier in our work, our framework is robust against within-study stratification effects, which
means that the group means and standard errors returned are corrected for stratification and can be used
directly for within-study comparisons. However, we would like to note that the method is still vulnerable to
the common weakness of conventional PRS, including differences in population structure between the base
and target studies [30]. Users should also keep in mind that general rules of thumb for conventional PRS also
apply to our method. For instance, the SNPs used for PRS computations are expected to be independent
to a certain extent (clump/prune/LASSO shrink the summary statistics) [19] and as can be observed from
the experiments on real data, the predicting power of output PRS will be subject to the power of the base
study [31] and the p-value threshold chosen by the user. Practices that are not recommended when running
conventional PRS (e.g., using results from a GWAS with really small sample size as the base study [31]) are
also not recommended in our setting.

We would like to note a couple of potential directions that could further extend our methods. First,
the reconstruction scheme that our framework is built upon is based on input summary statistics that are
generated using a logistic regression or a χ2-test. While this is a most common setting, we have not yet
explored how to potentially adapt our framework to operate on summary statistics from other models.
Also, in this paper, we presented immediate applications of our framework to common tasks in GWAS
analyses. An interesting topic for future work would be to incorporate information beyond GWAS summary
statistics. For example, one could consider incorporating external information such as LD structure using
LD reference maps; such information could for instance be used to attempt to improve the accuracy of
sample overlap estimation and extend the group-PRS applications. Furthermore, we could conceivably move
towards haplotype reconstruction opening up new possibilities for research.

In conclusion, we introduce a simple and elegant framework that may be used to reconstruct allelic counts
and genotypes from GWAS summary statistics. This novel framework highlights the power of summary-
statistics-based methodology. We fully expect future extensions will lead to additional applications opening
up new possibilities in the quest to identify the genetic background of complex disease.

4 Methods

4.1 Our framework

4.1.1 Notation

Prior to introducing our methods, we discuss notational conventions. We will reserve the subscript i to denote
SNP number: given, say, M SNPs, i will range between one and M . Similarly, we will reserve the subscript
` to denote the study number: given L studies from which summary statistics will be meta-analyzed, ` will
range between one and L. We assume that all L studies released summary statistics on a common set of M
SNPs. For simplicity, we will first describe our methods for the case L = 2 (i.e., when exactly two studies
are jointly meta-analyzed) and we will generalize our approach in Section 4.2.3 for L > 2.

We will use the three-letter shorthand cse for cases and the three-letter shorthand cnt for controls. We
reserve the variable a to represent counts of the affected allele and the variable u to represent counts of the
unaffected allele. We also reserve the variable N to represent counts for the number of cases or controls.
Given the above conventions, we now present the following table of allele counts (affected and alternate
allele) for SNP i (i = 1 . . .M) in study ` (` = 1 . . . L).

Using the above table, we can also compute the frequencies of the affected or alternate allele in cases and
controls. Table 8 summarizes frequency notation for SNP i (i = 1 . . .M) in study ` (` = 1 . . . L). Obviously,

pcsei` + qcsei` = 1

pcnti` + qcnti` = 1.
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Table 7: Table of allele counts for SNP i (i = 1 . . .M) in the `-th GWAS (` = 1 . . . L). The total
number of cases for the `-th study is Ncse

` and the total number of controls for the `-th study is Ncnt
` . Clearly,

the total number of cases and controls in a study is the same for all SNPs, which is why the variable N does
not depend on i. The total number of alleles in cases and controls is equal to twice the number of cases and
controls, respectively.

A1 (affected allele) A2 (alternate allele) Number of alleles
Cases acse

i` ucse
i` 2N cse

`

Controls acnt
i` ucnt

i` 2N cnt
`

Table 8: Notations and definitions of (affected or alternate) allele frequencies in cases and
controls. The subscripts i and ` indicate SNP number and study number, respectively.

pcsei` =
acsei`

acsei` +ucse
i`

frequency of the affected allele A1 in cases

pcnti` =
acnti`

acnti` +ucnt
i`

frequency of the affected allele A1 in controls

qcsei` =
ucse
i`

acsei` +ucse
i`

frequency of the alternate allele A2 in cases

qcnti` =
ucnt
i`

acnti` +ucnt
i`

frequency of the alternate allele A2 in controls

4.1.2 Reconstructing allele counts

Using Table 7, notice that the odds ratio (OR) and its corresponding standard error (SE) for SNP i in study
` are given by the following formulas:

ORi` =
acse
i` · ucnt

i`

acnt
i` · ucse

i`

, (1)

SEi` =

√
1

acse
i`

+
1

ucse
i`

+
1

acnt
i`

+
1

ucnt
i`

. (2)

Additionally,

2N cse
` = acse

i` + ucse
i` , and (3)

2N cnt
` = acnt

i` + ucnt
i` . (4)

By solving the system of non-linear eqns. (1), (2), (3), and (4), we can recover acse
i` , ucse

i` , acnt
i` , and ucnt

i`

for SNP i in study `. Notice that ORi`, SEi`, N
cse
` , and N cnt

` are available from summary statistics. See
Appendix 6.2 for details on solving the aforementioned system of non-linear equations.

4.1.3 Reconstructing genotype counts

Given the reconstructed allele counts of Section 4.1.2 , we can now reconstruct genotype counts for SNP i
in the `-th study. In order to do this, we need to assume that SNP i is in HWE in both case and control
groups of study `. Note that a well-performed GWAS should have SNPs drastically violating HWE filtered
out. More precisely, assume that for SNP i in study ` we have reconstructed its allele table count (Table 7).
Then, by assuming that this SNP is in HWE in study `, we can compute the number of cases and controls
that exhibit a particular genotype. Recall that there are three possible genotypes: A1A1, A1A2, and A2A2.
We will represent each genotype by counting the number of copies of the affected allele in each genotype.
Thus, A1A1 will correspond to two, A1A2 will correspond to one, and A2A2 will correspond to zero.
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Table 9: Genotype counts for cases and controls for SNP i in study `. Using the above formulas,
we can reconstruct the genotype counts for cases and controls for each of the three possible genotypes.

A1A1 (two copies of A1) A1A2 (one copy of A1) A2A2 (zero copies of A1)

Cases N cse
i` (2) = (pcsei` )2Ncse

` N cse
i` (1) = 2pcsei` q

cse
i` N

cse
` N cse

i` (0) = (qcsei` )2Ncse
`

Controls N cnt
i` (2) = (pcnti` )2Ncnt

` N cnt
i` (1) = 2pcnti` q

cnt
i` N

cnt
` N cnt

i` (0) = (qcnti` )2Ncnt
`

Following our notational conventions from Section 4.1.1 , we can now compute the entries in Table 9 of
genotype counts for SNP i in study `. It is worth noting that

N cse
` = N cse

i` (0) +N cse
i` (1) +N cse

i` (2), (5)

N cnt
` = N cnt

i` (0) +N cnt
i` (1) +N cnt

i` (2). (6)

Next, we reconstruct the genotype vector for SNP i in study ` as follows:

gi` =

[
0 . . . 0︸ ︷︷ ︸
Ncse

i` (0)

1 . . . 1︸ ︷︷ ︸
Ncse

i` (1)

2 . . . 2︸ ︷︷ ︸
Ncse

i` (2)

0 . . . 0︸ ︷︷ ︸
Ncnt

i` (0)

1 . . . 1︸ ︷︷ ︸
Ncnt

i` (1)

2 . . . 2︸ ︷︷ ︸
Ncnt

i` (2)

]
.

Using eqns. (5) and (6), it is easy to conclude that the vector gi` has a total of

N cse
` +N cnt

`

entries, which is equal to the number of samples (cases plus controls) included in the `-th study. We can also
form the response vector y` for the `-th study, indicating whether a sample is a case (i.e., one) or a control
(i.e., zero) as follows:

y` =

[
1 . . . 1︸ ︷︷ ︸
Ncse

`

0 . . . 0︸ ︷︷ ︸
Ncnt

`

]
. (7)

Note that the vectors y` and gi` have the same dimensions (same number of entries). It should be clear that
the vector y` is the same for all SNPs in the `-th study and hence does not depend on the SNP number i.
We conclude the section by discussing the construction of an indicator vector s that will denote the study
from which a particular sample in our meta-analysis originated. For the sake of simplicity, assume that we
meta-analyze summary statistics from two studies (L = 2). Then, following the above discussion, we can
construct the genotype vectors gi1 and gi2 and concatenate them to construct the overall genotype vector
for the i-th SNP in both studies:

gi = [gi1 gi2] .

Similarly, we can construct the overall response vector y for both studies:

y = [y1 y2] .

Notice that the vectors gi and y have the same dimensions (number of entries), equal to the number of
samples (cases plus controls) in both studies, i.e., equal to

N = N cse
1 +N cnt

1 +N cse
2 +N cnt

2 .

We can now construct the indicator vector s as follows:

s =

[
0 . . . 0︸ ︷︷ ︸

Ncse
1 +Ncnt

1

1 . . . 1︸ ︷︷ ︸
Ncse

2 +Ncnt
2

]
.

Note that a value of zero in s indicates that the corresponding sample belongs to the first study while a
value of one in s indicates that the corresponding sample belongs to the second study.
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4.2 Fixed-effect meta-analysis

4.2.1 Logistic regression

We run logistic regression for each SNP separately; recall that we number SNPs in our meta-analysis from
one up to M . For notational convenience and since we run logistic regression in an identical manner for
each SNP, without loss of generality we focus on a single SNP. Let the genotype vector for the selected SNP
be denoted by g; let s be the study indicator vector; and let y be the response vector, as discussed in the
previous section. Recall that all three vectors have the same dimensions (same number of entries), equal to
N , namely the total number of cases and controls in both studies. Notice that we dropped the subscript i
from the vector g for notational convenience, since our discussion in this section will focus on a fixed SNP
i, without loss of generality.
Using notation from the previous section, while dropping the subscript i from the genotype vector g, allows
us to formulate logistic regression as follows:

Pr(yj = 1|gj , sj) = S(β0 + β1gj + β2sj), (8)

where S(x) = (1 + e−x)−1 is the sigmoid function; yj denotes the jth entry of the vector y; sj denotes
the jth entry of the vector s; and β0, β1, and β2 are the unknown coefficients of the logistic regression
formulation. Here β0 corresponds to the constant offset, β1 corresponds to the genotype, and β2 corresponds
to the study-of-origin. We also highlight that gj denotes the jth entry of the vector g; recall once again that
we dropped the subscript i from the genotype vector in this section. The range for all subscripts j for the
above vectors is between one and N .
In order to further describe how logistic regression was implemented in our experiments, it will be convenient
to introduce additional notation. Let β be the vector

βT = [β0 β1 β2],

and let x be the vector

xTj = [1 gj sj ].

Thus, β is the vector of the (unknown) logistic regression coefficients, while xTj for all j = 1 . . . N is the vector
representing the constant offset, the genotype, and the study origin for the jth sample in our meta-analysis.
This allows us to rewrite eqn. (8) as follows:

Pr(yj = 1|gj , sj) = S(βT · xj).

We can now compute the negative log-likelihood (NLL) function for β as follows:

NLL(β) = −
N∑
j=1

log(Pr(yj)) = 1|xj)

= −
N∑
j=1

yj logS(βT · xj) + (1− yj) log(1− S(βT · xj)).

Thus, β can be estimated using the Iterative Re-weighted Least Squares (IRLS) algorithm [32] as follows:

Algorithm 1: IRLS for maximum likelihood estimate of logistic regression coefficients

Initialize β0 = [log( ȳ
1−ȳ ) 0 0]T , where ȳ is the average of all elements of the vector y;

repeat
ηj = (βt)Txj , j = 1 . . . N ;
φj = S(ηj), j = 1 . . . N ;
dj = φj(1− φj), j = 1 . . . N ;

zj = ηj +
yj−φj

dj
, j = 1 . . . N ;

D = diag(d1, d2, . . . , dN );

βt+1 = (XTDX)−1XTDz;

until convergence;
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In the IRLS algorithm, we let D denote the diagonalN×N matrix whose diagonal entries are d1, d2, . . . , dN ;
we let X denote the N × 3 matrix whose rows are the vectors xTj for j = 1 . . . N ; and we let z denote the

vector whose entries are the zj for j = 1 . . . N . Using this notation, the matrix H = XTDX is the 3 × 3
Hessian matrix of this logistic regression problem. The algorithm iterates over t = 0, 1, 2, . . . and terminates
when our convergence criterion, namely the difference ‖βt+1−βt‖1 1 drops below the threshold 10−4, which
is the same threshold as the one used by PLink [33] for logistic regression.

Note that a drawback for logistic regression is that it can produce anti-conservative results under imbal-
ance, which in our case, includes unbalanced sample sizes in cases and controls, as well as unbalanced sample
sizes among input studies. We apply Firth bias-corrected logistic regression test [34, 35] to correct for the
estimate under input imbalance (triggered when either the total case/control ratio, or maximum/minimum
input sample size ratio is greater or equal to 5 by default). This approach has been reported with stable
performance in both balanced and unbalanced studies, as well as with rare SNPs [36].

We conclude this section by discussing how to compute a p-value for the logistic regression formulation
of eqn. (8). First, it is well-known that the standard error for the three coefficients of the logistic regression
formulation can be computed by using the inverse of the Hessian matrix H. In particular, the standard error
for β0 is equal to SE0 =

√
(H−1)11; the standard error for β1 is equal to SE1 =

√
(H−1)22; and the standard

error for β2 is equal to SE2 =
√

(H−1)22. As is typical in association studies, we focus on SE1, the standard
error for the vector of genotypes, and compute the respective p-value for the SNP-under-study using the

Wald test. More specifically, we find the corresponding p-value of a Z-distribution for the parameter
∣∣∣ β1

SE1

∣∣∣.
4.2.2 Correcting for sample overlap (two studies)

Sample overlap between studies can lead to an under-estimation of test statistics variance and results in an
inflated test p-value. To prevent this from happening, we will use an “effective sample size” correction as
follows. Assume that we are given Table 10, which details the number of overlapping samples between the
two studies.

Table 10: Number of overlapping cases and controls between the two studies. For example, the
first cell of the table indicates the number of shared cases between the two studies. In practice, the off-
diagonal cells of this table are close to zero, since they indicate cases in one study that became controls in
the other study and vice-versa. Large numbers in these off-diagonal cells would indicate high heterogeneity
across the two studies, in which case a fixed effect meta-analysis is not recommended.

Overlapping Study 2: Case Study 2: Control
Study 1: Case Ncse-cse

shr Ncnt-cse
shr

Study 1: Control Ncse-cnt
shr Ncnt-cnt

shr

Using the counts in Table 10, the number of shared cases between the two studies is equal to:

Ncse
shr = Ncse-cse

shr +
Ncse-cnt

shr +Ncnt-cse
shr

2
. (9)

Notice that if the off-diagonal entries in Table 10 are equal to zero then the above number reduces, obviously,
to Ncse-cse

shr . Similarly, we have the number of shared controls equal to:

Ncnt
shr = Ncnt-cnt

shr +
Ncnt-cse

shr +Ncse-cnt
shr

2
. (10)

1This is simply the sum of the absolute values of the three entries of the vector βt+1 − βt.
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Then, the correction is simply carried out by multiplying the case/control sample size of each input study
by a “deflation factor” defined as follows:

λcse` =
Ncse
`

Ncse
` +Ncse

shr

λcnt` =
Ncnt
`

Ncnt
` +Ncnt

shr

.

We multiply the sample size for cases (respectively, controls) in each study ` by λcse` (respectively, λcnt` )
before proceeding with the logistic regression described in Section 4.2.1. See [37] for a similar correction
strategy. We finally note that in practice the exact number of overlapping samples between two studies is
usually not know. In this case, we followed the approach proposed in [23] to estimate the overlapping sample
size.

4.2.3 Meta-analyzing multiple datasets

We now extend our approach to meta-analyze more than two datasets. The main difference with our
previously described approach is the handling of the indicator variable for multiple datasets. We can still
reconstruct the genotype count for each input study in exactly the same way as in Table 9 as well as the
response vector following eqn. (7). Therefore, when multiple studies are meta-analyzed, gi and y become

gi = [gi1 . . .giL] ,

y = [y1 . . .yL] .

The indicator vector s cannot be binary anymore. Intuitively, one may consider using L binary vectors, each
to encode samples from each input study. However, this approach would necessitate up to L(L−1)/2 vectors
to encode pairwise sample overlap. This increases the computational complexity by O(L2). A simpler
alternative is to use categorical variable as the source study indicator. Note that in this case, different
rankings of the studies can lead to completely different results. A straightforward idea is to encode the
studies using their population allele frequencies, which can be computed via Table 7 as follows:

Ii` =
acse
i` + acnt

i`

acse
i` + acnt

i` + ucse
i` + ucnt

i`

Note this is encoding also controls for population stratification across multiple sample sources. Then, when
analyzing L studies, the indicator vector s becomes:

s =

[
I1 . . . I1︸ ︷︷ ︸
Ncse

1 +Ncnt
1

. . . IL . . . IL︸ ︷︷ ︸
Ncse

L +Ncnt
L

]
.

We can now proceed with the logistic regression as in Section 4.2.1 . In order to handle sample overlap across
multiple studies, we use the subscript (·)`1`2 to denote properties of shared samples between two studies `1
and `2. Then, generalizing eqns. (9) and (10), we get, for each pair of input studies `1 and `2,

Ncse
`1`2 = Ncse-cse

`1`2 +
Ncse-cnt
`1`2

+Ncnt-cse
`1`2

2
,

Ncnt
`1`2 = Ncnt-cnt

`1`2 +
Ncnt-cse
`1`2

+Ncse-cnt
`1`2

2
.

Finally, for any study `1 = 1 . . . L, the sample size correction is

λcse`1 =
Ncse
`1

Ncse
`1

+
∑L
`2 6=`1 N

cse
`1`2

,

λcnt`1 =
Ncnt
`1

Ncnt
`1

+
∑L
`2 6=`1 N

cnt
`1`2

.

We can now apply λcse`1 to correct the sample size for cases in study `1 and we can apply λcnt`1 to correct the
sample size for controls and proceed with logistic regression.
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4.3 PRS and cc-GWAS

4.3.1 Mean PRS for cases and controls

Recall that the PRS for the t-th individual in the study is computed as:

PRSt =
M∑
i=1

Si · git
2M

, (11)

where git is the genotype of the i-th SNP for the t-th individual and Si is the weight for SNP i, which is
usually defined as

Si = log(ORbase
i ),

where ORbase
i is the odds ratio of SNP i in the base summary statistics. Recall from Section 4.1.1 that M

is the total number of SNPs. Then, in order to compute the average PRS for, say, cases, we simply need to
sum up the individual PRS and average over the number of cases. More precisely,

PRScse =
1

2MNcse

∑
t∈cse

M∑
i=1

Si · git.

where Ncse is the number of cases in the target study. The above equation can be rewritten as

PRScse =
1

2MNcse

M∑
i=1

Si
∑
t∈cse

git.

Notice that in an additive model,
∑

t∈cse git/2Ncse is the allele frequency of SNP i over all cases in the target
study, which can be computed using only the summary statistics as shown in Section 4.1.3 and Table 8.
Thus, the mean PRS under an additive model for cases and controls can be computed as follows:

PRScse =

∑M
i=1 Sip

cse
i

M
,

PRScnt =

∑M
i=1 Sip

cnt
i

M
.

All relevant information for this computation can be easily obtained from the summary statistics of the base
and/or target study.

4.3.2 Estimating the standard deviation of the PRS for cases and controls

Interestingly, we can also estimate the standard deviation of the PRS for cases and controls, even Without
individual level genotype information, under mild assumptions. First, from eqn. (11), we compute the
variance of an individual’s PRS as follows:

Var(PRSt) = Var(
M∑
i=1

Si · git
2M

)

=
1

4M2
Var(

M∑
i=1

Si · git). (12)

Recall that as a general step prior to the computation of PRS, it is recommended to prune or clump the SNPs
used for the PRS computation. Therefore, our first assumption is that the git’s are pairwise independent.
Then, eqn. (12) can be simplified as follows:

Var(PRSt) =

∑M
i=1 Var(Si · git)

4M2

=

∑M
i=1 S

2
i Var(git)

4M2
. (13)
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Table 11: The probability distribution of git for SNP i. In this table, pcsei denotes the allele frequency
of A1 in cases and qcsei = 1− pcsei .

git = 2 (two copies of A1) git = 1 (one copy of A1) git = 0 (zero copies of A1)
(pcsei )2 2pcsei qcsei (qcsei )2

Notice that under an additive model, git is a discrete random variable that only takes the value zero, one, and
two. Consider all cases and, as in Section 4.1.3 , assume that the SNPs are in HWE. Then, the distribution
of git in the cases is presented in Table 11. We can now compute the variance of git in cases as follows:

Var(git) = E(g2
it)− (Egit)

2

= (2pcsei qcsei + 4(pcsei )2)− (2pcsei qcsei + 2(pcsei )2)2

= (2pcsei qcsei + 4(pcsei )2)− (2pcsei (pcsei + qcsei ))2

= 2pcsei qcsei + 4(pcsei )2 − 4(pcsei )2 = 2pcsei qcsei .

Substituting into eqn. (13), we get

Var(PRScse) =

∑M
i=1 S

2
i (2pcsei qcsei )

4M2
.

Similarly, we can compute the estimated variance PRScnt for controls and PRS for the overall population of
the target study. To summarize, our estimates are

Var(PRScse) =

∑M
i=1 S

2
i p

cse
i qcsei

2M2
,

Var(PRScnt) =

∑M
i=1 S

2
i p

cnt
i qcnti

2M2
,

Var(PRS) =

∑M
i=1 S

2
i piqi

2M2
.

Here pi is the frequency of allele A1 for SNP i in all samples of the target study, and can be computed as:

pi =
Ncsepcsei +Ncntpcnti

Ncse +Ncnt
,

qi = 1− pi.

We can now apply a t-test in order to obtain a p-value for the difference between the PRS distributions in
cases and controls. Given the estimated group means and standard deviations for cases and controls, we can
further assume that the individual level PRS follow a normal distribution in each group and use the t-test
statistic as follows:

t =
PRScse − PRScnt√

Var(PRS) ·
√

1
Ncse + 1

Ncnt

.

Finally, the degrees of freedom are given by df = Ncse +Ncnt − 2.

4.3.3 cc-GWAS using summary statistics

cc-GWAS is a straight-forward approach to investigate the genetic differences between two traits. However,
in practice, it is usually challenging and time consuming, due to restrictions in individual level data sharing.
Recently, a method for cc-GWAS that relies only on summary statistics has been proposed in [16]. We
propose an alternative perspective on summary-statistics-based cc-GWAS framework, using the foundations
of Section 4.1.2.
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One of the biggest challenges of cc-GWAS is the differentiation of the genetic effects from trait-trait
difference and population stratification. Assume that for a fixed SNP, we run logistic regression focusing
only on the cases of the two studies. Let ycse

j = 1 denote that sample j is a case from the first study and let
ycse
j = 0 denote that j is a case from the second study. Let gcse

j be the genotype of the j-th case. Then,

Pr(ycse
j = 1|gcse

j ) = S(βcse0 + βcse1 gcse
j ). (14)

The effect size βcse1 that is the output of logistic regression will include effects from the real genetic differences
between trait 1 and trait 2 (βg) as well as from population stratification (βs). We can assume that these
two effects are independent of each other:

βcse1 = βg + βs.

Assume that the control samples from studies one and two do not carry the traits of interest. Then, we
can estimate the effect of population stratification by running another logistic regression, focusing only on
controls from the two studies, as follows:

Pr(ycnt
j = 1|gcnt

j ) = S(βcnt0 + βsg
cnt
j ). (15)

In the above, ycnt
j = 1 denotes that sample j is a control from study one, ycnt

j = 0) denotes that j is a
control from study two, and gcnt

j denotes the the genotype for the j-th control sample. From this logistic
regression, we can get an estimate of the stratification effect βs. Note that along with βs, we will also get
a standard error for the estimate of stratification SEs, which essentially corresponds to the sample size of
controls in the two input studies. If we do not have a good amount of controls, SEs will turn out to be large,
indicating that the estimate for stratification effect is not reliable and the results from the cc-GWAS should
be be interpreted carefully.

If SEs is small enough, then it is reasonable to assume that the estimate of the stratification effect is
credible and we can subsequently treat βs as a fixed value. Then, the genetic effect from the trait-trait
difference that we are interested in is

βg = βcse1 − βs. (16)

It now follows that the standard error of βg is

Var(βg) = Var(βcse1 ) =⇒ SEg = SE1, (17)

using the derivations of Section 4.1.3. Logistic regressions on cases (eqn. (14)) and controls (eqn. (15)) can
be carried out as discussed in Section 4.2.1, with minor changes (include only the designated samples; relabel
the dependent variable; and remove the indicator variable). By running these two logistic regressions, we
can compute βcse1 , βs, SE

cse
1 , and SEs. Then, using eqns. (16) and (17), we can compute βg and SEg for

each SNP. Similarly, we can also compute the corresponding p-value using a Z-distribution for
∣∣∣ βg

SEg

∣∣∣.
4.4 Experiments

4.4.1 Data

Synthetic data. We used the Balding-Nichols model for synthetic genotype generation, assuming a minor
allele frequency (MAF) of 0.3 for each SNPs and a relative risk r (r = 1.15/1.2/1.3) for the causal SNPs
in each population. The simulation was carried out under a range of Fst values (Fst = 0.01/0.05/0.1). For
the fixed-effect meta-analysis, we simulated 1,000 cases and 1,000 controls for each input study. A total of
100,000 SNPs were generated, out of which 1,000 are causal SNPs with the predefined risk. Moreover, on
top of the independent populations, we also evaluated the performance of ReACt under the presence of
sample overlap by introducing a predefined amount of samples shared between each pair of input studies
(100 cases, 100 controls overlap; or 500 cases, 500 controls overlap).

For the cc-GWAS, inspired by [16], we used the same simulation model but introduced three types of
SNPs for a thorough evaluation of the method’s robustness: (i) SNPs with non-zero effect in only one of the
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studies and zero effect in the other; (ii) SNPs with zero effect in both input studies; and (iii) SNPs with the
same non-zero effect size (predefined r) in both input studies. All of the three types of SNPs would suffer
from population stratification at a predefined value of Fst. In total, 100,000 SNPs were generated, with
1,000 (for each input study) from type (i), 49,000 from type (ii), and 49,000 from type (iii). To investigate
the effect of study sizes, we evaluated the method performance on input studies with 2,000 cases and 2,000
controls each, as well as on studies with 5,000 cases and 5,000 controls each.

Individual level genotype data. We tested the performance of our fixed-effect meta-analysis method
on the myasthenia gravis dataset downloaded from dbGaP (phs000196.v2.p1). This dataset is available as
individual level genotypes. We applied basic quality control filters on the dataset, including removing SNPs
with a missing rate exceeding 2% or violating the Hardy-Weinberg equilibrium (pHWE < 0.0001) or having
MAF strictly less than 0.05. As a result, 622,328 SNPs and 2,949 samples (964 cases and 1,985 controls)
survived and were used for the experiment. For the evaluation of the fixed-effect meta-analysis method,
we ran a standard GWAS with all samples and treated SNPs with p < 10−5 from the results as the “true
signals” to be captured. Additionally, to demonstrate the utility of our group PRS method, we used another
independent individual level genotype data of cases with myasthenia gravis and matching controls. This
dataset has a total sample size of 196 cases and 1,057 controls, with 6,276,739 SNPs included after quality
control. This dataset was described in detail in [25].

Generating summary statistics. For synthetic data and individual level genotypes, summary statistics
were generated using PLink [33], correcting for the top ten principal components (PCs) in the case of
admixed datasets. For real individual level genotype data, we divided the samples randomly into two equal
sized subsets and ran a GWAS on each subset separately to obtain summary statistics for each subset. We
performed ten such random iterations in our experimental evaluations. For the fixed-effect meta-analysis, on
top of two independent subsets, we also introduced 100/500 sample overlap to investigate the performance
of our methods under more challenging scenarios.

Publicly available summary statistics. For group PRS and cc-GWAS, we demonstrated the appli-
cability of our methods using publicly available summary statistics. We chose the summary statistics of
eight neuropsychiatric disorders made available by the Psychiatric Genomics Consortium (PGC), since the
underlying relationships between this set of disorders has been relatively well-studied. Information on the
eight summary statistics can be found in Table 12.

Table 12: Information on summary statistics for the eight psychiatric disorders used in the
experiments. Note that we used summary statistics only for samples of European ancestry. For MD, we
used the summary statistics generated by UK biobank, excluding the 23andMe samples; for BIP, we used
the summary statistics including all three patient sub-types.

Disorder #Cases #Controls Total #SNPs Reference

obsessive-compulsive disorder (OCD) 2,688 7,037 9,725 8,409,516 [38]
Tourette syndrome (TS) 4,819 9,488 14,307 8,947,432 [39]
eating disorder (ED) 3,495 10,982 14,477 10,641,224 [40]
autism spectrum disorder (ASD) 18,382 27,969 46,351 9,112,386 [41]
bipolar disorder (BIP) 20,352 31,358 51,710 13,413,244 [26]
schizophrenia (SCZ) 36,989 113,075 150,064 9,075,843 [27]
attention-deficit/hyperactivity disorder (ADHD) 19,099 34,194 53,293 8,094,094 [42]
major depression (MD) 69,232 161,009 230,241 9,874,289 [43]

4.4.2 Evaluation metrics

Fixed-effect meta-analysis. For synthetic experiments, results after performing the meta-analysis were
compared with the predefined causal variants. Power and type I error rate under each experimental condition
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were reported as an average of ten independent repetitions. For real genotype data, in each iteration, we
meta-analyzed summary statistics of two subsets using the proposed methods and standard approaches and
compared results with the GWAS results on the complete dataset. We again reported results averaged over
ten iterations (random splits) showing, on average, how many times a SNP reported as a “true signal” in
the overall GWAS got picked up by each meta-analysis method (true positive) as well as how many extra
SNPs each method identified (false positive). The performance on real genotype data was also evaluated
under 0/100/500 sample overlap. Sample size for each subset under different conditions was 482 cases, 993
controls with no sample overlap; 532 cases, 1043 controls with 100 cases and 100 controls overlap; and 732
cases, 1243 controls with 500 cases and 500 controls overlap.

We compared the performance of ReACt in terms of accuracy as well as running time with METAL [21]
and ASSET [22], which are both widely used tools for fixed-effect meta-analysis. Note that the latest stable
release of METAL does not have the sample overlap correction functionality implemented. Therefore, for
performance comparison, we used the development version available on GitHub [23].

Group PRS. In order to show that our method outputs reliable estimates of the group-wise statistics for
PRS without accessing individual level genotypes, we compared the output of our method to the true group
mean and standard deviation computed from the individual level PRS on synthetic data, as described in
Section 4.4.1. Performance was evaluated under with a fixed 0.05 Fst between the base and target studies.
For a pair of base and target studies , we estimated the mean PRS for case/control groups as well as their
standard deviation using SNPs with p-values strictly less than 5 · 10−5 in the summary statistics. We also
computed the individual level PRS using PRSise to obtain the true group mean and standard deviation.
Our experiments show that our estimates are numerically close to the real values. Next, we evaluated the
performance of ReACt on real GWAS datasets, where the individual level genotype of the target study
was available. For this experiment, we used GWAS summary statistics of myasthenia gravis samples from
dbgap as the base study (see Section 4.4.1 for details) and an independent group of myasthenia gravis cases
and matching controls as the target population [25]. We clumped the base summary statistics using the
European samples from 1000 Genome Project as reference, under parameters --clump-p1 1 --clump-kb

250 --clump-r2 0.1. We tested the method and reported results under a range of p-value thresholds
(0.1, 0.01, 0.001, 10−4, 10−5, and 10−6). For each threshold, we used only independent SNPs with a p-value
smaller than the respective threshold from the base summary statistics for PRS calculation, using both
ReACt and PRSice2 [24]. We reported the mean PRS of cases and controls, as well as the resulting
p-value from t-test. In the case of PRSice2, we also reported the regression r2 value and p-value for the
PRS predictor with and without correcting for covariates (ie., the top five principal components).

Finally we applied ReACt to summary statistics of eight neuropsychiatric disorders (OCD, TS, ED,
ADHD, ASD, BIP, SCZ and MDD, see Section 4.4.1 for details) and reported the pairwise PRS prediction
power in terms of t-test p-values for the difference between case/control group PRS means. Prior to the
group PRS computation, each base summary statistics was clumped using PLink [33] using parameters
--clump-p1 1 --clump-kb 250 --clump-r2 0.1, with the European samples from 1000 Genome Project
as a reference. All PRS values were estimated using independent SNPs with p-values strictly less than 10−5

from the base summary statistics.

cc-GWAS. Out of the three types of SNPs generated for the cc-GWAS evaluation (see Section 4.4.1), we
expect ReACt to pick up only type (i) SNPs as they have been designed to be the trait differential SNPs.
Therefore, we reported the power of ReACt based on the number of type (i) SNPs that were identified
as well as type I error rates for type (ii) SNPs and type (iii) SNPs. Since the randomness introduced by
the simulation could lead to false positives that were not due to the method itself, we filtered out type
(iii) SNPs showing extreme differences in effect size between studies, by removing type (iii) SNPs with
|ORi1 −ORi2| ≥ 0.1 from performance evaluation. Here ORi1 corresponds to the odd ratio for the ith SNP
in the first study and ORi2 corresponds to the odd ratio for the ith SNP in the other study. Since all three
types of SNPs suffered from population stratification, we evaluated the performance of ReACt under a
challenging scenario. Besides simulation, experiments using summary statistics for schizophrenia (SCZ) [44]
and bipolar disorder (BIP) [45] were also carried out. These two disorders were chosen due to the existence of
case-case association study using the individual level genotypes [28]. We tested ReACt using the summary
statistics and compared the results with the existing case-case association study between SCZ and BIP to
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see whether it could detect possible genetic differences between the two disorders. Since no individual level
quality control could be carried out, we expected our results to correspond to a case-case GWAS including
36,989 cases from SCZ and 20,352 cases from all three sub-types of BIP (type 1, type 2, and schizoaffective
bipolar disorder). For the analysis, we excluded SNPs on the X-chromosome, MHC region (chr6: 25,000,000
- 35,000,000BP), and the inversion on chromosome 8 (chr8: 7,000,000 - 15,000,000BP). As a result, a total
of 8,983,436 SNPs shared between both summary statistics were used for the analysis. The results were
compared in detail with the results reported by the cc-GWAS in [16].

5 Conclusion

In summary, we propose a simple, novel framework that reconstructs allelic counts of each SNP from the
summary statistics of case-control GWAS. Additionally, we evaluate our framework on three applications and
provide light and easily modifiable implementations of our methods in the software package ReACt. Given
the simplicity of the proposed approach, both theoretically and empirically, we believe that this framework
has significant potential for further developments.

URL

This is a preliminary implementation for ReACt: https://github.com/Paschou-Lab/ReAct
Please contact us if you identify any bug when using this version of ReACt and we will keep improving.
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association study identifies 30 loci associated with bipolar disorder. Nature genetics, 51(5):793–803,
2019.

[46] Naomi R Wray, Jian Yang, Ben J Hayes, Alkes L Price, Michael E Goddard, and Peter M Visscher.
Pitfalls of predicting complex traits from snps. Nature Reviews Genetics, 14(7):507–515, 2013.

30

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2021. ; https://doi.org/10.1101/2021.04.02.438281doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.02.438281
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 Supplementary Material

6.1 Supplementary tables

Table S1: Average running time in seconds for fixed effect meta-analysis for ReACt, METAL,
and ASSET. All experiments were performed at Purdue’s Snyder cluster on a dedicated node which features
a Haswell processor running at 2.6 GHz with 512 GB of RAM and a 64-bit CentOS Linux 7 operating system.
We report average running time in seconds over ten iterations using ReACt, METAL, and ASSET. In the case of
METAL we evaluated the performance of the latest release in GitHub [23]. In each iteration, two or four sets
of summary statistics (for 100,000 SNPs) were meta-analyzed. Recall that all methods scale as a function of
the number of SNPs and is independent of the number of samples, since only summary statistics are used.

ReACt METAL ASSET

2 input studies 2.2s 1.8s 696s
4 input studies 3.1s 3.3s 3715s
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Table S2: Performance of fixed-effect meta-analysis with two input studies under different
conditions. We compare power and type I error rate (T1E) of our method meta-analyzing two studies
vs. ASSET/METAL for a significance threshold p < 5 · 10−5. METAL dev refers to the latest release in
GitHub [23]. Two variants of ReACt are tested: Exact and Est, indicating whether the sample overlap was
exactly known as part of the input or whether it was estimated, respectively. Sample overlap indicates the
number of cases and controls that were shared between two input studies. I.e. a sample overlap equal to 100
means that there are 100 cases and 100 controls shared between two input studies. Total sample sizes for
each input study, including the shared samples, are equal to 2000 when the sample overlap is equal to zero;
2400 when the sample overlap is equal to 100; and 4000 when the sample overlap is equal to 500. In each
case, the sample is equally split to cases and controls. Also see figure 1 and 2.

risk Fst overlap
ASSET ReACt (Exact) ReACt (Est.) METAL (dev)

Power T1E Power T1E Power T1E Power T1E

1.15

0.01
0 1.04E-01 4.95E-05 1.03E-01 4.85E-05 - - 1.04E-01 4.95E-05

100 1.13E-01 4.34E-05 1.27E-01 5.25E-05 1.30E-01 4.85E-05 1.31E-01 5.15E-05
500 1.69E-01 1.11E-05 2.79E-01 4.75E-05 2.80E-01 4.85E-05 2.80E-01 4.65E-05

0.05
0 9.66E-02 5.25E-05 9.31E-02 5.25E-05 - - 9.66E-02 5.25E-05

100 9.68E-02 3.43E-05 1.19E-01 4.14E-05 1.17E-01 4.14E-05 1.17E-01 4.65E-05
500 1.53E-01 4.04E-06 2.68E-01 3.84E-05 2.69E-01 3.74E-05 2.67E-01 3.74E-05

0.1
0 8.65E-02 4.34E-05 8.19E-02 4.04E-05 - - 8.65E-02 4.34E-05

100 7.75E-02 3.33E-05 1.05E-01 4.44E-05 1.09E-01 4.65E-05 1.08E-01 5.15E-05
500 1.24E-01 9.09E-06 2.39E-01 4.65E-05 2.42E-01 4.95E-05 2.41E-01 5.15E-05

1.2

0.01
0 3.21E-01 3.84E-05 3.18E-01 3.74E-05 - - 3.21E-01 3.84E-05

100 3.41E-01 3.54E-05 3.82E-01 4.04E-05 3.85E-01 4.04E-05 3.85E-01 4.14E-05
500 4.95E-01 7.07E-06 6.44E-01 4.04E-05 6.47E-01 4.24E-05 6.46E-01 4.14E-05

0.05
0 3.13E-01 4.24E-05 3.06E-01 3.94E-05 - - 3.13E-01 4.24E-05

100 2.96E-01 4.65E-05 3.59E-01 5.35E-05 3.66E-01 5.35E-05 3.65E-01 5.76E-05
500 4.47E-01 8.08E-06 6.09E-01 4.85E-05 6.14E-01 5.15E-05 6.11E-01 5.25E-05

0.1
0 2.83E-01 4.85E-05 2.71E-01 4.44E-05 - - 2.83E-01 4.85E-05

100 2.45E-01 4.44E-05 3.28E-01 4.34E-05 3.27E-01 4.55E-05 3.23E-01 4.55E-05
500 3.95E-01 8.08E-06 5.76E-01 4.75E-05 5.83E-01 4.85E-05 5.80E-01 4.65E-05

1.3

0.01
0 8.00E-01 3.23E-05 7.99E-01 3.23E-05 - - 8.00E-01 3.23E-05

100 6.80E-01 3.84E-05 7.36E-01 4.65E-05 7.43E-01 5.15E-05 7.42E-01 5.45E-05
500 4.90E-01 4.04E-06 6.40E-01 2.42E-05 6.98E-01 5.35E-05 6.97E-01 5.05E-05

0.05
0 7.82E-01 4.95E-05 7.77E-01 4.44E-05 - - 7.82E-01 4.95E-05

100 6.32E-01 3.94E-05 7.48E-01 4.55E-05 7.55E-01 5.25E-05 7.52E-01 5.45E-05
500 4.99E-01 1.01E-06 6.67E-01 1.31E-05 7.18E-01 4.04E-05 7.16E-01 3.64E-05

0.1
0 7.32E-01 4.95E-05 7.20E-01 4.44E-05 - - 7.32E-01 4.95E-05

100 6.01E-01 3.84E-05 7.67E-01 4.24E-05 7.71E-01 4.65E-05 7.62E-01 5.15E-05
500 5.49E-01 1.01E-06 7.30E-01 1.31E-05 7.67E-01 3.43E-05 7.63E-01 3.94E-05
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Table S3: Performance of fixed-effect meta-analysis with four input studies under different
conditions. We compare power and type I error rate (T1E) of our method meta-analyzing four studies
vs. ASSET/METAL for a significance threshold p < 5 · 10−5. METAL dev refers to the latest release in
GitHub [23]. Two variants of ReACt are tested: Exact and Est, indicating whether the sample overlap was
exactly known as part of the input or whether it was estimated, respectively. Sample overlap indicates the
number of cases and controls that were shared between two input studies. I.e. a sample overlap equal to 100
means that there are 100 cases and 100 controls shared between two input studies. Total sample sizes for
each input study, including the shared samples, are equal to 2000 when the sample overlap is equal to zero;
2400 when the sample overlap is equal to 100; and 4000 when the sample overlap is equal to 500. In each
case, the sample is equally split to cases and controls.

risk Fst overlap
ASSET ReACt (Exact) ReACt (Est.) METAL (dev)

Power T1E Power T1E Power T1E Power T1E

1.15

0.01
0 4.31E-01 4.75E-05 4.31E-01 4.75E-05 - - 4.31E-01 4.75E-05

100 3.19E-01 2.93E-05 4.00E-01 5.15E-05 4.03E-01 5.45E-05 4.03E-01 4.85E-05
500 2.36E-01 1.01E-06 5.20E-01 4.85E-05 5.27E-01 5.25E-05 5.23E-01 4.85E-05

0.05
0 4.13E-01 4.34E-05 4.08E-01 4.24E-05 - - 4.13E-01 4.34E-05

100 2.49E-01 3.33E-05 3.83E-01 5.25E-05 3.85E-01 5.66E-05 3.78E-01 5.56E-05
500 2.06E-01 2.02E-06 5.03E-01 5.56E-05 5.14E-01 6.46E-05 5.04E-01 5.25E-05

0.1
0 3.72E-01 5.35E-05 3.64E-01 4.85E-05 - - 3.72E-01 5.35E-05

100 1.90E-01 2.42E-05 3.46E-01 4.55E-05 3.53E-01 5.66E-05 3.41E-01 5.45E-05
500 1.60E-01 2.02E-06 4.56E-01 5.15E-05 4.66E-01 5.45E-05 4.61E-01 5.35E-05

1.2

0.01
0 7.87E-01 5.15E-05 7.85E-01 5.15E-05 - - 7.87E-01 5.15E-05

100 6.48E-01 4.14E-05 7.59E-01 4.85E-05 7.64E-01 5.45E-05 7.59E-01 4.95E-05
500 6.14E-01 0.00E+00 8.43E-01 5.05E-05 8.49E-01 5.96E-05 8.48E-01 5.25E-05

0.05
0 7.61E-01 3.43E-05 7.57E-01 3.23E-05 - - 7.61E-01 3.43E-05

100 5.26E-01 1.82E-05 7.32E-01 3.54E-05 7.41E-01 4.85E-05 7.33E-01 4.65E-05
500 5.36E-01 1.01E-06 8.19E-01 2.93E-05 8.28E-01 3.54E-05 8.23E-01 3.23E-05

0.1
0 7.21E-01 5.15E-05 7.11E-01 5.15E-05 - - 7.21E-01 5.15E-05

100 4.22E-01 3.43E-05 6.88E-01 5.35E-05 6.86E-01 5.15E-05 6.76E-01 6.16E-05
500 4.65E-01 1.01E-06 7.86E-01 4.65E-05 7.91E-01 5.25E-05 7.88E-01 5.15E-05

1.3

0.01
0 9.83E-01 5.45E-05 9.83E-01 5.45E-05 - - 9.83E-01 5.45E-05

100 8.59E-01 2.02E-05 9.45E-01 3.23E-05 9.54E-01 4.95E-05 9.50E-01 4.85E-05
500 6.30E-01 0.00E+00 8.53E-01 5.05E-06 9.12E-01 6.46E-05 9.10E-01 6.87E-05

0.05
0 9.71E-01 4.65E-05 9.70E-01 4.44E-05 - - 9.71E-01 4.65E-05

100 7.68E-01 2.22E-05 9.49E-01 3.23E-05 9.55E-01 5.15E-05 9.50E-01 4.85E-05
500 6.10E-01 0.00E+00 8.73E-01 1.01E-05 9.23E-01 7.07E-05 9.21E-01 6.67E-05

0.1
0 9.54E-01 5.66E-05 9.52E-01 4.65E-05 - - 9.54E-01 5.66E-05

100 6.91E-01 2.32E-05 9.45E-01 4.04E-05 9.47E-01 4.65E-05 9.40E-01 5.15E-05
500 6.21E-01 0.00E+00 8.93E-01 1.01E-05 9.27E-01 4.04E-05 9.24E-01 4.55E-05
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Table S4: Performance of sample overlap correction for estimating PRS using our method.
Assuming 100 cases and 100 controls shared between base and target studies, we compared the corrected PRS
statistics estimated using our method with the real statistics of individual level PRS obtained using PRSice2.
Comparison was carried out under various levels of stratification between base and target population (Fst = 0,
0.05, and 0.1) and p-value thresholds (denoted by P -thres in the table) for SNP selection. For both methods,
mean PRS represents the estimated group mean PRS for cases and controls; and p-val are the t-test p-values
comparing the resulting PRS distribution in cases and controls. For PRSice2, we computed these statistics
for all the samples in the target population, including the samples shared with the base population (denoted
by All samples), as well as only for samples that are present exclusively in the target population (denoted
by Non-overlapping Samples).

Fst P -thres trait
Our method (ReACt) PRSice2

Corrected statistics All samples Non-overlapping Samples
mean PRS p-val mean PRS p-val mean PRS p-val

0a

0.05
cases 0.0003

4.07E-05
0.0012

1.09E-54
0.0003

3.59E-07
controls 0.0000 -0.0009 0.0000

0.005
cases 0.0034

1.28E-04
0.0050

6.02E-39
0.0034

1.20E-04
controls 0.0024 0.0008 0.0025

5 · 10−4 cases -0.0030
2.44E-01

-0.0008
8.96E-12

-0.0028
1.47E-01

controls -0.0041 -0.0063 -0.0040

5 · 10−5 cases 0.0441
7.52E-01

0.0471
2.31E-02

0.0449
5.46E-01

controls 0.0450 0.0419 0.0464

0.05b

0.05
cases 0.0000

5.57E-54
0.0002

3.55E-111
0.0001

8.64E-88
controls -0.0005 -0.0007 -0.0006

0.005
cases 0.0001

4.21E-62
0.0001

5.56E-110
0.0000

3.30E-91
controls -0.0019 -0.0025 -0.0024

5 · 10−4 cases -0.0063
1.51E-50

-0.0067
1.72E-77

-0.0069
3.61E-70

controls -0.0112 -0.0124 -0.0124

5 · 10−5 cases -0.0234
4.88E-21

-0.0229
3.21E-32

-0.0232
3.04E-29

controls -0.0298 -0.0304 -0.0305

0.1c

0.05
cases 0.0001

7.32E-35
0.0004

8.05E-90
0.0004

7.52E-68
controls -0.0003 -0.0004 -0.0003

0.005
cases 0.0004

2.14E-52
0.0007

8.82E-98
0.0006

3.03E-79
controls -0.0014 -0.0017 -0.0015

5 · 10−4 cases -0.0048
3.74E-41

-0.0048
6.51E-60

-0.0047
1.32E-52

controls -0.0091 -0.0100 -0.0096

5 · 10−5 cases 0.0109
6.04E-15

0.0087
7.62E-22

0.0088
2.47E-19

controls 0.0054 0.0021 0.0025

a tested with 550 cases and 550 controls from base and target studies respectively
b tested with 1,200 cases and 1,200 controls from base and target studies respectively
c tested with 1,200 cases and 1,200 controls from base and target studies respectively
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Table S5. Using ReACt to run cc-GWAS cross eight neuropsychiatric disorders. We applied
our method for cc-GWAS to the summary statistics of eight neuropsychiatric disorders from PGC. Each
spreadsheet reports the genomewide significant trait differential regions for a pair of disorders analyzed. For
each genomic region, statistics and annotation for the leading SNP are reported.
*Excel table.
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6.2 Solving the non-linear system of equations of Section 2.1

For notational simplicity, let a = acse
i` , b = ucse

i` , c = acnt
i` , and d = ucnt

i` . We rewrite eqns. (1)-(4) as

1

a
+

1

b
+

1

c
+

1

d
= w, with w = SE2

i`, (18)

a+ b = x, with x = 2N cse
` , (19)

c+ d = y, with y = 2N cnt
` , and (20)

a · d
c · b

= z, with z = ORi`. (21)

Our goal is compute values for the four unknowns a, b, c, and d. Combining eqns. (19) and (20), we get

a = x− b, and (22)

c = y − d. (23)

Substituting eqn. (22) and eqn. (23) into eqn. (21), we get (x− b)d = zb(y − d), which can be rewritten as

b =
xd

yz − zd+ d
. (24)

Substituting eqn. (24) into eqn. (22), we get

a = x− xd

yz − zd+ d
=

xyz − xzd
yz − zd+ d

. (25)

We now note that all four unknowns can be written as functions of d and other known quantities. Substituting
eqn. (23), eqn. (24), and eqn. (25) into eqn. (18), we get

1
xyz−xzd
yz−zd+d

+
1
xd

yz−zd+d

+
1

y − d
+

1

d
= w.

Simplifying the above equation, we get

yz − zd+ d

xz(y − d)
+
yz − zd+ d

xd
+

1

y − d
+

1

d
= w,

which can be further simplified to

(wxz + (1− z)2) · d2 + (2yz(1− z)− wxyz) · d+ (yz(x+ yz)) = 0. (26)

Eqn. (26) is a quadratic equation on d; its real roots (if they exist) are

{d1, d2} =
−(2yz(1− z)− wxyz)±

√
(2yz(1− z)− wxyz)2 − 4(wxz + (1− z)2)(yz(x+ yz))

2(wxz + (1− z)2)
.

Given d, we can immediately compute a, b, and c using eqns. (23), (24), and (25). In order to determine
whether d is equal to d1 or d2, we first check whether d1 or d2 guarantee that a, b, c, and d are all positive
numbers. If both d1 and d2 satisfy this constraint, then we choose the largest of the two roots, as it solves
the following trivial minimization problem:

min
d∈{d1,d2}

a+ c

a+ b+ c+ d
.

The above choice is based on the assumption that in summary statistics A1 (whose frequency is equal to the
above fraction) typically denotes the affected (minor) allele. Additionally, our code performs a sanity check
for allele alignment across studies given the solution d1 or d2.
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For the sake of completeness, we also prove that it is not possible for both d1 and d2 to be negative. First,
note that

d1 + d2 = −2yz(1− z)− wxyz
wxz + (1− z)2

=
yz

wxz + (1− z)2
· (wx− 2 + 2z). (27)

Using x = a+ b > 0 and w = 1
a + 1

b + 1
c + 1

d >
1
a + 1

b > 0, we get

wx > (a+ b) · ( 1

a
+

1

b
) =

(a+ b)2

ab
=
a2 + 2ab+ b2

ab
> 2, (28)

which implies that wx− 2 + 2z > 0. Combining with eqn. (27), we conclude that d1 + d+ 2 is non-negative;
recall that w, x, y, and z are all non-negative. Additionally,

d1 · d2 =
yz(x+ yz)

wxz + (1− z)2
> 0,

which implies that d1 and d2 must have the same sign, and since their sum is non-negative, they must both
be positive. It is a simple exercise to prove that as long as root(s) exist, at least one of them will guarantee
that all values for a, b and c will be positive.

One important exception arises when the discriminant in eqn. (26) is negative. In that case, no real
roots exist for the quadratic equation. We do note that, theoretically, this should never happen, since the
underlying unknown quantities are positive real numbers. However, stratification correction and genotype
missingness could force the discriminant to fall below zero. To address this issue, we inflate w (i.e., the
square of the standard error for the respective SNP) and recompute the discriminant. More specifically, we
iteratively multiply w by 1.001 (a 0.1% inflation) until a non-negative discriminant is obtained or until 50
iterations are reached. The maximum inflation we allow (after the full 50 iterations) is 1.00150 − 1 ≈ 5%.
If after 50 iterations we have failed to find a non-negative discriminant we omit this particular SNP from
further analyses. Empirically, for most input SNPs, a real root can be found after at most ten iterations.

6.3 Correction for sample overlap between the base/target studies for group
PRS

The existence of shared samples in base (discovery) and target populations can lead to inflation in association
between PRS and the trait of interest in the target population [46, 19]. In our case, such overlap will
cause higher levels of significance in the t-test comparing the case and control PRS distribution. So far,
for conventional PRS, the most widely accepted approach to address this problem is simply to identify the
overlapping individuals and remove them from the target population. However, in practice, this is not always
possible since it usually requires additional access to the individual level data of the base population. In this
section, we introduce a correction for sample overlap between the base and target populations implemented
in ReACt that could alleviate such issues.

In the following, we will use the case group as an example. Assume that the sample size for cases of
the target population is Ncse

target, out of which Ncse
shr are also cases in the base population (overlap). If the

probability of each sample being shared between the base and target studies is uniformly distributed in both
base and target studies, we would expect the observed mean PRS in target cases PRScse

obs to be a weighted sum
of the mean PRS in base cases PRScse

base and the mean PRS of cases that only exist in the target population
PRScse

target as follows:

PRScse
obs =

Ncse
shr

Ncse
target

· PRScse
base +

(
1− Ncse

shr

Ncse

)
· PRScse

target.

Therefore, the mean PRS for cases only in the target population is:

PRScse
target =

(
PRScse

obs −
Ncse

shr

Ncse
target

PRScse
base

)
·

Ncse
target

Ncse
target −Ncse

shr

,

where PRScse
obs is the uncorrected group mean computed as described in Section 4.3.1. PRScse

base can be
obtained by simply setting the target population to be the same as the base population, using base summary
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statistics to compute group PRS for the target population. Similarly, we can adjust the variance computation
as follows:

Var(PRScse
obs) =

(
Ncse

shr

Ncse
target

)2

·Var(PRScse
base) +

(
1− Ncse

shr

Ncse
target

)2

·Var(PRScse
target). (29)

Therefore, the corrected variance will be

Var(PRScse
target) =

(
Var(PRScse

obs)−
(

Ncse
shr

Ncse
target

)2

·Var(PRScse
base)

)
·
(

Ncse
target

Ncse
target −Ncse

shr

)2

(30)

Similarly,

PRScnt
target =

(
PRScnt

obs −
Ncnt

shr

Ncnt
target

PRScnt
base

)
·

Ncnt
target

Ncnt
target −Ncnt

shr

(31)

and

Var(PRScnt
target) =

(
Var(PRScnt

obs)−
(

Ncnt
shr

Ncnt
target

)2

·Var(PRScnt
base)

)
·
(

Ncnt
target

Ncnt
target −Ncnt

shr

)2

(32)

for controls. Then, the corrected p-value will be based on a t-test using the corrected mean and variance
and an adjusted degree of freedom:

dftarget = Ncnt
target +Ncse

target − (Ncnt
shr +Ncse

shr )− 2.

This is a straightforward correction on the target PRS using the scores of the base population that one
would use if there were no stratification between the base and target populations. In practice, this idealized
scenario does not hold. In order to deal with the stratification between the base and target populations,
prior to any correction, we shift the scores for base cases and controls by aligning the base population PRS
means to the target population as follows:

PRScse*
base = PRScse

base − (PRSbase − PRStarget),

PRScnt*
base = PRScnt

base − (PRSbase − PRStarget).

In the above, PRSbase and PRStarget are mean PRS for the base and target populations respectively:

PRSbase =
Ncnt

base · PRScnt
base +Ncnt

base · PRScnt
base

Ncse
base +Ncnt

base

,

PRStarget =
Ncnt

target · PRScnt
target +Ncnt

target · PRScnt
target

Ncse
target +Ncnt

target

.

In practice, we use PRScse*
base and PRScnt*

base instead of PRScse
base and PRScnt

base in equations (29)-(32) for correction.
We evaluated the performance of this correction scheme by introducing sample overlaps between the base
and target populations using the same simulation model as the one we used to evaluate the performance
of our group PRS approach. We computed the real individual level PRS using PRSice2, from which we
obtained the inflated PRS descriptive statistics (group mean, standard deviation, and t-test p-value) for
all target samples, including the ones that are shared with the base population. We also computed PRS
statistics for samples that are present only in the target population as the ground truth. We compared
results from our corrected group PRS method to the PRS statistics for the samples that are exclusive to the
target population computed using PRSice2. Results on synthetic data demonstrated that our correction
can drastically alleviate the inflation in p-values that is the result of sample overlap the between base and
target populations. See Table S4, which shows representative results from our experimental evaluations. If
the number of overlapping samples is unknown to the user, we apply the approach proposed in [23] to get
an estimate of the overlapping sample size and we correct the output statistics accordingly. Note that this
correction approach is based on the assumption that all samples having an equal probability of being shared
between the base and target populations, which might be unrealistic in certain settings.
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