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ABSTRACT 

Liposomes are widely used as synthetic analogues of cell membranes and for drug delivery. Lipid-binding DNA 

nanostructures can modify the shape, porosity and reactivity of liposomes, mediated by cholesterol-

modifications. DNA nanostructures can also be designed to switch conformations by DNA strand displacement. 

However, the optimal conditions to facilitate stable, high-yield DNA-lipid binding while allowing controlled 

switching by strand-displacement are not known. Here we characterised the effect of cholesterol 

arrangement, DNA structure, buffer and lipid composition on DNA-lipid binding and strand displacement. We 

observed that binding was inhibited below pH 4, and above 200 mM NaCl or 40 mM MgCl2, was independent 

of lipid type (neutral/zwitterionic), and increased with membrane cholesterol content. For simple motifs, 

binding yield was slightly higher for double-stranded DNA than single-stranded. For larger DNA origami tiles, 

4 – 8 cholesterol modifications was optimal, while edge positions and longer spacers increased yield of lipid-

binding. Strand displacement achieved controlled removal of DNA tiles from membranes, but was inhibited 

by overhang domains, which are used to prevent cholesterol aggregation. These findings provide design 

guidelines for integrating strand-displacement switching with lipid-binding DNA nanostructures. This paves 

the way for achieving dynamic control of membrane morphology, enabling broader applications in 

nanomedicine and biophysics. 
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INTRODUCTION 

DNA nanotechnology is an approach to designing and building nanostructures that self-assemble via DNA 

hybridisation (1). Since its development (2), a variety of two and three-dimensional DNA nanostructures have 

been created and described (3, 4) as well as environment-sensing mechanisms that allow DNA nanostructures 

to change state in response to external triggers (5). Alongside this, in the field of DNA computing, increasingly 

complex computational circuits have been realised with DNA molecules in solution, driven by the process of 

toe-hold mediated DNA strand displacement (6, 7). 

Liposomes are aqueous vesicles bound by one or more bilayers of lipids. Due to their similarities to membrane 

bilayers in nature, liposomes have proven a powerful research tool for modelling cellular membranes in 

simplified synthetic systems. Liposomes can also be used to encapsulate therapeutic payloads for enhanced 

drug delivery (8). Various strategies for engineering liposomes for therapeutic applications have been 

developed in order to increase circulation time, allow targeted payload release or deliver a payload to a cell's 

cytosol (9, 10). For example, lipid nanoparticles are the delivery vehicle for the first two approved SARS-CoV-

2 vaccines, developed in record time in 2020, which deliver mRNA cargo (11). 

Modification of DNA with hydrophobic chemical groups, such as cholesterol, has been used to enable lipid 

membrane binding (12). Such membrane-bound DNA nanostructures have been used to functionalise 

liposome surfaces (13), control the shape of liposomes by inducing membrane curvature and tubulation (14, 

15) and form membrane-spanning nanopores that facilitate current flow (16, 17). DNA nanopores can have 

dimensions which exceed those of natural protein pores (18), and can incorporate mechanisms that regulate 

ion flow in response to external stimuli, termed gating (19, 20) . 

Despite the range of lipid-interacting DNA nanostructures that have been successfully realised to date, there 

are still a number of limitations (21). Cholesterol is widely used to mediate DNA-lipid interactions, but 

systematic experimental studies of the kinetics and energetics of how different cholesterol-modified DNA 

nanostructures insert into bilayers are lacking. Generally, large numbers of hydrophobic groups are thought 

to be necessary for spontaneous and stable membrane insertion to occur (Krishnan et al., 2016) and to 

overcome the substantial energy penalties associated with the insertion of membrane-spanning DNA 

nanopores (22). It has been observed that both the quantity and position of TEG-cholesterol anchors on DNA 

nanostructures can affect their affinity for lipid bilayers (17, 23). The yield of well-formed lipid-DNA structures 

is also generally low, which limits many potential applications (21). Monovalent and divalent cations are 

necessary buffer components for assembly and maintaining the stability of DNA duplexes and nanostructures 

(24, 25), yet are also known to affect the physical characteristics of membrane bilayers (26, 27) and may affect 

the binding activity of cholesterol-modified DNA. Finally, complex regulatory mechanisms that control 
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membrane deformation with fast kinetics are found in many biological systems, such as synaptic fusion (28) 

and endocytosis (29), but are yet to developed in DNA-lipid systems.  

Here we present a systematic optimisation of the number, position and geometry of cholesterol attachment 

sites on a DNA nanostructure, as well as buffer and lipid composition, to improve the efficiency of membrane 

binding and increase yield of well-formed structures. We have quantified the binding of cholesterol-modified 

DNA strands to synthetic liposomes using fluorescence microscopy, including the effects of pH, ion 

concentration, membrane composition and cholesterol content. We investigated three types of DNA motif: a 

single-stranded DNA (ssDNA), double-stranded duplex (dsDNA), and a duplex with a short single-stranded DNA  

'overhang' proximal to the cholesterol group, recently shown to reduce aggregation during nanostructure 

assembly (30). Next, we investigated the membrane binding efficiency of a cholesterol-modified DNA origami 

nanostructure using fluorescence microscopy and a high throughput gel-shift assay. The effect of cholesterol 

number, configuration and spacer distance between the DNA nanostructure and cholesterol, were tested. We 

then optimised strategies for achieving reversible membrane binding by controlled removal of membrane-

bound DNA nanostructures using toehold-mediated strand displacement.  

 

MATERIALS AND METHODS 

Preparation of Buffers and solutions 

Liposomes and DNA stocks were diluted in Liposome Buffer (210 mM D-Sorbitol [S1876, Sigma], 5 mM Tris-

HCl [T3253, Sigma], pH 7.5) containing NaCl [AJA465, Ajax-Finechem] (12.5 mM to 400 mM) and MgCl2 

[AJA296, Ajax-Finechem] (0 mM to 80 mM) as required. For pH-dependent experiments a modified Liposome 

Buffer (210 mM D-Sorbitol, 100 mM NaCl) was used, with pH adjusted to 2, 4, 6, 7, 8 and 10  +/- 0.2 with 200 

mM NaOH or HCl. 

Design and assembly of ssDNA and dsDNA 

DNA strands used for lipid-binding experiments were 23 nucleotides (nt) in length, and used as ssDNA, dsDNA, 

or dsDNA with a 5' 6-nt single stranded 'overhang' (dsDNA-6nt) (Supplementary Material). Synthetic DNA 

oligonucleotides (oligos) were purchased from IDT (Integrated DNA Technologies, Inc., USA). DNA sequences 

were designed using NUPACK design software (31) to prevent unwanted secondary structures. A previously 

published 6-nt overhang sequence was added to the 5’ end of oligos (30). Oligos were purchased modified at 

the 3' end with a tetraethylene glycol cholesterol moiety (TEG-cholesterol), or  5' Alexa 647, Cy5 or Cy3 

fluorophores.  

DNA stocks (100 μM, 1000x) were prepared using MilliQ water [Milli-Q, Millipore] and stored at 4°C. DNA 

duplexes were annealed at 10 μM final concentration in duplex buffer (100 mM NaCl, 5 mM Tris-HCl, pH 7.5). 
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Oligos were heated to 90˚C for five minutes then cooled in a thermocycler at 5˚C /minute for 15 minutes to   

15˚C, and stored at 4˚C. For dsDNA assembly, unmodified complementary strands were added in a 3-fold 

excess to modified strands. DNA was diluted in extrusion buffer (210 mM sorbitol, 100 mM NaCl, 5 mM Tris-

HCl, pH 7.5) to 100 nM for lipid-binding experiments. 

Preparation of Liposomes 

Liposomes were produced with two lipid mixtures: (1) DOPE/DOPC liposomes [49.9% 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphoethanolamine (DOPE 18:1, 850725 P, Avanti), 49.9% 1-palmitoyl-2-oleoyl-glycero-3-

phosphocholine (DOPC 18:1, 850375 P, Avanti)], (2) DPhPC liposomes [99.8% 1,2-diphytanoyl-sn-glycero-3-

phosphocholine (DPhPC 850356P Avanti Polar Lipids)] (Supplementary Table 1). Both lipid mixtures were 

doped with  0.1% PE-rhodamine [1,2-dioleoyl-sn-glycero-3-phosphoethanolamine- N-lissamine rhodamine B 

sulfonyl, 810150P Avanti Polar Lipids] for fluorescence imaging and 0.1% PE-biotin [1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine-N-biotinyl, 870282P Avanti Polar Lipids] for surface tethering. All percentages indicate 

weight to weight ratios. Liposomes with cholesterol were prepared by replacing either DPhPC (lipid type 2, 

above) or equal parts of DOPE and DOPC (lipid type 1, above) with cholesterol [700000P Avanti Polar Lipids]. 

All lipids stocks were dissolved in chloroform at 10 mg/mL and stored at -20 ˚C.  

Extruded liposomes (termed SUVs) were produced using a Mini-Extruder kit using 100 nm membrane pore 

size (Avanti Polar Lipids Inc., USA) according to the manufacturer’s protocol (Supplementary Methods). 

Liposomes were then diluted 100-fold to 0.1 mg/ml final lipid concentration in extrusion buffer (210 mM 

sorbitol, 100 mM NaCl, 5 mM Tris-HCl, pH 7.5) prior to experiments. 

Giant unilamellar liposomes (GUVs) were prepared by electroformation using the Vesicle Prep Pro machine 

(Nanion Technologies GmbH, Germany) using the default protocol as described previously (32) 

(Supplementary Methods). GUVs in electroformation solution were diluted 1:1 in buffer of 210 mM sorbitol, 

80 mM NaCl, 10 mM Tris-HCl, giving a final external solution of 210 mM sorbitol, 40 mM NaCl, 5 mM Tris-HCl. 

Liposome dissolution was tested by titration of increasing concentration of the detergent Polysorbate-20 

(Supplementary Figure 1). 

TIRF Fluorescence microscopy of extruded SUVs 

Surfaces for imaging were prepared using tunnel slides and BSA-biotin/avidin conjugation chemistry as 

described previously  (33, 34). Surface-tethered SUVs were imaged using on a Zeiss Elyra PALM/SIM 

Microscope in Total Internal Reflection Fluorescence (TIRF) mode with a 63x/1.4 Oil Iris M27 oil immersion 

objective (Carl Zeiss AG, Germany) and Andor iXon 897 EMCCD camera (Oxford Instruments, United Kingdom). 

Two-channel fluorescence images were collected for rhodamine-liposomes (Ex/Em filters 561/570-650 plus 
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750 nm longpass) and fluorophore-tagged DNA (Ex/Em filters 642/655 nm long pass). Exposure times were 

100 ms (lipid) and 33ms (DNA). 

Confocal fluorescence microscopy of electroformed GUVs       

DNA binding on GUVs was imaged using a Leica TCS SP8 DLS confocal microscope with HC PL APO CS2 63 x oil 

immersion objective lens, Acousto-Optical Beam Splitter, and programmable crystal-based beam splitter 

(Leica Microsystems GmbH, Germany). Two-channel images with rhodamine-liposomes (Ex/Em 561/569-611 

nm), and Alexa647- DNA (Ex/Em 640/690-734 nm). 

Quantification of DNA-liposome binding from microscope images 

A custom macro script was developed using FIJI in ImageJ (35) to quantify the colocalisation of DNA and 

liposomes, based on the Manders Overlap Coefficient (36). An intensity threshold was chosen as 2 standard 

deviations above the mean pixel intensity in the liposome channel over all images from a single experimental 

condition. This threshold was then used to create a binary mask for assigning pixels as either liposome or non-

liposome, and thus identify liposomes from the background (Supplementary Methods, Supplementary Figure 

2/3). This method was found to show no bias or correlation with liposome area (percentage coverage), in 

comparison with Pearson's correlation, which did show such bias (Supplementary Figure 4/5). 

The mean pixel intensities of the DNA channel for the liposome and background areas were then compared, 

and used to calculate a colocalisation ratio, CR, via: 

𝐶𝑅 = 𝐹𝐷𝑁𝐴,𝐿𝑖𝑝𝑖𝑑/𝐹𝐷𝑁𝐴,𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 

 

Where CR is the reported colocalisation ratio, FDNA,Lipid is the mean pixel intensity of the fluorescent DNA in the 

liposome region of the DNA channel, and FDNA,background is the mean pixel intensity of the fluorescent DNA in the 

background region of the DNA channel (Supplementary Figure 3). 

Assembly of DNA origami nanostructures 

DNA sequences for DNA origami tile structure (37) were obtained using the Picasso software (Schnitzbauer et. 

al. 2017). The tile was folded using 10 nM of scaffold  (M13mp18 ssDNA, Bayou Biolabs) and 10x excess (100 

nM) of DNA staple strands (IDT) in folding buffer (5 mM Tris, 1 mM EDTA, 12 mM MgCl2, pH 8.0) and annealed 

over 3 hours (80˚C for 15 min, then 60–4˚C in 56 steps at 3 min 12 sec/step). Cy5 labelled DNA strands (IDT) 

and cholesterol-TEG modified DNA strands (IDT) were added to staple pools prior to annealing at 200 nM (2x 

excess relative to staple concentration). For fluorophore attachment to cholesterol staples, 400 nM of 

fluorophore DNA was used (2x excess to cholesterol DNA). All staples, plain and modified, were annealed in 

one-pot. All sequences used are supplied in the Supplementary Data. 
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To decorate the DNA tile with cholesterols, 21-nt ssDNA handles (H1) were designed for hybridization with 

complementary cholesterol-TEG modified DNA strands (C1 or C2). To quantify binding of cholesterol-DNA to 

the tile, strand C1 was designed with a second binding domain for hybridisation of Cy5 fluorophore labelled 

DNA (F1) (Figure 1B-iii). For membrane binding experiments, strand C2, without the second domain, was used 

(Figure 1B-i). To label the tile with fluorophores for microscopy, separate 21-nt ssDNA handles, H2 were 

extended from the surface of the tile for hybridisation with Cy5 labelled ssDNA F2 (Figure 1B-ii). In this design 

for microscopy, the number of fluorophores on the tile is independent of the number of cholesterols. The 

positions of H1 on the tile are given in Figure 4A and Supplementary Figure 9,  and the positions of H2 are 

given in Supplementary Figure 8.  

Purification of DNA origami by agarose gel electrophoresis 

For analysis of membrane binding by gel, DNA origami tiles were purified by agarose gel electrophoresis (Bellot 

et. al 2011). Samples were loaded on 2% agarose gels and run for 2.5 hours at 60 V at 20˚C. Gel and running 

buffer used was 0.5× TBE buffer (45 mM Tris boric acid, 45 mM Tris base, 1 mM EDTA, pH8) with 11 mM MgCl2, 

gels were pre-stained with SyBrSafe stain (Thermo Fisher Scientific). Gels were viewed under an LED Blue Light 

Transilluminator (Fisher Biotec) and the bands corresponding to the DNA origami tile were cut. The cut bands 

were transferred into Freeze ‘N Squeeze DNA Gel Extraction spin columns (Bio-Rad), crushed and extracted by 

centrifugation at 18,000g and 4˚C for 10 minutes. The concentration of the recovered solution was determined 

using a Nanodrop (Thermo Fisher Scientific) to measure absorption at 260 nm. DNA origami were stored at 

4˚C. 

Purification of DNA origami by PEG precipitation  

DNA origami tiles were purified by PEG precipitation (Stahl et. al. 2014) for all microscopy experiments. The 

folded DNA origami tile sample was mixed at 1:1 ratio with PEG buffer (15% PEG 8000 (w/v), 5 mM Tris, 1 mm 

EDTA, and 505 mM NaCl) and incubated at 4˚C for 30 minutes. The solution was centrifuged at 15,000g at 4˚C 

for 30 minutes. The supernatant was removed using a pipette, air dried and then dissolved in the buffer (5 

mM Tris-HCl, 40 mM NaCl, 10 mM MgCl2). 

Gel-shift assay to quantify membrane binding of DNA origami 

Agarose gel shift assays were conducted to determine the extent of membrane binding of DNA origami 

nanostructures (38, 39). 10 µ L of 2.5 nM gel purified DNA origami tile was incubated with 5 µL of extruded 

SUVs (diluted 20x in 5 mM Tris-HCl, 40 mM NaCl, 10mM MgCl2 upon extrusion) for 30 minutes at room 

temperature. 10 µL of sample was loaded onto a 2% agarose gel prepared in 0.5× TBE buffer (45 mM Tris boric 

acid, 45 mM Tris base, 1 mM EDTA, pH 8.0) supplemented with 11 mM MgCl2. The gel was run at 60 V for 2.5 
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hours at 20˚C, and imaged using Chemidoc MP Imager (Bio-rad). Images were obtained in the Cy5 channel and 

analysed using the Bio-Rad Image Lab software. 

This assay allowed for the separation of unbound tiles from membrane bound tiles (Figure 4C). For each tile 

design, 2 gel lanes were run: (1) tiles incubated with liposomes (sample lane), (2) tiles only, no liposomes 

(control lane). The intensity of the tile band was compared between the sample and control lanes to quantify 

the extent of membrane binding. The ratio of the intensity of the tile band in the sample lane (+ liposomes, 

red box in Figure 4C.i.) to the intensity of the tile band in the control lane (- liposomes, black box in Figure 4C.i) 

was determined to calculate the percentage of bound tiles: 

𝑇 = (1 −  
𝑈

𝐵
) 𝑥 100% 

where T is the estimated percentage of tiles that are bound to the membrane, U is the intensity of the tile 

band in the lane without liposomes, and  B is the intensity of the tile band in the lane with liposomes. To 

account for experimental variation in loading of DNA into the gel, at least two repeats of each gel were 

conducted. 

Transmission electron microscopy of DNA origami  

15 µL of of 1 nM (in 5 mM Tris, 1 mM EDTA, 12 mM MgCl2, pH 8.0) purified DNA origami tile sample was placed 

onto parafilm, a plasma treated carbon-coated TEM grid (Ted Pella EM grids from ProScitech) was placed onto 

the sample and left for 1 min for the sample to adsorb onto the grid. A 2 µL droplet of 2% uranyl acetate 

solution was placed onto fresh parafilm and the grid was then quickly tapped onto the droplet and 

immediately tapped onto a filter paper to remove excess stain. This staining protocol was repeated three 

times. TEM imaging was performed using the JEOL JEM-1400 microscope, 120 kV. TEM micrographs of the 

DNA tiles were averaged using RELION (Scheres, 2012) (Supplementary Fig. 7). 

RESULTS 

DNA origami nanostructure design and assembly 

The 2D rectangle DNA origami tile (Fig. 1Ai) was chosen due to its ease of assembly and wide use in the field 

of DNA nanotechnology (Schnitzbauer et. al. 2017, Johnson-Buck et. al. 2014, List et. al. 2014). The tile consists 

of 24 parallel DNA helices folded using the M-13 scaffold and has dimensions of 60nm x 90nm x 2nm. 

Successful assembly of the tile and incorporation of fluorophore-modified staple strands was verified using 

agarose gel electrophoresis (Supplementary Figure 6) and transmission electron microscopy (TEM) (Fig. 1Aii 

and Supplementary Figure 7). 

Imaging of DNA-liposome binding 
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In TIRF microscopy of SUVs, fluorescent DNA was observed to colocalise with fluorescent liposomes only when 

modified with cholesterol (Fig. 2C). DNA without cholesterol was distributed evenly throughout the image 

independently of the position of liposomes (Fig 2A). Similarly, in confocal images of GUVs, cholesterol-

modified DNA colocalised with GUVs (Fig. 2D) and plain DNA did not (Fig. 2B). 

 

Effect of buffer and lipid composition on DNA-liposome binding 

The effect of DNA origami buffer components on the binding of cholesterol-DNA to SUVs was quantified. The 

colocalisation ratios (CR) of cholesterol-modified ssDNA, dsDNA and dsDNA-6 nt were measured for varying 

[NaCl], [MgCl2] and pH, for 1:1 DOPE/DOPC liposomes and DPhPC liposomes, and compared to plain DNA 

controls (Fig. 3).  

DNA that was evenly distributed throughout a slide independently of liposome location would be expected to 

produce a CR value of 1.0. Membrane-bound DNA, on the other hand, would be expected to produce a CR of 

greater than 1.0, as the concentration of DNA on liposomes is expected to be higher than the concentration 

on the background. For DNA without cholesterol, the CR was measured as 1.01 ± 0.03 for all NaCl, pH, MgCl2 

and lipid conditions tested, indicating low non-specific interaction between the unmodified DNA and 

liposomes. In comparison, the colocalisation ratio for various cholesterol-DNA configurations across all 

conditions was significantly higher  (CR =  1.70 ± 0.36, p<0.05), confirming that specific binding of cholesterol-

DNA to liposomes was observed, and that non-specific binding of plain DNA to liposomes was negligible. 

 For all three configurations of cholesterol-DNA (ssDNA, dsDNA, dsNDA-6nt) on both DOPE/DOPC liposomes 

and DPhPC liposomes, a significant decrease was observed in CR between 12.5 mM and 400 mM NaCl and 

between 0 mM and 80 mM MgCl2. Linear regression analysis for all three configurations on both liposome 

compositions showed a trend of decreasing colocalisation scores with increasing concentrations of NaCl and 

MgCl2 (95% CI of gradient < 0).  

DNA-liposome binding was tested for pH values between 2 and 10 and the CR of cholesterol-DNA was observed 

to decrease in highly acidic conditions. At pH 2, the CR of all three configurations of cholesterol-DNA with both 

DOPE/DOPC liposomes (Fig. 3E) and DPhPC liposomes (Fig. 3F) decreased to a level similar to the non-

cholesterol control strands, and was significantly less than at all other pH values (p < 0.05). This indicates that 

solutions of pH 2 inhibit membrane binding.  

 

Effect of DNA configuration on lipid binding 

Three configurations of cholesterol-DNA (ssDNA, dsDNA and dsDNA-6 nt) were compared for binding to SUVs 

(Figure 3). The difference in mean colocalisation ratios for each of the three cholesterol-DNA configurations 

under all 44 conditions (Fig. 3A-I) was calculated (Fig. 3JK). Significant differences were observed in mean CR 

for the different DNA configurations. In both DOPE/DOPC liposomes and DPhPC liposomes, we found DNA to 
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colocalise more for dsDNA than ssDNA, in the order CR(dsDNA) ≈ CR(dsDNA-6 nt) > CR(ssDNA). When compared to dsDNA, 

the addition of the six nucleotide overhang in dsDNA-6 nt was observed to cause a modest but significant 

decrease in binding to DPhPC liposomes, but no significant decrease in binding to DOPE/DOPC liposomes 

(Fig. 3IJ).  

 

Effect of membrane cholesterol content on DNA-lipid binding 

Cholesterol content was increased between 0% and 40% by mass for both lipid compositions. For DOPE/DOPC 

liposomes, CR of all three configurations of cholesterol-DNA showed a significant increase between 0% and 

40% cholesterol (p < 0.05). Linear regression analysis showed a trend of increasing CR across the observed 

range of membrane cholesterol content (gradient 95% CI > 0) (Fig. 3G).  

For DPhPC liposomes, CR of cholesterol-tagged DNA increased to a maximum at 10%-20% membrane 

cholesterol, then decreased with further increasing cholesterol. All three configurations of cholesterol-DNA 

showed both a significant increase in CR between 0% and 20% (p < 0.05) and a significant decrease in CR 

between 20% and 40% (p < 0.05) (Fig. 3H).  

Effect of number of cholesterols on membrane binding  

First, the correct assembly of cholesterol-DNA (C1) to the DNA tile was verified using agarose gel analysis 

(AGE)(Fig. 4B). The tile was folded with either 0, 1, 2, 4, 8 or 16 cholesterols (0C, 1C, 4C-LS, 8C, 16C) moieties 

(Fig 4A and Supplementary Figure 9). Cy5 fluorophore-labelled strand F1 is designed to hybridise to the tile 

only in the presence of cholesterol-DNA C1. A comparison was made of Cy5 intensity of the DNA tile band 

(normalised to SyBr safe stained DNA channel) for samples with different numbers of cholesterol-DNA sites. 

The normalised Cy5 intensity was found to increase with increasing cholesterol number (Fig. 4Bii). This 

successfully confirmed that more cholesterol-DNA strands attached to the tile as the number of handles (H1) 

increased from 0 to 16.  

The effect of cholesterol number on membrane binding was then observed by AGE and fluorescence 

microscopy (TIRF). In AGE, the DNA tiles were observed to migrate through the gel matrix, while the liposomes 

remained in the wells (Supplementary Figure 10), in agreement with literature results using this technique 

(30).   The percentage of tiles bound to the membrane was  52 ± 5% for tile-0C, indicating there is some non-

specific membrane binding even in the absence of cholesterols (Figure 4C.ii and Supplementary Figure 11). A 

significant increase in percentage of tiles bound was observed from tile-0C to tile-8C (p<0.01). Maximum 

binding of tiles to liposomes was observed for tile-8C at 81 ± 5%. 

For microscopy experiments, the maximum colocalisation of tile and liposomes was observed on tiles with 

four cholesterol groups (CR = 1.85 ± 0.20) (Fig. 4C.iii). A significant increase in CR was observed between n = 0 
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and n = 4 cholesterol groups (p<0.05), with a trend of increasing colocalisation as the number of cholesterol 

groups was increased within this range (linear regression between n=0 and n=4: gradient 95%CI > 0). For the 

control, with no cholesterol, CR = 1, indicating there is equal amount of DNA in the background and on the 

liposome. Linear regression analysis across n = 4, n = 8 and n = 16 showed a decreasing trend as the number 

of cholesterol groups was increased (gradient 95%CI < 0), however there was no significant difference in the 

means from pairwise testing. 

Effect of cholesterol geometry on membrane binding 

We next investigated the effect of cholesterol-DNA geometry on membrane binding. Two different geometries 

were compared: Large Square (4C-LS) and Small Square (4C-SS), as shown in Fig. 4A.i. In the LS configuration, 

four cholesterol anchors were positioned along the edge of the tile. The separation between the handles in 

the 4C-LS configuration is 80 nm along the long edge and 45 nm along the short edge of the tile. In the 4C-SS 

configuration, four cholesterols anchors were positioned at the centre of the tile, with a separation of 5 nm 

between the handles. The percentage of tiles bound to the membrane was 69 ± 12 % and 57 ± 9% for 4C-LS 

and 4C-SS configurations, respectively, using the gel-shift assay (Fig. 4Di and Supplementary Figure 12). The 

percentage of tiles bound non-specifically in the no cholesterol sample was 53 ± 8 %, similar to results 

discussed in the previous section. In this case, the differences in membrane binding between the no 

cholesterol control, the LS and the SS geometries were found not to be statistically significant. 

For the microscopy assay, CR of 1.25 ± 0.04 and 1.15 ± 0.03 were obtained for the 4C-LS and 4C-SS 

configuration, respectively (t-test p<0.05, Fig 4Dii). The extent of cholesterol attachment for the 4C-LS and 4C-

SS geometries were measured by AGE (method as above, Supplementary Figure 13) to determine if the 

difference observed in membrane binding between these samples was due to different levels of cholesterol 

attachment to the tile. No differences in cholesterol attachment were observed for the two tile configurations, 

suggesting that the differences observed in lipid binding were due to the different geometrical arrangements 

of the cholesterols on the tile. 

Effect of spacer length between cholesterol and tile on membrane binding 

Next, the effect of the spacer length between the cholesterol and the tile on membrane binding was observed. 

Seven different spacer designs were tested: Dt1.4, Dt6.1, Dt8.1, Pt8.1, Pt8.5, Pt13.2, and Dt15.2, where the 

number in the design name gives the distance between the cholesterols and the tile, e.g. Dt15.2 represents 

an estimated spacing of 15.2 nm. The initial (Dt or Pt) refers to the positioning of the toehold relative to the 

cholesterol. The toehold was either positioned distal to the cholesterol (Dt) or proximal to the cholesterol (Pt).   

Membrane binding experiments were performed using the gel shift assay (Figure 5B.i and Supplementary 

Figure 14). Of the seven designs tested, the lowest percentage of bound tiles was observed for Dt1.4 at 48% ± 
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27%. The maximum percentage of bound tiles was observed for Dt15.2 at 89%  ± 9%. Percentage of bound 

tiles for Dt6.1, Dt8.1, Pt8.1, Pt8.5, Pt13.2 was at 50 ± 15%, 62 ± 20%, 67 ± 23%, 80 ± 23% and 86 ± 15%, 

respectively. The control with no cholesterols had 40 ± 22% tiles bound to the membrane in this experiment. 

For microscopy, only three designs were selected: Dt1.4, Pt8.5 and Dt15.2. CR of 1.07 ± 0.05, 1.15 ± 0.04 and 

1.24 ±0.04 were obtained for Dt1.4, Pt8.5 and Dt15.2, respectively (Fig. 5Bii). 

Effect of toehold position on strand displacement of cholesterol-DNA from DNA origami tiles 

The effect of toehold position on releasing DNA tile binding to SUVs by strand displacement was then 

investigated. A 10-nt toehold was used for strand displacement of the tile from SUVs, to facilitate displacement 

of the C2 cholesterol strand from the tile (Fig. 1C). The toehold was designed to be either proximal (Pt) or 

distal (Dt) to the cholesterol modification.  

Strand displacement was validated by folding DNA tiles with cholesterols and fluorophore (Cy5) such that the 

fluorophore attachment was dependent on the cholesterol attachment, similar to earlier experiments used to 

confirm cholesterol attachment (Fig 1Biii, Fig. 4B). The strand arrangement for each of the different designs 

and their toehold positions is shown in Fig 6Ai. 

Toehold-mediated strand displacement of the cholesterol strand from the DNA tile was first validated without 

any binding to SUVs. When displacement strand D1 is added, it is expected to bind to the toehold on the 

handle H1 and initiate branch migration, displacing the C1-F1 complex. It was confirmed that strands C1-F1 

were displaced from the tile on addition of D1, as indicated by decrease in Cy5 intensity of the DNA tile band 

in AGE (Figure 6A.iii, Supplementary Figure 15). 

Displacement efficiency was compared at room temperature (RT) and 37˚C. The percentage of Cy5 on the tile 

was determined from the gel as shown in Fig. 6Aiii. The percentage of Cy5 on the tile for the no displacement 

control was taken as 100% and the percentages for the displacement samples were calculated relative to this. 

Greater displacement was observed for designs with the toehold distal to the cholesterol groups (Fig. 6Aiii and 

Supplementary Figure 15). Temperature had no effect on the displacement for the designs with distal 

toeholds, which were all highly efficient, decreasing from 100% to <3% for all conditions tested. In contrast, 

displacement efficiency of designs with toehold proximal to the cholesterol groups showed temperature 

dependence. Only partial displacement was observed at room temperature (decrease from 100% to 34-39%), 

with improved displacement at 37˚C (100% to 0-9%).  

Effect of toehold position on strand displacement of DNA-tiles from liposomes 

Strand displacement of lipid-bound DNA tiles was then tested. For these experiments, cholesterols were 

attached to the tile (Figure 1Bi) independently of the fluorophores (Figure 1Bii). The effect of strand 
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displacement of the cholesterol from the tile was compared before (pre-displaced) and after (displaced) 

incubation with liposomes.  

A subset of designs previously tested for lipid binding (Figure 5B) and strand displacement in lipid-free 

conditions (Fig. 6Aiii) were selected, consisting of Designs Dt1.4, Dt 15.2 and Pt8.5. Dt1.4 had shown poor 

membrane binding but efficient strand displacement in lipid-free conditions. Dt15.2 had both high membrane 

binding and efficient strand displacement in lipid-free conditions. Pt8.5 had high membrane binding but 

inefficient strand displacement at room temperature in lipid-free conditions. 

The percentage of lipid bound tiles for each design was determined by gel analysis for each experimental 

condition (Fig. 6B and Supplementary Figure 16). The results show Dt1.4 had poor initial membrane binding 

(32%), which made it difficult to determine if there was a change in binding after strand displacement (38%, 

displaced, 33%, pre-displaced). Dt15.2 was observed to have both high initial membrane binding (86%) and a 

decrease in binding on strand displacement indicating successful displacement (39%, displaced, 36%, pre-

displaced).  Pt8.5 had moderate initial membrane binding  (61%) and successful strand displacement (18%, 

displaced, 15%, pre-displaced). Comparing pre-displaced and displaced values, for all samples no significant 

effect was observed on changing the order of lipid binding and displacement. Hypothesised interactions of 

Dt1.4, Dt15.2 and Pt8.5 for both the bound and unbound tiles are proposed in Supplementary Figure 18. 

 

DISCUSSION 

Our comparison of the lipid-binding yield of simple DNA motifs (ssDNA, dsDNA, dsDNA-6nt) and large DNA 

origami tiles (7249 bp) modified with cholesterol defines a range of experimental conditions for which yield is 

independent of external buffer and lipid composition. Conveniently, we found that within this range,  

conditions can be selected based on the requirements of the DNA nanostructures or other system 

components. 

DNA origami buffers are broadly compatible with liposome binding. DNA origami nanostructures often require 

specific ionic buffer conditions. Divalent cations such as Mg2+ stabilise DNA duplexes during nanostructure 

folding (40) and increase stability by inhibiting the electrostatic repulsion between DNA strands (24, 41). Some 

DNA nanostructures are designed to change shape in response to changes in ion concentration and pH, acting 

as sensors (5). While changes in external buffer can cause changes in liposome membrane density and 

diffusivity (26) (27), within the ranges tested here, addition of Na+ (0 – 200 mM) and Mg2+ (0 - 40 mM), resulted 

in only a small decrease in lipid-binding yield, and no increase in non-specific binding of unmodified DNA was 

observed for any ionic condition.   
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Both DOPE/DOPC and DPhPC lipid mixtures were found to work well for DNA-lipid binding. DNA is highly 

negatively charged, while liposomes formed from DPhPC are neutral, and liposomes from DOPE/DOPC are 

zwitterionic, and expected to be positively charged below pH 3.5 and negatively charged above pH 8 (42). We 

observed no change in lipid-binding yield or non-specific binding across the range pH 4-10 for both neutral or 

zwitterionic lipids, which suggests lipid ionisation does not play a significant role in these conditions. However, 

we found that cholesterol-mediated DNA-lipid binding was completely inhibited in acidic conditions (< pH 4). 

Hydronium ions (H3O+) are known to promote lipid-lipid binding interactions within a bilayer (26) and affect 

behaviour of water molecules at the membrane-water interface (27). This could potentially lead to the 

inhibited binding observed here in strongly acidic conditions (40).  

Interestingly, we found that increasing the cholesterol content of lipid mixtures above 20% increased the 

binding of DNA to DOPE/DOPC liposomes but slightly decreased binding to DPhPC liposomes. Cholesterol 

induces dense packing of phospholipids, reducing liposome permeability and increasing stability (43). 

Cholesterol also stabilises the structure of some membrane proteins and promotes highly curved membrane 

intermediates during fusion  (44). Branched chain lipids like DPhPC occupy a greater area per molecule within 

a bilayer compared to linear-chain lipids such as DOPE and DOPC (45), and DPhPC has a lower cholesterol 

saturation limit than DOPE (46). Thus, the increased DNA-lipid binding that we observed with increasing 

cholesterol on DOPE/DOPC liposomes could be due to increased stability of the DNA-conjugated cholesterol 

in the membrane. The lower cholesterol saturation limit of  DPhPC could explain why no further increase in 

lipid-DNA binding was observed above 20% cholesterol on DPhPC liposomes.   

For small DNA motifs, dsDNA bound more efficiently to liposomes than ssDNA, and the addition of a 6-nt 

ssDNA overhang had minimal effect. Membrane-bound ssDNA has been observed to lie close to the surface 

of lipid bilayer membranes in fluorescence studies (48), while dsDNA remains in a stable position protruding 

normal to the membrane surface (49). Thus, the orientation difference of dsDNA compared to ssDNA may 

result in improved binding. The addition of a 6 nt overhang on cholesterol-tagged dsDNA strands has been 

proposed to assist during nanostructure assembly by inhibiting strand aggregation (30). Inclusion of a 6 nt 

overhang next to the cholesterol group resulted in a minor, but significant decrease in binding only on DPhPC 

liposomes, and not for DOPE/DOPC. This suggests there would be no large penalty from routine incorporation 

of overhangs on membrane-targeting nanostructures, but possible effects arising from other lipid 

compositions may need to be considered.  

We measured the number of cholesterols present on our DNA origami tile using fluorescence labelling and 

observed a non-linear increase in fluorescence as the number of cholesterols was increased. This non-linear 

increase in fluorescence could possibly be due to non-linear range of detection provided by the gel analysis 

(Schröder et al., 2008) or self-quenching of the Cy5 fluorophores in close proximity on the tile (Berlier et al., 
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2003; Hahn et al., 2001), or from incomplete occupation of the H1 handles by cholesterol-strands (Strauss et 

al., 2018). Assuming incomplete occupation and linear fluorescence intensity per handle for low numbers (n = 

0-4), we are able to estimate a lower bound for the actual cholesterol number in the n = 16 sample. Linear 

regression across 0 to 4 handles estimates that our occupancy is 69% (for 16 cholesterols, our occupancy was 

11 cholesterols with [7,21] at 95% CI). This closely matches previous reports for mean staple occupancy of 

DNA origami tiles, which was measured as 72% for the same 10x staple excess folding conditions (Strauss et 

al., 2018).  

The number of cholesterol groups on a DNA origami tile had a large effect on binding yield. Adding a large 

number of hydrophobic groups has been shown to be necessary for overcoming the energy penalty associated 

with pore formation (17), and beneficial for maintaining stable insertion of a transmembrane nanopore (50). 

However, a large number of cholesterol groups may inhibit the membrane-binding function of cholesterol-

tagged DNA nanostructures by inducing aggregation (30) or structural deformities (51). We found in our AGE 

measurements that a global optimum for membrane binding occurred with there were n = 4 cholesterols. 

However, this was dependent on which assay was used: an optimum number of cholesterols of 8 was observed 

with the gel-shift assay and an optimum number of 4 was observed with the microscopy.  

We suggest that our observation of an optimal cholesterol number in these experiments is due to intra-tile 

and inter-tile transient binding of cholesterols. List and colleagues (51) showed that hydrophobic interactions 

between a large number of cholesterols (i.e. 35 cholesterols) on the DNA tile can result in the folding of the 

tile. Here we did not observe deformation or aggregation of the tile on folding with higher cholesterol numbers 

(Figure 1Ai, Figure 4Bi). However, it is possible that transient hydrophobic interactions occur between the 

cholesterol groups, which are not detected by gel or TEM. This would have the effect of decreasing the 

availability of cholesterols for binding to liposomes, and explain the decrease observed in membrane binding 

in the gel-shift assay and microscopy. 

The difference in optimal cholesterol number obtained from the gel-shift assay and the microscopy is likely 

due to the different tile purification methods used. For the gel-shift assay, the tiles were gel purified. For 

microscopy, the tiles were purified by PEG precipitation to achieve higher concentrations of tile. PEG 

precipitation results in more aggregation compared to gel purification (Supplementary Figure 17). Higher 

aggregation results in more interaction between the tiles, and in turn, is expected to decrease membrane 

binding. 

We found that positioning cholesterols along the edge of tile resulted in more binding compared to 

cholesterols positioned at the centre of the tile, consistent with a previous study (23). We also found that the 

membrane binding of tiles increases as the spacing between the cholesterols and the tile increases. These 

trends are likely due to greater accessibility of the cholesterols at larger distances from the tile, and located 
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at the edges of the tiles. The tile is flexible (52) and can fold, and the centre of the tile is more likely to be 

hidden compared to the edges. This may limit the accessibility of the cholesterols positioned at the centre and 

result in decreased membrane binding.  

For all the results above, some non-specific binding was observed with the control tile (no cholesterol) in the 

gel-shift assay. However, the amount of non-specific binding varied from gel to gel, and was found to vary 

between preparations of SUVs. Percentages of no-cholesterol tiles bound to the SUVs ranged from 15% to 

60% across all the gels run in all different experiments. To control for this, our samples were always compared 

within gels, not between gels. Generally, microscopy experiments had smaller error ranges, while gel assays 

had larger errors but were higher throughput and useful for comparing large numbers of conditions.  

We found that toehold-mediated strand displacement could be used to remove cholesterol modified strands 

from the DNA tile with high efficiency, but that displacement efficiency decreased if the cholesterol was 

positioned directly adjacent to the toehold. This is likely due to the interaction of the toehold with the 

cholesterol group when it is in proximity. Previous work by Ohmann and colleagues showed that an overhang 

placed next to a cholesterol can interact with it to reduce aggregation (30). An increase in temperature from 

room temperature to 37˚C increased the displacement efficiency of these proximal designs, to a similar value 

as designs where the cholesterol was located distal to the toehold.  

Toehold-mediated strand displacement was shown to remove DNA tiles from liposomes, by separating the tile 

from the cholesterol strand. In this case, the cholesterol-modified DNA strand is expected to remain docked 

to the liposome. For cholesterol displacement of tiles already bound to liposomes, displacement was efficient 

for cholesterols positioned both proximal and distal to the toehold. This is in contrast to strand displacement 

in the absence of liposomes, and where proximal toeholds had reduced efficiency. When the tile binds to the 

liposome, we expect the cholesterol to insert into the bilayer. This may result in less interaction between 

cholesterol and toehold, making a more accessible toehold, facilitating more efficient strand displacement 

(Supplementary Figure 18). We expected to see reduced displacement efficacy for designs with shorter linkers 

(eg. Dt1.4 compared to Dt15.2, Pt8.5), because tight binding of the tile to the liposome may sterically hinder 

strand displacement. However, results here were dominated by the strong effect of linker length on initial 

binding yield. The short linker design had very low initial yield, comparable to non-specific binding, and so it 

was not possible to detect if there was a decrease on strand displacement with the gel shift technique.  

CONCLUSION 

In this work, we have tested different lipid species and DNA configurations to screen for optimal conditions to 

promote DNA-lipid binding. Our results suggest that lipid type, pH and DNA configuration are the most 

important parameters to consider when optimising for the binding of DNA strands to liposomes, whereas 

mono- and divalent- salt concentration play a minor role.  
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Our results have shown that the membrane binding of DNA nanostructures to liposomes can be optimised by 

changing the cholesterol number, cholesterol configuration and cholesterol distance from the DNA 

nanostructure. We found that the optimal number of cholesterols for membrane binding of a 2D DNA origami 

tile is between 4 and 8, and that membrane binding is more favourable when cholesterol groups are placed at 

the edge of the tile compared to the centre of the tile. A larger linker length between the tiles and the 

cholesterol also results in greater membrane binding. 

We demonstrated reversible membrane binding of the DNA nanostructures onto liposomes using toehold 

mediated strand displacement. The efficiency of strand displacement is reduced if the toehold is adjacent to 

the cholesterol in unbound DNA nanostructures, but not for lipid-bound DNA nanostructures.  

Future work could extend the findings from this work to more complex 3-dimensional DNA nanostructures 

with greater functionality. Generally, there is a trade-off between increasing the lipid binding yield and 

decreasing aggregation. The flexibility of the 2D tile plays a role in aggregation, and so the greater rigidity of 

3D DNA origami nanostructures may be an advantage. We anticipate our findings can provide guidelines for 

the design of more complex membrane binding DNA nanostructures with broader applications in 

nanomedicine, nanotechnology, and nucleic acid research. 
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Figure 1: Reversible liposome binding of a DNA origami nanostructure. (A) (i) Schematic of the DNA 

origami tile. (ii) TEM image of the DNA origami tile. (iii) Averaged TEM image of tile obtained using RELION. 

Two different averaged structures were obtained, with minor differences resulting from staining. (iv) 

Zoom of TEM images of the tile. (B) Schematic showing attachment of cholesterol and fluorescently 

labelled DNA strands to tile. (i) Cholesterol labelled strand C2 hybridises with handle H1 on the tile. (ii) 

Cy5 labelled strand F2 hybridises with handle H2 on the tile. (iii) Cholesterol labelled strand C1 hybridises 

with handle H1 on the tile, as well as Cy5 labelled strand F2. (iv) Structure of TEG-cholesterol modified 

DNA. (C) (i) Schematic of the binding of the tile (blue) to a liposome (orange). Inset: Schematic showing 

the DNA strand extending from the tile (grey), which is hybridised to a cholesterol strand (green) and has 
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a toehold (orange) for strand displacement. Cholesterol is shown embedded in the lipid bilayer. (ii) Upon 

addition of a displacement strand (blue-orange), branch migration initiates. (iii) When strand 

displacement is complete, the tile is released from the liposome and the cholesterol-DNA remains 

attached. 
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Figure 2: Merged two-colour images of Cy5-tagged DNA (red) at 5 nM concentration and PE-

Rhodamine-doped DOPE/DOPC liposomes (green). (A) TIRF image of ssDNA with no cholesterol 

tag in solution around extruded liposomes without binding. (B) Confocal image of ssDNA with no 

cholesterol tag in solution around GUVs without binding.  (C) TIRF image of cholesterol-tagged 

ssDNA bound to tethered extruded liposomes (D) Confocal image of cholesterol-tagged ssDNA at 

bound to tethered GUVs. Scale bars: 20 μm. 
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Figure 3: The effect of NaCl, MgCl2, pH, and membrane cholesterol on DNA-liposome colocalisation.  

Colocalisation ratios and standard deviations are shown for Alexa647-labelled cholesterol-tagged single 

stranded DNA (ssDNA, pink), cholesterol-tagged double stranded DNA (dsDNA, blue) and cholesterol-

tagged double stranded DNA with a 6 nt overhang (dsDNA-6nt, green) as well as dsDNA with no 

cholesterol tag (yellow) and ssDNA with no cholesterol tag (orange) and rhodamine-labelled DOPE/DOPC 

liposomes (left column, A/C/E/G) and DPhPC liposomes (right column, B/D/F/H). Solution conditions 

tested included: (A/B) extrusion buffer [NaCl] containing 12.5, 25, 50, 100, 200 and 400 mM NaCl, (C/D) 

extrusion buffer [MgCl2] containing 0, 10, 20, 40 and 80 mM MgCl2, and (E/F) extrusion buffer [pH] 

adjusted to pH values of 2, 4, 6, 7, 8 and 10. (G/H) The effect of lipid cholesterol content was tested by 

forming liposomes from DOPE/DOPC and DPhPC lipid stocks containing 0, 10, 20, 30 or 40% cholesterol. 

(I/J) Distribution of CR values for each cholesterol-tagged DNA configuration across all conditions (n = 

264; DOPE/DOPC: dsDNA = 1.82 ± 0.41; dsDNA-6nt = 1.80±0.35; ssDNA 1.68±0.37; DPhPC: dsDNA = 

1.74±0.36, dsDNA-6nt = 1.64±0.28, ssDNA = 1.54±0.29, all mean±SD). For both lipid types and with or 

without overhang, ssDNA vs dsDNA showed a significant difference in mean (Wilcoxon rank sum test, 

p<0.05). For DPhPC there was a small but significant difference in mean between dsDNA and dsDNA-6nt 

(Wilcoxon rank sum test, p<0.05), however for DOPE/DOPC there was no significant difference between 

the two dsDNA configurations. 
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Figure 4: Effect of number and arrangement of cholesterols on DNA origami binding to liposomes. (A) The 

different attachment points available on the DNA origami tile for staple extensions (white circle) and the 

points selected for staple extension of handles H1 (green circle) for cholesterol attachment. Light blue 

rectangle represents the tile. The name of the different attachment points is given on top of each tile. (B) 

Validation of cholesterol attachment to the tile for different cholesterol numbers. (i) Gel image. DNA and 

Cy5 channels which represent the tile and Cy5 fluorophore, respectively are shown. The integrated band 

intensity in the Cy5 channel (red box) is divided by the integrated band intensity in the DNA channel (green 

box) to obtain the ratio of Cy5:DNA intensity. This is summarised in chart (ii). (C) The effect of cholesterol 

number on membrane binding. (i) Gel image. (ii) Percentage bound from the gel analysis calculated from 

ratio of integrated band intensity in the presence of liposomes (red box) to the integrated band intensity 

in the absence of liposomes (black box). (iii) Colocalisation ratios from microscopy. (D) The effect of 

cholesterol configuration on membrane binding. (i) Percentage bound obtained gel analysis. (ii) 

Colocalisation ratios from microscopy. 
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Figure 5: Effect of spacing and linker length between cholesterol and DNA origami tile on binding to 

liposomes. (A) Schematics for the different designs for cholesterol attachment to the tile and its 

membrane binding. The distance between the cholesterol and the tile is given below the design schematic. 

(B) The effect of spacing between cholesterol and tile on the membrane binding. (i) Percentage bound 

obtained from gel analysis. (ii) Colocalisation ratios from microscopy. 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2021. ; https://doi.org/10.1101/2020.06.01.128686doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.01.128686
http://creativecommons.org/licenses/by/4.0/


24 

 

Figure 6: Effect of toehold position on strand displacement release of DNA tiles from liposomes. (A) (i) 

Schematics for the different designs for cholesterol attachment to the tile. (ii) Example strand 

displacement mechanism resulting in the detachment of the Cy5 labelled strand from the tile, shown here 

for Design Dt1.4. (iii)  Bar chart showing the percentage of Cy5 attached to the tile under different 

displacement conditions. In the control, no displacement strand is added, RT and 37˚C represent 

displacement at room temperature and 37˚C, respectively. Designs with toeholds distal from the 

cholesterol groups are shown in shades of grey. Designs with toeholds proximal to the cholesterol groups 

are shown in shades of pink.  (B) Strand displacement of membrane-bound tiles. (i) Gel image. (ii) 

Percentage of tiles bound to the SUVs tabulated from the gel analysis. Designs with toeholds distal from 

the cholesterol groups are shown in shades of grey. Designs with toeholds proximal to the cholesterol 

groups are shown in shades of pink.   
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