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ABSTRACT 31 

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) complex, is still the number 32 

one deadly contagious disease. Mtb infection results in a wide spectrum of clinical presentations 33 

and severity symptoms, but without proven Mtb genetic determinants. Thanks to a collection 34 

of 355 clinical isolates with associated patient’s clinical data, we showed that Mtb micro-35 

diversity within patient isolates is strongly correlated with TB-associated severity scores. 36 

Interestingly, this diversity is driven by a selection pressure to adapt to different lifestyles 37 

related to the infection site. Taken together, these results provide a new insight to better 38 

understand TB pathophysiology. Furthermore, Mtb micro-diversity could be envisioned as a 39 

new prognostic tool to improve the management of TB patients. 40 

 41 
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INTRODUCTION 47 

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) complex remains one of the 48 

most prevalent and deadly infectious diseases, responsible for 10 million new cases and 1.2 49 

million deaths among HIV-negative people worldwide in 2018, and an additional 208 000 50 

deaths among HIV-positive people 1. Mtb infections result in a wide spectrum of clinical 51 

outcomes, from latent asymptomatic infection to pulmonary or extra- pulmonary manifestations 52 

of disease, with an array of severity symptoms. Such diversity has been historically attributed 53 

to host and environmental factors, while the Mtb complex was previously considered 54 

genetically monomorphic 2. 55 

Since the introduction of the next generation sequencing (NGS) enabling whole genome 56 

sequencing (WGS), outstanding progress has been done in the field of Mtb genomics. 57 

Increasing studies based on NGS have revealed micro-diversity in Mtb clinical isolates: within 58 

hosts, minor variants coexist rather than a clonal colony 3–14. Although we showed in a previous 59 

study the involvement of initial Mtb micro-diversity in intra-macrophagic persistence and 60 

antibiotic tolerance 15, the role and the impact of Mtb micro-diversity is still poorly understood. 61 

It was already showed that mixed-strains Mtb infection is associated with poor outcome 16,17, 62 

but only few reports investigated the link between Mtb micro-diversity and TB severity and 63 

outcome 9,10. Yet, several major questions remain unanswered: such as the Mtb ability to cause 64 

active disease and various symptoms. While many Mtb virulence factors are well described, to 65 

date, there are no proven genetic determinants associated with virulence, disease progression 66 

or severity of TB 18. 67 

Regarding other bacterial species responsible of chronic infections, such as Helicobacter pylori, 68 

Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pneumoniae, several reports 69 

highlighted the role of micro-diversity in pathogen adaptation between and within-host. 70 

Bacterial micro-diversity plays a role in the adaptation to immune and treatment pressure, for 71 
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infecting different body sites and has been suggested to impact outcome and severity of illness 72 

19–25.  73 

Accordingly, here we explored the relation between Mtb micro-diversity of 355 clinical 74 

isolates, from 311 patients diagnosed at the Lyon University Hospital, and TB clinical 75 

presentation, as well as nutritional and immune status of patients. It revealed a strong correlation 76 

between the detection of Mtb micro-diversity within clinical isolates and TB-associated severity 77 

markers. Furthermore, thanks to a cohort of 42 patients with both microbiologically proven 78 

pulmonary and extra-pulmonary TB, we investigated intra-host micro-evolution of Mtb. We 79 

observed a compartmentalization of variants, driven by a selection pressure to adapt to different 80 

tissues, as shown by dN/dS approach. It should be noted that, besides the detection of canonical 81 

drug resistance determinants, the detection of Mtb micro-diversity within patient’s isolates is, 82 

to date, the only other bacterial feature which could be envisioned as a prognostic marker of 83 

poor TB outcome. 84 

 85 

RESULTS  86 

Baseline characteristics of study populations 87 

A total of 355 clinical Mtb isolates from 311 patients were included in this study, including 42 88 

patients with both microbiologically proven pulmonary and extra-pulmonary TB (PTB and 89 

EPTB) and 2 patients with 2 extra-pulmonary localization without PTB. Moreover, 25 patients 90 

with PTB also developed EPTB according to the clinical manifestations and 2 patients with 91 

EPTB may also have PTB but no pulmonary sampling was conducted.  The Table 1 summarize 92 

patients’ demographic and descriptive characteristics. As it is a retrospective study, all data 93 

were not available for all patients, then the population size was always specified.  94 

Patient’s descriptive characteristics revealed different profiles between patients with PTB or 95 

EPTB. Overall, higher severity scores and lower malnutrition indices were observed for patient 96 
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with PTB compared to patients with EPTB. Conversely, a lower immune status was observed 97 

for patient with EPTB compared to patients with PTB. It should be noted that serum lipid and 98 

serum iron profiles and lymphocyte typing can not be properly compared between the cohorts 99 

as the data were available only for 20% to 43% of patients. 100 

 101 

Table 1: Patients’ demographic and baseline descriptive characteristics 102 

Characteristics Pulmonary TB  

n=244 

Extra-pulmonary TB  

n=111 

p-values 

Demographic data 

Age (years), median [IQR]  36 [25-58] 37 [24-60] 0.7505 

Gender (male), n (%) 162 (66.4) 57 (51.4) 0.0094 

TB outcome 

Fatal outcome, n (%) 8 (3.3) 3 (2.7) 0.6999 

Unknown, n (%) 18 (7.4) 11 (9.9) 0.4109 

Comorbidity  

HIV, n (%) 15/233 (6.4)  8/107 (7.5) 0.8165 

Hepatitis, n (%) 24/189 (12.7) 13/85 (15.3) 0.5701 

Diabetes, n (%) 26/234 (11.1) 14/105 (13.3) 0.5867 

Immunosuppressive therapy, n (%) 21/235 (8.9) 16/107 (15.0) 0.1317 

History of TB, n (%) 19/233 (8.2) 4/106 (3.8) 0.1662 

TB-associated severity scores 

Bandim TB score, median [IQR] (n) 4 [3-6] (233) 3 [1.5-5] (105) 0.0002 

MUST, median [IQR] (n) 3 [1-5] (227) 2 [0-4] (105) 0.0293 

Nutritional risk score, median [IQR] (n) 1 [0.25-3] (56) 1 [0-3] (24) 0.8839 

Nutritional status 

BMI (kg/m²), median [IQR] (n) 20.2 [17.7-22.4] (228) 21.63 [19.0-26.2] (107) <0.0001 

Weightloss, median [IQR] (n) 8.0 [4.5-12.3] (227) 6.4 [2.4-11.5] (106) 0.0293 

Serum albumin (g/L), median [IQR] (n) 30.0 [26.0-36.7] (209) 31.1 [25.9-36.2] (92) 0.8693 

Serum pre-albumin (g/L), median [IQR] (n) 0.13 [0.09-0.18] (152) 0.11 [0.08-0.17] (60) 0.3448 

Serum/blood parameters 

Total protein (g/L), median [IQR] (n) 75 [70-81] (235) 75 [70-81] (102) 0.9509 

Blood glucose (mmol/L), median [IQR] (n) 5.0 [4.5-6.0] (215) 5.2 [4.6-6.4] (100) 0.3719 

Calcium (mmol/L), median [IQR] (n) 2.44 [2.31-2.61] (236) 2.43 [2.32-2.59] (92) 0.7641 

Phosphorus (mmol/L), median [IQR] (n) 0.98 [0.85-1.18] (118) 1.07 [0.84-1.21] (57) 0.6397 

Magnesium (mmol/L), median [IQR] (n) 0.81 [0.74-0.88] (70) 0.80 [0.71-0.87] (42) 0.2684 

Sodium (mmol/L), median [IQR] (n) 137 [134-139] (236) 137 [134-139] (62) 0.1480 

Potassium (mmol/L), median [IQR] (n) 4.0 [3.8-4.3] (236) 4.0 [3.7-4.3] (104) 0.3781 

Chloride (mmol/L), median [IQR] (n) 103 [100-106] (235) 103 [98-106] (103) 0.2117 

Bicarbonate (mmol/L), median [IQR] (n) 25 [23-27] (178) 25 [23-27] (80) 0.8603 

Anion gap, median [IQR] (n) 13 [11-14] (165) 13 [11-15] (78) 0.3953 

Serum lipid profile 

Total cholesterol (mmol/L), median [IQR] (n) 4.1 [3.3-5.1] (56) 4.2 [3.1-4.9] (24) 1.0000 

HDL-C (mmol/L), median [IQR] (n) 1.03 [0.69-1.29] (52) 1.00 [0.54-1.19] (23) 0.7302 

LDL-C (mmol/L), median [IQR] (n) 2.58 [1.88-3.33] (50) 2.58 [1.99-3.25] (23) 0.8960 

Triglyceride (mmol/L), median [IQR] (n) 1.14 [0.93-1.67] (59) 1.24 [0.99-1.69] (28) 0.4898 

Iron balance and inflammatory markers  
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Serum iron (µmol/L), median [IQR] (n) 5.3 [3.0-9.2] (73) 6.7 [4.5-10.6] (39) 0.1555 

Transferrin saturation (%), median [IQR] (n) 13.1 [8.2-20.1] (73) 13.4 [10.1-20.3] (39) 0.2921 

Ferritin (µg/L), median [IQR] (n) 195 [79-319] (98) 281 [104-759] (48) 0.0336 

CRP (mg/L), median [IQR] (n) 48 [13-100] (228) 45 [14-93] (99) 0.8781 

Hemogram 

Hemoglobin (g/L), median [IQR] (n) 120 [104-136] (236) 115 [102-130] (106) 0.1644 

WBC (G/L), median [IQR] (n) 6.9 [5.3-9.0] (237) 6.3 [4.6-8.1] (105) 0.0294 

Neutrophils (G/L), median [IQR] (n) 4.6 [3.2-6.2] (237) 4.4 [2.8-5.5] (105) 0.1218 

Eosinophils (G/L), median [IQR] (n) 0.09 [0.03-0.18] (236) 0.075 [0.01-0.148] (104) 0.0446 

Basophils (G/L), median [IQR] (n) 0.03 [0.02-0.05] (235) 0.02 [0.01-0.04] (104) 0.0591 

Monocytes (G/L), median [IQR] (n) 0.62 [0.46-0.84] (237) 0.55 [0.38-0.75] (105) 0.0179 

Lymphocytes (G/L), median [IQR] (n) 1.41 [0.89-2.00] (237) 1.18 [0.75-1.68] (105) 0.0294 

Lymphocyte typing  

CD4 T cells (cell/mm3), median [IQR] (n) 338 [180-613] (81) 362 [198-555] (45) 0.8406 

CD8 T cells(cell/mm3), median [IQR] (n) 274 [168-468] (79) 240 [151-384] (44) 0.1581 

CD4/CD8 ratio, median [IQR] (n) 1.43 [0.82-2.07] (79) 1.77 [0.84-2.5] (44) 0.2249 

Data were expressed as count (percentage, %) for dichotomous variables and as medians 103 

(interquartile range [IQR]) for continuous values. The number of missing values was excluded 104 

from the denominator. Fisher exact, χ2 test or non-parametric Mann-Whitney U test was used 105 

to compare groups where appropriate. p-value < 0.05 was considered significant. PTB: 106 

pulmonary tuberculosis; EPTB: extrapulmonary tuberculosis; unkown outcome: loss of follow-107 

up or follow-up in another care facility; HIV: human immunodeficiency virus; MUST: 108 

malnutrition universal screening tool; BMI: body mass index; HDL-C: high-density lipoprotein 109 

cholesterol; LDL-C: low-density lipoprotein cholesterol; CRP: C-reactive protein; WBC: white 110 

blood cell. 111 

 112 

Mtb micro-diversity is not correlated with Mtb samples characteristics. 113 

WGS data of Mtb clinical isolates included in this study were analyzed to detect Mtb genetic 114 

micro-diversity through unfixed mutations (at frequencies between 10 and 90%). These data 115 

were used to identify the minimum number of variants in each Mtb clinical isolates. A variant 116 

was defined as an assembly of mutations with similar frequencies (±10%). This allowed to 117 

calculate the α-diversity of each Mtb isolates, which include both the number and the frequency 118 

of the variants and the genetic distance between these variants.  119 
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First of all, correlation between Mtb micro-diversity and Mtb samples characteristics, such as 120 

smear results and time to positivity of Mtb culture samples, reflecting bacterial load in clinical 121 

isolates, type of extra-pulmonary or pulmonary samples, Mtb lineages and resistance status, 122 

were explored (Fig. S1). Risks of bias, such as delta between Mtb sampling or between 123 

treatment initiation and sampling (only concerning the patients with both microbiologically 124 

proven PTB and EPTB) and samples that underwent freeze / thaw cycle (biobank samples) 125 

compared to those analyzed after a single round of culture (routine practice), were also 126 

evaluated (Fig. S2). No significant correlation was observed, except a higher proportion of 127 

isolates with captured micro-diversity in biobank pulmonary samples compared to pulmonary 128 

samples analyzed in routine practice. It may be due to the selection of significant Mtb isolates 129 

from our biobank, such as MDR strains, highly transmissible Mtb strains and strains from 130 

patients with both PTB and EPTB, all factors usually associated with high TB severity. 131 

Interestingly, no significant correlation was established between the bacterial load and Mtb 132 

micro-diversity in clinical isolates. 133 

 134 

Mtb micro-diversity is correlated with TB-associated severity indices.  135 

We aimed to investigate the association between Mtb α-diversity and TB outcome. However, 136 

due to the very low rate of fatal outcome in our setting (8/311; 2.6%), no significant correlation 137 

could be established (Fig. S3). Therefore, the correlation between Mtb micro-diversity and 3 138 

TB severity indices was explored: i) the modified Bandim score (the most largely used PTB 139 

prognosis score), which consider 5 symptoms (cough, hemoptysis, dyspnea, chest pain, night 140 

sweats) and 5 clinical findings (anemia, tachycardia, positive finding at lung auscultation, fever, 141 

BMI) 26,27; ii) the Malnutrition Universal Screening Tool (MUST), based on weight loss, BMI 142 

and anorexia to evaluate malnutrition status of TB patients 28; iii) the nutritional risk score 143 
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considering BMI, hypoalbuminemia, hypocholesterolemia and severe lymphocytopenia, then 144 

including both nutritional and immune factors 29.  145 

A significant correlation was observed between the detection of micro-diversity (α-diversity > 146 

1) in pulmonary Mtb isolates and high Bandim score (Fig. 1A, p<0.0001), MUST (Fig. 1B, 147 

p<0.0001) and nutritional risk score (Fig. 1C, p<0.0001). However, no correlation was 148 

observed between the ranges of α-diversity in Mtb isolates and the TB-associated severity 149 

indices evaluated.  150 

As expected, no correlation was observed between the detection of micro-diversity in extra-151 

pulmonary Mtb isolates and the Bandim score (Fig. 1D), as this score is mainly based on PTB 152 

symptoms, nor with the MUST (Fig. 1E), as malnutrition is more characteristic of PTB (Table 153 

1) 30. Conversely, a correlation between the detection of micro-diversity in extra-pulmonary 154 

Mtb isolates and high nutritional risk score (Fig. 1F, p=0.0131) was observed, this severity 155 

index also including variables of the patient's immune status.  As before, no correlation was 156 

observed between the ranges of α-diversity in Mtb isolates and the TB severity indices 157 

evaluated. 158 

 159 

Independent variables associated with micro-diversity in Mtb pulmonary and extra-160 

pulmonary isolates. 161 

The analysis of nutritional indices of TB patients revealed that the detection of micro-diversity 162 

in pulmonary Mtb isolates was correlated with low BMI, severe unintentional weight loss, low 163 

serum pre-albumin, hyponatremia, hypochloremia, low serum bicarbonate (Fig. S4), and also 164 

with low total cholesterol, low HDL and high triglyceride (Fig. S5), which are all associated 165 

with unfavorable TB outcome 29–34. The detection of micro-diversity in extra-pulmonary Mtb 166 

isolates was correlated with severe unintentional weight loss, low serum pre-albumin and low 167 

total serum protein (Figs. S5 and S6). Furthermore, a correlation was observed between the 168 
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detection of micro-diversity in both Mtb pulmonary and extra-pulmonary isolates and iron 169 

deficiency, meaning low serum iron and low transferrin saturation (Fig. 2). 170 

We also explored the correlation between micro-diversity in Mtb isolates and inflammation 171 

(serum CRP and ferritin) and immune markers (hemoglobin, blood white blood cell (WBC), 172 

neutrophil, eosinophil, basophil, monocyte, lymphocyte, CD4 T cells and CD8 T cells count in 173 

peripheral blood and CD4/CD8 ratio). No correlation was observed between these markers and 174 

the detection of micro-diversity in pulmonary Mtb isolates (Fig. S7). Conversely, we found a 175 

correlation between the detection of micro-diversity in extra-pulmonary Mtb isolates and high 176 

serum ferritin and low CD4 T cells count in peripheral blood (Fig. S8), which is a well-known 177 

risk factor for TB patients, especially for extra-pulmonary TB 35,36. Finally, in all cases 178 

(nutritional and immune variables), except for phosphorus for pulmonary Mtb isolates and 179 

eosinophils count for extra-pulmonary Mtb isolates, no correlation was observed between the 180 

ranges of Mtb α-diversity and the host variables studied. 181 

 182 

Models describing the relationship between Mtb micro-diversity and clinical parameters 183 

To go forward, we built a model to relate Mtb micro-diversity in pulmonary (P) and extra 184 

pulmonary (EP) locations to various explanatory variables obtained for most patients in the 185 

cohort. The response variable we chose to model is a binary (0/1) measure of whether Mtb 186 

micro-diversity was detected in clinical isolates.  187 

In the case of pulmonary TB infections, model comparisons indicated a best model with only 9 188 

variables (double location of infection, Mtb lineage, weight loss, protein dosage, CRP, 189 

hemoglobin, leukocyte count, neutrophil count and the BANDIM score). 39 models had an 190 

Akaike weight less than two units from the best model. Only eight variables had likely effects 191 

(BANDIM score, Weight loss, Double Location, Hemoglobin, Neutrophil count, CRP, Protein, 192 

and Leukocyte count), and only the effect of Mtb lineage had importance between 0.5 and 0.73, 193 
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making it a plausible (but not likely) effect (Fig. 3). Multi-model inference of parameter values 194 

ascertained that Mtb micro-diversity in pulmonary isolates was higher with increasing weight 195 

loss, BANDIM, hemoglobin, and leukocyte counts, and lower with increasing neutrophil 196 

counts, CRP, and protein (Table 2). All lineages had slightly different coefficients, but they 197 

never differed from the baseline sufficiently for 95% confidence intervals to have the same sign 198 

(Table 2) and asymptotic pairwise tests between lineage coefficients were all non-significant 199 

in the best model (results not shown). 200 

 Estimate lower CI higher CI 

Uncond. 

variance 

Nb 

models Importance 

(Intercept) 2.36E-01 -1.46E+01 1.50E+01 6.71E+01 2000 1.00 

WeightLoss 2.73E-01 1.58E-01 3.89E-01 3.49E-03 2000 1.00 

BandimScore 5.85E-01 3.15E-01 8.55E-01 1.88E-02 2000 1.00 

DoubleLoc1 1.26E+00 2.03E-01 2.31E+00 2.93E-01 1962 0.99 

Haemoglobin 2.84E-02 4.43E-03 5.24E-02 1.52E-04 1957 0.99 

Neutrophiles -6.36E-04 -1.52E-03 2.51E-04 2.17E-07 1827 0.93 

CRP -8.97E-03 -1.89E-02 1.00E-03 2.70E-05 1772 0.92 

Protein -4.81E-02 -1.08E-01 1.20E-02 1.00E-03 1654 0.87 

Leucocytes 4.06E-04 -3.72E-04 1.18E-03 1.67E-07 1384 0.74 

Lineage2 -6.54E-01 -2.86E+00 1.55E+00 1.37E+00 1224 0.65 

Lineage3 -2.11E+00 -6.16E+00 1.95E+00 4.26E+00 1224 0.65 

Lineage4 -6.93E-01 -2.82E+00 1.44E+00 1.26E+00 1224 0.65 

Lineage6 -1.60E-01 -2.52E+00 2.20E+00 2.01E+00 1224 0.65 

LineageM. bovis -3.13E+00 -8.59E+00 2.32E+00 7.82E+00 1224 0.65 

Table 2: Models of Mtb micro-diversity in pulmonary isolates. Multi-model estimates of 201 

variable coefficients based on the 2000 models pooled in the consensus set of models; only 202 

models with importance greater than 0.5 were kept in this table. “DoubleLoc1”: presence of 203 

both P and EP locations of TB infection in the patient, based on microbiological or 204 

pathophysiological evidence; “Lineage2”: effect of lineage 2 when compared to baseline 205 

(lineage 1). “Nb models”: number of models in the consensus set (already the result of merging 206 

four parallel model comparison processes) which incorporated the variable. 207 

 208 

Mtb micro-diversity within and between pulmonary and extra-pulmonary compartments. 209 
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To better understand the role and the impact of Mtb micro-diversity, we focused on paired 210 

isolates from the training cohort to explore micro-evolution of Mtb within individuals (Fig. 4). 211 

First of all, the frequency in both pulmonary and extra-pulmonary compartments of each variant 212 

identified was explored. Among the 104 variants identified by WGS, 31/104 (30%) were 213 

specific of pulmonary isolates, 30/104 (29%) were specific of extra-pulmonary isolates, the 214 

frequencies of 22/104 (21%) variants were significantly increased or decreased (≥10%) 215 

between the compartments and only 21/104 (20%) were found at similar frequencies between 216 

the compartments (Fig. 4A). These results suggest a compartmentalization of Mtb variants.  217 

Then we analyzed of the repartition on Mtb genome of the 168 pairwise mutations distances 218 

observed between paired pulmonary and extra-pulmonary isolates, among these 104 variants. 219 

However, it did not reveal any hot spot on Mtb genome (Fig. 4B). Among these 168 pairwise 220 

mutations, 22/168 (13%) were intergenic mutations, and 146/168 (87%) were located in coding 221 

regions, among whom 104/146 (71%) were nonsynonymous mutations and 42/146 (29%) were 222 

synonymous SNP.  223 

These 104 nonsynonymous mutations were used to perform a principal component analysis 224 

(PCA) for mixed data (Fig. 4C). This analysis took into account the delta of frequency of each 225 

pairwise mutation between pulmonary and extra-pulmonary compartment and the functional 226 

categories of these mutations. The first principal component (15.65% of the variance) allowed 227 

a discrimination of pulmonary and extra-pulmonary mutations and of some functional 228 

categories. This revealed an association of pulmonary mutations with cell wall and cell 229 

processes and lipid metabolism categories. Otherwise, extra-pulmonary mutations were 230 

strongly associated with intermediary metabolism and respiration category. This suggests, on 231 

the one hand, an adaptation to pulmonary macrophage infection for pulmonary variants and on 232 

the other hand, a metabolic adaptation to extra-pulmonary tissues.  233 
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To go forward, we used PAML branch-site models to test for selection pressures associated 234 

with infection localization. No gene function exhibited a significant signal of positive selection 235 

pressure, neither in pulmonary isolates nor in extra-pulmonary ones with our cohort. Still, 236 

relatively low p-values (0.1<p-value <0.15) combined with amino acids with significant BEB 237 

posterior P-values were observed for “Virulence, detoxification and adaptation” gene category 238 

in pulmonary Mtb isolates and for “intermediary metabolism and respiration” gene category in 239 

the extra-pulmonary ones. These tendencies require larger samples to be confirmed.  240 

 241 

DISCUSSION 242 

The objective of the present study was to address the impact of Mtb micro-diversity on TB 243 

pathophysiology. For this purpose, we explored the correlation between Mtb micro-diversity 244 

and TB clinical presentation, meaning pulmonary and extra-pulmonary tuberculosis and 245 

severity of illness. A strong correlation was observed between the detection of Mtb micro-246 

diversity and TB-associated severity markers, in both pulmonary and extra-pulmonary clinical 247 

isolates. Furthermore, this diversity seems to be driven by a selection pressure to adapt to 248 

different tissues.  249 

A previous report explored the correlation between baseline Mtb diversity (initiation or major 250 

change to treatment) and 6-month TB outcome and found that Mtb diversity did not affect TB 251 

outcome. However, beside fatal outcome, treatment failure and acquisition of multi-drug 252 

resistance, authors also included loss of follow-up in unfavorable outcome 9. Nevertheless, the 253 

latter category, representing 33% of poor outcome in the study, is not itself an unfavorable 254 

outcome, therefore we have classified it in the "unknown" category, which could explain the 255 

discrepancies observed between the studies. Otherwise, our results are in accordance with 256 

another study, focusing on the evolution of Mtb micro-diversity from five patients during the 257 

course of TB treatment, which showed that higher TB severity is associated with an increase of 258 
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Mtb micro-diversity within-host, and more particularly in pre-mortem Mtb isolates of two of 259 

these patients, and without significant impact of TB treatment on Mtb micro-diversity 10. Yet it 260 

is still unclear whether Mtb micro-diversity is a cause (better Mtb adaptation to treatment, to 261 

immune pressure and/or to various niches) or a consequence (tissue breakdown allowing 262 

sampling of Mtb variants usually inaccessible and/or lower immune response reducing selection 263 

pressure) of the TB severity. The mechanisms driving such diversity remain to be explored.  264 

As sown using PAML branch-site models, variants harbored SNP in different functional 265 

categories according to their localization, meaning pulmonary or extra-pulmonary samples. 266 

Even if the tendencies observed require larger samples to be confirmed, the result obtained 267 

suggested an adaptation to pulmonary macrophage infection for pulmonary Mtb isolates and a 268 

metabolic adaptation for extra-pulmonary ones. Moreover, development of in vitro models will 269 

be needed to decipher the role and the impact of the identified pairwise variants between 270 

pulmonary and extra-pulmonary compartments.  271 

Alongside that, in the present study, no correlation was found between the ranges of Mtb α-272 

diversity and TB-associated severity markers. It may be due to the fact that the analysis was 273 

based on minimum number of variants estimated through WGS data to calculate Mtb α-274 

diversity, which was a risk to underestimate micro-diversity in Mtb clinical isolate. However, 275 

to be exhaustive regarding the variant composition of an Mtb isolate, this would have required 276 

sequencing of several colonies for each Mtb clinical isolate, which is time- and cost-consuming. 277 

Nevertheless, detection of unfixed mutations at the level of WGS (meaning mutation 278 

frequencies between 10 and 90%) was enough to observe a strong correlation between Mtb 279 

micro-diversity detection and TB-associated severity markers.  280 

As WGS is performed in routine practice in our lab, as well as in other TB diagnosis lab, it 281 

could be envisioned as an all-in-one solution, to detect antibiotic resistance 37, to infer Mtb 282 

transmission chains and to perform epidemiological monitoring 38,39 and now as a prognosis 283 
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tool. In the frame of cancer and microbiological research, calling algorithm for low frequency 284 

variants were developed 40–42 and may be adapt to Mtb WGS data. Therapeutic drug monitoring 285 

and implementation of additional management measures could be performed for patients with 286 

detectable Mtb micro-diversity in clinical isolates. It would ensure optimal anti-TB drug doses 287 

and prevent slow response to treatment, which would reduce risks of treatment failure and of 288 

drug resistance acquisition 43,44. 289 

In conclusion, although these results need to be confirmed in an independent prospective 290 

validation study, Mtb micro-diversity within clinical isolate could be a useful prognosis tool to 291 

ensure optimal management of TB patients. 292 

 293 

METHODS 294 

Ethical considerations 295 

For this study we recorded demographical (age, sex), clinical (extrapulmonary and/or 296 

pulmonary TB), microbiological (smear sputum results, growth delay, antibiotic resistance, 297 

lineage) and nutritional and immune data. All data were implemented in a database, in 298 

accordance with the decision 20-216 of the ethics committee of the Lyon University Hospital, 299 

France and the French Bioethics laws (Reference methodology MR-004 that covers the 300 

processing of personal data for purposes of study, evaluation or research that does not involve 301 

the individual). Relevant approval regarding access to patient-identifiable information are 302 

granted by the French data protection agency (Commission Nationale de l’Informatique et des 303 

Libertés, CNIL). 304 

 305 

Mtb samples and data collection  306 

In this retrospective study, a total of 355 Mtb clinical isolates were included, from 311 patients 307 

diagnosed with microbiologically proven TB at the Lyon University Hospital. We included all 308 
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Mtb clinical isolates for which WGS was performed in routine practice at the Lyon University 309 

Hospital from January 2017 to January 2020 and significant isolates of our collection (MDR 310 

Mtb, representative strains of large previously identified clusters, samples from patients with 311 

both pulmonary and extra-pulmonary TB) which were captured and implemented in the 312 

database during sequencing development in the lab 38,39.  It should be noted that we excluded 313 

pleural TB as depending of the clinical presentation it can be considered as PTB or EPTB. 314 

Microbiological characteristics, such as Mtb lineage, smear results, time to positivity and drug 315 

resistance, were recorded (Table S1), as was patients’ demographic and baseline descriptive 316 

characteristics (Table 1). Regarding patients’ descriptive characteristics, only data available 317 

between 2 weeks before TB diagnosis and 1 week after initiation of anti-TB treatment or 318 

nutritional supplementation were considered.  319 

 320 

TB-associated severity indices 321 

Three TB-associated severity indices were assessed in this study.  322 

The modified Bandim score is the most largely used PTB prognosis score. It considers 5 323 

symptoms (cough, hemoptysis, dyspnea, chest pain, night sweats) and 5 clinical findings 324 

(anemia, tachycardia, positive finding at lung auscultation, fever, BMI<18 and <16), with one 325 

point for each. One clinical finding was excluded, the mid upper arm circumference (MUAC) 326 

as this data was not available in the Lyon University Hospital. Accordingly, patients were 327 

stratified into two severity classes, mild (Bandim score ≤4) and moderate or severe (≥5) 26,27,45. 328 

The nutritional status of TB patients was evaluated thanks to the Malnutrition Universal 329 

Screening Tool (MUST), which include three variables: unintentional weight loss score (weight 330 

loss < 5% = 0, weight loss 5–10% = 1, weight loss > 10% = 2), BMI score (BMI>20.0 = 0, BMI 331 

18.5–20.0 = 1, BMI<18.5 = 2) and anorexia (if yes = 2). Malnutrition is frequently observed in 332 
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patients with PTB and a previous study showed a poorer prognosis for PTB patients with MUST 333 

≥4 28. 334 

The nutritional risk score is a four-points score including both nutritional and immune 335 

characteristics: low BMI (<18.5), hypoalbuminaemia (<30.0 g/L), hypocholesterolaemia 336 

(<4mmol/L) and severe lymphocytopenia (<0.7 G cells/L). A high nutritional risk score (≥3) 337 

has been shown to be associated to poor prognosis in PTB 29,46. 338 

 339 

Culture of Mycobacterium tuberculosis 340 

The routine laboratory diagnostic workflow consisted of treatment of pulmonary samples with 341 

the modified Kubica’s digestion-decontamination method 47, followed by inoculation in 342 

Mycobacteria Growth Indicator Tubes (MGITs) incubated in a BD BACTEC TM MGIT TM 343 

960 instrument (BD, Sparks, MD, USA). Extrapulmonary samples were inoculated using the 344 

same medium without prior decontamination. Mtb genomic DNA extractions were performed 345 

after a single round of culture. Biobank Mtb isolates were inoculated in MGIT until exponential 346 

phase before Mtb genomic DNA extraction.  347 

 348 

Whole genome sequencing  349 

Genomic DNA of Mtb positive cultures was purified from cleared lysate using a QIAamp DNA 350 

mini Kit (Qiagen). DNA libraries were prepared with Nextera XT kit (Illumina, San Diego, 351 

USA). Samples were sequenced on NextSeq or MiSeq system (Illumina) to produce 150 or 300 352 

base-pair paired-end reads at the Bio-Genet NGS facility of Lyon University Hospital, as 353 

previously described 38. Reads were mapped with BOWTIE2 to the Mtb H37Rv reference 354 

genome (Genbank NC000962.2) and variant calling was made with SAMtools mpileup, as 355 

previously described 38.   356 

 357 
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Illumina data analysis 358 

A valid nucleotide variant was called if the position was covered by a depth of at least 10 reads 359 

and supported by a minimum threshold rate of 10%. Regions with repetitive or similar 360 

sequences were excluded, i.e. regions of PE, PPE, PKS, PPS, ESX genes. The reference genome 361 

coverage breadth was at least 93% with a mean depth of coverage of at least 50x. 362 

 363 

Variant assignment  364 

In a previous study, we showed no significant differences in variant detection and frequencies 365 

between sequencing on direct samples and after subculture on media used in routine practice 6. 366 

Moreover, for this study, 10 isolates were extracted and sequenced twice to evaluate the 367 

variability in mutation frequencies between sequencing experiments. In both sequencing 368 

experiments, 52 unfixed mutations were detected at similar frequencies (±10%), ranging from 369 

10 to 90% (Fig. S9A). Accordingly, to identify the minimum number of variant in each Mtb 370 

clinical isolate, a variant was defined as an assembly of mutations at frequencies of ±10% as 371 

illustrated in Fig. S9B. 372 

 373 

Mtb α-diversity indices 374 

The alpha diversity index was calculated by using the software R statistic, Package (vegan) 375 

version 2.5-7. 376 

 377 

Selection analysis 378 

We used PAML package to test for selection pressures in our dataset. This method uses 379 

powerful statistics to test for heterogeneous dn/ds ratios at different positions and/or in different 380 

branches. It has already been successfully used in MTC genome to confirm that positions 381 

involved in drug resistance and some positions in membrane proteins are subjected to positive 382 
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selection 48. Shortly, this method allows to compare scenarios including (H1) or not (H0) higher 383 

dn/ds ratio on some residues. This means that two categories of sites are set up that have 384 

different distributions of their dn/ds (options can force some of the characteristics of these 385 

distributions, here both M1 and M2 models distributions were explored). The method allows to 386 

identify whether scenario H1 is more likely than H0 using a Likelihood Ratio Test (true if p-387 

value<0.05).  388 

Here we explored whether genes having the same functions (as characterized by available 389 

annotation) have a higher probability to be under selection in the evolutionary branches leading 390 

to one type of localization or the other (pulmonary versus extra-pulmonary). These tests were 391 

performed using the branch-site model of PAML. 392 

While compiling the statistics enabling LRT tests described above, PAML package also 393 

associates a probability to each codon that underwent positive selection presure: the Bayesian 394 

Empirical Bayes (BEB) posterior probability that this codon has a dn/ds ratio higher than 1 as 395 

compared to the alternative scenario, starting from a (true if P>0.95). 396 

To do so, we built the matrix including all SNPs for all variants (intra et inter patients 397 

variations). For each SNP, we reconstituted the corresponding amino-acid using annotation 398 

available from mycobrowser Release 2 (https://mycobrowser.epfl.ch/releases). The variant 399 

phylogeny was reconstructed using RAxML using a GTRCAT model. All terminal branches 400 

leading to pulmonary isolates were labelled for identifying selection in the lungs (“Pulmonary” 401 

analysis). All terminal branches leading to any extra-pulmonary isolate were labelled for 402 

identifying selection in microaerophilic organs i.e. organs other than the lungs (“Extra-403 

Pulmonary” analysis). 404 

 405 

Statistical analysis 406 

Univariate analysis 407 
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The study variables were expressed as count (percentage, %) for dichotomous variables and as 408 

medians (interquartile range [IQR]) for continuous values. The number of missing values was 409 

excluded from the denominator. Non-parametric statistical methods Fisher exact test, χ2 test, 410 

Mann-Whitney U test and Kruskal-Wallis analysis, using Dunn's Multiple Comparison Test 411 

were used to compare groups, where appropriate. Statistical analyses were performed with 412 

Graph Pad Prism 5. *p<0.05, ** p <0.01, *** p <0.001.  413 

 414 

Response variable and subsetting explanatory variables 415 

We built a model to relate Mtb micro-diversity in pulmonary (P) and extra pulmonary (EP) 416 

isolates to various explanatory variables obtained for most patients in the cohort. The response 417 

variable we chose to model is a binary (0/1) measure of whether Mtb displayed or not some 418 

diversity as observed through counts of unique SNP profiles. 419 

Among all the potential explanatory variables recorded in the initial dataset, we retained a 420 

chosen subset, following a series of filters: 421 

1. We first removed 15 variables based on three non-exclusive conditions: (i) relatively low 422 

coverage in the cohort, (ii) little to no relationship with the response variable based on the 423 

literature, (iii) important redundancy with other variables in the dataset (e.g. percentage of 424 

neutrophil when the raw neutrophil count was also included); 425 

2. Among the remaining variables, we removed all those that had less than 90% coverage (i.e. 426 

those that had missing values for 10% or more of the patients). 427 

Apart from the location of the infection (P vs. EP), the final consolidated dataset included 31 428 

variables: 10 categorical variables and 21 quantitative ones. This dataset consisted of 282 rows 429 

(patient:TBlocation), 200 for pulmonary locations and 82 for EP locations. 42 patients had both 430 

microbiologically proven P and EP locations, so the final dataset included 240 patients (158 431 

with only P location, 40 with only EP location, and 42 patients with both locations). 432 
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 433 

Model comparison 434 

In a first exploratory phase, we looked for all models explaining the response variable using a 435 

limited number of explanatory variables. We used generalized linear modelling, assuming that 436 

the binary response variable could be modelled through a binomial distribution and using a logit 437 

transformation linking response to explanatory variables. With 31 possible explanatory 438 

variables, the number of potential models to test is very high and impossible to tackle (231, i.e. 439 

more than 2 billion models). In order to reduce this complexity, we chose to restrict our search 440 

to models incorporating between 0 and 12 variables. As presented in the result, this approach 441 

was sufficient to obtain “best models” that had fewer than 12 variables, hence hinting at the 442 

uselessness of pursuing our search further into models of higher complexity. 443 

 444 

To rank the different tested models, we used the Akaike Information Criterion corrected for 445 

small sample sizes (AICc) 49 because we expected many tapered effects of the different 446 

variables 50. Models with the lowest AICc values were the ones that had the best goodness-of-447 

fit. Models were computed and compared using the ‘glmulti’ package version 1.0.8 in the R 448 

software version 3.6.3 51. To optimize computation time, we first looked for all models with 0 449 

– 9 variables among the 31 present in the dataset, and then looked for models with 10, 11 and 450 

12 variables (thus, 4 parallel uses of glmulti). For each of these four chunks of model 451 

comparison, we retained only the 500 best models (sensu AICc) and gathered all these models 452 

in a consensus pool of good models. The importance of model variables was then assessed using 453 

Akaike weights of each of the 31 variables by summing the Akaike weights of all models 454 

incorporating the focal variable 50,52. Since each variable was incorporated in exactly half of the 455 

tested models, the importance is expected to be ½ for variables that did not modify model fit 456 

better than the null expectation. Following Massol et al. (2007)52, we thus considered that all 457 
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variables that were likely to have an effect on the response variable were those with an 458 

importance larger than 1/(1+e-1), i.e. 0.73, plausible or implausible on either side of 0.5, and 459 

unlikely when variable importance was lower than 0.27. For prediction purposes, we retained 460 

all models that were within 2 units of the best model’s AICc and used multi-model inference 461 

based on this set of models 50. We computed unconditional variance using the method of 462 

Johnson and Omland (2004)53 and obtained confidence intervals on model predictions using 463 

the method suggested by Burnham and Anderson 50, using function ‘predict’ in the R package 464 

‘glmulti’.  465 

 466 

Parameter value comparisons 467 

When categorical variables had an effect on the response variable, we tested for pairwise 468 

differences in the coefficients associated to the different levels of the categorical variables. To 469 

do so, we used the R package ‘emmeans’ version 1.4.5, which tested pairwise differences 470 

between marginal means averaged over all values of other categorical variables (e.g. differences 471 

between “Mtb lineages” were assessed by averaging the effect of “double location”), using 472 

asymptotic test on the z-score obtained from the pair of coefficients 54. 473 

 474 

Estimating multi-model errors 475 

Once the set of good models had been determined, we re-sampled the dataset in order to obtain 476 

estimates of the multi-model prediction errors (i.e. false negatives and positives). For a given 477 

target proportion of initial dataset rows to be included in the training set, we drew a random 478 

sample of rows stratified by unique combinations of categorical variables used by the multi-479 

model, i.e. we made sure that all combinations of factors were included in the training set. This 480 

resulted in actual fraction of data rows in the training dataset slightly higher than the target 481 
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proportion because some combinations of categorical variable modalities were quite rare and 482 

thus systematically added to the training set. 483 

With a given training dataset, we considered the rest of the dataset as validation dataset. We 484 

fitted the whole set of good models using only the training dataset, with possibly estimates of 485 

model coefficients different from those obtained with the whole dataset due to sampling. Based 486 

on the probability of observing some Mtb micro-diversity for all samples in the training set, we 487 

looked for a threshold on this probability that would maximize the true skill statistic (TSS) if 488 

the multi-model were to predict diversity when model predictions were above this threshold 489 

and no diversity otherwise. TSS is a simple statistic (also called informedness or Youden’s J 490 

statistic) equal to the sum of sensitivity and specificity minus one. This threshold optimization 491 

procedure was performed using function ‘optim.thresh’ in R package ‘SDMTools’ version 1.1-492 

221.2 55.  493 

The performance of the multi-model inferred from the training dataset was assessed by 494 

predicting the response variable in the validation dataset, using the above-mentioned threshold 495 

for predicting presence/absence of Mtb micro-diversity. This prediction yielded a confusion 496 

matrix (observed vs. predicted absence/presence of Mtb micro-diversity) which was then 497 

analysed using standard statistics, i.e. its sensitivity, specificity, accuracy (1 - error rate) and 498 

TSS. 499 
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 656 

FIGURES AND LEGENDS  657 

 658 

Figure 1: The detection of genetic micro-diversity in Mtb isolates is associated with TB-659 

associated severity indices 660 

Association between the detection and the range of Mtb α-diversity from pulmonary (A-C) or 661 

extra-pulmonary samples (D-F) and TB-associated severity indices, the Bandim score (A, D), 662 

the MUST (malnutrition universal screening tool, B and E), and the nutritional risk score (C, 663 

F). Black bar: α-diversity=1 no diversity detected by WGS; white bar: α-diversity>1 at least 664 

two variants detected by WGS. p = x.xxxx: non-parametric statistical method Fisher exact test 665 
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was used to compare groups. p-value < 0.05 was considered significant. x.xx [y.yy-z.zz]: 666 

median [IQR] of Mtb α-diversity. Mann-Whitney U test was used to compare ranges of Mtb α-667 

diversity between groups (no statistical differences observed).  668 

 669 

 670 

Figure 2: The detection of genetic micro-diversity in pulmonary and extra-pulmonary 671 

Mtb isolates is associated with iron deficiency  672 

Association between the detection and the range of Mtb α-diversity from pulmonary (A and B) 673 

and extra-pulmonary (C and D) samples and serum iron level (A and C) and transferrin 674 

saturation (B and D). Black bar: α-diversity=1 no diversity detected by WGS; white bar: α-675 

diversity>1 at least two variants detected by WGS. p = x.xxxx: non-parametric statistical 676 

method χ2 test was used to compare groups. p-value < 0.05 was considered significant. x.xx 677 

[y.yy-z.zz]: median [IQR] of α-diversity. Kruskal-Wallis analysis, using Dunn's Multiple 678 

Comparison Test was used to compare ranges of α-diversity between groups (no statistical 679 

differences observed).  680 
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 681 

 682 

Figure 3: Model-averaged importance of terms for Mtb micro-diversity in pulmonary 683 

isolates. 684 

Model-averaged importance of each term in the model (Table 2), which is defined as the 685 

proportion of the 2000 best models in which a given term appears. Red line indicates 80% 686 

support. Terms with an importance above the red line are included in our final model. 687 
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 688 

Figure 4: Compartmentalization of Mtb variants between pulmonary and extra-689 

pulmonary compartments 690 
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(A) Frequencies in pulmonary and extra-pulmonary isolates of the 104 variants identified in 691 

paired isolates from the 42 patients of the training cohort with both microbiologically proven 692 

pulmonary and extra-pulmonary TB. (B) Repartition on Mtb reference genome of the 168 693 

pairwise mutations distance identified between the 42 paired isolates from the training cohort. 694 

Each bar represents a pairwise mutation distance between paired pulmonary and extra-695 

pulmonary isolates. y-axis positive value: mutation frequency in pulmonary isolate; y-axis 696 

negative value: mutation frequency in extra-pulmonary isolate. Bleu bar: intergenic mutation; 697 

red bar: nonsynonymous mutation; green bar: synonymous single nucleotide polymorphism 698 

(SNP). (C) Principal component analysis (PCA) for mixed data was performed with the delta 699 

of frequency of the 104 nonsynonymous pairwise mutation observed between paired pulmonary 700 

and extra-pulmonary isolates and the functional categories of these mutations. The first 701 

principal component allowed a discrimination of pulmonary and extra-pulmonary mutations. 702 
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