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An emerging body of work has demonstrated that resting-state
non-oscillatory, or aperiodic, 1/f neural activity is a functional
and behaviorally relevant marker of cognitive function capacity.
In the motor domain, previous work has only applied 1/f analy-
ses to description of action coordination and performance. The
value of aperiodic resting-state neural dynamics as a marker of
individual visuomotor performance capacity remains unknown.
Accordingly, the aim of this work was to investigate if individ-
ual 1/f intercept and slope parameters of aperiodic resting-state
neural activity predict reaction time and perceptual sensitivity
in an immersive virtual reality marksmanship task. The marks-
manship task required speeded selection of target stimuli and
avoidance of non-target stimuli selection. Motor and perceptual
demands were incrementally increased across task blocks and
participants performed the task across three training sessions
spanning one week. When motor demands were high, steeper
individual 1/f slope predicted shorter reaction time. This rela-
tionship did not change with practice. Increased 1/f intercept
and a steeper 1/f slope were associated with higher perceptual
sensitivity, measured as d’. However, this association was only
observed under the highest levels of perceptual demand and
only in the initial exposure to these conditions. Individuals with
a lower 1/f intercept and a shallower 1/f slope demonstrated
the greatest gains in perceptual sensitivity from task practice.
These findings demonstrate that individual differences in motor
and perceptual performance can be accounted for with resting-
state aperiodic neural dynamics. The 1/f aperiodic parameters
are most informative in predicting visuomotor performance un-
der complex and demanding task conditions. In addition to pre-
dicting capacity for high visuomotor performance with a novel
task, 1/f aperiodic parameters might also be useful in predict-
ing which individuals might derive the most improvements from
practice.
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Introduction
The identification of individual characteristics that predict
motor skill learning and performance proficiency continues
to be a central practical and theoretical issue. On the practi-
cal side, individual predictors allow the practitioner to iden-
tify individuals with high capacity for learning and perfor-
mance of a motor skill. Predictors are also valuable to inform
individualization of training environments to enhance future

performance outcomes. Theoretically, the identification of
individual predictors affords the advancement of our under-
standing of the essential requirements to acquire and perform
a class of actions. Moreover, as action is inherently noisy
due to inter-individual variance, the identification of individ-
ual predictors offers utility in accounting for this noise such
that the signal – the learning or performance outcome - can
be more directly considered.

Historically, under the rubric of motor abilities, the search
for individual predictors of skilled performance initially con-
centrated on sensorimotor characteristics (e.g., Adams, 1957;
Fleishman, 1960; Welch & Henry, 1971; Fleishman, 1972;
Fleischman & Mumford, 1989). Subsequent work (e.g.,
Ackerman, 1987, 1988; Ackerman & Cianciolo, 2000) has
since highlighted differences in cognitive function as key in-
dividual determinants of motor skill acquisition and perfor-
mance. For example, working memory capacity (Christou
et al., 2016) and metacognitive ability (Sinanaj et al., 2015)
have both been shown to predict learning and performance of
visuomotor skills. Since these characteristics generally pre-
dict proficiency in a range of tasks including those that as-
sess fluid intelligence (Kyllonen & Christal, 1990; Swanson
& McMurran, 2018), their association with visuomotor per-
formance could more globally reflect how action arises from
a complex self-organizing system (Van Orden et al., 2003).
Executive function and action performance arise from the ac-
tivation of a number of shared brain regions including the
prefrontal cortex, cingulate cortex, premotor cortices, motor
cortex, parietal cortex and the basal ganglia (Mirabella, 2014;
Immink et al., 2020). This overlap suggests that higher order
cognitive function such as working memory and metacog-
nition might predict visuomotor performance because they
share self-organizing properties of the brain. As such, it
would seem logical to identify self-organizing properties of
the brain that can be utilized as biological markers for indi-
vidual capacity in the learning and performance of visuomo-
tor skills.

There have been several previous attempts to quantify neu-
rophysiological markers of motor learning and performance
(Baetu et al., 2015; Andreska et al., 2020; Herszage et al.,
2020). Such attempts have included resting-state electroen-
cephalography (EEG) activity, which has been shown to pre-
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dict visuomotor performance with the rotary pursuit task (Wu
et al., 2014). These findings suggest that resting-state EEG
profiles might offer promising insights into assessing indi-
vidual self-organizing neural characteristics as predictors of
visuomotor capacity (Cheron et al., 2016). This particularly
so given the accessibility of undertaking resting EEG record-
ing both in laboratory and practical settings as well other ad-
vantages of EEG over other neural recording methodology
including temporal resolution and simultaneous recording of
multiple cortical sites. However, one key consideration is the
identification of the resting-state EEG measure that most re-
liably predicts skill performance and learning.

Electrical neural activity is comprised of broadband scale-
free (otherwise referred to as fractal or aperiodic) and oscil-
latory activity (He et al., 2010; He, 2014). Research has tra-
ditionally ignored scale-free activity, treating it as nuisance
“noise” (Groppe et al., 2013), and instead focused on extract-
ing oscillations (i.e., in the delta, theta, alpha and beta band
frequencies) from resting-state and task-related recordings,
such as during perceptual decision-making tasks. While this
research has revealed that activity in certain frequency ranges
(e.g., the alpha band; 8 – 12 Hz) is correlated with a range of
behavioral, perceptual and cognitive outcomes (Cheron et al.,
2016), recent work has demonstrated that aperiodic activity
better predicts processing speed than resting alpha oscillatory
activity (Ouyang et al., 2020).

The aperiodic component of electrophysiological signals
is distinguishable from oscillatory activity, manifesting as
a straight line on a power spectral density (PSD) plot
(Donoghue et al., 2020; see Figure 1 for a visualization of
aperiodic and oscillatory components of a PSD plot), which
follows the 1/ƒ power-law exponent (He, 2014). The 1/ƒ
power-law exponent refers to the observation that power is
highest at lower frequencies, with power exponentially de-
creasing with increasing frequency (Demuru & Fraschini,
2020; Donoghue et al., 2020). The power-law exponent, or
β, reflects the steepness of the 1/ƒ slope, with higher β values
indicating a steeper slope and lower values reflecting a shal-
lower (i.e., flatter) slope (He, 2014). Mechanistically, the 1/ƒ
slope is argued to reflect an excitation-inhibition balance in
recurrent neural networks which maximises information pro-
cessing capacities (Lendner et al., 2020; Weber et al., 2020),
with steeper slopes indexing enhanced neural inhibition and
vice versa. Aperiodic activity can also be quantified by its
spectral offset (i.e., the intercept), with a higher intercept
hypothesized to be reflective of increased neural population
spiking (Manning et al., 2009; Miller et al., 2012), and is
positively correlated with the blood-oxygen-level-dependent
(BOLD) signal (Winawer et al., 2013; Jacob et al., 2021) ob-
tained from functional magnetic resonance imaging (fMRI).

Estimation of aperiodic activity from resting-state EEG
recordings is straightforward (e.g., Demuru et al., 2020;
Donoghue et al., 2020; Ouyang et al., 2020) resulting in
an accessible measure of resting-state derived neural activity
that can index intrinsic network-related activity with high test
re-test reliability. The 1/ƒ aperiodic parameters (i.e., spectral
slope and intercept) appear to be robust markers of neural

information processing across a range of domains. Indeed,
an emerging body of work has revealed the effectiveness of
1/ƒ in predicting individual capacity for processing speed
(Ouyang et al., 2020) and artificial grammar learning (Cross
et al., 2020). Specific to the motor domain, there have been
earlier applications of 1/ƒ (also referred to as pink noise) scal-
ing to describe self-organizing properties of skilled move-
ment performance (Diniz et al., 2011) including reaction time
(Gilden et al., 1995; Clayton & Frey, 1997), movement tim-
ing (Wijnants et al., 2009), and oscillation of finger tapping
(Rigoli et al., 2014) and music instrument performance (Col-
ley & Dean, 2019). However, there has been no previous
work that has addressed 1/ƒ aperiodic resting-state EEG ac-
tivity as a predictor of visuomotor performance.
The aim of the present work was to investigate if the 1/ƒ
intercept and slope estimated from resting-state EEG pre-
dict motor and perceptual dimensions of visuomotor per-
formance. Given that the 1/ƒ intercept reflects mean neu-
ral population spiking and, by extension, higher broadband
power (Donoghue et al., 2020), a higher resting-state inter-
cept would be expected to predict both motor and perceptual
performance. Further, as a steeper 1/ƒ slope indexes greater
neural excitation-inhibition balance to the extent of maximis-
ing information processing (Lendner et al., 2020; Weber et
al., 2020), then a steeper resting-state slope would predict
greater capacity for visuomotor processing speed and percep-
tual sensitivity to target information. We also investigated if
individual 1/ƒ intercept and slope predicted performance over
increased task difficulty by including four task blocks were
target selection was rendered more complex by the presence
of multiple targets as well as non-targets. Finally, we inves-
tigated how task training influenced performance prediction
from individual 1/ƒ intercept and slope over a 1-week period
of training involving three training sessions.

Methods
Participants
Forty-five adults (Mage = 22.67 ± 3.85 years, 23 females)
volunteered to participated in the Experiment. Participant
eligibility included: 18-35 years of age; right-hand domi-
nance based on the Edinburgh Handedness Inventory - Short
Form (Veale, 2014); normal or corrected vision; no sensory,
motor or cognitive impairments; no history of psychiatric
disorders. Participants were recruited from the Adelaide
metropolitan community in Australia and were naïve to the
aim of the Experiment. All participants provided written
informed consent prior to participation. The Experiment
protocol was approved by the University of South Australia
Human Research Ethics Committee.

Tasks and apparatus
Virtual reality visual-motor marksmanship task
A customized virtual reality (VR) visual-motor marksman-
ship task was developed and implemented within the Unity
game engine platform (https://unity.com/). A head-mounted
HTC VIVE Pro (HTC Inc, Bellevue, Washington) displayed
the VR and a VIVE Controller held in the right hand was
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Fig. 1. Power spectral density (PSD) estimates of fractal (aperiodic 1/ƒ) and oscillatory activity from a single individual at channel Pz during a memory task. (A) PSD plot
illustrating the spectral offset (y-axis) and aperiodic exponent (dashed red line). (B) The PSD plot on the right reflects the difference wave between the total (blue) and fractal
(red) PSD estimates that are illustrated in the PSD plot on the left. Log transformed power (i.e., strength of neural activity) is represented on the y-axis (higher values indicate
greater activity), while frequency (Hz; cycles per second) is represented on the x-axis (values further to the right indicate higher frequency).

used to aim and shoot, via trigger pull, visual targets in the
VR environment. Movement of the headset and hand-held
controller was tracked with two VIVE base stations. Partici-
pants completed the task while seated.

The marksmanship task involved the presentation of cartoon
robots that were distinguished by their helmet shape as well
as red or blue coloring of the helmet and armor. Robots ap-
peared in a two by four matrix of spatial regions that sur-
rounded a central point in the VR environment. The matrix
was comprised of a row above and a row below the central
point and two columns to the left and right of the central
point. Participants aimed and shot at the central point to com-
mence a trial, after which robots were presented in the spatial
locations. Aiming was assisted by the presentation of an aim-
ing cursor (cross-hairs) in the VR environment. Gamification
of the marksmanship task involved a scoring system where
shooting a target robot was awarded points, but this award
depreciated with target hit latency up to 1,500 milliseconds.
Score feedback for shooting a robot was briefly displayed and
a running score board was displayed in the left-hand side of
the VR environment.

The marksmanship task involved performance of four blocks
representing increasing difficulty in terms of the number of
target and non-target robots presented in a trial. Block 1 was
designed to assess proficiency in detecting, aiming and se-
lecting a visual target by presenting only one target robot,
referred to as target robot A, in each of the 40 trials. Par-
ticipants were instructed to shoot the target as fast possible.
If the target was not shot within the 1,500 ms time limit,
as miss result was recorded and a “time out” message was
displayed. Following Block 1, the subsequent blocks were
designed to introduce and increase demands on selective at-
tention, perceptual discrimination, and response inhibition
through the introduction of non-target robots. In Blocks 2
to 4, if a non-target robot was shot, an error message was
presented, penalty points were applied and a false alarm re-
sponse was recorded. In each of the 60 trials under Block 2,
one, two or three target robot A were presented along with
non-target robots at a 1:1 ratio. Targets and non-targets were

presented at once in a trial. Three variations of non-target
robots differed from target robot A in terms of either the hel-
met shape or helmet and armor color. In Block 3, involving
60 trials, presented target robot A and non-target robots at a
ratio of 1:2. In addition, Block 3 included catch-trials involv-
ing the presentation of only non-target robots. Targets and
non-targets were presented at once in each trial of Block 3.
For Block 4, involving 40 trials, a new target robot, termed
target robot B, was presented in addition to target robot A and
the non-target robots. The new target robot differed from tar-
get robot A with respect to both the helmet shape, and helmet
and armor color. In Block 4, trials were conducted continu-
ously such that target and non-target robots were presented at
random intervals throughout the block with multiple robots
present in the VR environment simultaneously. Further vi-
sual distraction was introduced in Block 4 with colored static
and moving geometric shapes appearing in the continuous tri-
als.
The motor component of marksmanship performance in
Blocks 1 to 4 of the task was based on reaction time (RT). RT
was measured in milliseconds as the latency between target
robot presentation and selection of the target (e.g., shooting
the target with the hand controller). Mean RT was calculated
for each block based on all instances that a target robot was
selected within the 1,500 ms time limit. The perceptual com-
ponent of task performance in each block was based on Hit
rate, the proportion of presented targets that were selected,
and False Alarm (FA) rate, the proportion of non-targets that
were selected. For Blocks 2 to 4, perceptual sensitivity was
based on d prime (d’), which was calculated for each partic-
ipant from the Hit and FA rate in each block (Swets et al.,
1961). Hit and FA rates were transformed into z-normalized
ZHit and ZFA distributions and then d’ for the block was cal-
culated (Macmillan & Creelman, 1990) based on the formula:

d’= ZHit – ZFA

d’ represents the distance between the probability distri-
butions of Hits and FA. Higher perceptual sensitivity is
reflected by higher d’ values reflecting maximization of
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Fig. 2. (A) Conditions for Blocks 1 to 4 of the Virtual Reality (VR) Marksmanship Task. The target and non-target robots were equivalent in size in the VR environment. (B)
Immersive VR environment for the gameified Marksmanship Task. The virtual gun was controlled by a hand controller in the right hand allowing for aiming with a displayed
cursor and selection of stimuli. The environment view changed with head movement. Note: The squares were not presented in the environment. They are included to
illustrate the 8 possible locations that stimuli were presented. (C) Procedure for recording resting EEG followed by three training sessions with the VR Marksmanship Task.

hits (selecting target robots) and false alarm minimization
(selecting non-target robots).

EEG Recording and Preprocessing
EEG data were recorded at rest using a LiveAmp (Brain
Products GmbH, Gilching, Germany) with 32 active
Ag/AgCl electrodes mounted in an elastic cap (Brain Cap,
Brain Products GmbH, Gilching, Germany). Electrode place-
ment followed the 10/20 system. The EEG was recorded with
a sampling rate of 500 Hz, referenced to FCz with the ground
electrode positioned at AFz. Impedance for each electrode
was kept below 5 kOhm during the recording. Electroocu-
logram (EOG) recordings were obtained from below the left
eye and from the outer canthus of the right eye.
The EEG data were analyzed using MNE-Python (Gramfort
et al., 2013). EEG data were re-referenced offline to the av-
erage of TP9 and TP10 and filtered with a digital phase-true
finite response (FIR) band-pass filter from 0.1 - 40 Hz to
remove slow signal drifts and high frequency activity.

Quantification of aperiodic neural dynamics
In order to estimate the 1/ƒ power-law exponent character-
istic of background spectral activity, we used the irregular-
resampling auto-spectral analysis method (IRASA; Wen &
Liu, 2015), implemented in the YASA toolbox in MNE-
Python (Vallat, 2019). The IRASA method (Wen et al., 2015;
Wen & Liu, 2016) separates the fractal and oscillatory com-
ponents in the power spectrum of the EEG. Briefly, IRASA
computes the original power spectral density (PSD) and re-
samples the EEG by multiple non-integer factors and their
reciprocals (i.e., h and their reciprocals 1/h). For each set of
signals that have been resampled, the PSD is calculated and
the geometric mean of both is taken, with the power associ-
ated with the PSD being redistributed away from its original
frequencies by a frequency offset that varies by the resam-

pled factor. By contrast, the power associated with the fractal
(i.e., 1/ƒ) component remains the same power-law statistical
distribution irrespective of the resampling factor. By taking
the median of the resampled PSD estimates, the power spec-
trum of the fractal component can then be taken, with the
difference between the original PSD and the extracted fractal
estimate serving as a proxy for estimated power of the oscil-
latory component. The aperiodic signal, L, is modeled using
an exponential function in semilog-power space (linear fre-
quencies and log PSD) as:

L= a+ log(F b)

where a is the intercept, b is the slope, and F the vector
of input frequencies. For more information on the IRASA
method, please refer to Wen et al. (2016). For a schematic
illustration of oscillatory versus aperiodic components
estimated from resting-state EEG, see Figure 3.

Procedure
Participants first attended a laboratory to record resting EEG
for the purpose of measuring resting-state 1/ƒ dynamics.
Participants were fitted with the EEG cap, prepared for
EEG recording and then completed a 5-minute resting
eyes open, eyes closed protocol. About 24 hours later,
participants returned for their first training session with the
VR marksmanship task. Participants were fitted with the VR
headset, provided the hand controller, and then completed
Blocks 1 to 4 of the task. Training session 2 was completed
approximately 72 hours after training session 1 and training
session 3 was completed 7 days after training session 2.
Training sessions 2 and 3 were conducted similarly to
training session 1. No task training was completed between
sessions.
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Fig. 3. (A) Schematic illustration of a raw EEG trace during a resting-state eyes closed period. (B) Oscillatory component extracted from the EEG. Note the clear spectral
peak at roughly 10 Hz, which corresponds to this participant’s individual alpha frequency. (C) Fractal (i.e., aperiodic, 1/ƒ) component extracted from the EEG. Note how power
(y-axis) decreases exponentially as frequency (x-axis) increases.

Data Analysis
Data were imported into R version 4.0.2 (R Core Team, 2020)
and analysed using linear mixed effects models fit by re-
stricted maximum likelihood (REML) estimates using lme4
(Bates et al., 2015). Models examining RT as the outcome
variable took the following form:

RTi =β0 +β1aperiodici+
β2Sessioni+β3Blocki+
β4Agei+subject0i+ εi

Models examining sensitivity (i.e., d’) to target stimuli in-
cluded the same predictor variables, taking the following
form:

d′
i =β0 +β1aperiodici+

β2Sessioni+β3Blocki+
β4Agei+subject0i+ εi

where, in both models, aperiodic refers to either the 1/ƒ slope
or intercept, session encodes sessions 1 – 3, block refers to
blocks 1 – 4. Random effects on the intercept for Subject
was included to account for systematic variance amongst par-
ticipants (Van Dongen et al., 2004; Judd et al., 2012), while
age was added as a main effect to control for any age-related
effects of aperiodic activity on behavior (e.g., Voytek et al.,
2015). Asterisks denote interaction terms; pluses denote ad-
ditive terms. Type II Wald χ2-tests from the car package (Fox
& Weisberg, 2019) were used to provide p-value estimates,
while effects were plotted using the package effects (Fox et
al., 2019) and ggplot2 (Wickham, 2016). Session and Block
were specified as ordered factors and were examined using
polynomial contrasting. We also used an 83% confidence in-
terval (CI) threshold, as this approach corresponds to the 5%
significance level with non-overlapping estimates (Austin &
Hux, 2002).

Results
Task difficulty and training session effects
Mixed effects modelling of RT revealed significant main ef-
fects of Block (χ2(3) = 6596.10, p < .001), Session (χ2(2)
= 221.55, p < .001), and a significant Block x Session inter-
action (χ2(6) = 17.34, p = .008), see Table 1. As illustrated

Table 1. Target Reaction Time, Hit Rate, False Alarm Rate and d’ sensitivity in-
dex for Block conditions in the virtual reality marksmanship task. Hit Rate was the
ratio of visual targets selected relative to those presented in a block. The False
Alarm Rate, the ratio of non-targets selected in proportionally to those presented,
is only relevant to Blocks 2 to 4 as in Block 1, only targets were presented. Note.
Parentheses reflect the standard error of the mean.

in Figure 4A, across training sessions, the shortest RT was in
Block 1. While RT did not significantly differ between Block
3 and 4 across sessions, Block 2 RT was significantly shorter
than Block 3 and 4 RT in Session 1 and 3.
Modelling of d’ revealed significant main effects of Block
(χ2(2) = 410.81, p < .001) and Session (χ2(2) = 70.40, p
< .001), as well as a significant Block x Session interaction
(χ2(4) = 21.33, p < .001), see Table 1. As shown in Figure
4B, d’ scores were highest in Block 2 and then decreased
through Blocks 3 and 4. In addition, Block 3 d’ increased
from Session 2 to 3, reaching equivalent d’ levels to Block 2.
Block 4 d’ also increased across Sessions 1 to 3 but remained
lower than Blocks 2 and 4.

Resting EEG aperiodic neural dynamics as individual pre-
dictors of performance
We now report on results from mixed effects modelling of RT
and d’ based on inclusion of EEG aperiodic dynamics as in-
dividual predictors of RT and d’ performance across Blocks
and Sessions. Overall, the sample mean for 1/ƒ intercept was
-23.32 (SD = 0.55; range = -24.55 to -21.81) while mean 1/ƒ
slope was -2.06 (SD = 0.13; range = -2.48 to -1.82). For RT,

Immink et al. | Aperiodic neural dynamics predict visuomotor performance and learning bioRχiv | 5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2021. ; https://doi.org/10.1101/2021.04.08.438941doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.08.438941
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 4. Visualization of the distribution in RT and d’ across Session and Block. (A) Mean reaction time (ms; y-axis) for target stimuli across Block 1 – 4 (y-axis) and Session
(session 1 = left, session 2 = middle, session 3 = right). (B) Mean d’ scores (x-axis) across Blocks 2 to 3 (y-axis) and Sessions. Data points represent individual participants.
(C) Modelled effects of RT (y-axis) across Session (x-axis) for Blocks 1 – 4. Modelled effects of d’ (y-axis) across Session (x-axis) for Blocks 1 – 4. error bars represent the
83% confidence interval.

modelling did not reveal a significant main effect of the 1/ƒ
intercept (χ2(1) = 1.57, p = .20), nor any other significant
higher-order interactions with the 1/ƒ intercept (see Table S1
in the supplementary material for full model summaries). In
contrast, the model examining individual 1/ƒ slope indicated
a significant 1/ƒ slope x Block interaction (χ2(3) = 9.63, p =
.02). As is illustrated in Figure 5D, a steeper 1/ƒ slope (indi-
cated by more negative values on the x-axis) predicted shorter
RT in Blocks 2 and 3 but did not predict RT in Blocks 1 and
4 (for full model summaries, see Supplementary Material).

For d’, there was a significant 1/ƒ intercept x Block x Ses-
sion interaction (χ2(4) = 13.18, p = .01). As is illustrated in
Figure 5E, a higher 1/ƒ intercept was associated with higher
d’ scores in Block 4 within Session 1, but the advantage of
higher 1/ƒ intercept reduced for Block 4 d’ in Sessions 2 and
3. In contrast, those with lower 1/ƒ intercept demonstrated
increased d’ in Block 4 in Sessions 2 and 3. Examination of
individual 1/ƒ slope prediction of d’ indicated a significant
1/ƒ slope x Session interaction (χ2(2) = 6.12, p = .04). As
illustrated in Figure 5F, in Session 1, a steeper 1/ƒ slope pre-
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dicted higher d’ across task blocks in Session 1. However,
in Sessions 2 and 3, the pattern appeared to reverse such that
shallower 1/ƒ slope was associated with higher d’.

Discussion
The aim of the present work was to assess if 1/ƒ aperiodic
neural dynamics predict visuomotor performance. Aperiodic
resting-state EEG activity is thought to be behaviourally rel-
evant in predicting cognitive capacity (Cross et al., 2020;
Ouyang et al., 2020) with higher 1/ƒ intercept reflecting
higher neural population spiking (Manning et al., 2009;
Miller et al., 2012) and steeper 1/ƒ slope reflecting a greater
excitation-inhibition balance (Lendner et al., 2020; Weber
et al., 2020). Despite the apparent association between 1/ƒ
aperiodic parameters and information processing capacity, to
date, there has been no empirical test of these parameters as
individual predictors of visuomotor performance. We evalu-
ated 1/ƒ intercept and slope as distinct neural markers of in-
formation processing capacity and separately evaluated their
predictive value for motor and perceptual dimensions of vi-
suomotor performance. Further, we were interested in as-
sessing the predictive value of the aperiodic parameters at in-
creasing levels of visuomotor performance demands as well
as across practice with the visuomotor task.
Performance in the motor dimension was indexed with RT,
reflecting latencies associated with speeded aiming and trig-
ger pull movements to shoot targets in the virtual reality
marksmanship task environment. RT performance was not
characterized by individual 1/ƒ intercept while individual 1/ƒ
slope predicted RT performance but only in the intermediate
marksmanship task blocks. Specifically, in Blocks 2 and 3
of the marksmanship task, which involved presentation of a
target stimulus along with non-target stimuli, RT decreased
as individual 1/ƒ slope increased. However, 1/ƒ slope did not
predict RT in the least difficult Block 1 (1 target stimulus only
per trial) or RT in Block 4 involving continuous presentation
of 2 target stimulus variations and non-target stimuli. The
present findings suggest that only the 1/ƒ slope predicts in-
dividual speeded motor action performance, though the pre-
dictive value of 1/ƒ slope for RT is dependent on speeded ac-
tion demands. When motor demands are low, as in Block 1,
which had the shortest RT, 1/ƒ slope did not predict speeded
action. With respect to 1/ƒ slope prediction of RT in Block
4, it is not clear if the lack of association is due to high task
difficulty or due to changed target stimuli presentation con-
ditions. Although Block 4 was intended to represent highest
task difficulty, RT in Block 4 was descriptively shorter than in
Block 3. Thus, it is possible that the continuous presentation
of the two target stimuli in Block 4 reduced response pro-
duction demands relative to Block 3. This lowered response
costs might explain the lack of RT prediction from 1/ƒ slope
in the final task block.
Perceptual demands in the marksmanship task were increased
between Blocks 2 and 4 based on the number of non-target
stimuli presented in a trial as well as through introduction of a
novel target stimulus in the final block. Perceptual sensitivity,
indexed by d’, across Blocks 2 to 4 confirmed that perceptual

demands increased across these task blocks. Both parameters
of resting-state aperiodic activity predicted perceptual sensi-
tivity in the marksmanship task. However, the strength of this
prediction was most notable in the highest perceptual demand
condition. Thus, the predictive value of resting 1/ƒ aperiodic
parameters for perceptual sensitivity appears to increase as
perceptual discrimination demands increase.

Our design included three sessions with the virtual reality
marksmanship task, which afforded an opportunity to inspect
how prediction of perceptual sensitivity from resting aperi-
odic neural dynamics is shaped by task experience. The re-
sults revealed that practice with the marksmanship task al-
tered 1/ƒ intercept and slope associations with perceptual
sensitivity performance. In the first session, a higher 1/ƒ in-
tercept and a steeper 1/ƒ slope were associated with higher
d’ in Block 4. This advantage then diminished across the
second and third sessions to the extent that individuals with
lower a 1/ƒ intercept and a shallower 1/ƒ slope demonstrated
the most gains in Block 4 d’ from practice. Taken together,
our findings illustrate three important points about the pre-
dictive value of resting aperiodic neural dynamics for per-
ceptual sensitivity. First, 1/ƒ intercept and slope appear to
distinguish individual perceptual sensitivity capacity only in
high perceptual demand conditions. Second, higher 1/ƒ in-
tercept and steeper 1/ƒ slope predict higher perceptual sen-
sitivity only in initial exposure to high perceptual demand
conditions. Finally, a lower 1/ƒ intercept and a shallower 1/ƒ
slope resting-state aperiodic parameters identify individuals
who will benefit the most from practice in improving percep-
tual sensitivity.

The relationship between a steeper 1/ƒ slope and enhanced
perceptual sensitivity is in keeping with previous work exam-
ining the association between aperiodic neural dynamics and
cognition (Cross et al., 2020; Ouyang et al., 2020; Ostlund et
al., 2021). Here, we demonstrated that both a high 1/ƒ inter-
cept (reflective of higher overall neural spiking) and a steeper
1/ƒ slope were predictive of enhanced perceptual sensitiv-
ity under more difficult conditions of information processing
(i.e., Block 4). A steeper 1/ƒ slope is posited to represent an
increase in neural inhibition activity (i.e., a shift toward more
inhibitory states; Gao et al., 2017), and thus increase the con-
sistency of stimulus processing (Tran et al., 2020). By con-
trast, a shallower slope (i.e., flattening of the aperiodic spec-
trum) may reflect a diminished neural excitation/inhibition
balance and consequently, reduced information processing
capacity. For example, children with attention deficit hy-
peractivity disorder (Ostlund et al., 2021) and older adults
(Voytek et al., 2015; Tran et al., 2020) demonstrate shal-
lower 1/ƒ slopes and deficits in information processing ca-
pacity relative to age-matched healthy controls. Mechanis-
tically, shallower slopes may reflect altered GABAergic and
glutamatergic activity in cortical circuitry, neurotransmitters
associated with maintaining an optimal excitation/inhibition
balance (Ostlund et al., 2021). From this perspective, our
finding that a steeper 1/ƒ slope is associated with enhanced
perceptual sensitivity (d’) lends further support for the argu-
ment that a steeper resting aperiodic spectrum slope, and thus
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Fig. 5. Density plots illustrating the distribution of scaled 1/ƒ slope (A) and intercept (B) estimates. (C) Relationship between the 1/ƒ intercept (x-axis; less negative values
indicate a higher intercept) and RT (y-axis; higher values indicate slower RT) across Session (1 = session 1, 2 = session 2, 3 = session 3) and Block (block 1 = dark solid line,
block 2 = lighter dashed line, block 3 = dashed gray line, block 4 = dashed light gray line). (B) Relationship between the 1/ƒ slope (x-axis; more negative values indicate a
steeper slope) and RT. (C) Relationship between the 1/ƒ intercept (x-axis) and d’ (y-axis; higher values indicate greater sensitivity) across Session (1 = session 1, 2 = session
2, 3 = session 3) and Block. (D) Relationship between the 1/ƒ slope (x-axis) and d’ across experimental Session and Block. The shaded regions in all plots indicate the 83%
confidence interval.

a greater inhibitory state, facilitates optimal information pro-
cessing.
For the 1/ƒ intercept, we found that a higher intercept,
which is thought to reflect increased neural population spik-
ing (Manning et al., 2009; Miller et al., 2012), predicted en-
hanced perceptual decision-making, quantified as d’ for the
most difficult condition (Block 4) during Session 1. A higher
aperiodic intercept has been positively correlated with the
fMRI BOLD signal (e.g., Winawer et al., 2013; Jacob et al.,
2021). Increases in the BOLD signal are interpreted as in-
creased neural recruitment as oxygenated and deoxygenated
hemoglobin concentration changes in response to increased
neural metabolism (Glover, 2011). From this perspective,
participants with a higher 1/ƒ intercept during resting-state
periods may have higher basal neural metabolic rates and
thereby more available neural capacity (Hall et al., 2016) to
facilitate enhanced perceptual decision-making (cf. Ouyang
et al., 2020). Regarding initial speeded action, we found
that a steeper 1/ƒ slope predicted shorter RT in conditions of

inter-mediate difficulty (i.e., Blocks 2 – 3) but not under rela-
tively easy or difficult conditions (i.e., Blocks 1 and 4, respec-
tively). This finding suggests that there may be a trade-off
in the relationship between the excitation/inhibition balance
of cortical circuitry and processing speed under conditions
of intermediate difficulty; however, this idea requires fur-
ther investigation, such as experimentally manipulating (e.g.,
via the administration of propofol and ketamine; Lendner et
al., 2020; Waschke et al., 2021) the excitation/inhibition ra-
tio of relevant neural networks under differing conditions of
speeded action demands.
Our specific finding of a relationship between 1/ƒ slope (and
not intercept) and RT may imply that neural states of higher
inhibition, not overall neuronal firing rate, is more relevant
to capacity for speeded action. Further, a combined finding
relating to both 1/ƒ intercept and slope predicting initial per-
ceptual sensitivity, may imply that both overall neural firing
rate and the excitation/inhibition balance of neural circuitry
are critical for optimal perceptual decision-making. Future
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work should investigate whether these findings extend be-
yond resting-state EEG. For example, estimating aperiodic
activity during visuomotor learning (e.g., immediately be-
fore and during target presentation) may reveal more fine-
grained, stimulus-related aperiodic responses related to per-
ceptual decision-making and speeded action (e.g., Cross et
al., 2020).

The findings from this initial investigation into the predictive
value of resting-state 1/ƒ aperiodic neural dynamics for vi-
suomotor performance need to be carefully considered due
to some limitations. There is potential that prediction of vi-
suomotor performance with aperiodic parameters of resting-
state brain activity is specific to the present virtual reality
environment task. For example, the stimuli were presented
in a two-dimensional plane and target and non-target stimuli
were static. Further, the present marksmanship task included
a limited set of conditions intended to challenge both mo-
tor and perceptual demands. For example, speeded action
was limited to a small range of movement in terms of aiming
at targets. In addition, distinction between targets and non-
targets was based on differences in helmet shape and blue or
red coloring of helmet and armor for cartoon robots. Thus,
our demonstration of aperiodic individual differences with a
virtual reality visuomotor task might not generalize to perfor-
mance of natural visuomotor tasks (Kozak et al., 1993; An-
glin et al., 2017; Haar et al., 2021). Future work is needed to
address if visuomotor performance in more complex natural-
istic environments can be predicted by 1/ƒ aperiodic neural
activity similarly to our reported findings.

There is also the potential that the present findings are
limited to healthy young adults. These findings might not
generalize to visuomotor performance in younger individuals
undergoing both neural (for example see, Miskovic et al.,
2015; Anderson & Perone, 2018; Ostlund et al., 2021)
and visuomotor (Bo et al., 2006) developmental changes.
Moreover, our findings might not extend to older adults given
the possibility that aging-related changes in neural (Scally et
al., 2018; Tian et al., 2018) and visuomotor (Endrass et al.,
2012) function might alter mechanistic relationships between
aperiodic neural dynamics and perceptual-motor processes.
Thus, future work is needed to investigate the predictive
value of resting-state 1/ƒ aperiodic neural activity for visuo-
motor performance across the lifespan. In conclusion, we
have demonstrated that individual resting-state 1/ƒ aperiodic
neural activity predicts motor and perceptual dimensions
of visuomotor performance. A steeper 1/ƒ slope, thought
to represent global levels of neural excitation/inhibition,
predicts faster aiming and selection performance and higher
perceptual sensitivity in initial exposure to highly demanding
visuomotor task conditions. We have also demonstrated
that a lower 1/ƒ intercept and shallower 1/ƒ slope identify
individuals who are likely to derive the most gains in per-
ceptual sensitivity from task practice. Aligning the present
findings with previous demonstrations of 1/ƒ scaling of
skilled movement measures highlights the ubiquity of 1/ƒ
aperiodic dynamics in the neural, cognitive and behavioral
dimensions of motor skill performance. These 1/ƒ aperiodic

dynamics reflect self-organization of coordinative systems
that underlie skilled performance (Wijnants et al., 2009).
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Supplementary Material 

 

 

Table S1. Summary of linear mixed-effects model examining the interaction between the Aperiodic 

Intercept, Session and Block on Reaction Time (milliseconds) to target stimuli. 

 

Formula: Target_RT ~ Aperiodic_Intercept * Session * Block + Age + (1 | Subject) 

REML criterion at convergence: 5672 

Scaled residuals 
    

Min 1Q Median 3Q Max 

-2.7393 -0.5832 -0.0013 0.6107 4.5801 

Random effects     

Groups Name Variance Std.Dev.  

Subject (Intercept) 2387 48.86  

Residual  2634 51.32  

Number of Observations: 536, groups:  subjects, 45 

Fixed effects Estimate Std. Error t value  

(Intercept) 337.55 350.83 0.96  

Aperiodic_Intercept -17.52 15.03 -1.16  

session2   -224.63 230.50 -0.97  

session3 96.35 230.38 0.41  

Block.L -9.07 326.68 -0.02  

Block.Q   64.35 326.14 0.19  

Block.C -135.49 325.60 -0.41  

age 6.36 2.00 3.17  

Aperiodic_Intercept:session2 -7.48 9.87 -0.75  

Aperiodic_Intercept:session3 7.55 9.87 0.76  

Aperiodic_Intercept:Block.L -13.93 14.00 -0.99  

Aperiodic_Intercept:Block.Q 11.68 13.97 0.83  

Aperiodic_Intercept:Block.C -8.37 13.95 -0.60  

session2:Block.L 17.56 461.49 0.03  

session3:Block.L 514.65 461.14 1.11  

session2:Block.Q 267.55 461.00 0.58  

session3:Block.Q 43.37 460.76 0.09  

session2:Block.C 479.38 460.50 1.04  

session3:Block.C 422.72 460.38 0.91  

Aperiodic_Intercept:session2:Block.L 2.05 19.78 0.10  

Aperiodic_Intercept:session3:Block.L 23.43 19.76 1.18  

Aperiodic_Intercept:session2:Block.Q 11.07 19.75 0.56  

Aperiodic_Intercept:session3:Block.Q 1.05 19.74 0.05  

Aperiodic_Intercept:session2:Block.C 21.18 19.73 1.07  

Aperiodic_Intercept:session3:Block.C 18.93 19.72 0.96  
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Table S2. Summary of linear mixed-effects model examining the interaction between the Aperiodic 

Slope, Session and Block on Reaction Time (milliseconds) to target stimuli. 

 

Formula: Target_RT ~ Aperiodic_Slope * Session * Block + Age + (1 | Subject) 

REML criterion at convergence: 5635.2 

Scaled residuals 
    

Min 1Q Median 3Q Max 

-2.7169 -0.5755 0.0129 0.6113 4.6404 

Random effects     

Groups Name Variance Std.Dev.  

Subject (Intercept) 2459 49.58     

Residual  2604 51.03  

Number of Observations: 536, groups:  subjects, 45 

Fixed effects Estimate Std. Error t value  

(Intercept) 766.86 147.17 5.21  

Aperiodic_Slope 8.21 61.85 0.13  

session2   89.45 80.88 1.10  

session3 -48.40 80.57 -0.60  

Block.L 362.32 114.78 3.15  

Block.Q   -390.12 114.26 -3.41  

Block.C 167.30 113.75 1.47  

age 6.19 2.09 2.95  

Aperiodic_Slope:session2 67.33 39.03 1.72  

Aperiodic_Slope:session3 15.23 38.87 0.39  

Aperiodic_Slope:Block.L 22.47 55.34 0.40  

Aperiodic_Slope:Block.Q -87.89 55.11 -1.59  

Aperiodic_Slope:Block.C 51.95 54.89 0.94  

session2:Block.L -3.72 162.25 -0.02  

session3:Block.L -107.04 161.50 -0.66  

session2:Block.Q -91.39 161.75 -0.56  

session3:Block.Q 61.06 161.14 0.37  

session2:Block.C -231.72 161.26 -1.43  

session3:Block.C -75.53 160.77 -0.47  

Aperiodic_Slope:session2:Block.L 12.69 78.31 0.16  

Aperiodic_Slope:session3:Block.L -36.38 77.90 -0.46  

Aperiodic_Slope:session2:Block.Q -48.64 78.05 -0.62  

Aperiodic_Slope:session3:Block.Q 20.33 77.74 0.26  

Aperiodic_Slope:session2:Block.C -104.85 77.80 -1.34  

Aperiodic_Slope:session3:Block.C -27.39 77.58 -0.35  
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Table S3. Summary of linear mixed-effects model examining the interaction between the Aperiodic 

Intercept, Session and Block on d’. 

 

Formula: dprime ~ Aperiodic_Intercept * Session * Block + Age + (1 | Subject) 

REML criterion at convergence: 846.7 

Scaled residuals 
    

Min 1Q Median 3Q Max 

-3.8414 -0.4709 0.0369 0.5917 3.3293 

Random effects     

Groups Name Variance Std.Dev.  

Subject (Intercept) 0.1002 0.3165  

Residual  0.3779 0.6148  

Number of Observations: 403, groups:  subjects, 45 

Fixed effects Estimate Std. Error t value  

(Intercept) 4.72 2.39 1.97  

Aperiodic_Intercept -0.01 0.10 -0.14  

session.L -3.36 2.25 1.49  

session.Q 1.66 2.25 0.74  

Block.L 0.18 2.25 0.08  

Block.Q 1.35 2.25 0.60  

age -0.05 0.01 -3.42  

Aperiodic_Intercept:session.L -0.16 0.09 -1.67  

Aperiodic_Intercept:session.Q 0.07 0.09 0.82  

Aperiodic_Intercept:Block.L 0.05 0.09 0.53  

Aperiodic_Intercept:Block.Q 0.07 0.09 0.73  

session.L:Block.L -8.82 3.89 -2.26  

session.Q:Block.L 6.93 3.89 1.78  

session.L:Block.Q -6.91 3.89 -1.77  

session.Q:Block.Q 4.14 3.90 1.06  

Aperiodic_Intercept:session.L:Block.L -0.39 0.16 -2.36  

Aperiodic_Intercept:session.Q:Block.L 0.30 0.16 1.80  

Aperiodic_Intercept:session.L:Block.Q -0.29 0.16 -1.77  

Aperiodic_Intercept:session.Q:Block.Q 0.18 0.16 1.08  
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Table S4. Summary of linear mixed-effects model examining the interaction between the Aperiodic 

Slope, Session and Block on d’. 

 

Formula: dprime ~ Aperiodic_Slope * Session * Block + Age + (1 | Subject) 

REML criterion at convergence: 826.6 

Scaled residuals 
    

Min 1Q Median 3Q Max 

-3.9668 -0.4683 0.0215 0.5683 3.6735 

Random effects     

Groups Name Variance Std.Dev.  

Subject (Intercept) 0.09939 0.3153  

Residual  0.38334 0.6191  

Number of Observations: 403, groups:  subjects, 45 

Fixed effects Estimate Std. Error t value  

(Intercept) 5.27 1.01 5.18  

Aperiodic_Slope 0.09 0.41 0.23  

session.L 2.20 0.79 2.76  

session.Q -0.97 0.79 -1.22  

Block.L -1.00 0.79 -1.26  

Block.Q -0.46 0.79 -0.58  

age -0.05 0.01 -3.36  

Aperiodic_Slope:session.L 0.86 0.38 2.26  

Aperiodic_Slope:session.Q -0.38 0.38 -1.00  

Aperiodic_Slope:Block.L 0.01 0.38 0.02  

Aperiodic_Slope:Block.Q -0.07 0.38 -0.2  

session.L:Block.L 3.01 1.37 2.18  

session.Q:Block.L -1.15 1.38 -0.83  

session.L:Block.Q 1.86 1.37 1.35  

session.Q:Block.Q -0.70 1.38 -0.51  

Aperiodic_Slope:session.L:Block.L 1.26 0.66 1.90  

Aperiodic_Slope:session.Q:Block.L -0.50 0.66 -0.76  

Aperiodic_Slope:session.L:Block.Q 0.91 0.66 1.37  

Aperiodic_Slope:session.Q:Block.Q -0.30 0.66 -0.45  
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