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Abstract: 49 
 50 

In the post-GWAS era, there is an unmet need to decode the underpinning genetic etiologies of 51 

late-onset Alzheimer’s disease (LOAD) and translate the associations to causation. Toward that 52 

goal, we conducted ATAC-seq profiling using neuronal nuclear protein (NeuN) sorted-nuclei 53 

from 40 frozen brain tissues to determine LOAD-specific changes in chromatin accessibility 54 

landscape in a cell-type specific manner. We identified 211 LOAD-specific differential 55 

chromatin accessibility sites in neuronal-nuclei, four of which overlapped with LOAD-GWAS 56 

regions (±100kb of SNP). While the non-neuronal nuclei did not show LOAD-specific 57 

differences, stratification by sex identified 842 LOAD-specific chromatin accessibility sites in 58 

females. Seven of these sex-dependent sites in the non-neuronal samples overlapped LOAD-59 

GWAS regions including APOE. LOAD loci were functionally validated using single-nuclei 60 

RNA-seq datasets. In conclusion, using brain sorted-nuclei enabled the identification of sex-61 

dependent cell type-specific LOAD alterations in chromatin structure.  These findings 62 

enhance the interpretation of LOAD-GWAS discoveries, provide potential pathomechanisms, 63 

and suggest novel LOAD-loci. Furthermore, our results convey mechanistic insights into sex 64 

differences in LOAD risk and clinicopathology. 65 

 66 

Keywords: ATAC-seq; chromatin accessibility; nuclei sorting; late-onset Alzheimer’s disease; 67 

snRNA-seq; gene dysregulation  68 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.07.438835doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.07.438835


 

3 
 

GRAPHICAL ABSTRACT 69 

 70 

 71 
 72 

Introduction: 73 

 74 
Large multi-center genome-wide association studies (GWAS) have identified associations 75 

between numerous genomic loci and late-onset Alzheimer’s disease (LOAD)1-6.  The most recent 76 

GWAS meta-analysis reported a total of 25 LOAD-GWAS regions7. However, the precise 77 

disease-responsible genes, the specific causal genetic variants, and the molecular mechanisms of 78 

action that mediate their pathogenic effects are yet to be explained. Most LOAD-GWAS SNPs 79 

are in noncoding (intergenic and intragenic) genomic regions, and thus may have a gene 80 

regulatory function. Supporting this hypothesis, differential gene expression in brain tissues have 81 

been described between LOAD and healthy controls 8,9, 10. Moreover, several expression 82 

quantitative trait loci (eQTL) studies in brain tissues from cognitively normal11 and LOAD12-15 83 

individuals reported overlaps with LOAD-GWAS loci. Collectively, these observations suggest 84 

that dysregulation of gene expression plays an important role in LOAD pathogenesis16. 85 
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Noteworthy, integration of findings from LOAD epigenome wide association studies (EWAS) 86 

and GWAS also identified a number of shared loci17-24, providing further support for the role of 87 

gene dysregulation in LOAD pathogenesis. 88 

To date, most brain expression, DNA-methylation, and chromatin studies have used brain 89 

tissue homogenates that represent multiple cell-types, i.e. various types of neurons and types of 90 

glia cells. The heterogeneity of brain tissue makes it difficult to determine the specific brain cell-91 

type responsible for the changes in gene expression and in epigenome landscape. The mixture of 92 

cell-types could potentially mask signals corresponding to a particular cell-type, especially if the 93 

causal cell types comprise a small fraction of the entire sample. An additional shortcoming of 94 

studying bulk brain tissues is the bias related to sample-to-sample differences in the cell-type 95 

composition of the tissue. The obstacle of variability in the neuron:glia proportions across 96 

samples is even more pronounced when analyzing disease-affected brain tissues that underwent 97 

the neurodegeneration processes of neuronal loss and gliosis. Single cell experimental 98 

approaches can circumvent these limitations; however, these methods are costly for studying 99 

larger sample sizes and have been underutilized in the field of LOAD genetics. Frozen tissues 100 

pose additional technical challenges as it is difficult to isolate intact cell bodies. Fluorescence 101 

Activated Nuclei Sorting (FANS) was developed to extract, purify and sort nuclei (vs. cells) 102 

from frozen brain tissues25 using nuclei neuronal markers, such as NeuN, to greatly reduce 103 

cellular heterogeneity found in bulk tissues, and allow characterization of neuronal (NeuN+) and 104 

non-neuronal (NeuN-) cell populations. Recently, two studies used FANS to analyze LOAD-105 

specific changes in DNA-methylation on a whole-genome level26 and across the APOE locus27. 106 

Furthermore, two new studies used single-cell (sc)RNA-seq from cortex of LOAD patients. The 107 

first found that the strongest LOAD-associated changes appeared early in pathological 108 
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progression and were highly cell-type specific28, and the second identified LOAD-associated 109 

gene dysregulation in specific cell subpopulations, particularly for APOE and transcription 110 

factors29. These results further highlight the importance of cell-type specific analysis of human 111 

brain tissues to understanding of the molecular underpinnings and cellular basis of LOAD.  112 

In this study, we performed NeuN-FANS from 40 archived frozen human brain samples 113 

(19 LOAD, 21 normal), and used the assay for transposase-accessible chromatin using 114 

sequencing (ATAC-seq) to characterize the chromatin accessibility landscape in neuronal and 115 

non-neuronal nuclei. We identified over 170,000 chromatin accessibility differences between 116 

neuronal and non-neuronal nuclei. We also report LOAD-specific differences in chromatin 117 

accessibility in both neurons and non-neurons. Interestingly, while the neuronal changes 118 

appeared to be independent of sex, in the non-neuronal cells LOAD differences in chromatin 119 

accessibility were detected only in females. LOAD-specific differences in chromatin 120 

accessibility significantly overlap with known LOAD GWAS regions, and also point to new 121 

candidate LOAD loci. These results provide new insights into the mechanistic and sex-specific 122 

pathogenesis of this disorder. 123 

 124 

Material and Methods: 125 

Human Brain Tissue Samples 126 

Following quality-control filtering, the final dataset was generated using fresh-frozen temporal 127 

cortex from neurologically healthy controls (n =21), mild LOAD (n=16), and severe LOAD 128 

(n=3) patients. These samples were obtained from the Kathleen Price Bryan Brain Bank 129 

(KPBBB) at Duke University, and the demographics for this cohort are included in Table 1 and 130 

detailed in Table S2. Clinical diagnosis of LOAD was pathologically confirmed using Braak 131 
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staging (AT8 immunostaining) and amyloid deposition assessment (4G8 immunostaining) for all 132 

LOAD samples. Braak staging was used to define mild (stages IV and below) vs. severe (stages 133 

V and VI) LOAD. All donors are Caucasians with APOE 33; post mortem interval (PMI) 134 

averaged 7.15 hours (standard error of the mean (SEM) 0.81). The archived frozen tissues have 135 

high-quality DNA as required for genomic analyses, and RNA (RIN≥8) suitable for quantitative 136 

RNA analyses. The project was approved by the Duke Institutional Review Board (IRB). The 137 

methods described were carried out in accordance with the relevant guidelines and regulations.  138 

Tissue samples were processed in random pairs of one normal and one LOAD patient.  Tissue 139 

homogenization, nuclei extraction, FANS, and tagmentation were performed on each pair on the 140 

same day. Library preparation and sequencing was performed blinded to age, sex, and pathology. 141 

Out of this group of samples four female donors were analyzed by snRNA-seq, two of which 142 

were neurologically healthy controls and two age matched mild LOAD patients (Braak Stage 143 

III). These four samples were ages 79-90 with PMI averaged 8.02 hours (SEM=1.99) (Table S2, 144 

marked in *). Tissue samples were processed for snRNA-seq on the same day and in the same 145 

10X Genomics microfluidics chip. 146 

Tissue dissociation and nuclei extraction   147 

Methods were performed according to established protocols25, 73, 74 with some modifications.  148 

Briefly, 50 mg of frozen temporal cortex (gray matter) was thawed for 10 minutes on ice in lysis 149 

buffer (0.32M Sucrose, 5 mM CaCl2, 3 mM magnesium acetate, 0.1 mM EDTA, 10 mM Tris-150 

HCl pH8, 1 mM DTT, 0.1% Triton X-100).  The tissue was gently dissociated and homogenized 151 

in a 7 ml dounce tissue homogenizer (Corning) with approximately 25 strokes of pestle A in 45 152 

seconds, then filtered through a 100 µm cell strainer. The filtered lysate was transferred to a 14 x 153 

89 mm polypropylene ultracentrifuge tube, carefully underlaid with sucrose solution (1.8 M 154 
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sucrose, 3 mM magnesium acetate, 1 mM DTT, 10 mM Tris-HCl, pH 8) and subjected to 155 

ultracentrifugation at 107,000 RCF for approximately 30 minutes at 4°C. Supernatant and the 156 

debris interphase were carefully aspirated, and 100 ul PBS (-Mg2+, -Ca2+) was added to the 157 

nuclei pellet. After a 5-minute incubation on ice, nuclei were gently resuspended and transferred 158 

to a 1.5 ml polypropylene microcentrifuge tube for staining.  159 

For snRNA-seq downstream experiment, the above protocol was modified to optimize 160 

sample preparation for single-nuclei sorting. Briefly, 50mg frozen temporal cortex (gray matter) 161 

was thawed for 20 minutes on ice in lysis buffer and ultracentrifuged at 107,000 RCF for 162 

approximately 10 minutes at 4°C. Supernatant and the debris interphase were carefully aspirated, 163 

and 500 ul wash and resuspension buffer (1X PBS, 1% BSA, 0.2U/ul RNase Inhibitor) was 164 

added to the nuclei pellet. After a 5-minute incubation on ice, nuclei were gently resuspended 165 

and centrifuged at 300 RCF for 5 minutes at 4°C. The supernatant was again aspirated and 500 ul 166 

wash and resuspension buffer without RNase Inhibitor (1X PBS, 1% BSA) was added to the 167 

nuclei pellet. After a 1-minute incubation on ice, the nuclei were gently resuspended and filtered 168 

through a 35 um strainer. 10 ul nuclei were taken for quality assessment and counting prior to 169 

library preparation. 170 

Immunostaining of nuclei   171 

Nuclei were stained in 0.05% BSA, 1% normal goat serum, DAPI (1µg/ml), and PE-conjugated 172 

anti-NeuN antibody (1:125, Millipore FCMAB317PE) in PBS (-Mg2+, -Ca2+), in the dark for 173 

30 minutes at 4 °C.  A DAPI-only control was prepared to set gates for sorting.  After staining, 174 

nuclei were filtered through a 40 um cell strainer into a polypropylene round-bottom 5ml tube 175 

and sorted. 176 

Immunofluorescence microscopy 177 
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After homogenization and sucrose gradient ultracentrifugation, a portion of the nuclei was 178 

counted, resuspended in 4% PFA, stained, plated on 12 mm coverslips at 10,000 nuclei per 179 

coverslip, incubated 20 minutes at room temperature, mounted, and imaged on a confocal 180 

microscope.   181 

Fluorescence-activated nuclei sorting (FANS) of neuronal and non-neuronal nuclei 182 

Sorting was performed using a MoFlo Astrios flow cytometer (Beckman Coulter) equipped with 183 

a 70μm nozzle, operating at 35 psi. Standard gating procedures were used. Briefly, the first gate 184 

allowed separation of intact nuclei from debris. The second gate allowed us to identify individual 185 

nuclei, and exclude doublets and other aggregates. The third and fourth gates distinguish 186 

between PE+ and PE- nuclei and allowed us to sort and separate NeuN+ nuclei from NeuN- 187 

nuclei.  Nuclei were sorted into 1 ml PBS (-Mg2+, -Ca2+) in a 2 ml polypropylene tube pre-188 

coated with 200 ul of 5% BSA and rotated at 20 rpm at 4C. 189 

Omni-ATAC on FANS nuclei 190 

Approximately 100,000-700,000 sorted nuclei (Table S2) were used for ATAC-seq library 191 

preparation as described in the Omni-ATAC protocol75. Libraries were quantified by Qubit, and 192 

size distribution was inspected by Bioanalyzer (Agilent Genomic DNA chip, Agilent 193 

Technologies). Barcoded ATAC-seq libraries were combined into pools of 6 libraries and 194 

sequenced on an Illumina HiSeq 4000 sequencer (50 bp, single read) at the Duke Sequencing and 195 

Genomic Technologies shared resource. 196 

Omni-ATAC-seq on bulk tissue 197 

In addition to performing ATAC-seq on NeuN+/- sorted nuclei, we also compared to ATAC-seq 198 

performed on total nuclei isolated from frozen tissue. Approximately 50,000 nuclei from 25 mg 199 
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of pulverized frozen tissue were used for the transposition reaction applying the Omni-ATAC 200 

protocol as described previously 75. 201 

Data processing pipeline 202 

ATAC-seq libraries made from 83 glia samples and 80 neuron samples were sequenced on Hi-203 

seq 4000. Raw fastq sequencing files were first processed through cutadapt (v 1.9.1) to remove 204 

adaptors and bases with quality scores < 30. Filtered reads were aligned to hg19 by Bowtie2 (v 205 

2.1.0) using default parameters76. Bam files were sorted by samtools (v 0.1.18) and duplicates 206 

were removed by Picard MarkDuplicates. Sequences that overlapped ENCODE “blacklist” 207 

regions (https://sites.google.com/site/anshulkundaje/projects/blacklists) were removed, and 208 

narrow open chromatin peaks were called by Model-based Analysis of ChIP-seq (MACS v 2.1), 209 

with parameters --nomodel --shift -100 --ext 200,  using a FDR cutoff of q < 0.01 or 0.0577. For 210 

visualization on the UCSC browser, BigWig files were generated using wigToBigWig (v 4). 211 

Data quality control 212 

We characterized the quality of all ATAC-seq datasets by the following metrics, based on 213 

ENCODE suggestions78 https://genome.ucsc.edu/ENCODE/analysis.html (Table S1): (1) total 214 

numbers of reads, (2) numbers of reads trimmed by cutadapt, (3) total bases entering cutadapt, 215 

(4) quality-trimmed bases by cutadapt, (5) total numbers of reads processed by Bowtie2, (6) 216 

uniquely mappable reads, (7) percentages of alignment, (8) read aligned to the mitochondrial 217 

chromosome, (9) peak calls at FDR q < 0.05,  (10) peak calls normalized by sequencing depth, 218 

(11) GC content of sequences, (12) Non-Redundant Fraction (NRF), which is equal to the 219 

number of distinct uniquely mapped reads divided by total reads, (13) PCR Bottleneck 220 

Coefficient 1 (PBC1), and (14) PCR Bottleneck Coefficient 2 (PBC2). To reduce the impact of 221 

samples with lower quality, we removed datasets with normalized peak calls at FDR q < 0.01 < 222 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.07.438835doi: bioRxiv preprint 

https://sites.google.com/site/anshulkundaje/projects/blacklists
https://genome.ucsc.edu/ENCODE/analysis.html
https://doi.org/10.1101/2021.04.07.438835


 

10 
 

100, and any additional replicates that displayed lower signal-to-noise ratios. The 90 remaining 223 

datasets were analyzed by PCA and hierarchical clustering (hclust function, method=”ward.D”), 224 

of which one NeuN- sample was identified as an outlier (Fig. S10). After excluding this outlier, 225 

we obtained a final set of 89 datasets from 49 donors (40 donors with matching NeuN+ and 226 

NeuN- data, and 9 donors that only contained NeuN- data). Sequencing and QC metrics for all 227 

89 samples are described in Table S2. The library complexity for these 89 samples are 228 

comparable to ENCODE Data Quality Metrics spreadsheet published on 2012-04-25 229 

(https://genome.ucsc.edu/ENCODE) 230 

Evaluation of variables affecting chromatin peaks. Prior to the differential analyses described 231 

below, we considered the effect of 37 variables that could impact the quality of the ATAC-seq 232 

results for each sample. These variables were collected from key features of the ATAC-seq 233 

processing pipeline, as well as individual sample characteristics such as case-control status, sex, 234 

and age.  For example, the metadata for each sample included transposase batch, nuclei sorting 235 

date, mass, mean GC percentage of sequenced reads, mean mapped read length, alignment 236 

quality metrics, subject age at death, sex, diagnosis, and postmortem interval (PMI). Two 237 

subjects were missing PMI, therefore we used the R package MICE79 to impute missing values 238 

using the classification and regression trees methodology.  239 

Covariate selection  240 

For differential peak analyses, selection of covariates for adjustment was carefully tailored to 241 

each comparative analysis to account for the variable number of peaks between groups and to 242 

minimize false positives in peak calling. We performed a linear regression of all metadata 243 

variables against the first 10 principal components (PCs) of the TMM normalized peak 244 

quantification in an effort to identify covariates to be utilized in the differential expression 245 
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analyses. In an iterative process, we selected one variable (preferentially a variable directly 246 

related to the ATAC-seq experiment, explaining one of the largest proportions of variance and 247 

with few parameters), regressed its effect on the peak quantifications and performed a new 248 

principal component analysis independent of the selected variable(s). We repeated this procedure 249 

until there were no more Bonferroni significant (q<0.05) variables associated with the peak PCs. 250 

For the comparison of neuronal and non-neuronal nuclei, we selected the following variables for 251 

our differential chromatin analysis: NRF, number of nuclei, normalized peak calls, nuclei sort 252 

date, alignment percentage, passing base pairs, age, and donor.  For the comparison of LOAD vs. 253 

control neuronal nuclei, we selected normalized peak calls, alignment percentage, nuclei sort 254 

date, and number of nuclei as covariates.  For the comparison of LOAD vs. control non-neuronal 255 

nuclei, we included the number of nuclei, NRF, nuclei sort date, and alignment percentage as 256 

covariates in the differential chromatin analysis.  When performing a sex-stratified analysis of 257 

LOAD vs. control samples in the NeuN+ nuclei, we selected alignment percentage in the female-258 

only subset and nuclei sort date in the male-only subset.  Finally, in the sex-stratified differential 259 

chromatin analysis of LOAD vs. control NeuN- nuclei, we included normalized peak calls as a 260 

covariate in the female-only subset, and normalized peak calls and percent GC content as 261 

covariates in the male-only subset.  In the supplemented comparison of LOAD vs. control NeuN- 262 

nuclei in females only (nine additional non-neuronal samples), percent GC content was included 263 

as a covariate.  264 

Differential chromatin accessibility analyses 265 

Differential ATAC-seq peaks were detected using EdgeR package (version 3.22.3), which 266 

models counts using a negative binomial distribution80. ATAC-seq reads corresponding to chrX 267 

and chrY were excluded due to unequal numbers of female and male donors.  For each 268 
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comparison, counts of reads within peaks which were merged from all of the replicates were 269 

extracted from BigWig files and normalized by weighted trimmed mean of M-values81 (TMM). 270 

Quasi-likelihood F-tests (QLF) was performed to determine differential sites at cut off adjusted p 271 

values < 0.05. As an approximate error model, QLF works more robustly and gives more reliable 272 

Type I error rate control than the other options, especially when there are smaller numbers of 273 

replicates (EdgeR User Guides, Bioconductor package vignettes).  Three levels of case-to-274 

control chromatin accessibility comparisons were performed (Fig. 1g): Level_1: 40 NeuN- vs 40 275 

NeuN+, all samples are from matched donors; Level_2: (A) NeuN-, 19 cases vs 21 controls (B) 276 

NeuN+, 19 cases vs 21 controls; Level_3: (A) NeuN- females, 11 cases vs 11 controls; (B) 277 

NeuN- males 8 cases vs 10 controls; (C) NeuN+ females, 11 cases vs 11 controls; and (D) 278 

NeuN+ males, 8 cases vs 10 controls.  Since the number of female samples was less than that of 279 

male, we included 9 additional NeuN- datasets (those that did not have matching NeuN+ data 280 

from the same donor but met QC criteria) into Level 3 and processed an additional comparison: 281 

(E) NeuN- females,14 cases vs 13 control. For all these comparisons we included covariates 282 

(described in “covariate selection”) in the EdgeR analysis with model design as open chromatin 283 

accessibility ~ Disease (LOAD state) + covariates.  Importantly, for each analysis, we remerged 284 

and recalled the chromatin peaks.  Thus, the separate analyses were not direct subsets of each 285 

other. 286 

Genomic distribution analysis   287 

ATAC-seq peaks were categorized as promoters (transcription start site to upstream 1kb), 1st 288 

exon, intragenic (excluding 1st exon), 5’ UTR, 3’ UTR, and intergenic, based on human gene 289 

hg19 NCBI RefSeq gene information from the UCSC genome browser. 290 

Gene ontology analysis   291 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.07.438835doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.07.438835


 

13 
 

Differential open chromatin regions were characterized by GREAT (v 3.0.0) 292 

(http://bejerano.stanford.edu/great/public/html/), using the hg19 genome as background regions. 293 

Genes associated to open chromatin regions were determined by default “basal plus extension” 294 

settings (i.e., 5 kb upstream, 1 kb downstream, plus distal up to 1000 kb).   295 

Overlap with LOAD GWAS loci   296 

The tag SNP for 25 LOAD loci were obtained from the literature7.  Genome coordinates +/- 297 

100kb surrounding each GWAS tag SNP were used to identify any differential open chromatin 298 

region that mapped within the region.  Permutation analyses were performed by randomly 299 

selecting the same numbers of sites from the union set of ATAC-seq peak calls.  For each 300 

comparison, we performed 10,000 permutations to estimate the empirical P-value. 301 

Motif search   302 

Transcription factor motif enrichments were evaluated using HOMER82 (v4.10.3)  and MEME 303 

Suite83.  For each comparison, we used the centered 300 bp of open chromatin regions as input, 304 

and the union peak calls as background.  GC matching was applied to the background peaks to 305 

ensure that this did not lead to spurious results.  We primarily used all peaks as the background, 306 

but to check for accuracy, we also randomly selected 10,000 peaks as the background from all 307 

peaks.  For this analysis, we focused on the known motif search rather than search for de novo 308 

motifs. 309 

Differential expression analysis of ROSMAP data 310 

Gene expression data from AMP-AD was obtained from the Religious Orders Study and 311 

Memory and Aging Project (ROSMAP)84, 85. This study includes RNA-seq data from the 312 

dorsolateral prefrontal cortex of 724 subjects86, 87. limma was used to perform the differential 313 

analysis in R on normalized FPKM values obtained from RNA-seq of ROSMAP bulk tissue 314 
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samples. Samples with cogdx of 1 (no cognitive impairment, n=201) and 4 (Alzheimer’s 315 

dementia and no other case of cognitive impairment, n=222) were included in the analysis. 316 

Single-nuclei library preparation and sequencing 317 

Libraries were prepared for snRNA-seq using the Chromium Single Cell 3’ Reagent Kits v3 318 

(10X Genomics) according to the manufacturer’s instructions. Nuclei were diluted in nuclease-319 

free water to a concentration of 1 million nuclei / ml in a final volume of 100 ul, and transferred 320 

to an 8-strip tube on ice. 16,000 nuclei were added to the Master Mix for a targeted nuclei 321 

recovery of 10,000. Libraries were pooled onto a single S1 flow cell, and sequenced using the 322 

Illumina NovaSeq 6000 system to obtain paired-end 2 x 100bp reads. Sequencing saturations 323 

ranged from 59.3% to 81.2%. 324 

snRNA-seq data analysis 325 

CellRanger software version 3.1.0 (10X Genomics) was used to demultiplex raw Illumina base 326 

call files into FASTQ files. A pre-mRNA GTF file was generated with the pre-built GRCh38 327 

3.0.0 human reference using the Linux utility awk, in order to be compatible with CellRanger 328 

and to include intronic reads from nuclear RNA in UMI counts for each gene and barcode. The 329 

CellRanger count pipeline was run to align reads to the pre-mRNA GRCh38 reference and gene 330 

expression matrices generated separately for each of the four samples were merged together into 331 

a single matrix. 332 

For quality control and filtering, the quickPerCellQC function from the R package scater 333 

v1.14.688 was used to identify low-quality cells based on QC metrics (UMI count, number of 334 

genes detected, percentage of UMIs that mapped to the mitochondrial genome). Cells in which 335 

229 or more genes were detected and less than 17.4% of UMIs mapped to the mitochondrial 336 

genome were used in downstream analyses. Out of 21,262 nuclei in the initial dataset 18,032 337 
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remained after filtering with a median number of 2,332 detected genes per nucleus. The R 338 

package Seurat v3.1.1 standard workflow was used for integration of multiple samples to 339 

combine the four samples into a unique dataset89. Prior to integration, gene expression was 340 

normalized for each sample by scaling by the total number of transcripts, multiplying by 10,000, 341 

and then log transforming (log-normalization). We then identified the 2,000 genes that were 342 

most variable across each sample, controlling for the relationship between mean expression and 343 

variance. Next, we identified anchor genes between pairs of samples using the 344 

FindIntegrationAnchors function that were then passed to the IntegrateData function to 345 

harmonize the four samples.  346 

We scaled the integrated dataset before running a Principal Component Analysis (PCA). 347 

To distinguish principal components (PCs) for further analysis, we used the JackStraw method to 348 

determine statistically significant PCs and found that up to 30 PCs were enriched in genes with a 349 

PC score that was unlikely to have been observed by chance. We then utilized the shared nearest 350 

neighbor (SNN) modularity optimization-based clustering algorithm implemented in Seurat for 351 

identifying clusters of cells. This was performed using the FindNeighbors function with 30 PCs, 352 

followed by the FindClusters function with the Louvain algorithm using a 0.4 resolution. This 353 

allowed us to assign cells into a total of 21 clusters. We applied the uniform manifold 354 

approximation and projection (UMAP) method on the cell loadings of the previously selected 30 355 

PCs to visualize the cells in two dimensions and to separate nuclei into clusters. 356 

 Differential expression to identify cluster markers that are conserved between the 357 

samples was performed using the Seurat function FindConservedMarkers for each cluster on the 358 

normalized gene expression before integration. R package SingleR v1.0.190 was used to annotate 359 

cell types based on correlation profiles with 713 bulk microarray samples from the Human 360 
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Primary Cell Atlas91 (HPCA) as reference expression data. Four major cell types were detected 361 

by the SingleR method using HPCA: macrophages, astrocytes, neurons, and endothelial cells. 362 

Because of the specific expression of microglial markers PTPRC and CSF1R in the macrophage 363 

cluster, as well as the differences in biological systems used in the HPCA reference, we 364 

manually refined the HPCA annotation of this specific cluster to microglia. Identification of 365 

neuronal vs. non-neuronal clusters for some differential expression analyses was performed by 366 

determining the proportion of cells expressing the neuronal marker NeuN/RBFOX3. Clusters 367 

with more than 50% of cells expressing NeuN/RBFOX3 were defined as neuronal clusters. 368 

Control samples showed an average of 2,417 (SD 169) neuronal and 2,319 (SD 1,149) non-369 

neuronal nuclei, whereas LOAD samples showed 1,329 (SD 294) neuronal and 2,952 (SD 1,783) 370 

non-neuronal nuclei. NeuN neuronal clusters and neuronal clusters identified by SingleR using 371 

the HPCA reference were very consistent with only one additional cluster in NeuN neuronal 372 

clusters (out of a total of 16 clusters). Differential expression analyses between female LOAD 373 

nuclei and control nuclei within specific groups of nuclei were performed using the Wilcoxon 374 

Rank Sum test as implemented in the FindMarkers function in the Seurat package. ‘min.pct’ and 375 

‘logfc threshold’ arguments were set to 0 to allow for the testing of a majority of genes in each 376 

analysis. 377 

 378 

Results: 379 

 380 

Study sample and quality control analyses 381 

Nuclei isolated from archived frozen temporal cortex of 51 individuals with LOAD (n=26) or 382 

controls (n=25) (Table S1) were stained and sorted using a PE-conjugated monoclonal NeuN 383 

antibody (Fig. 1a-d). Staining of pre-sorted nuclei with nuclear membrane markers was 384 

confirmed by immunofluorescence (Fig. 1e). We observed a smaller proportion of sorted  385 
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 386 
Fig. 1: Isolation of nuclei from frozen brain samples and analysis of ATAC-seq data. Human 387 

postmortem frontal cortex was dissociated, nuclei were isolated and stained with the nuclear stain DAPI 388 

and a monoclonal NeuN antibody conjugated to PE.  (A) Nuclei were first sorted based on their forward 389 

and side scatter from all possible events (R1 gate). (B) Single nuclei were further sorted based on their 390 

size from the doublets or larger clumps of nuclei (R2 gate).  (C) DAPI positive single cells were gated as 391 

either NeuN-PE positive (neurons, R3 gate) or NeuN-PE negative (glia, R4 gate). (D) Post-sort data 392 

showing the purity of the separation between neuronal and non-neuronal nuclei. (E) Fluorescence image 393 

showing unsorted nuclei stained for NeuN (red) and DAPI (blue). The scale bar represents 100um. (F) 394 

Proportion of neuronal nuclei from each sample. Error bars show standard error of the mean. (G) 395 

Overview schematic of Levels 1, 2, 3, and 3b of differential analysis.  Level 1 compares neuronal vs. non-396 

neuronal for 21 normal and 19 LOAD samples.  Level 2 compares normal vs. LOAD for each neuronal 397 

and non-neuronal subpopulation.  Level 3 compares LOAD samples separated by female and male.  Level 398 

3b is the same comparison done after adding 9 female non-neuronal samples (3 normal and 6 LOAD).    399 
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neuronal (NeuN+) nuclei from total isolated nuclei in the severe LOAD cases (Table 1, Fig. 1f), 400 

as expected due to neuronal cell loss and gliosis, hallmarks of LOAD pathological progression30, 401 

31. We next performed ATAC-seq using the NeuN+ and NeuN- sorted nuclei populations. A total 402 

of 90 neuronal and non-neuronal datasets passed quality control criteria (see Methods), which 403 

were derived from 40 individuals (19 LOAD cases and 21 controls) that had matched neuronal 404 

and non-neuronal data, and an additional 9 individuals (3 LOAD cases and 6 controls) that had 405 

only non-neuronal data. The final cohort of 40 consisted of 22 males and 18 females with similar 406 

post-mortem intervals (PMI); all donors were Caucasians and homozygous for APOE e3 (Table 407 

S2). Subsequent analyses compared different sub-groups (Fig. 1g). Correlations of all potential 408 

numerical covariates showed expected patterns of co-linearity (Fig. S1). The samples displayed a 409 

range of QC metrics, with some samples displaying a higher signal to noise (Table S1). 410 

Repeated experiments on a subset of samples demonstrated that signal to noise was reproducible 411 

and thus a sample-specific characteristic (Table S1). In addition to randomizing sample 412 

preparation (see Methods), we found that no metadata variables were significantly associated 413 

with case-control status (Fig. S2), indicating an absence of batch effects. 414 

Table 1: Demographic description of study cohort. Abbreviations: mild Alzheimer’s disease 415 

(mAD), severe Alzheimer’s disease (sAD) 416 

 Pathology Individuals Males (%) Age (y) ± SD PMI (h) ± SD NeuN+ (% ± SD) 

4
0

 P
ai

re
d

 (
n

eu
ro

n
al

 

an
d

 n
o

n
-n

eu
ro

n
al

) 

Normal 21 11 (52.4) 81.10 ± 9.70 7.91 ± 5.54 35.27 ± 13.26 

mAD 16 10 (62.5) 79.75 ± 7.23 7.09 ± 5.58 38.59 ± 14.70  

sAD 3 1 (33.3) 76.67 ± 7.77 5.43 ± 1.65 19.16 ± 7.49 

Total  40 22 (55) 80.23 ± 8.49 7.41 ± 5.26 35.39 ± 14.16 

9
 U

n
p

ai
re

d
 

(n
o
n

-n
eu

ro
n

al
 

o
n

ly
) 

Normal 3 0 84.67 ± 2.52 13.03 ± 4.95 N/A 

mAD 6 0 76.50 ± 8.48 16.95 ± 16.09 N/A 

Total 9 0 79.22 ± 8.73 15.64 ± 14.64 N/A 

 417 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.07.438835doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.07.438835


 

19 
 

Differential analysis of ATAC-seq data between neuronal and non-neuronal nuclei   418 

To demonstrate that we can robustly identify chromatin accessibility differences between major 419 

cell types of the brain, we first compared the ATAC-seq profiles between neuronal and non-420 

neuronal nuclei groups from the entire study sample (Level 1, Fig. 1g). PCA of all samples 421 

showed that 37.5% of the total variance was explained by the cell type (neuronal versus non-422 

neuronal, Fig. S3, Fig. S11). Performing quantitative differential chromatin accessibility analysis  423 

using EdgeR (FDR q < 0.05), we found that 87,570 regions were more accessible in the neuronal 424 

population, 83,171 regions were more accessible in the non-neuronal population, and 54,484 425 

regions were not detected as differential (Fig. 2a, Table S10). Representative screenshots show 426 

differential ATAC-seq peaks around genes known to be expressed specifically in neuronal (Fig. 427 

2b) or non-neuronal (Fig. 2c) cell types. A higher percentage of sites more accessible in non-428 

neuronal population mapped to promoters, which could be explained by the more distal 429 

regulation of neuronal cell types or the greater diversity and heterogeneity of the cell types 430 

composing the non-neuronal population (Fig. S4). Using GREAT gene ontology analysis 32, 431 

neuronal-specific regions were enriched with genes associated with neuronal function, while 432 

non-neuronal specific regions were enriched with genes implicated in glial function (Table S3).   433 

Motif analysis for regions with increased chromatin accessibility in neuronal nuclei 434 

showed enrichment for the transcription factor recognition sites of Early Growth Response 2 435 

(EGR2), Regulatory Factor X1 (RFX1), and Myocyte Enhancer Factor 2C (MEF2C)33-35, while 436 

motif analysis for regions with increased chromatin accessibility in non-neuronal nuclei showed 437 

enrichment for the SRY-related HMG-box (SOX) transcription factor family36 (Table S4). When 438 

compared to a previous NeuN sorted-nuclei ATAC-seq study37 using a smaller number (n = 8) of 439 

healthy brain samples, we found a substantial degree of overlap (Fig. S5a) with similar peak  440 
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 441 
Fig. 2: Level 1 comparison of ATAC-seq data from neuronal vs non-neuronal nuclei. (a) MA plot 442 

showing differential ATAC-seq sites between neuronal (blue) vs. non-neuronal regions (red).  Red dots 443 

represent ATAC-seq peaks that are significantly different between groups (FDR q < 0.05).  (B) ATAC-444 

seq data around non-neuronal-specific genes SLC25A18 (upper panel) and ACSBG1 (lower panel).  Boxes 445 

highlight peaks that are more accessible in neuronal (red) or non-neuronal (blue) nuclei. (C) ATAC-seq 446 

data around neuron-specific genes MEF2C (upper panel) and SLA(lower panel).  All regions indicate 447 

hg19 coordinates. (D) Venn diagram of ATAC-seq peaks detected in whole tissue, sorted neuron and 448 

sorted non-neuron nuclei from 6 donor-matching samples. 449 
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length distribution (Fig. S5b). However, the 5x larger number of samples used in our study 450 

identified >80,000 additional significantly differential chromatin sites.  451 

Comparison of sorted nuclei vs. bulk brain tissue homogenate.  452 

To our knowledge, no study has directly compared chromatin accessibility differences between 453 

bulk brain tissue, neuronal, and non-neuronal fractions. Bulk brain ATAC-seq data was 454 

generated using pulverized frozen whole tissue homogenate samples from six individuals for 455 

whom high-quality ATAC-seq data was collected from neuronal and non-neuronal populations 456 

(Table S5). Binary peak overlap analysis shows that while there are some regions that are only 457 

accessible in bulk tissue, a substantially larger number of sites are uniquely detected in the nuclei 458 

populations of neuronal and non-neuronal only (Fig. 2d). This observation justifies the 459 

performance of ATAC-seq analysis by brain cell-type to reduce cellular heterogeneity as it 460 

allows the identification of more cell type specific signals. Quantitative differential chromatin 461 

accessibility (EdgeR comparisons (Fig. S6) and GO annotations (Table S6-8) showed that 462 

chromatin accessibility sites specifically identified in bulk tissue, neuronal and non-neuronal 463 

populations displayed many biologically relevant pathways.   464 

Identification of LOAD-associated differences in chromatin accessibility 465 

To determine the association of LOAD status with changes in chromatin accessibility, we 466 

performed differential ATAC-seq analysis of 19 LOAD compared to 21 healthy controls 467 

stratified by brain cell-type (neuronal and non-neuronal only populations; Level 2, Fig. 1g). The 468 

comparison using the neuronal nuclei data resulted in 211 neuronal chromatin differences (FDR 469 

q < 0.05) between LOAD and control (Fig. 3a, Table S11), while the analysis of the non-470 

neuronal nuclei detected no differential chromatin between LOAD and control (Fig. 3b). Motif 471 

analysis using the 141 sites that showed decreased chromatin accessibility in LOAD neuronal 472 
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nuclei were enriched for transcription factor motifs including Wilms Tumor protein (WT1), 473 

Early Growth Response 1 (Egr1), Retinoic acid receptor gamma (RARg), and Kruppel like factor 474 

14 (KLF14) (Fig. 3c) that have been reported relevant to brain function38-41. No significant motif 475 

enrichment was detected from 70 sites (FDR q < 0.05) with increased chromatin accessibility in 476 

neuronal LOAD samples.  477 

478 
Fig. 3: Level 2 comparison of ATAC-seq data between LOAD cases and controls. MA plots 479 

of differential chromatin sites for (A) neuronal and (B) non-neuronal nuclei. Red dots represent 480 

differential ATAC-seq sites with FDR q < 0.05. (C) Motifs that are enriched in neuronal ATAC-481 

seq sites that are less accessible in LOAD samples. Size of red dots were increased for visibility.  482 

 483 

Identification of sex-dependent chromatin accessibility differences between LOAD and 484 

control samples 485 
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Since sex has an effect on LOAD onset and progression42, we performed a sex-stratified 486 

differential analysis of LOAD compared to control (Level 3, Fig. 1g) to examine whether the 487 

effect of sex on LOAD risk is mediated, at least in part, by chromatin remodeling. The 488 

differential analysis of the neuronal groups did not yield significant differences between LOAD 489 

and normal when stratified by sex for either females or males (FDR q > 0.05) (Fig. 4a-b). 490 

Analysis of the non-neuronal nuclei identified 24 chromatin accessibility differences in female 491 

LOAD compared to control (Fig. 4c, Table S12), while no significant differences were identified 492 

when the analysis was performed in males (Fig. 4d). To further investigate this trend, we 493 

increased the sample size with 9 additional non-neuronal samples (6 female controls and 3 494 

female LOAD cases). Differential analysis using ATAC-seq data from the larger female non-495 

neuronal dataset resulted in 842 differential sites between LOAD and control (FDR q < 0.05) 496 

(Fig. 4e, Table S13).  497 

Comparison of these results with the LOAD associated chromatin accessibility sites 498 

obtained from the differential analysis of female neuronal nuclei showed that while there are 499 

differences detected in both female neuronal and glial cells in LOAD cases versus controls, we 500 

detected larger effect sizes in the female glia cells (Fig. S12a). In addition, several differential 501 

regions identified in female non-neuronal nuclei were also observed in male non-neuronal nuclei 502 

with similar trends, however, these did not reach statistical significance (Fig. S12b). 503 

Nonetheless, these associations in the female group showed a stronger effect size (Fig. S12b). 504 

We performed motif enrichment using the 203 sites that were more accessible in non-505 

neuronal female LOAD and found significantly enriched motifs for the SOX family (Fig. 4f). 506 

The analysis of 639 sites that displayed decreased accessibility in non-neuronal female LOAD  507 
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 508 
Fig. 4: Level 3 comparison of ATAC-seq data between LOAD cases and controls separated 509 

by sex. MA plot of differential sites for (A) female neuron (n=18; FDR q < 0.05), (B) male 510 

neuron (n=22; FDR q < 0.05), (C) female non-neuron (n=18, FDR q < 0.05), (D) male non-511 

neuron (n=22; FDR q < 0.05), and (E) female non-neuron with additional samples (n=27; FDR q 512 

< 0.05). (F) Motifs enriched for 203 sites that are more accessible in female non-neuronal LOAD 513 

and for 639 sites that are less accessible in female non-neuronal LOAD (FDR q < 0.05). Size of 514 

red dots were increased for visibility.  515 
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was enriched for transcription factors known to be highly associated with glia or neuron 516 

functions, such as RONIN, SOX9, YY1 and ELK443-46 (Fig. 4f).  517 

To determine whether binding of transcription factors identified in female non-neuronal 518 

cells (Level 3, Fig. 1g) has downstream effects on expression of target genes, we used the 519 

publicly available ROSMAP bulk RNA-seq data to perform differential expression analyses of 520 

those genes for LOAD vs. Normal. We found that several genes exhibited changes in the 521 

expected direction, including ZAC1 (PLAGL1), YY1, and SOX2 (Table S15). This provides  522 

further mechanistic insights into gene dysregulation underlying LOAD pathogenesis in females. 523 

Last, we also used the chromatin accessibility differential sites identified in female non-neuronal 524 

LOAD (Level 3) for GO analysis and found pathways involved in immune response and 525 

myelination (Table S9). 526 

Overlap of LOAD-specific differential chromatin accessibility sites with LOAD GWAS 527 

regions  528 

To determine the relationship of the LOAD-specific chromatin accessibility sites we compared 529 

these data with LOAD GWAS regions7. We defined LOAD GWAS regions by anchoring on the 530 

top 25 associated SNPs +/- 100kb, and cataloged LOAD-GWAS regions of 200kb each. 531 

Importantly, we were comparing genomic regions of chromatin accessibility to the GWAS 532 

regions, not chromatin QTLs, to GWAS loci. Of the 211 LOAD-specific differential chromatin 533 

accessibility sites in neuronal samples (FDR q < 0.05, Fig. 3a), we identified five sites that 534 

overlap four of the 25 LOAD GWAS regions (Table 2). We show representative examples of 535 

overlapping LOAD-specific differential chromatin accessibility sites surrounding the PTK2B and 536 

CLU GWAS loci (Fig. 5a, Fig. S7). Using permutation testing, we did not detect a significant 537 

enrichment with LOAD GWAS regions compared to regions selected at random (Fig. S8a-b). 538 
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Table 2. Neuron control vs LOAD differential peaks overlapped with 25 LOAD-GWAS 539 

regions as well as female glia control vs LOAD differential peaks overlapped with 25 540 

LOAD-GWAS regions.  For each panel, upper: more open in LOAD; lower: less open in 541 

LOAD 542 

Neuron control vs. LOAD differential peaks overlapped with 25 LOAD-GWAS regions 

 Peak call GWAS  ± 100kb Gene SNP SNP Position 

 

 

Differential 

sites with 

FDR < 0.05 

More accessible in LOAD 

chr6:32551592-32552707 chr6:32475406-32675406 HLA-DRB1 Rs9271058 chr6:32575406 

chr6:32489394-32490069 chr6:32475406-32675406 HLA-DRB1 Rs9271058 chr6:32575406 

Less accessible in LOAD 

chr20:54994099-54994641 chr20:54897568-55097568 CASS4 Rs6024870 chr20:54997568 

chr8:27209401-27210247 chr8:27119987-27319987 PTK2B Rs73223431 chr8:27219987 

chr8:27563212-27563671 chr8:27367686-27567686 CLU Rs9331896 chr8:27467686 

Female glia control vs. LOAD differential peaks overlapped with 25 LOAD-GWAS regions  

 

 

 

 

 

 

Differential 

sites with 

FDR < 0.05 

Peak call GWAS  ± 100kb Gene SNP SNP Position 

More accessible in LOAD 

chr10:11784165-11784736 chr10:11620308-11820308 ECHDC3 Rs7920721 chr10:11720308 

Less accessible in LOAD 

chr14:92966426-92967442 chr14:92832828-93032828 SLC24A4 Rs12881735 chr14:92932828 

chr16:19894588-19895301 chr16:19708163-19908163 IQCK Rs7185636 chr16:19808163 

chr17:61627113-61628372 chr17:61438148-61638148 ACE Rs138190086 chr17:61538148 

chr19:1101756-1102160 chr19:956492-1156492 ABCA7 Rs3752246 chr19:1056492 

chr19:45416036-45416558 chr19:45311941-45511941 APOE Rs429358 chr19:45411941 

chr19:45428555-45429362 chr19:45311941-45511941 APOE Rs429358 chr19:45411941 

chr19:45454352-45455071 chr19:45311941-45511941 APOE Rs429358 chr19:45411941 

chr7:100025783-100028055 chr7:99991795-100191795 NYAP1 

(ZCWPW1) 

Rs12539172 chr7:100091795 

 543 

Of the 842 differential sites in non-neuronal female LOAD (FDR q < 0.05, Fig. 4e), we 544 

detected nine differential sites that overlap seven of the 25 LOAD-GWAS regions (Table 2).  545 

Using permutation analysis (see Methods), we found significant enrichment in the amount of 546 

overlap with sites less accessible in non-neuronal female LOAD (P < 0.05, Fig. S8c-d).  547 
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 548 
Fig. 5 (Continued on the following page.) 549 
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Fig. 5: Differential LOAD specific ATAC-seq peaks around LOAD-GWAS regions.  550 

Screenshots of ATAC-seq data around (A) PTK2B, CLU, (B) APOE, and (C) IQCK loci. Box 551 

plots show ATAC-seq read counts for individual ATAC-seq peaks (blue frames highlight 552 

significant differential peaks for cases vs. controls, gray frames show control peaks that are not 553 

differential between cases and controls). Box plots are color coded for non-neuronal (blue) 554 

neuronal (red), female (no fill), and male (gray fill). All tracks show hg19 coordinates and all y-555 

axes on tracks range from 0 to 250. For box plots, the line within each box represents the 556 

median, and the top and bottom borders of the box represent the 25th and 75th percentiles, 557 

respectively. The top and bottom whiskers of the box plots represent the 75th percentile plus 1.5 558 

times the interquartile range and the 25th percentile minus 1.5 times the interquartile range, 559 

respectively. 560 

 561 

Representative examples of differential chromatin accessibility sites between LOAD cases and 562 

controls overlapping representative LOAD-GWAS regions are shown for the loci APOE (Fig. 563 

5b, Fig. S7b), and IQCK (Fig. 5c, Fig. S7c). While differences around the APOE and IQCK  564 

locus are more pronounced in females, we also detect subtle differences in the same direction in 565 

males (Fig. 5b-c, Fig. S7b-c). The identification of LOAD differences in chromatin accessibility 566 

in the APOE region, despite all cases and controls being of APOE e3/e3 genotype, underscores 567 

our identification of a regulatory mechanism, rather than genetic mechanism, at this locus. 568 

Overlap of LOAD-specific differential chromatin accessibility sites in female non-neurons 569 

with single nuclei RNA-seq data 570 

Next, we performed functional validation of key findings from the chromatin accessibility 571 

differential sites in female LOAD non-neuronal cells that overlapped LOAD-GWAS regions 572 

(Table 3, Fig. S9). We focused the analysis on two representative LOAD differential chromatin 573 

accessibility sites in female LOAD non-neuronal cells that overlapped LOAD-GWAS loci: (1) 574 

LOAD more accessible sites surrounding the ECHDC3 locus (annotated by the proximate gene 575 

to the associated SNP) and (2) LOAD less accessible sites surrounding the ABCA7 locus. The 576 

loci were defined by anchoring on the associated SNPs +/- 500kb, rs7920721 (ECHDC3) and 577 
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rs3752246 (ABCA7) using the UCSC Genome Browser47 (http://genome.ucsc.edu/) 578 

GRCh38/hg38 assembly released December 2013 (Table 3, Fig. S9). Single-nuclei (sn)RNA-seq 579 

data was collected from female brains using a small subset group of two LOAD and two control 580 

(Table S2, marked with *), and differential expression analysis of female LOAD nuclei 581 

compared to control nuclei was performed for all genes mapped with these regions in three cell-582 

type specific groups: 1) NeuN- non-neuronal, 2) Human Primary Cell Atlas (HPCA)-annotated 583 

astrocyte, and 3) HPCA-annotated microglia. Pseudogenes, RNA genes, and novel transcripts 584 

were excluded from the analysis. Out of 54 total genes within 1Mb of the two SNPs, 8 within 585 

ECHDC3 locus and 46 within ABCA7 locus (Fig. S9), many were up- or down- regulated as 586 

predicted by chromatin accessibility profiles (i.e. increased chromatin accessibility overlapping 587 

promoters and enhancers was associated with upregulation and vice versa). Overall 28 (51.9%), 588 

23 (42.6%), and 24 (44.4%) genes of the NeuN-, astrocyte, and microglia clusters, respectively, 589 

showed differential expression with trends corresponding to the changes in chromatin 590 

accessibility. Of those genes, some showed nominal significance (6 (21.4%) for NeuN-, 3 591 

(13.0%) for astrocyte, and 5 (20.8%) for microglia clusters), but did not reach adjusted statistical 592 

significance, while other trends did not reach nominal significance.  This could be explained by 593 

the small sample size and/or number of cells in the clusters. Furthermore, we examined the 594 

consistency between our dataset and a similar recently reported dataset28.  To address this 595 

question we conducted differential expression analysis for HPCA-annotated neurons, astrocytes, 596 

and microglia and compared the results for the top 15 significant genes, i.e. 5 from each cell type 597 

identified by the previous study28. We found that out of these 15 genes, our results show the 598 

same directionality for 13 genes, 10 of which also had significant adjusted p-values (Table S14), 599 

providing further validation of our findings.  600 
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Table 3. Differential snRNA-seq expression from level 3 female glia controls vs cases that 601 

are within 500 kb of LOAD-GWAS SNPs at loci found to be more accessible (rs7920721) or 602 

less accessible (rs3752246) in LOAD by ATAC-seq. 603 

SNP 

(coordinates, 

proximate gene) 

Genes  

NeuN- non-neuronal 
HPCA-annotated 

astrocytes 

HPCA-annotated 

microglia 

Mean 

log(FC) 

Adjusted 

p value 

Mean 

log(FC) 

Adjusted 

p value 

Mean 

log(FC) 

Adjusted 

p value 

rs7920721  

(chr10:11,678,309, 

ECHDC3) 

CELF2 0.087 1 -0.090 1 0.47 4.90 x 10-16 

USP6NL 0.12 0.32 -0.022 1 0.29 1 

ECHDC3 0.067 1 0.016 1 0.31 1 

UPF2 -0.34 0.00042 -0.31 1 -0.48 1 

DHTKD1 -0.16 1 -0.23 1 0.011 1 

SEC61A2 0.028 1 -0.028 1 0.15 1 

NUDT5 -0.032 1 -0.097 1 0.21 1 

rs3752246  

(chr19:1,056,493, 

ABCA7) 

BSG 0.035 1 0.10 0.32 -0.11 1 

POLRMT -0.047 1 -0.030 1 0.061 1 

FSTL3 -0.12 0.065 -0.13 1 0.047 1 

PALM -0.071 1 0.010 1 -0.25 1 

PTBP1 -0.034 1 -0.053 1 0.065 1 

AZU1 -0.012 1 -0.015 1 -0.039 1 

MED16 -0.036 1 -0.051 1 -0.19 1 

ARID3A 0.089 0.97 0.047 1 0.12 1 

TMEM259 0.050 1 0.089 1 -0.11 1 

ABCA7 -0.013 1 -0.022 1 0.075 1 

STK11 -0.024 1 -0.041 1 -0.13 1 

CBARP 0.013 1 0.017 1 0.026 1 

ATP5F1D 0.040 1 0.11 1 -0.032 1 

MIDN 0.042 1 -0.073 1 0.14 1 

CIRBP -0.71 1.52 x 10-57 -0.80 1.27 x 10-42 -0.51 1 

C19orf24 0.033 1 0.014 1 0.12 1 

NDUFS7 0.083 0.016 0.11 0.0014 -0.014 1 

GAMT -0.10 1 -0.065 1 -0.28 1 

RPS15 -0.14 1 -0.19 0.66 0.088 1 

APC2 -0.027 1 0.022 1 -0.14 1 

PCSK4 -0.033 1 -0.025 1 -0.10 1 

Negative mean log(FC) values indicate down-regulation in LOAD and positive values indicate up-604 
regulation in LOAD. Significant adjusted p values are bolded and mean log(FC) values consistent with 605 
ATAC-seq data are underlined. FC = fold change. Genes that were not detected or that had mean log(FC) 606 
values below 0.01 for any of the three groups were excluded from the table. Refer to detailed genomic 607 
structure presented in Supplemental Figure 9. 608 

 609 

Table 3 catalogues the genes surrounding the ECHDC3 and ABCA7 loci, excluding 26 610 

genes that were not detected or had low fold change values. Out of seven genes positioned within 611 

the 1Mb region of the LOAD associated ECHDC3 SNP, we found that CELF2 was significantly 612 

upregulated in LOAD HPCA-annotated microglia clusters (mean log(fold change) = 0.47, 613 

adjusted p = 4.90x10-16, Table 3). In addition, out of 21 genes mapped within the 1Mb region of 614 
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the LOAD associated ABCA7 SNP, CIRBP was significantly downregulated in LOAD NeuN- 615 

non-neuronal clusters (mean log(fold change) = -0.71, adjusted p = 1.52x10-57, Table 3) and  616 

HPCA-annotated astrocyte clusters (mean log(fold change) = -0.80, adjusted p = 1.27x10-42, 617 

Table 3). These results demonstrated that alteration in chromatin accessibility in LOAD-GWAS 618 

loci correlates with changes in gene expression. Furthermore, the results suggested that the target 619 

genes within LOAD-GWAS loci affected by LOAD specific changes in chromatin state may not 620 

be simply interpreted as the most proximate gene to the associated SNP. 621 

The intersection of LOAD- and glia- specific ATAC-seq sites and snRNA-seq patterns 622 

discovered novel LOAD regulatory elements that lead to gene expression changes in LOAD. 623 

Furthermore, intersecting these data sets provided a functional validation for the top significant 624 

findings from the ATAC-seq experiments showing sex-dependent LOAD-specific open and 625 

closed chromatin accessibility sites in non-neuronal cells. Collectively, these results suggest that 626 

integrating brain cell-type specific ‘omics data is a powerful mechanistic strategy to discover 627 

regulatory elements that impact expression of disease genes in a cell-type specific manner.   628 

 629 

Discussion: 630 

 631 
Decoding the genetic and genomic mechanisms of LOAD is a major challenge in the post-632 

GWAS era, since the majority of the LOAD associated SNPs are in noncoding regions1-7. 633 

Noncoding disease-associated loci have been shown to be enriched for regulatory elements in 634 

tissues and cells relevant to the disease37, 48-50. Thus, post-GWAS research requires an in-depth 635 

characterization of cell-type specific DNA regulatory elements. Mapping chromatin accessibility 636 

has been widely used to identify the location of active DNA regulatory elements, including 637 

promoters, enhancers, and insulators51-54. We performed the first systematic interrogation of the 638 
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chromatin accessibility landscape in neuronal and non-neuronal sorted nuclei from LOAD and 639 

healthy brains.   640 

To our knowledge, this study represents the first and the most comprehensive dataset to 641 

date of chromatin accessibility in LOAD brains and matched controls. Furthermore, this study 642 

was performed with brain cell-type specific resolution, i.e. neuronal and non-neuronal cells. The 643 

study has four major findings for the field of LOAD epigenetics. First, we have generated a map 644 

of LOAD-associated cell-type specific chromatin accessibility sites. Second, we provide a 645 

catalogue of female-specific disease-associated chromatin accessibility sites in non-neuronal 646 

cells. Third, we suggest a non-coding regulatory mechanism, namely chromatin accessibility, by 647 

which ~25% of LOAD-GWAS loci may exert their effect. Fourth, we have demonstrated that 648 

LOAD associated changes in chromatin accessibility can result in gene dysregulation through 649 

their overlap with the transcriptome profile of LOAD-GWAS loci. Overall, these results suggest 650 

that the cis interactions between regulatory elements and key genes contribute, at least in part, to 651 

the development and/or progression of LOAD. Of note, 87% of the differentially accessible 652 

chromatin peaks in the female NeuN- analysis and 92% of the differentially accessible chromatin 653 

peaks in the NeuN+ analysis fall within known regions of topologically associating domains 654 

(TADs) from fetal brain55. This suggests that chromatin regions associated with risk for LOAD 655 

belong to highly interacting regulatory domains. Furthermore, several LOAD loci may exert their 656 

pathogenic effects in a cell-type specific manner while others act in multiple cell types to drive 657 

LOAD pathogenesis. Alternatively, these cell-type specific and common changes in chromatin 658 

structure may represent secondary effects as consequences of disease-related processes such as 659 

neurodegeneration and gliosis.   660 
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A growing number of epigenome-wide association studies (EWAS) in LOAD have 661 

profiled DNA methylation, hydroxymethylation, and histone acetylation marks (H4K16ac), and 662 

assessed associations with LOAD risk and other related endophenotypes including the burden of 663 

pathology17-24. These studies have been a powerful approach to validate known LOAD loci, 664 

discover new candidate genes, and identify disease-related pathways17-24. However, the majority 665 

of the LOAD EWAS datasets were generated using bulk brain tissues, and the heterogeneous 666 

cell-type populations of brain tissue samples pose technical and biological limitations. Our 667 

results showed that a substantially larger number of ATAC-seq sites are uniquely detected in the 668 

neuronal and non-neuronal cells, compared to bulk tissues obtained from the same donors. This 669 

observation demonstrates the importance of cell-type specific epigenomic studies relative to bulk 670 

tissues, as it reduces cellular heterogeneity allowing the identification of more cell-type specific 671 

signals.  672 

Collectively, our outcomes open a new window for the exploration of the particular cell-673 

types that contribute to LOAD pathogenesis, and the genes and pathways that mediate the cell-674 

type specific pathogenic effects.  675 

These data advance the mechanistic understanding of LOAD, and moreover, uncover 676 

new candidate LOAD loci. To date, in addition to this study only five others (two transcriptome, 677 

two DNA-methylation, and one histone acetylation) have compared genomic signatures stratified 678 

by different cell types in the LOAD brain using sorted- and single- nuclei based methodologies27 679 

28 29 51 56. Altogether, our and other studies demonstrated the importance of applying these cell-680 

type specific approaches in molecular analyses of brain tissues and highlight the impact of 681 

transitioning into single-cell based ‘omics studies in LOAD functional genomic research. In 682 

addition, we show that integrating our cell-type specific ATAC-seq data with our scRNA-seq 683 
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LOAD data corroborate the interpretation of the results and provide functional validation. By 684 

aligning the two datasets, we identified LOAD-specific female-dependent non-neuronal 685 

regulatory elements around two differentially expressed genes in LOAD glia cells. Moreover, 686 

analysis of chromatin accessibility differential sites in female LOAD non-neuronal cells that 687 

overlapped LOAD-GWAS regions not only provided functional validation and established the 688 

link between LOAD -GWAS -ATAC-seq and -snRNA-seq but also demonstrated that genes 689 

other than the most proximate to the associated SNP may play a role in LOAD pathogenesis.  690 

These results exemplify the potential of integration of cell-type specific datasets to validate 691 

known LOAD loci and also to identify new candidate genes. In future studies, a larger sample 692 

size may allow conducting a chromatin accessibility QTL study to determine colocalization with 693 

GWAS loci. 694 

Several bulk tissue ChIP-seq studies have used functional genomics and integrative 695 

systems biology approaches to infer cell types. Consistent with our findings, these epigenomic 696 

studies strongly suggest that non-neuronal cell types contribute to LOAD-specific histone marks 697 

associated with active regulatory elements (promoters and enhancers). It was reported that 698 

LOAD GWAS loci were enriched in enhancer elements specific to immune cells57 and tangle-699 

associated H3K9ac signals located in both promoters and enhancers were significantly associated 700 

with modules classified as non-neuronal58. Recently, two studies used FANS-sorted nuclei 701 

followed by ChIP-seq and demonstrated that microglia were the non-neuronal cell type 702 

contributing to LOAD epigenomic signatures. Nott et al. found that LOAD SNP heritability was 703 

most significant in microglial enhancers59, and Ramamurthy et al. showed that hyperacetylated 704 

peaks in microglia colocalize more with LOAD SNPs than the histone acetylome of other cell 705 
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types56. Collectively, ours and others’ studies point to non-neuronal epigenomic dysregulation, 706 

likely microglial, as a major contributing factor to LOAD pathogenesis.   707 

Sex is an important factor in LOAD etiology and there are sex differences in disease risk, 708 

progression and clinicopathological phenotypes60. Foremost, there is a sex-dependent difference 709 

in LOAD prevalence and almost two-thirds of LOAD patients are female61. Historically, it has 710 

been attributed to the longer average life expectancy in women62, however, recent research 711 

suggests that other factors, such as the sudden drop in the level of sex hormones (estrogens) in 712 

women at menopause, contribute to the differences in susceptibility between males and 713 

females42. It was also reported that women manifest faster disease progression and cognitive 714 

decline, increased brain atrophy and pathological burden largely driven by neurofibrillary 715 

tangles42, and a more advanced disease stage as indicated by CSF biomarkers, especially higher 716 

concentrations of total tau and phosphorylated tau. Although several conflicting reports 717 

suggested opposite trends63, the effect of sex on LOAD has been widely accepted. Nonetheless, 718 

the molecular mechanisms underlying the role of sex as a risk factor in LOAD are understudied. 719 

Our study provides new insights into these gaps in knowledge showing sex-dependent changes in 720 

chromatin structure between LOAD and control brains. We identified hundreds of LOAD 721 

differential chromatin accessibility sites specific to females, which overlap nearly one-third of all 722 

LOAD GWAS regions. Since the majority of differential chromatin accessibility sites do not 723 

overlap LOAD-GWAS regions, these represent novel candidate LOAD loci. Moreover, a female-724 

specific effect on LOAD-associated changes in chromatin accessibility appeared exclusively in 725 

glial cells and resulted in nearly three-fold overrepresentation of sites that were more closed in 726 

female LOAD patient samples. However, we cannot rule out the possibility that LOAD-727 

associated changes in chromatin accessibility also occur in glia from male LOAD patients, but 728 
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because of the plausible much smaller effect size in males, we could be underpowered to detect 729 

significant associations in our male cohort. These results warrant further investigation to 730 

determine the effects of sex-dependent chromatin remodeling on dysregulation of gene 731 

expression in the context of LOAD. In this respect, the recent scRNA-seq study28 also reported 732 

sex-dependent LOAD effects and specifically observed a sex-specific differential transcriptional 733 

response to LOAD pathology, enrichment of females cells in LOAD-associated cell 734 

subpopulation, and higher expression in females for the marker genes of LOAD-associated 735 

cellular subpopulations28. Future integration of diverse ‘omics datasets stratified by sex will 736 

decipher the underpinning mechanisms of sex differences in LOAD by establishing the cross 737 

interactions between sex-dependent chromatin structure and function, transcriptome and LOAD 738 

phenotypic outcomes.   739 

One of the loci that showed sex-dependent effects in our study is the APOE linkage 740 

disequilibrium (LD) region. The e4 allele of the APOE gene is the first identified, most highly 741 

replicated, and the strongest genetic risk factor for LOAD64, 65. Furthermore, LOAD GWAS have 742 

confirmed strong associations with the APOE LD genomic region, and no other LOAD-743 

association remotely approached the same level of significance 3, 66, 67. Interestingly, female 744 

carriers of APOE e4 have an increased risk of LOAD versus male and the adverse effect of 745 

APOE e4 on LOAD biomarkers was generally stronger in women versus men68-72. Overall the 746 

APOE LD region displayed more open chromatin in glia versus neurons as expected since this 747 

gene is much more highly expressed in glia. Interestingly, we found decreased chromatin 748 

accessibility at multiple sites in female LOAD glia across the APOE region. This result provides 749 

molecular clues to the observations that APOE e4 allele confers a greater risk for LOAD in 750 

women than in men68-72. In addition, significant downregulation of APOE in astrocytes from 751 
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LOAD brains, although not sex-dependent, was reported by scRNA-seq analysis. This evidence 752 

is consistent with the trend we found of more closed chromatin in LOAD samples, providing 753 

functional validation to our result28. In summary, we proposed molecular insights based on 754 

chromatin structure that may explain, at least in part, some aspects related to the role of APOE in 755 

LOAD.  756 

In conclusion, this LOAD genomic research pioneers the approach of brain cell-type 757 

specific chromatin accessibility profiling and lays the foundation for additional sorted- and 758 

single- nuclei ‘omics analyses in LOAD. Our outcomes warrant further investigations using  a 759 

larger sample size to enhance the discovery smaller LOAD-associated effects on chromatin 760 

accessibility and to allow the utilization of a single peakset and set of covariates to perform 761 

multiple testing. Future and ongoing studies using even more advanced single-cell technologies 762 

will generate complementary ‘omics datasets with finer cell-type resolution from larger well-763 

characterized LOAD cohorts. Data sharing via publicly available portals, such as Accelerating 764 

Medicines Partnership-Alzheimer’s Disease (AMP-AD), will facilitate integrative single-cells 765 

‘omics towards moving forward our understanding of the underpinning genetic drivers and 766 

molecular mechanisms of LOAD.  767 

 768 
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 771 

Declaration of Interests: 772 

The authors declare no competing interests. 773 

 774 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.07.438835doi: bioRxiv preprint 

http://www.nia.nih.gov/alzheimers/amp-ad
https://doi.org/10.1101/2021.04.07.438835


 

38 
 

Acknowledgments: 775 

We thank the Kathleen Price Bryan Brain Bank at Duke University (funded by NIA AG028377) 776 

for providing us with the brain tissues, the Duke Cancer Institute Flow Cytometry Shared 777 

Resource for sorting, and the Duke Sequencing and Genomic Technologies Shared Resource for 778 

sequencing. We also thank John Ervin for his assistance in obtaining the brain samples with 779 

neuropathological and clinical data required for the study, and Lynn Martinek for providing 780 

training and technical assistance in using the cell sorter and in analyzing the flow data. This work 781 

used a high-performance computing facility partially supported by grant 2016-IDG-1013 782 

(“HARDAC+: Reproducible HPC for Next-generation Genomics") from the North Carolina 783 

Biotechnology Center. The results published here are in part based on data obtained from the AD 784 

Knowledge Portal (https://adknowledgeportal.synapse.org). Study data were provided by the 785 

Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago. Data collection 786 

was supported through funding by NIA grants P30AG10161, R01AG15819, R01AG17917, 787 

R01AG36836, and the Illinois Department of Public Health. Additional phenotypic data can be 788 

requested at www.radc.rush.edu. Funding: This work was funded in part by the National 789 

Institutes of Health/National Institute on Aging (NIH/NIA) [R01 AG057522 to O.C-F.] and a 790 

seed grant from The Duke Center for Genomic and Computational Biology (to O.C-F. and 791 

GEC). Author contributions: G.E.C. and O.C-F. conceived of the presented idea. J.B. and O.C-792 

F. acquired brain samples, designed the study sample, and interpreted metadata. J.B. and Y.Y. 793 

performed brain tissue handling, nuclei extraction, labeling and sorting, and fluorescence 794 

microscopy evaluation to ensure nuclei were of high quality. I.P., D.S., and D.C. provided 795 

technical support in extraction of bulk nuclei from brain tissues. A.S. performed the ATAC-seq 796 

experiments. J.B., Y.Y. and J.G. performed the snRNA-seq experiments. M.E.G. and A.A.K. 797 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.07.438835doi: bioRxiv preprint 

https://www.sciencedirect.com/science/article/pii/S155252601302801X?via%3Dihub#gs3
https://doi.org/10.1101/2021.04.07.438835


 

39 
 

performed QC and covariate analysis.  L.S. performed alignment, peak quantification, QC 798 

assessment, differential chromatin, and motif analysis. R.G. advised on the motif analysis. J.G. 799 

and H.F. performed the snRNA-seq data analysis and differential expression analysis. J.L. 800 

assisted with the QC metric analysis. K.S. assisted with whole genome genotyping. A.A.K., 801 

G.E.C. and O.C-F.  planned and supervised the work. G.E.C. and O.C-F. obtained funding 802 

support. All authors discussed and interpreted the results. J.B., L.S., A.S., Y.Y., M.E.G., J.G., 803 

A.A.K., G.E.C., and O.C-F. designed the study and wrote the manuscript. All authors read and 804 

approved the manuscript.  805 

 806 

Data Availabillity: 807 

The ATAC-Sequencing and single-nucleus RNA-Sequencing data are available at Synapse 808 

(https://www.synapse.org/#!Synapse:syn20755767). The DOI for this 809 

dataset is 10.7303/syn20755767. The data are available under controlled use conditions. 810 

 811 

References: 812 

 813 

1. Lambert, J.-C., et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility 814 
loci for Alzheimer's disease. Nat Genet 45, 1452-1458 (2013). 815 
2. Naj, A.C., et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are 816 
associated with late-onset Alzheimer's disease. Nat Genet 43, 436-441. 817 
3. Harold, D., et al. Genome-wide association study identifies variants at CLU and PICALM 818 
associated with Alzheimer's disease. Nat Genet 41, 1088-1093 (2009). 819 
4. Hollingworth, P., et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 820 
and CD2AP are associated with Alzheimer's disease. Nat Genet 43, 429-435 (2011). 821 
5. Jansen, I., et al. Genetic meta-analysis identifies 9 novel loci and functional pathways for 822 
Alzheimers disease risk. bioRxiv  (2018). 823 
6. Marioni, R., et al. GWAS on family history of Alzheimer's disease. bioRxiv  (2018). 824 
7. Kunkle, B.W., et al. Genetic meta-analysis of diagnosed Alzheimer's disease identifies 825 
new risk loci and implicates Abeta, tau, immunity and lipid processing. Nat Genet 51, 414-430 826 
(2019). 827 
8. Linnertz, C., et al. The cis-regulatory effect of an Alzheimer's disease-associated poly-T 828 
locus on expression of TOMM40 and apolipoprotein E genes. Alzheimers Dement 10, 541-551 829 
(2014). 830 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.07.438835doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.07.438835


 

40 
 

9. Matsui, T., et al. Expression of APP pathway mRNAs and proteins in Alzheimer's 831 
disease. Brain Res 1161, 116-123 (2007). 832 
10. Zarow, C. & Victoroff, J. Increased apolipoprotein E mRNA in the hippocampus in 833 
Alzheimer disease and in rats after entorhinal cortex lesioning. Exp Neurol 149, 79-86 (1998). 834 
11. Gibbs, J.R., et al. Abundant quantitative trait loci exist for DNA methylation and gene 835 
expression in human brain. PLoS Genet 6, e1000952. 836 
12. Allen, M., et al. Novel late-onset Alzheimer disease loci variants associate with brain 837 
gene expression. Neurology 79, 221-228 (2012). 838 
13. Zou, F., et al. Brain expression genome-wide association study (eGWAS) identifies 839 
human disease-associated variants. PLoS Genet 8, e1002707 (2012). 840 
14. Karch, C.M., et al. Expression of novel Alzheimer's disease risk genes in control and 841 
Alzheimer's disease brains. PLoS One 7, e50976 (2012). 842 
15. Karch, C.M., Ezerskiy, L.A., Bertelsen, S., Alzheimer's Disease Genetics, C. & Goate, 843 
A.M. Alzheimer's Disease Risk Polymorphisms Regulate Gene Expression in the ZCWPW1 and 844 
the CELF1 Loci. PLoS One 11, e0148717 (2016). 845 
16. Singleton, A., Myers, A. & Hardy, J. The law of mass action applied to 846 
neurodegenerative disease: a hypothesis concerning the etiology and pathogenesis of complex 847 
diseases. Hum Mol Genet 13 Spec No 1, R123-126 (2004). 848 
17. Smith, A.R., et al. Increased DNA methylation near TREM2 is consistently seen in the 849 
superior temporal gyrus in Alzheimer's disease brain. Neurobiol Aging 47, 35-40 (2016). 850 
18. Zhao, J., et al. A genome-wide profiling of brain DNA hydroxymethylation in Alzheimer's 851 
disease. Alzheimers Dement 13, 674-688 (2017). 852 
19. Lunnon, K., et al. Methylomic profiling implicates cortical deregulation of ANK1 in 853 
Alzheimer's disease. Nat Neurosci 17, 1164-1170 (2014). 854 
20. De Jager, P.L., et al. Alzheimer's disease: early alterations in brain DNA methylation at 855 
ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci 17, 1156-1163 (2014). 856 
21. Chibnik, L.B., et al. Alzheimer's loci: epigenetic associations and interaction with genetic 857 
factors. Ann Clin Transl Neurol 2, 636-647 (2015). 858 
22. Yu, L., et al. Association of Brain DNA methylation in SORL1, ABCA7, HLA-DRB5, 859 
SLC24A4, and BIN1 with pathological diagnosis of Alzheimer disease. JAMA Neurol 72, 15-24 860 
(2015). 861 
23. Watson, C.T., et al. Genome-wide DNA methylation profiling in the superior temporal 862 
gyrus reveals epigenetic signatures associated with Alzheimer's disease. Genome Med 8, 5 863 
(2016). 864 
24. Nativio, R., et al. Dysregulation of the epigenetic landscape of normal aging in 865 
Alzheimer's disease. Nat Neurosci 21, 497-505 (2018). 866 
25. Matevossian, A. & Akbarian, S. Neuronal nuclei isolation from human postmortem brain 867 
tissue. J Vis Exp  (2008). 868 
26. Gasparoni, G., et al. DNA methylation analysis on purified neurons and glia dissects age 869 
and Alzheimer's disease-specific changes in the human cortex. Epigenetics Chromatin 11, 41 870 
(2018). 871 
27. Tulloch, J., et al. Glia-specific APOE epigenetic changes in the Alzheimer's disease 872 
brain. Brain Res 1698, 179-186 (2018). 873 
28. Mathys, H., et al. Single-cell transcriptomic analysis of Alzheimer's disease. Nature 570, 874 
332-337 (2019). 875 
29. Grubman, A., et al. A single-cell atlas of entorhinal cortex from individuals with 876 
Alzheimer's disease reveals cell-type-specific gene expression regulation. Nat Neurosci 22, 877 
2087-2097 (2019). 878 
30. Garwood, C.J., et al. Review: Astrocytes in Alzheimer's disease and other age-879 
associated dementias: a supporting player with a central role. Neuropathol Appl Neurobiol 43, 880 
281-298 (2017). 881 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.07.438835doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.07.438835


 

41 
 

31. Perl, D.P. Neuropathology of Alzheimer's disease. Mt Sinai J Med 77, 32-42 (2010). 882 
32. McLean, C.Y., et al. GREAT improves functional interpretation of cis-regulatory regions. 883 
Nat Biotechnol 28, 495-501 (2010). 884 
33. Nagarajan, R., et al. EGR2 mutations in inherited neuropathies dominant-negatively 885 
inhibit myelin gene expression. Neuron 30, 355-368 (2001). 886 
34. Ma, K., Zheng, S. & Zuo, Z. The transcription factor regulatory factor X1 increases the 887 
expression of neuronal glutamate transporter type 3. J Biol Chem 281, 21250-21255 (2006). 888 
35. Harrington, A.J., et al. MEF2C regulates cortical inhibitory and excitatory synapses and 889 
behaviors relevant to neurodevelopmental disorders. Elife 5 (2016). 890 
36. Wegner, M. SOX after SOX: SOXession regulates neurogenesis. Genes Dev 25, 2423-891 
2428 (2011). 892 
37. Fullard, J.F., et al. Open chromatin profiling of human postmortem brain infers functional 893 
roles for non-coding schizophrenia loci. Hum Mol Genet 26, 1942-1951 (2017). 894 
38. Wagner, N., et al. The Wilms' tumor suppressor Wt1 is associated with the differentiation 895 
of retinoblastoma cells. Cell Growth Differ 13, 297-305 (2002). 896 
39. Shi, Z., Shen, T., Liu, Y., Huang, Y. & Jiao, J. Retinoic acid receptor gamma (Rarg) and 897 
nuclear receptor subfamily 5, group A, member 2 (Nr5a2) promote conversion of fibroblasts to 898 
functional neurons. J Biol Chem 289, 6415-6428 (2014). 899 
40. Duclot, F. & Kabbaj, M. The Role of Early Growth Response 1 (EGR1) in Brain Plasticity 900 
and Neuropsychiatric Disorders. Front Behav Neurosci 11, 35 (2017). 901 
41. Parker-Katiraee, L., et al. Identification of the imprinted KLF14 transcription factor 902 
undergoing human-specific accelerated evolution. PLoS Genet 3, e65 (2007). 903 
42. Riedel, B.C., Thompson, P.M. & Brinton, R.D. Age, APOE and sex: Triad of risk of 904 
Alzheimer's disease. J Steroid Biochem Mol Biol 160, 134-147 (2016). 905 
43. Poche, R.A., et al. RONIN Is an Essential Transcriptional Regulator of Genes Required 906 
for Mitochondrial Function in the Developing Retina. Cell Rep 14, 1684-1697 (2016). 907 
44. Vong, K.I., Leung, C.K., Behringer, R.R. & Kwan, K.M. Sox9 is critical for suppression of 908 
neurogenesis but not initiation of gliogenesis in the cerebellum. Mol Brain 8, 25 (2015). 909 
45. Kolsch, H., et al. Influence of SORL1 gene variants: association with CSF amyloid-beta 910 
products in probable Alzheimer's disease. Neuroscience letters 440, 68-71 (2008). 911 
46. Demir, O., et al. ETS-domain transcription factor Elk-1 mediates neuronal survival: SMN 912 
as a potential target. Biochim Biophys Acta 1812, 652-662 (2011). 913 
47. Kent, W.J., et al. The human genome browser at UCSC. Genome Res 12, 996-1006 914 
(2002). 915 
48. Trynka, G. & Raychaudhuri, S. Using chromatin marks to interpret and localize genetic 916 
associations to complex human traits and diseases. Curr Opin Genet Dev 23, 635-641 (2013). 917 
49. Trynka, G., et al. Chromatin marks identify critical cell types for fine mapping complex 918 
trait variants. Nat Genet 45, 124-130 (2013). 919 
50. Maurano, M.T., et al. Systematic localization of common disease-associated variation in 920 
regulatory DNA. Science 337, 1190-1195 (2012). 921 
51. Cockerill, P.N. Structure and function of active chromatin and DNase I hypersensitive 922 
sites. FEBS J 278, 2182-2210 (2011). 923 
52. Gross, D.S. & Garrard, W.T. Nuclease hypersensitive sites in chromatin. Annu Rev 924 
Biochem 57, 159-197 (1988). 925 
53. Song, L., et al. Open chromatin defined by DNaseI and FAIRE identifies regulatory 926 
elements that shape cell-type identity. Genome Res 21, 1757-1767 (2011). 927 
54. Thurman, R.E., et al. The accessible chromatin landscape of the human genome. Nature 928 
489, 75-82 (2012). 929 
55. Won, H., et al. Chromosome conformation elucidates regulatory relationships in 930 
developing human brain. Nature 538, 523-527 (2016). 931 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.07.438835doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.07.438835


 

42 
 

56. Ramamurthy, E., et al. Cell type-specific histone acetylation profiling of Alzheimer’s 932 
Disease subjects and integration with genetics. bioRxiv, 2020.2003.2026.010330 (2020). 933 
57. Gjoneska, E., et al. Conserved epigenomic signals in mice and humans reveal immune 934 
basis of Alzheimer's disease. Nature 518, 365-369 (2015). 935 
58. Morabito, S., Miyoshi, E., Michael, N. & Swarup, V. Integrative genomics approach 936 
identifies conserved transcriptomic networks in Alzheimer's disease. Hum Mol Genet  (2020). 937 
59. Nott, A., et al. Brain cell type-specific enhancer-promoter interactome maps and 938 
disease-risk association. Science 366, 1134-1139 (2019). 939 
60. Ferretti, M.T., et al. Sex differences in Alzheimer disease - the gateway to precision 940 
medicine. Nat Rev Neurol 14, 457-469 (2018). 941 
61. Babapour Mofrad, R. & van der Flier, W.M. Nature and implications of sex differences in 942 
AD pathology. Nat Rev Neurol 15, 6-8 (2019). 943 
62. Buckley, R.F., Waller, M., Masters, C.L. & Dobson, A. To What Extent Does Age at 944 
Death Account for Sex Differences in Rates of Mortality From Alzheimer Disease? Am J 945 
Epidemiol 188, 1213-1223 (2019). 946 
63. Jack, C.R., Jr., et al. Age, Sex, and APOE epsilon4 Effects on Memory, Brain Structure, 947 
and beta-Amyloid Across the Adult Life Span. JAMA Neurol 72, 511-519 (2015). 948 
64. Corder, E.H., et al. Gene dose of apolipoprotein E type 4 allele and the risk of 949 
Alzheimer's disease in late onset families. Science 261, 921-923 (1993). 950 
65. Saunders, A.M., et al. Association of apolipoprotein E allele epsilon 4 with late-onset 951 
familial and sporadic Alzheimer's disease. Neurology 43, 1467-1472 (1993). 952 
66. Lambert, J.C., et al. Genome-wide association study identifies variants at CLU and CR1 953 
associated with Alzheimer's disease. Nat Genet 41, 1094-1099 (2009). 954 
67. Lambert, J.C., et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility 955 
loci for Alzheimer's disease. Nat Genet 45, 1452-1458 (2013). 956 
68. Bretsky, P.M., et al. Evidence for an interaction between apolipoprotein E genotype, 957 
gender, and Alzheimer disease. Alzheimer Dis Assoc Disord 13, 216-221 (1999). 958 
69. Payami, H., et al. Alzheimer's disease, apolipoprotein E4, and gender. JAMA 271, 1316-959 
1317 (1994). 960 
70. Poirier, J., et al. Apolipoprotein E polymorphism and Alzheimer's disease. Lancet 342, 961 
697-699 (1993). 962 
71. Altmann, A., Tian, L., Henderson, V.W., Greicius, M.D. & Alzheimer's Disease 963 
Neuroimaging Initiative, I. Sex modifies the APOE-related risk of developing Alzheimer disease. 964 
Ann Neurol 75, 563-573 (2014). 965 
72. Neu, S.C., et al. Apolipoprotein E Genotype and Sex Risk Factors for Alzheimer 966 
Disease: A Meta-analysis. JAMA Neurol 74, 1178-1189 (2017). 967 
73. Jiang, Y., Matevossian, A., Huang, H.S., Straubhaar, J. & Akbarian, S. Isolation of 968 
neuronal chromatin from brain tissue. BMC Neurosci 9, 42 (2008). 969 
74. Marzluff, W.F. Preparation of active nuclei. Methods Enzymol 181, 30-36 (1990). 970 
75. Corces, M.R., et al. An improved ATAC-seq protocol reduces background and enables 971 
interrogation of frozen tissues. Nat Methods 14, 959-962 (2017). 972 
76. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat Methods 973 
9, 357-359 (2012). 974 
77. Fein, F.S., Cho, S., Zola, B.E., Miller, B. & Factor, S.M. Cardiac pathology in the 975 
hypertensive diabetic rat. Biventricular damage with right ventricular predominance. Am J Pathol 976 
134, 1159-1166 (1989). 977 
78. Landt, S.G., et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE 978 
consortia. Genome Res 22, 1813-1831 (2012). 979 
79. van Buuren, S. & Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chained 980 
Equations in R. J Stat Softw 45, 1-67 (2011). 981 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.07.438835doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.07.438835


 

43 
 

80. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for 982 
differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140 983 
(2010). 984 
81. Robinson, M.D. & Oshlack, A. A scaling normalization method for differential expression 985 
analysis of RNA-seq data. Genome Biol 11, R25 (2010). 986 
82. Heinz, S., et al. Simple combinations of lineage-determining transcription factors prime 987 
cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38, 576-589 988 
(2010). 989 
83. Bailey, T.L., Johnson, J., Grant, C.E. & Noble, W.S. The MEME Suite. Nucleic Acids Res 990 
43, W39-49 (2015). 991 
84. Bennett, D.A., Schneider, J.A., Arvanitakis, Z. & Wilson, R.S. Overview and findings 992 
from the religious orders study. Curr Alzheimer Res 9, 628-645 (2012). 993 
85. Bennett, D.A., et al. Overview and findings from the rush Memory and Aging Project. 994 
Curr Alzheimer Res 9, 646-663 (2012). 995 
86. Mostafavi, S., et al. A molecular network of the aging human brain provides insights into 996 
the pathology and cognitive decline of Alzheimer's disease. Nat Neurosci 21, 811-819 (2018). 997 
87. SageBionetworks. AMP-AD Knowledge Portal: ROSMAP RNA-Seq. Available at: 998 
https://www.synapse.org/#!Synapse:syn3388564. 999 
88. McCarthy, D.J., Campbell, K.R., Lun, A.T. & Wills, Q.F. Scater: pre-processing, quality 1000 
control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1001 
1179-1186 (2017). 1002 
89. Stuart, T., et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902 1003 
e1821 (2019). 1004 
90. Aran, D., et al. Reference-based analysis of lung single-cell sequencing reveals a 1005 
transitional profibrotic macrophage. Nat Immunol 20, 163-172 (2019). 1006 
91. Mabbott, N.A., Baillie, J.K., Brown, H., Freeman, T.C. & Hume, D.A. An expression atlas 1007 
of human primary cells: inference of gene function from coexpression networks. BMC Genomics 1008 
14, 632 (2013). 1009 
 1010 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.07.438835doi: bioRxiv preprint 

https://www.synapse.org/#!Synapse:syn3388564
https://doi.org/10.1101/2021.04.07.438835

