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Abstract 

 

Magnetic resonance imaging (MRI) offers the possibility to non-invasively map the 

rate of cerebral metabolic oxygen consumption (CMRO2), which is essential for 

understanding and monitoring neural function in both health and disease. Existing 

methods of mapping CMRO2, based on respiratory modulation of arterial spin labelling 

(ASL) and blood oxygen level dependent (BOLD) signals, require lengthy acquisitions 

and independent modulation of both arterial oxygen and carbon dioxide levels. Here, 

we present a new simplified method for mapping the rate of cerebral oxygen 

metabolism that can be performed using a simple breath-holding paradigm. The method 

incorporates flow-diffusion modelling of oxygen transport and physiological 

constraints to create a non-linear mapping between the maximum BOLD signal, M, 

baseline blood flow (CBF0), and CMRO2. A gradient boosted decision tree is used to 

learn this mapping directly from simulated MRI data. Modelling studies demonstrate 

that the proposed method is robust to variation in cerebral physiology and metabolism. 

This new gas-free methodology offers a rapid and pragmatic alternative to existing 

dual-calibrated methods, removing the need for specialist respiratory equipment and 

long acquisition times.  In-vivo testing of the method, using an 8-minute 45 second 

protocol of repeated breath-holding, was performed on 15 healthy volunteers, 

producing quantitative maps of cerebral blood flow (CBF), oxygen extraction fraction 

(OEF), and CMRO2.  
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1 Introduction 

A continuous supply of oxygen to the brain is essential for life and any restriction of 

this supply can have significant consequences for individuals 1. The current gold 

standard for mapping the cerebral metabolic rate of oxygen consumption (CMRO2) is 

15-oxygen labelled positron emission tomography 2. However, this method has 

substantial drawbacks, including long acquisition times, the use of ionizing radiation, 

and the need for local production of 15-oxygen labelled tracers. Due to these 

limitations, there is great interest in developing rapid and non-invasive methods that 

can be used to safely and quickly map CMRO2. In recent years, a number of MRI 

methods 3-6 has been proposed as an alternative to PET based methods. One promising 

approach is the so-called dual-calibrated fMRI method 7-9. This approach combines 

biophysical modelling of the blood oxygen level dependent (BOLD) signal, and 

modulation of cerebral blood flow and blood oxygenation with controlled respiratory 

stimuli. This approach has been successfully applied in disease 10, 11, sports related head 

impact 12, and pharmacological modulation studies 13. However, the dual-calibrated 

method requires specialist respiratory equipment and experienced operators to acquire 

the data. These requirements limit the wider adoption of such a method both in research 

and clinical settings. In this work we present a straightforward gas-free approach for 

estimating the resting cerebral metabolic rate of oxygen consumption (CMRO2,0). The 

method uses a simple repeated breath-holding paradigm to provide robust estimates of 

CMRO2,0. The data can be acquired in less than 10 minutes with minimal operator 

training. 

 

The dual-calibrated method can be conceptualised as making two independent 

measurements of M (the maximum possible BOLD signal); one measurement is 

dependent on the oxygen extraction fraction (OEF), and one is not 7. OEF is then 

estimated by assigning a value that brings the two measurements of M into agreement. 

In our proposed method only one measurement of M is required. Estimates of M can 

be acquired with a calibrated-fMRI experiment using either a hypercapnic gas 

challenge 14 or a breath-holding protocol 15, or by transforming a measurement of R2’ 
16. In the work presented here we have implemented the modelling and analysis for a 

repeated breath-holding protocol, allowing mapping of CMRO2,0 from a simple 

imaging protocol without the need for administration of modified gas mixtures.  

 

The proposed method is based on a new formulation of M, which includes a simple 

model of oxygen exchange 17-19, and substitutes the deoxyhaemoglobin sensitive blood 

volume (CBVv) for an appropriately scaled capillary blood volume (CBVcap). By 

combining the newly formulated expression of M with reasonable physiological 

constraints, we can create a non-linear mapping from M and the resting cerebral blood 

flow (CBF0) to CMRO2,0. For in-vivo data analysis we employ a machine learning 

methodology that estimates CMRO2,0 directly from the MRI data, without estimating 

the intermediate parameters. We have previously shown that such an approach, trained 

on simulated data, is able to make robust estimates of physiological and metabolic 

parameters when applied to the dual-calibrated fMRI method 19.  

 

We adopted the same concept as used in our recent publication 19 and estimate CMRO2,0 

from a Fourier transformed representation of the MRI time series data. In the proposed 

implementation we use a popular gradient boosted decision tree algorithm, LightGBM 
20, to learn the mapping between the simulated MRI data and CMRO2,0. The method is 
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tested via further simulations and in-vivo data acquired from with 15 healthy 

volunteers.  

2 MRI Data Modelling 

Modelling of the steady-state BOLD signal shows that the rate of transverse relaxation 

due to deoxyhaemoglobin can be expressed as shown in equation 1 14, 21.   

 

𝑅2
∗|𝑑𝐻𝑏 = A ∙ 𝐶𝐵𝑉𝑣 ∙ ((1 − 𝑆𝑣𝑂2) ∙ [𝐻𝑏])

𝛽
                  (1) 

 

Where 𝑅2
∗|𝑑𝐻𝑏 is the transverse relaxation rate due to deoxyhaemoglobin. CBVv is the 

fractional BOLD sensitive blood volume, which is composed of the venous blood 

volumes, and capillary blood volumes that are exchanging oxygen with the tissue. β is 

a field strength dependent constant, and A is a proportionality constant related to the 

field strength and vessel geometry (in units of s-1g-βdLβ). [Hb] is the haemoglobin 

concentration (g/dL) and SvO2 is the draining venous oxygen saturation. 

 

The maximum BOLD signal, M, is obtained simply by multiplying 𝑅2
∗|𝑑𝐻𝑏by the 

acquisition echo time, TE 14. 

 

𝑀 =  𝑇𝐸 ∙ 𝐴 ∙ 𝐶𝐵𝑉𝑣 ∙ ((1 − 𝑆𝑣𝑂2) ∙ [𝐻𝑏])
𝛽
                 (2) 

 

Using this definition of M, the generic BOLD signal model that describes the signal 

change due to modulation of arterial oxygen content (CaO2), CBF, or CMRO2 can be 

expressed as shown in equation 3a 19. 

 

 

∆𝐵𝑂𝐿𝐷

𝐵𝑂𝐿𝐷0
= M

{
 
 

 
 

1 − (
𝐶𝐵𝐹

𝐶𝐵𝐹0
)
𝛼

(
1 −

𝐶𝑎𝑂2 − 𝐶𝑀𝑅𝑂2 𝐶𝐵𝐹⁄
𝜑[𝐻𝑏]

1 −
𝐶𝑎𝑂2,0 − 𝐶𝑀𝑅𝑂2,0 𝐶𝐵𝐹0⁄

𝜑[𝐻𝑏]

)

𝛽

}
 
 

 
 

               (3𝑎) 

 

Where, ∆𝐵𝑂𝐿𝐷 /𝐵𝑂𝐿𝐷0  is the fractional change in BOLD signal, φ is the oxygen 

binding capacity of haemoglobin (1.34 ml/g), and the subscript 0 denotes the resting 

value. 

 

In agreement with the previous literature, we assume that brief periods of breath-

holding are iso-metabolic 15, 22, 23. Additionally, we follow recent QSM modelling 24 

and vascular measurements 25 in setting the Grubb exponent, α, to zero. Thus, for a 

breath-holding stimulus, the generalised BOLD model of equation 3a is simplified to 

equation 3b. Unlike the standard hypercapnic calibration equation 14, we include the 

arterial oxygen content (CaO2) as this is known to change during breath-holding 26. 

Because of this, the equation also maintains a dependence on CMRO2,0. 
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= M
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Typically, the influence of CaO2 on the BOLD signal is ignored in calibration 

experiments based on breath-holding 15, 22, 27. However, here it is included for a more 

complete description of the BOLD signal. Upon completion of a breath-holding 

experiment equation 3b will have two unknowns, M and CMRO2,0. Thus, it initially 

appears that we cannot use a breath-holding paradigm to solve for either parameter. A 

similar problem is solved in the dual-calibrated methodology by including a hyperoxic 

measurement, which is predominately sensitive to CBVv 
28. Here we resolve the 

problem by employing oxygen diffusion modelling and physiological constraints 

during fitting.  

 

Following the modelling of 17, 18, 29 we can express the resting cerebral metabolic rate 

of oxygen metabolism as shown in equation 4a. 

 

𝐶𝑀𝑅𝑂2,0 =  𝐶𝐵𝑉𝑐𝑎𝑝 ∙ 𝜅 [𝑃50√
2

𝑂𝐸𝐹0
− 1

ℎ

− 𝑃𝑚𝑖𝑛𝑂2]                 (4𝑎) 

 

 

Where CBVcap is the capillary blood volume that exchanges oxygen with the tissue,  

is the effective permeability of capillary endothelium and brain tissue 

(μmol/mmHg/ml/min), P50 is the blood oxygen tension at which haemoglobin is 50% 

saturated, h is the Hill coefficient (equal to 2.8) and PminO2 is the minimum oxygen 

tension at the mitochondria. In the modelling we calculate the value of P50 from a 

measure of end-tidal carbon dioxide tension and we assume a fixed value for κ of 3 

μmol/mmHg/ml/min 19. 

 

The capillary blood volume exchanging oxygen with the tissue, CBVcap, is a fraction of 

the BOLD sensitive blood volume (CBVv), i.e. 𝐶𝐵𝑉𝑣 = 𝜌 ∙ 𝐶𝐵𝑉𝑐𝑎𝑝 . Thus, by re-

arranging equation 4a in terms of CBVv (equation 4b) and substituting into the 

definition of M we can derive an alternative definition of M as expressed by equation 

5. 

 

𝐶𝐵𝑉𝑣 = 𝜌 ∙ 𝐶𝑀𝑅𝑂2,0 𝜅 [𝑃50√
2

𝑂𝐸𝐹0
− 1

ℎ

− 𝑃𝑚𝑖𝑛𝑂2]⁄              (4𝑏) 

 

 

𝑀 =  
𝐶𝑀𝑅𝑂2,0 ∙ 𝑇𝐸 ∙ 𝐴 ∙ 𝜌 ∙ ([𝐻𝑏] ∙ (1 − 𝑆𝑣𝑂2))

𝛽

𝜅 ∙ (𝑃50√
2

𝑂𝐸𝐹0
− 1

ℎ
− 𝑃𝑚𝑖𝑛𝑂2)

                 (5) 

 

This definition of M effectively replaces the unknown parameter CBVv with two 

measurable parameters, CaO2,0 and CBF0 and two unknown parameters, ρ and PminO2. 

This can be seen by examining equation 5 and expanding CMRO2,0 via the Fick 

principle, 𝐶𝑀𝑅𝑂2,0 = 𝐶𝑎𝑂2,0 ∙ 𝐶𝐵𝐹0 ∙ 𝑂𝐸𝐹0 . The standard definition of M contains 

TE, A, [Hb], and SvO2, thus there is already an implicit dependence on OEF0 (assuming 
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arterial blood is close to, or fully saturated). The Hill coefficient and the effective 

permeability of brain tissue can be assumed constant, and the value of P50 can be 

estimated from the end-tidal carbon dioxide tension. Thus, the remaining unknown 

parameters are ρ and PminO2. 

 

By definition PminO2 must lie between 0 mmHg and the oxygen tension of the capillary 

bed, PcapO2. In vivo studies suggest the oxygen tension at the brain mitochondria is 

low in healthy brain 17, 30, with an average value of approximately 8.5 mmHg. In this 

work we use a gamma distribution to model PmitO2, maintaining the same median 

value but allowing variation between zero and PcapO2. Thus, including the entire range 

of feasible values for the mitochondrial oxygen tension in the healthy and diseased 

brain. 

 

The in-vivo variation in ρ has not been studied directly, however, we can gain some 

insight by considering the variation in vascular volume fractions with ageing and 

disease. For example, studies of capillary density in the human brain report age related 

decreases of approximately 16%, while studies in rat suggest that such vascular changes 

are mirrored by alterations in venular blood volume, with an approximate 20% decrease 

in venular blood observed across the life span of rats 31. Large reductions in vascular 

density have been observed in aging patients with neurodegeneration. For example, 

Buee et al. 32 reported a 38% decrease in vessel density in elderly AD patients compared 

to a healthy 49-year-old. However, the fractional change in the capillary density is 

reported to be of a similar magnitude, suggesting minimal alterations in ρ 33, 34. 

 

MRI studies of stroke using vessel size imaging (VSI) report an increase in the mean 

vessel size and a reduction in vessel density. Although histological studies confirm a 

significant reduction in vessel density, they do not report any change in the mean vessel 

size 35. The in-vivo observation of an increase in vessel size is likely to be due to 

vasodilation of arterioles, and thus the capillary fraction of the BOLD sensitive 

vasculature is likely to remain unchanged even in stroke.  

 

Taken together these findings suggest there is little variation in the relationship between 

capillary blood volume and the BOLD sensitive blood volume in a wide array of 

physiological and pathological conditions including ageing, neurodegeneration, and 

stroke. In our modelling we chose the range of ρ to be 2 to 3.33, giving a capillary blood 

volume of 20 to 40% of total blood volume, when the arterial contribution is assumed 

to be 20 to 30% 36. This range was chosen to offer reasonable physiological variation 

around a typical capillary volume of 33% 37, 38. 

 

The scaling factor, A, in the BOLD equation is similar to β, in that they both capture 

information related to vessel geometry and field strength 39. While a fixed value is 

normally given to β, the value of A is normally left undefined. However, we are able to 

approximate A if we assume that the majority of the BOLD signal arises from the 

extravascular space around veins and 𝑅2
∗|𝑑𝐻𝑏 = R2. This simplification follows that 

used by Blockley et al. who used R2 as a surrogate for M in calibrated fMRI studies. 
16, 40. Blockley et al demonstrate that R2 captures most of the BOLD signal variation 

and predict a tight correlation between R2  and M. Thus, with reference to equation 1, 

a reasonable approximation of A can be obtained from in-vivo measurements of R2, 

CBVv, and SvO2. The cortical R2 is approximately is 3 s-1 at 3T 41, while the BOLD 

sensitive blood volume has been estimated to be between 1.75% 6 and 3.6% 42. 
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Assuming an average [Hb] of 14 g/dL, an SvO2 of 0.6, and taking the mean CBVv of 

2.5% we obtain a value of 14 s-1g-βdLβ for A at 3T. 

 

By taking this estimate of A as the mean value and including variance to capture the 

physiological uncertainty, we are able to perform Monte-Carlo simulations to explore 

the relationship between M, CBF0 and OEF0. We performed these simulations with 

both the standard definition of M and the newly proposed definition (equation 5). Table 

1 outlines the physiological parameters and values used in the Monte-Carlo simulations. 

 

Parameter Description 
Symbol 

Simulation 

a 

Simulation 

b 

Maximum BOLD signal M 0.001 – 0.4 0.001 – 0.4 

Model includes oxygen diffusion - ✕ ✓ 

Oxygen Tension at the Mitochondria (mmHg) 

PmitO2 ✕ 

Γ(2, 8) 

Min (0 

mmHg) 

Max (Pcap 

mmHg) 

Mean Transit Time through all vascular 

compartments (seconds) 
MTT 1.5 – 20 1.5 – 20 

Linear BOLD scaling term (s-1g-βdLβ) A N (14, 2.0) N (14, 2.0) 

Non-linear BOLD scaling constant β 1.3 1.3 

Capillary Blood Volume (ml/100g) CBVcap 0.1 – 5 0.1 – 5 

Resting Cerebral Blood Flow (ml/100g/min) CBF0  15 – 180 15 – 180 

Arterial Blood Volume Fraction - 0.2 – 0.3 0.2 – 0.3 

Ratio between BOLD sensitive blood volume 

and capillary blood volume 
ρ 2 – 3.33 2 – 3.33 

Haemoglobin concentration (g/dL) [Hb]  14 14 

 

Table 1. Parameter ranges and distributions (Γ(shape, rate), N(mean, variance)) for two 

sets of Monte-Carlo simulations (a and b). The simulations model the relationship 

between CBF0, M, and OEF0 and are summarised in figure 1. 

 

When oxygen diffusivity is not included in the definition of M, but the physiology is 

constrained as per table 1, we are able to fit a Lowess surface (quadratic, span 25) to 

OEF0 (from M and CBF0) with an RMSE of 0.086 (R2 of 0.70) figure 1a. If oxygen 

diffusivity is included in the definition of M, figure 1b, we are able to fit a surface with 

an RMSE of 0.043 (R2 of 0.92), significantly reducing the error in OEF0. Thus, we are 
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able to predict the modelled OEF0 with a RMSE error of approximately 10%, using 

only measures of M and CBF0 (given a fixed [Hb]). 

 

 
 

Because the Monte-Carlo simulations in figure 1 have a fixed [Hb] we cannot 

generalize the relationship across Hb concentrations. However, if a surface is fit for 

CMRO2,0 rather than OEF0, then [Hb] does not have to be considered as a separate 

parameter (at least under normoxic conditions). Figure 2 shows how a simple 

polynomial surface (order 2,3) can be fitted to M and CBF0 to estimate CMRO2,0 across 

a wide range of Hb values (10 to 18 g/dL) with a RMSE of 22.5 μmol/100g/min (R2 = 

0.94). 

 

 
 

The inverse relationship, mapping CBF0 and CMRO2,0 to M, can also be estimated with 

a surface. Thus, allowing the maximum BOLD signal to be directly estimated from the 

physiological parameters. Equation 6 shows a rational equation that allows for such a 

mapping (RMSE = 0.04, R2 = 0.85). 

 

𝑀 =
(8.532 ∙ 𝐶𝑀𝑅𝑂2,0 + 2.19 ∙ 𝐶𝑀𝑅𝑂2,0

2)

(4167 ∙ 𝐶𝐵𝐹0 + 25.82 ∙ 𝐶𝐵𝐹0
2)

            (6) 

 

The modelling suggests that by fitting for M and CBF0, we can make estimates of 

CMRO2,0 with a low degree of uncertainty, across a wide range of physiology, and 

using only a single hypercapnic challenge. However, as highlighted by equation 3b, the 
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BOLD response to breath-hold challenges has a dependence on CMRO2,0. Therefore, 

we cannot estimate CMRO2,0 in this step like manner (without making further 

approximations) and must instead make simultaneous estimates of M and CMRO2,0, for 

example, with numerical methods. Here we employ a gradient boosted decision tree 

algorithm, LightGBM, which is trained on simulated data to learn the mapping between 

MRI data and CMRO2,0. Thus, allowing rapid estimation of CMRO2,0 directly from the 

MRI data. The details of the machine learning analysis method and training are given 

in section 3.   

3 Machine Learning Methodology  

The machine learning regressors employed in this work are trained on simulated data. 

The method and its implementation are similar to our recently presented work on robust 

parameter estimation with dc-fMRI 19. In the present implementation the BOLD signal 

model (equations 3b and 5) and simplified pCASL kinetic arterial spin labelling signal 

model 44 were used to generate artificial MRI time series to match the in-vivo 

acquisition and breath-holding protocols.  

 

The relaxation rate of arterial blood, R1, was modelled as in shown in equation 7 45, 46 

and the P50 for Hb saturation was estimated from the partial pressure of resting end-

tidal CO2, as described in 45. 

 

R1,𝑏𝑙𝑜𝑜𝑑  =  1.527 × 10−4 ∙  PaO2 +  0.1713 ∙  (1 –  SaO2)  +  0.5848 (7) 

 

An acquisition length of 8 minutes 45 seconds was simulated with a TR of 4.4 seconds 

(119 volumes) and a BOLD echo time of 30ms. The breath-holding paradigm is detailed 

in figure 3, and table 2 lists the values and distributions of all MRI and physiological 

parameters used in the data simulations. Breath-holds were modelled using a boxcar 

function convolved with a gamma density function. Both hypercapnic and hypoxic 

variation was modelled, each with separate rise and fall times, taking into account the 

simultaneous changes in PaCO2 and PaO2 during breath-holding 26. Variation in local 

arrival times was modelled with a bulk delay of up to 3 TR’s (13.2 seconds). 

 

 
 

Simulated MRI data was high pass filtered (300 second cut-off for the BOLD data 

only), and Fourier transformed to create frequency domain ASL and BOLD data. A 

feature vector was constructed by concatenating physiological and sequence 

parameters; [Hb], CaO2,0, post-label delay, and the first 15 points of the frequency 

domain data (excluding the DC BOLD component). The implementation in this work 

used only the MRI magnitude data (no phase data). This is a change to the previous 
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implementation where both magnitude and phase data were used 19. The motivation for 

this change is to reduce the sensitivity to hemodynamic delays and is practicable due to 

the periodic nature of the breath-hold stimulus. We used LightGBM 20, an efficient 

gradient boosted decision tree, to learn the mapping between the MRI data and the two 

target parameters, CBF0 and CMRO2,0. LightGBM is a state-of-the-art gradient boosted 

decision tree algorithm that is computationally efficient and is suitable for training on 

big data sets. A summary of the machine-learning pipeline is presented in figure 4. 

 

 
 

50,000 simulations were used for training an individual regressor to predict CBF0 and 

CMRO2,0. Training of each network took less than 10 seconds on a 2013 MacBook Pro 

with 16GB of memory. We used the Python implementation of LightGBM (version 

3.0.0.99) for training with the maximum number of leaves per tree set to 1,000; all other 

parameters were default. To assess the performance of the LightGBM implementation 

10,000 additional simulations were performed using the distribution of parameters 

detailed in table 2, but with OEF0 limited to 0.15 to 0.65. 

 

Parameter Description Symbol Range / Distribution 

Mean Transit Time through 

all vascular compartments 

(seconds) 

MTT 

1.5 – 20 

Mean Capillary Transit 

Time (seconds) 

MTTcap 
0.5 – 4.0 

Oxygen Tension at the 

Mitochondria (mmHg) 

PmitO2 
Γ(2, 8) 

Linear BOLD scaling term 

(s-1g-βdLβ) 

A 
N (14, 2.0) 

Non-linear BOLD scaling 

constant 

β 
1.3 
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Capillary Blood Volume 

(ml/100g) 

CBVcap 
0.1 – 5 

Resting Cerebral Blood 

Flow (ml/100g/min) 
CBF0  0 – 200 

Arterial Blood Volume 

Fraction 
- 0.2 – 0.3 

Ratio between BOLD 

sensitive blood volume and 

capillary blood volume 

ρ 2 – 3.33 

Oxygen Extraction Fraction OEF 0.05 – 0.65 

 Haemoglobin 

concentration (g/dL) 

[Hb] 
10 – 18 

Resting Arterial Oxygen 

Tension (mmHg) 

PaO2,0 
90 – 130 

Change in Arterial Oxygen 

Tension (mmHg) 

ΔPaO2 
-35 – -25  

Resting Arterial Carbon 

Dioxide Tension (mmHg) 

PaCO2,0 
30 – 45 

Change in Arterial Carbon 

Dioxide Tension (mmHg) 

ΔPaCO2 
6 – 10 

Cerebral Vascular 

Reactivity (% CBF / 

mmHg) 

CVR 

1 – 6 

Hemodynamic delay 

(seconds) 

- 
0 – 13.2 

Shape of hemodynamic 

response function 

- 
Γ(0.5 - 1, 1) 

Effective permeability of 

capillary endothelium and 

brain tissue 

(μmol/mmHg/ml/min) 

 

3 

Hill Coefficient h 2.8 

Post Labelling Delay 

(seconds) 

PLD 
1 – 3 

Tagging Duration (seconds) - 1.5 

 

Table 2. List of simulated MRI and physiological parameters used in ML data 

generation and their distributions. 
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4 In-vivo experiments  

Fifteen healthy volunteers (4 males, mean age 27.4 ± 6.2 years) were recruited to the 

study. The local ethics committee approved the study and written informed consent was 

obtained from each participant. Blood samples were drawn via a finger prick prior to 

scanning and were analysed with the HemoCue Hb 301 System (HemoCue, 

Ängelholm, Sweden) to calculate the systemic [Hb] value for each participant. All MRI 

data were acquired using a Siemens MAGNETOM Prisma (Siemens Healthcare 

GmbH, Erlangen) 3T clinical scanner with a 32-channel receiver head coil (Siemens 

Healthcare GmbH, Erlangen). An 8 minute 45 second dual-excitation pseudo-

continuous arterial spin labelling (pCASL) and BOLD-weighted acquisition was 

acquired during repeated breath-holding (see figure 3 for experimental protocol). End-

tidal gas monitoring was performed throughout the acquisition via a nasal cannula using 

a rapidly responding gas analyser (PowerLab®, ADInstruments, Sydney, Australia). 

All volunteers practised the breath-hold task to ensure they understood the visual 

instructions, prior to the MRI session. 

 

The parameters for the in-house pCASL sequence 45 were as follows: post-labelling 

delay and label duration 1.5 seconds, EPI readout with GRAPPA acceleration (factor = 

3), TE1 = 10ms, TE2 = 30ms, TR = 4.4 seconds, 3.4 x 3.4 mm in-plane resolution, and 

15 (7mm) slices with 20% slice gap. A 3D magnetization-prepared rapid gradient-echo 

(MPRAGE) sequence was acquired for image registration purposes (1mm slice 

thickness, 1.14 x 1.14 in-plane image resolution, TR/TE = 2100/3.2 ms). FAST 47 was 

used for tissue segmentation to create high-resolution grey matter partial volume 

estimates. 

 

Post processing of the pCASL data included motion correction of the time series with 

the FSL tool MCFLIRT 48 followed by surround subtraction and surround averaging of 

TE1 and TE2 time series to create perfusion-weighted and BOLD-weighted time series 

respectively. After temporal smoothing, the BOLD time series was high pass filtered 

with a 300 second cut-off using the filter implementation in FSL. Each time series was 

then Fourier transformed, and the first 15 points of the magnitude data were included 

in a feature vector used for parameter estimation. The DC component from the BOLD 

data was excluded from the feature vector such that only 14 BOLD data points were 

included. The feature vector was completed with the inclusion of CaO2,0, [Hb], and the 

post-labelling delay (calculated per slice). CBF0 and CMRO2,0 parameter estimation 

was performed using the LightGBM estimator trained on simulated data.  

 

Subjects’ resting perfusion estimates were used to register the low-resolution functional 

data to high-resolution grey matter partial volume estimates. An inverse transform was 

used to create partial volume estimates in functional space. A grey matter partial 

volume estimate of 0.5 was taken as the threshold to create grey matter masks for 

statistical reporting of grey matter averages. 

5 Results - Simulations 

Cross-validation of the regression models show that CBF0 estimates have an R2 of 0.99 

and a RMSE of 0.3 ml/100g/min, while CMRO2,0 estimates have an R2 of 0.94 and a 

RMSE of 22.9 μmol/100g/min. This is a similar level of uncertainty observed in section 

2, when using known M and CBF0 values, demonstrating the ability of the regressor to 
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estimate CMRO2,0 directly from the simulated MRI data. In addition to quantifying the 

RMSE for individual voxels it is equally important to assess the bias in parameter 

estimates and their sensitivity to variation in cerebral physiology. Figure 5 shows the 

percentage error in CMRO2,0 estimates for key modelling parameters. The error plots 

typically have a bias of less than 10%, with maximum values approaching 20% at the 

extreme ranges of parameter values.  

 

 

 

The modelling parameter with the largest bias is PmitO2. However, if we plot a surface 

of the mean percentage CMRO2,0 error against MTT and PmitO2, figure 6, we see that 

the most significant bias only occurs when MTT is long and PmitO2 is high. Although 

this is potentially problematic in certain pathologies, it is unlikely to present a practical 

limitation, as ASL imaging at 3T is unlikely to provide useful data when transit times 

are very long. 
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Taken together, these results demonstrate that the implemented ML algorithm is able 

to accurately capture the modelled relationship between the MRI data and the 

physiological parameters across a wide distribution of physiological parameters. The 

lack of significant biases suggests the method should be sensitive to metabolic variation 

in both healthy and pathological tissue when applied in-vivo. 

5 Results – In Vivo 

All subjects were able to follow the experimental instructions and successfully 

performed the respiratory task. We were unable to obtain a blood sample from one 

subject out of fifteen scanned. This subject was excluded from further analysis, as they 

did not have a measured [Hb]. The average grey matter temporal signal (tSNR) to noise 

was 2.8 for the ASL acquisitions and 90 for the BOLD acquisitions. 

 

Table 3 provides a summary of average grey matter results each for subject. M values 

were calculated voxelwise using equation 6 to find an M value consistent with the 

estimated CBF0 and CMRO2,0. Matching parameter maps from each subject are 

displayed in figure 7. 

 

Subject 
[Hb] 

(g/dL) 
OEF 

CBF 

(ml/100g/min) 
CMRO2 

(μmol/100g/min) 
M 

(%) 

1 14.6 0.43 35.7 110.1 15.9 

2 10.4 0.48 42.9 108.1 12.3 

3 16.1 0.44 41.2 144.3 22.3 

4 13.0 0.42 45.3 123.9 15.2 

5 13.0 0.43 42.1 118.8 15.1 

6 13.4 0.44 40.1 121.9 16.4 

7 18.5 0.36 37.2 117.3 17.6 

8 13.6 0.39 47.7 126.8 14.9 

9 12.7 0.40 59.5 153.2 16.5 

10 13.0 0.43 46.4 132.6 16.5 

11 14.7 0.39 49.6 146.4 18.9 

12 13.4 0.41 39.4 108.9 13.9 

13 14.2 0.40 49.2 140.5 17.6 
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14 13.9 0.39 42.6 116.4 14.4 

Mean 13.9 0.42 44.2 126.4 16.3 

Std Dev 1.8 0.03 6.0 14.3 2.3 

COV 0.13 0.07 0.13 0.11 0.14 

 

Table 3. Mean grey matter parameter estimates and systemic [Hb] measurements for 

each subject. 
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Figure 7 shows example CBF0, OEF0, CMRO2,0, and M maps for each subject. As can 

be seen from the figure, and consistent with expected physiology, regions of high 

perfusion are matched with areas of high metabolic oxygen consumption, while the 

oxygen extraction fraction has little variation throughout the grey matter. However, 

OEF0 estimates in pure white matter voxels are artificially high. This is likely to be a 

consequence of the long arrival time of blood in white matter leading to a reduced 

perfusion signal. In accordance with expectations, the M maps contain higher values in 

grey matter compared to white matter (due to increased blood volume). However, due 

to the overestimation of OEF0 in white matter M is also overestimated here, reducing 

the expected grey matter to white matter contrast. 

 

A regression of grey matter OEF percentage against [Hb] and CBF produced the 

following model (p < 0.05).  

 

𝑂𝐸𝐹 =   69.7 − 1.3 ∙ [𝐻𝑏] − 0.23 ∙ 𝐶𝐵𝐹              (5) 
 

The parameter fits are significant for both CBF and [Hb] (p<0.05) and are in close 

agreement with the results reported by Ibaraki et al 2010 49 and with our previous work 

using dual-calibrated fMRI. This result suggests that the magnitude of parameter 

estimates made with the proposed method are appropriate, and that the method is able 

to detect underlying variations in physiology and metabolism, as predicted by the 

modelling. 

5 Discussion 

This work presents a practical and pragmatic method for mapping the rate of cerebral 

grey matter metabolic oxygen consumption with MRI. The approach is straightforward 

to apply and should be widely applicable to research as well as clinical studies. 

Although the approach requires validation with proven measures of cerebral oxygen 

metabolism, the agreement between in-vivo results and previously observed 

physiological relationships is encouraging and supports the validity of the method.  

 

We have chosen to demonstrate the method using a breath-holding protocol with 

simultaneously acquired BOLD and ASL data. This method provides rapid 

measurement of both M and CBF0, which are required for the calculation of oxygen 

extraction and CMRO2. We have also implemented a machine-learning analysis 

approach for rapid parameter estimation. However, the method can in principle be 

applied to any data that can provide a robust measurement of M and an estimate of 

resting CBF. To facilitate such analysis, we have provided a simple mapping from M 

and CBF0 to CMRO2,0.  

 

We show robust parameter estimates in a healthy young cohort based on a breath-hold 

of 20 seconds, repeated 10 times, and interleaved with paced breathing. Many breath-

hold repeats are needed to ensure sufficient signal to noise when modelling ASL data 

with a long effective TR. Despite some extra challenges that may arise for clinical 

applications, this breath-hold method is non-invasive and does not require specialist 

respiratory equipment for gas inhalation, therefore it has potential for wider 

applicability in research and clinical settings. Breath holding tasks during MRI have 

been used successfully in many clinical populations 50-56, mostly during BOLD fMRI 
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to map cerebrovascular reactivity. Task cues and practice sessions may need to be 

tailored to each clinical population to ensure adequate compliance. 

 

The limitations of the method are mostly shared with the dual-calibrated methodology, 

see 57 for a review. For example, for the method to be viable there must be a local 

increase in CBF with breath-holding, i.e., there must be a local vascular reserve. This 

condition may not be met in diseases such ischemic stroke, where arterial vessels are 

maximally dilated in an attempt to maintain local perfusion. Additionally, the method 

is expected to be vulnerable to large changes in the ratio of the capillary to 

deoxyhaemoglobin sensitive blood volumes, i.e. beyond the typical variation in 

vascular compartments referenced in this work. Although large changes in this ratio 

appear unlikely in many brain diseases, we might expect such vascular remodelling to 

occur in advanced or aggressive brain tumours 58. Therefore, we would encourage 

caution in interpreting the results in such applications. Nevertheless, the proposed 

method offers a simple means of mapping cerebral oxygen metabolism with MRI and 

has the potential to be a useful tool for both neuroscience research and clinical imaging. 
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