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Abstract 
 
The most significant common variant association for schizophrenia (SCZ) reflects increased expression of the 
complement component 4A (C4A). Yet, it remains unclear how C4A interacts with other SCZ risk genes and 
whether the complement system is more broadly implicated in SCZ pathogenesis. Here, we integrate several 
existing, large-scale genetic and transcriptomic datasets to interrogate the functional role of the complement 
system and C4A in the human brain. Surprisingly, we find no significant genetic enrichment among known 
complement system genes for SCZ. Conversely, brain co-expression network analyses using C4A as a seed 
gene revealed that genes down-regulated when C4A expression increased exhibit strong and specific genetic 
enrichment for SCZ risk. This convergent genomic signal reflected neuronal, synaptic processes and was 
sexually dimorphic and most prominent in frontal cortical brain regions. Overall, these results indicate that 
synaptic pathways—rather than the complement system—are the driving force conferring SCZ risk. 
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Introduction 
 
SCZ is a highly heritable and disabling neurodevelopmental, psychiatric disorder that affects ~1% of the general 
population1,2. Despite tremendous contribution to public health burden worldwide, there have been no 
fundamental advances in the treatment of SCZ since the 1980s, due in large part to the lack of novel, robust 
therapeutic targets. The recent success of genome-wide association studies (GWAS)3-5 brings hope that 
genetics can provide novel insights into underlying disease mechanisms and identify new biological pathways 
for intervention. However, the transition from GWAS to mechanistic insights is challenged by daunting levels of 
polygenicity and small effect sizes of associated variants2,6. One potential solution has been to incorporate 
GWAS results within the context of known molecular and cellular pathways, leveraging prior knowledge that 
genes do not act in isolation, to identify biological processes exhibiting robust genetic convergence7,8. 
 
The strongest and first-identified GWAS signal for SCZ lies in the major histocompatibility complex (MHC) region, 
traditionally known for its role in immunity. This association was subsequently shown to reflect in part complex 
genetic variation within the C4 locus9, where human C4 is encoded by two genes—C4A and C4B—which exist 
in different combinations of copy numbers, commonly ranging from zero to four copies of each gene per individual. 
Previous work demonstrated that such multiallelic copy number variation (mCNV) of C4 influences gene 
expression and that elevated expression of C4A, but not C4B, confers SCZ risk9. C4A encodes an early 
component of the classical complement pathway, a part of the innate immune system that serves to clear cellular 
debris and provide the first line of antimicrobial defense. The strength and novelty of this association has 
prompted speculation that C4A—and the complement system more broadly—may represent a novel therapeutic 
target for SCZ. However, apart from C4A, surprisingly little is known about the broader relevance of the 
complement system in SCZ pathogenesis. Furthermore, it remains unclear whether C4A interacts with other 
established risk factors.  
 
Within the brain, the complement system plays a distinct, non-inflammatory role as a mediator of synaptic 
pruning9-11, where it tags synapses for microglia-dependent elimination. Intriguingly, excessive pruning has long 
been hypothesized in SCZ12-14 and thought to reflect reduced cortical thickness15 as well as dendritic spine 
abnormalities16 observed in SCZ cases. However, these links have yet to be proven or tied to a concrete genetic 
mechanism. Complicating matters, the lack of evolutionary conservation of C4A has hindered direct investigation 
in model organisms. Whereas human stem cell-based assays have been used to study aspects of synapse 
elimination relevant to SCZ17, these systems fail to recapitulate the complete range of neuronal-glial interactions 
present in the human brain, nor have they been shown to reach postnatal levels of maturity18 when pruning 
largely occurs. As such, we reasoned that direct assessment in the human brain is an important first step to 
elucidate the specific molecular processes through which C4A increases risk for disease. 
 
In this study, we integrated large-scale genetic and brain transcriptomic datasets from PsychENCODE19,20 and 
GTEx21 to interrogate the functional role of C4A in the human brain and its relation to other SCZ risk factors. We 
used gene co-expression networks to capture coherent biological processes that covary across samples22 and 
hence provide an unbiased functional annotation for C4A. We took a seeded approach, identifying genes whose 
expression is either positively or negatively correlated with C4A expression. Genes positively correlated with 
C4A captured the known complement components as well as astrocyte, microglial, and NFkB signaling pathways, 
but they showed no genetic enrichment for SCZ. In contrast, genes negatively correlated with C4A reflected 
neuronal and synaptic pathways and exhibited strong convergent enrichment for SCZ genetic risk. Altogether, 
these results highlight the human brain-specific function of C4A and provide evidence for complex interplay 
between C4A and synaptic processes to confer SCZ risk. 
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Results 
 
Limited evidence for SCZ genetic association within the known complement system 
We first sought to determine whether genetic evidence supported SCZ association for any of the 57 genes 
annotated within the complement system (Methods). As GWAS loci are difficult to definitively map to causal 
genes, we assessed several lines of evidence supporting a putative association (Fig. 1a and Supplementary 
Table 1). We first evaluated the proximity of these genes to SCZ GWAS loci4,5. Outside the MHC region, nine 
genes were within 1 Mb of genome-wide significant loci (Fig. 1a). Of these, three were not considered brain-
expressed in PsychENCODE19, and several were within the same genomic region. Three genes—CD46, CSMD1, 
and CLU—were the closest gene to their respective index single-nucleotide polymorphism (SNP). CSMD1 and 
CD46 had support from Hi-C interactions in fetal and adult brain23, and CLU and CD46 had additional support 
from summary-data-based Mendelian randomization (SMR)24 at FDR < 0.05 and PHEIDI > 0.05 (Fig. 1a and 
Supplementary Table 1). Altogether, these findings provided a moderate level of evidence supporting SCZ 
association for up to four genes within the complement system. 
 
To determine whether this putative association of four complement system genes is greater than expected by 
chance, and to test whether the complement system as a whole is broadly enriched for SCZ GWAS signals, we 
used stratified LD score regression (sLDSC)25. We found no significant enrichment of SNP-based heritability in 
SCZ, testing a range of window sizes around each gene (Fig. 1b). A similar lack of enrichment was found using 
a second method, MAGMA26 (Fig. 1c). To account for the small number of genes in this pathway, we further 
expanded the annotation to include high-confidence protein-protein interactions (PPIs)27 for the complement 
system and still observed no significant enrichment. Finally, we tested whether any of these gene sets were 
enriched for genes implicated in SCZ through rare variant association studies, again finding no evidence of 
enrichment (Fig. 1d). These included genes within the eight recurrent CNV regions associated with SCZ28 and 
genes harboring an excess of rare, likely gene-disrupting (LGD) variants in SCZ probands29,30. Together, these 
results do not support broad genetic association for SCZ within the complement system. 
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Fig. 1. Limited evidence for broad genetic enrichment within the complement system. a, The complement system is composed 
of 57 genes which function together in a cascade to clear cellular debris, opsonize microbes, and mediate synaptic pruning. Here, we 
plot genes annotated within the complement system and corresponding evidence for SCZ genetic association4,5, based on proximity 
to GWAS loci, support from SMR (summary-data-based Mendelian randomization), and Hi-C interactions in fetal and adult brain. No 
enrichment of SCZ GWAS signals was observed for the complement system or an expanded annotation including high-confidence 
PPIs (InWeb3; n = 545 genes), using b, sLDSC or c, MAGMA with varying window sizes around each gene. All error bars denote 
standard errors of estimates of heritability enrichment, where the enrichment is defined as the proportion of SNP-based heritability 
over proportion of SNPs. d, The complement system did not show enrichment for SCZ risk genes from rare variant studies. 
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Seeded co-expression networks provide brain-specific functional annotation for C4A  
The previous analyses relied on known gene set annotations which are often incomplete, especially for biological 
processes occurring in the human brain31. Additionally, the non-inflammatory role of C4A—and the complement 
system—as an effector of synaptic pruning may not be fully reflected in these annotations. To address this, we 
turned to gene co-expression network analyses, which can provide an orthogonal, unbiased functional 
annotation based on correlated gene expression patterns across samples22. Here, we took a ‘seeded’ approach, 
identifying genes either positively or negatively correlated with C4A expression and using such ‘guilt-by-
association’ to draw biological inference. 
 
We first constructed a C4A-seeded co-expression network from frontal cortex samples of neurotypical controls 
in PsychENCODE19,20 (Fig. 2a). To mitigate the potential influence of germline mCNV, we imputed C4 structural 
alleles from nearby SNP genotypes9 in individuals of European ancestry (N = 812; Extended Data Fig. 1). We 
then selected control samples with high-quality imputation results carrying the most common diploid C4A copy 
number (CN = 2, N = 145; Extended Data Fig. 2; Methods). Using these samples, we identified 3,021 genes 
co-expressed with C4A at FDR < 0.05 (Supplementary Table 2). These included 1,869 positively co-expressed 
genes as well as 1,152 negatively co-expressed genes (herein referred to as “C4A-positive” and “C4A-negative” 
genes). As a positive control, the known complement signaling pathway was overrepresented among C4A-
positive genes (odds ratio (OR) = 17.2, P < 10-16), but not C4A-negative genes (OR = 0, P = 1). In addition, C4A-
positive genes were most strongly enriched for “immune effector process” and “response to cytokine” Gene 
Ontology (GO) terms (FDR’s < 10-41), whereas C4A-negative genes were most strongly enriched for 
“anterograde trans-synaptic signaling” and “chemical synaptic transmission” GO terms (FDR’s < 10-12). 
 
For replication, we generated an analogous seeded network in the independent GTEx dataset21. We observed 
highly significant overlap among C4A-positive and C4A-negative genes across these datasets (OR’s = 19 and 
16, P’s < 10-16, respectively; Extended Data Fig. 3). As an additional control, we generated 10,000 seeded 
networks using randomly sampled seed genes (Methods). The original C4A-positive network showed greater 
enrichment for the known complement components than 98% of all other networks generated in this manner 
(Extended Data Fig. 4a). 
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Fig. 2. C4A-seeded co-expression networks capture convergent genetic risk for SCZ. a, Overview of the generation of C4A-
seeded networks, using control samples from PsychENCODE and GTEx. Node size is proportional to |correlation| with C4A expression 
and edges represent gene-gene co-expression. Shown in red labels are SCZ risk genes from SCHEMA29 reaching FDR or exome-
wide (bold) significance. b, C4A-positive and C4A-negative genes showed enrichment for distinct GWAS signals, where C4A-negative, 
but not C4A-positive, genes showed enrichment for SNP-based heritability in SCZ. Results replicated in the independent GTEx dataset. 
The black line denotes Bonferroni-adjusted P value at 0.05/80. ADHD (attention-deficit/hyperactivity disorder), ALS (amyotrophic lateral 
sclerosis), ALZ (Alzheimer disease), AMD (age-related macular degeneration), ASD (autism spectrum disorder), BD (bipolar disorder), 
EA (educational attainment), IBD (inflammatory bowel disease), MDD (major depressive disorder), MS (multiple sclerosis), OCD 
(obsessive-compulsive disorder), PD (Parkinson’s disease), RA (rheumatoid arthritis), SLE (systemic lupus erythematosus), SWB 
(subjective well-being), T2D (type 2 diabetes). 
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C4A-negative, but not C4A-positive, genes show strong SCZ genetic enrichment  
We next sought to determine whether this network-based, brain-specific functional annotation for C4A better 
captured convergent genetic risk for SCZ. Consistent with our results above, we did not find enrichment of SNP-
based heritability for SCZ among C4A-positive genes (Fig. 2b). These genes were instead associated with 
autoimmune and chronic inflammatory conditions, such as inflammatory bowel disease (IBD), rheumatoid 
arthritis (RA), and lupus (SLE). In contrast, C4A-negative genes were strongly enriched for SNP-based 
heritability in SCZ and in several other neuropsychiatric disorders, to a lesser degree (Fig. 2b). These findings 
were replicated in GTEx, so we subsequently combined both networks from PsychENCODE and GTEx to yield 
a high-confidence seeded network (Methods). Notably, in this network, among the ten genes harboring rare loss-
of-function variants in SCZ probands at exome-wide significance29, eight were negatively co-expressed with C4A 
at FDR < 0.1 (TRIO, GRIN2A, XPO7, CUL1, GRIA3, HERC1, RB1CC1, CACNA1G), suggesting convergence 
of polygenic effects across the allelic spectrum (logistic regression, FDR = 9.0 × 10-4; Fig. 2a and Extended 
Data Fig. 4b; Methods). The remaining two genes (SETD1A, SP4) show peak expression in the fetal brain, 
suggesting alternative developmental mechanisms32. 
 
Network expansion with increased C4A copy number 
C4A expression is likely influenced by both genetic and environmental factors. In PsychENCODE, we observed 
that ~22% of the variation in C4A expression can be explained by germline mCNV (Extended Data Fig. 5). 
However, it remains unknown what effect these genetic factors have on C4A co-expression. To address this, we 
stratified all PsychENCODE samples with high-quality imputation results (N = 552) into three CNV groups based 
on diploid C4A copy number of < 2, 2, and > 2, representing a gradient of increasing genetic risk for SCZ 
(Extended Data Fig. 2; Methods). We then generated C4A-seeded networks for each group, using bootstrap to 
match the sample size (100 samples + 10,000 iterations). Remarkably, we observed a dramatic increase in 
network size as C4A copy number increased (Fig. 3a). With increased genomic copy number, the number of 
both C4A-positive and C4A-negative genes was substantially larger, indicating that C4A is more strongly 
connected and likely plays more of a driver role (Extended Data Fig. 6). This network expansion was preserved 
across a range of correlation and FDR thresholds (Fig. 3b) and was not associated with technical factors such 
as postmortem interval (PMI) or RIN. Furthermore, this network expansion was not observed for C4B-seeded 
networks, demonstrating the specificity of this association (Fig. 3c and Extended Data Fig. 7; Methods). 
Together, these results show that genotypes conferring increased risk for SCZ are associated with distinct brain 
gene co-expression networks.  
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Fig. 3. Strong network expansion with increased C4A copy number. a, C4A-seeded co-expression networks were generated 
following stratification of the PsychENCODE dataset by imputed C4A copy number. A substantial network expansion was observed 
with increased C4A copy number. Each network was generated via bootstrap (100 samples, 10,000 iterations) for robustness. Edges 
represent Pearson’s correlation coefficient (PCC) > 0.5 and edge weights represent the strength of the correlation. Probable SCZ risk 
genes implicated by common or rare variant studies are highlighted in bold. b, C4A-seeded networks expanded in size regardless of 
the applied PCC threshold. c, The nonlinear network expansion was specific to C4A as a seed gene, and not observed for C4B. Two 
genes, GRIA3 and MVP, are shown to illustrate this specificity. Shown are fitted linear models with 95% confidence bands. 
 

 
Seeded networks capture C4A-associated pathways and cell-types 
We then sought to understand the biological pathways and cell-types captured by these C4A-seeded networks. 
As above, C4A-positive and C4A-negative genes were enriched for distinct GO terms: C4A-positive genes 
for inflammatory pathways and C4A-negative genes for synapse-related pathways (Supplementary Fig. 1). 
Overlap of these genes with a set of previously characterized brain co-expression modules19 confirmed their 
broad relationship to inflammatory and synaptic function, respectively (Fig. 4a and Supplementary Fig. 2).  
 
Notably, C4A-positive genes were strongly enriched for co-expression modules previously shown to represent 
astrocyte, microglial, and NFkB signaling pathway genes. These included several canonical markers of 
astrocytes (e.g. GFAP, AQP4) and microglia (e.g. FCGR3A, TYROBP); critical components of the NFkB 
signaling pathway (e.g. NFKB2, IL4R, RELA); as well as known members of the classical complement pathway 
(e.g. C1R, C1S). Conversely, C4A-negative genes showed enrichment for neuronal and synaptic processes, 
stronger at higher copy number (Supplementary Fig. 2). These included several glutamate receptors (e.g. 
GRIN2A, GRM1, GRIA3), calcium regulators (e.g. CAMK4, CAMTA1, CAMKK2), and potassium channels (e.g. 
KCNK1, KCNQ5, KCNIP3). Other notable C4A-negative genes included the serotonin receptor HTR2A, the 
dopamine receptor DRD1, the major neuronal splicing regulator NOVA1, and the zinc transporter SLC39A10. 
These C4A-positive and C4A-negative genes were also strongly enriched for genes up- and down-regulated in 
SCZ brain19,33, respectively (Fig. 4b), further connecting C4A expression to dysregulated molecular pathways in 
SCZ brain. 
 
  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2021. ; https://doi.org/10.1101/2020.03.03.975722doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.03.975722
http://creativecommons.org/licenses/by-nc/4.0/


 10 

To further refine the cell-types associated with these networks, we evaluated whether C4A-positive and C4A-
negative genes were expressed in specific cell-types defined by single-cell/nucleus RNA-seq34. At low copy 
number (i.e. CN < 2), C4A-positive genes showed the strongest association in astrocytes, but with subsequently 
higher copy number, they became more broadly associated with microglia and endothelial cells (Fig. 4c). In 
contrast, C4A-negative genes were most highly expressed in five neuronal cell-types—cortical interneurons, 
pyramidal (hippocampus CA1), pyramidal (somatosensory cortex), medium spiny neurons, and striatal 
interneurons. Remarkably, these cell-types have all been previously shown to be enriched for SCZ GWAS 
signals35 (Fig. 4c and Supplementary Fig. 3). These findings were replicated across multiple other single-
cell/nucleus RNA-seq datasets from either mouse or human brain (Fig. 4c and Supplementary Fig. 4). Taken 
together, these results indicate that increased C4A copy number is associated with brain co-expression changes 
leading to down-regulation of neuronal, synaptic genes—a putative transcriptomic signature of synaptic pruning. 
 

 
Fig. 4. C4A-seeded co-expression networks identify transcriptional correlates of synaptic pruning. a, The top C4A-positive and 
C4A-negative genes showed distinct enrichments for neurobiological pathways and cell-types. With increasing C4A copy number, 
C4A-positive genes showed greater enrichment for microglia and NFkB pathways, while C4A-negative genes showed greater 
enrichment for neuron- and synapse-related modules. OR = odds ratio from two-sided Fisher’s exact test. Asterisks denote significance 
at Bonferroni-corrected P < 0.05. b, C4A-positive and C4A-negative genes were enriched for differentially expressed genes in SCZ 
brain from PsychENCODE19 and LIBD BrainSeq33. Asterisks denote significance from Fisher’s exact test at nominal P < 0.05. c, C4A-
positive and C4A-negative genes were expressed in distinct cell-types. Expression-weighted cell-type enrichment (EWCE) was 
performed using mouse cortical/subcortical single-cell RNA-seq data35 and human cortical single-nucleus RNA-seq data20. Asterisks 
denote significance at FDR < 0.05. C4A-positive and C4A-negative genes are shown in red and blue, respectively. 
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Sexual dimorphism of C4A effects in the human brain 
SCZ is more prevalent in males compared with females, and recent work has identified larger effect sizes of C4 
alleles in males compared with females36. Although no sex differences in C4A expression were reported in GTEx, 
protein levels of C3 and C4 were elevated in cerebrospinal fluid (CSF) from males36. Here, in the independent 
PsychENCODE dataset, we replicated these findings, finding no sex differences in C4A expression in the brain 
(Fig. 5a). Notably, however, we observed a significant increase in C4A network size in males, consistent with 
larger effects in males (Fig. 5b; Methods). Females showed a reduction in the number of both C4A-positive and 
C4A-negative genes, indicating broad sex-specific effects (Extended Data Fig. 8a).  
 
To more systematically interrogate the neurobiological mechanisms contributing to these sexually dimorphic 
effects, we next sought to identify the specific pathways and cell-types that were differentially co-expressed with 
C4A across sexes. To do so, we ranked genes by the magnitude of C4A co-expression in males and females 
separately, performed gene set enrichment analysis (GSEA) on this ranked list, and compared the resulting 
enrichments (Methods). To ensure the robustness of these results, we further generated an empirical null 
distribution of enrichment differences between males and females with 10,000 randomly sampled seed genes 
(Extended Data Fig. 9; Methods). As a positive control, complement-related pathways showed concordant 
enrichment among C4A-positive genes across both sexes (Fig. 5c). In contrast, a number of pathways and cell-
types showed significantly discordant effects across sexes. In males, C4A-positive genes were strongly 
associated with lipid and mTOR signaling genes, while these enrichments were absent in females or even 
showed the opposite direction of effect. Likewise, strong sex-discordant effects were observed for upper layer 
excitatory neuron markers37 (e.g. Ex1 and Ex2) and several cilia-related pathways among C4A-negative genes. 
Together, these results suggest that heightened effects of C4A in males may reflect distinct activation of mTOR 
signaling and disruption of primary cilia-related processes in excitatory neurons. 
 

 
Fig. 5. Sex differences in C4A co-expression highlight male-accentuated effects on mTOR signaling and neuronal cilia. a, 
Overall expression levels of C4A did not differ between sexes in PsychENCODE (N = 98 and 37 for male and female samples, 
respectively; two-sided Welch’s t-test, P = 0.42). b, Conversely, C4A co-expression network size was much larger in males (N = 98, 
37 for males and females; permutation test, P < 10-5). Bootstrapped distributions were generated to match for sample size between 
sexes. c, To identify biological pathways and cell-types reflected by these sex-specific C4A co-expression patterns, we performed 
gene set enrichment analysis (GSEA). Genes were ranked by their C4A co-expression magnitude in male and female networks 
separately, and resulting enrichments were compared. Left, sex-concordant terms included positively associated complement 
activation. Right, sex-discordant terms included lipid and mTOR signaling genes as well as excitatory neuron markers and cilia-related 
pathways. Enrichment differences that were significant when compared to a null distribution of 10,000 random seed genes are 
highlighted in red. All boxplots show median and interquartile range (IQR) with whiskers denoting 1.5 × IQR.  
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Spatiotemporal profiles highlight frontal cortex-predominant C4A effects  
Many biological processes occurring in the human brain are region-specific and developmentally regulated38.  To 
determine whether certain regions are more susceptible to the effects of C4A, we next compared C4A network 
size across eight distinct brain regions from GTEx. Remarkably, we observed large regional differences with 
frontal and anterior cingulate cortex exhibiting the greatest degree of C4A co-expression (Fig. 6a; Methods). 
This result was robust to different threshold metrics (Extended Data Fig. 8b) and was not driven by differences 
in expression level across brain regions (Fig. 6b). These results indicate that frontal cortical regions may be 
particularly vulnerable to C4A-mediated neurobiological processes. 
 
We next leveraged the fact that PsychENCODE contains the largest collection of uniformly processed brain 
samples from individuals with SCZ (N = 531) as well as neurotypical controls (N = 895) across the adult lifespan. 
To confer temporal resolution, we stratified samples into overlapping time windows, while controlling for C4A 
copy number, sex, and diagnosis (Methods). C4A co-expression reached its peak in the 50- to 80-year-old period 
for neurotypical controls. In comparison, a leftward age shift in co-expression peak was observed in SCZ cases 
(Fig. 6c and Extended Data Fig. 8c). These findings are distinct from the temporal trajectory of C4A expression, 
which increased monotonically with age (Fig. 6d). 
 

 
Fig. 6. Spatiotemporal patterns of C4A co-expression implicate frontal cortical regions and early adult timepoints in SCZ. a, 
C4A exhibited the greatest degree of co-expression in frontal cortical brain areas. The plot shows the bootstrapped distribution of the 
number of co-expressed genes with C4A at FDR < 0.05 across eight different brain regions in GTEx (N = 36, 38, 45, 47, 39, 45, 39, 
and 45 for frontal cortex, anterior cingulate cortex, hippocampus, caudate, putamen, cerebellum, hypothalamus, and nucleus 
accumbens, respectively ). All pairwise comparisons were statistically significant (permutation test, P < 10-5). b, In contrast with co-
expression patterns, frontal cortical regions did not show greater C4A expression. The plot shows C4A expression in GTEx samples 
used for the bootstrap (N = 36, 38, 45, 47, 39, 45, 39, and 45 for frontal cortex, anterior cingulate cortex, hippocampus, caudate, 
putamen, cerebellum, hypothalamus, and nucleus accumbens, respectively). c, The temporal peak of C4A co-expression was earlier 
in SCZ cases (30- to 60-year-old window) compared to controls (50- to 80-year-old window). Bootstrapped distributions were generated 
across overlapping time windows using samples from PsychENCODE (N = 30, 42, 57, 68, 47, and 32 for control samples in each age 
bin; N = 36, 46, 55, 45, and 47 for SCZ samples). Asterisks denote significant differences in the network size between SCZ cases and 
controls (permutation test, P < 10-5). d, In contrast with co-expression patterns, C4A showed monotonically increasing expression 
across age in frontal cortex samples from PsychENCODE (N = 1730). Shown is a LOESS smooth curve with 95% confidence bands. 
All boxplots show median and interquartile range (IQR) with whiskers denoting 1.5 × IQR. 
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Genetic and environmental drivers of C4A expression alteration in SCZ brain 
Finally, we sought to determine the extent to which C4 mCNV could explain C4A expression alteration in SCZ 
brain, using frontal cortex RNA-seq data from individuals with SCZ (N = 531) and non-psychiatric controls (N = 
895). As previously reported19, we identified strong up-regulation of C4A consistent with previous independent 
literature9,39. When we adjusted for C4A copy number, we continued to observe differential expression for C4A 
(Fig. 7a and Extended Data Fig. 10), suggesting that additional factors contribute to overexpression of C4A in 
SCZ9,17. Similar results were observed for several other complement system genes previously found19 to be 
differentially expressed in SCZ (Fig. 7a and Extended Data Fig. 10).  
 
To assess the specificity of these findings for SCZ, we performed an analogous analysis using frontal cortex 
data from individuals with bipolar disorder (BD; N = 217) and the same controls (Extended Data Fig. 10). Despite 
strong genetic and transcriptomic correlations between SCZ and BD39, C4A expression was not altered in BD, 
and the broader complement system exhibited minimal differential expression. This notable contrast between 
SCZ and BD remained when downsampling to the same number of subjects, indicating that the SCZ-BD 
differences were not driven by statistical power (Extended Data Fig. 10). Additionally, brain samples from 
individuals with SCZ and BD were of similar quality with respect to PMI or RIN (Welch’s t-test, P > 0.5) and many 
of the same neuroleptic medications are used to treat both conditions, indicating that these factors are unlikely 
to be key drivers of observed differences. 
 
This additional component of C4A up-regulation in SCZ brain could be driven by other genetic factors (e.g. trans-
eQTL) and environmental influences, or may simply represent a consequence of disease. To begin to identify 
potential non-genetic contributors, we turned to GTEx which has systematically compiled donor medical history. 
In addition to C4A copy number, we identified several covariates that were significantly associated with increased 
brain C4A expression—namely, age, smoking status, and a history of liver disease (Fig. 7b). This is notable 
given the substantially elevated rate of smoking in individuals with SCZ and some epidemiological evidence that 
smoking may increase risk for SCZ40. Altogether, these data support potential convergent effects of genetic (i.e. 
C4 variation) and environmental (i.e. smoking) risk factors in disease risk. 
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Fig. 7. Broad, bimodal differential expression of genes within the classical complement pathway in postmortem brains from 
individuals with SCZ. a, Differential gene expression (DGE) in SCZ is shown for genes within the classical complement pathway. 
Early components were mostly up-regulated, whereas late components were down-regulated in SCZ. Genes are colored by DGE t-
statistic on the left and t-statistic obtained while adjusting for C4A copy number on the right. Asterisks denote significance at FDR < 
0.1. Bottom, cell-type specificity of complement receptors was calculated using snRNA-seq data from ref. 50. Oligo (oligodendrocyte), 
OPC (oligodendrocyte progenitor cell), Astro (astrocyte), Endo (endothelial), Micro (microglia), GABA (interneuron), Ex (excitatory 
neuron). b, In GTEx, we characterized the effect of documented medical comorbidities and other relevant biological covariates on 
brain C4A expression. In addition to C4A copy number, age, smoking, and a history of liver disease showed significant positive 
associations (one-sided likelihood ratio test). 
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Discussion 
 
In this study, we integrated multiple existing, large-scale genetic and transcriptomic datasets to interrogate the 
functional role of C4A—and the complement system more broadly—in the human brain and their relation to 
underlying core pathophysiology of SCZ. We find no evidence that the known complement system and its protein 
interactors are enriched for SCZ genetic signals. Using C4A-seeded co-expression networks, we again find that 
genes positively co-expressed with C4A show no appreciable enrichment for SCZ risk, whereas genes negatively 
co-expressed with C4A exhibit strong and specific enrichment for SCZ risk, identifying for the first time, a 
convergent genomic signal. These C4A-positive genes were associated with glial and inflammatory pathways, 
while C4A-negative genes were associated with neuronal and synaptic pathways, which is consistent with their 
interpretation as putative molecular correlates of synaptic pruning9-11,16,17. Additionally, the seeded networks 
expanded in size with increased genomic copy number and exhibited sexual dimorphism and spatiotemporal 
specificity, suggesting potential vulnerability of the adult male frontal cortex to the effects of C4A. Overall, these 
results highlight convergence of SCZ polygenic effects and indicate that synaptic processes—rather than the 
complement system—are the driving force conferring SCZ risk (Fig. 8). 
 

 
Fig. 8. A model of the functional role of C4A in SCZ pathogenesis. mCNV of C4 genes as well non-genetic factors such as smoking 
influence C4A expression. C4A expression is positively associated with glial and inflammatory processes and negatively associated 
with neuronal and synaptic processes, which in turn are enriched for SCZ genetic signals. 
 

 
We first observed that SCZ genetic risk is not enriched among complement system genes—despite testing 
multiple classes of genetic variation (i.e. GWAS, rare variants, large recurrent CNVs), using multiple statistical 
methods with varying genomic window sizes, and expanding the annotation to include high-confidence PPIs or 
C4A-positive genes. This was surprising given the integral role of C4A in the complement system10, the strength 
of the C4A association9, and the high level of polygenicity observed in SCZ4,5. This does, however, comport with 
recent East Asian SCZ GWAS results41, which did not observe an MHC association, despite a genetic correlation 
of 0.98 with European GWAS results. These findings imply that dysregulation of the complement system is 
neither necessary nor sufficient for the development of SCZ and fit with an alternative explanation that C4A may 
be more associated with the progression or severity of illness. Moreover, the logical extension of these 
observations predicts that drugs targeting this pathway are unlikely to be a panacea. 
 
How then does C4A impart risk for SCZ? We reasoned that the functional role of C4A in the human brain may 
not be well captured by manually curated gene sets and pathway annotations, which are often incomplete. To 
address this, we leveraged co-expression networks and subsequent guilt-by-association to generate an 
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unbiased, human brain-relevant functional annotation for C4A. As expected, C4A-positive genes capture the 
known complement system and reflect inflammatory processes, including astrocyte, microglial, and NFkB 
signaling pathways—all of which are dysregulated in SCZ brain19, but none of which show an appreciable 
enrichment for genetic risk. Similar changes have been observed in other neuropsychiatric disorders19,39 and 
may reflect environmental influences (e.g. smoking) or represent the consequence of a more proximal (e.g. 
synaptic) pathology. In contrast, C4A-negative genes reflect dysregulated neuronal and synaptic pathways, 
exhibiting strong genetic enrichment for SCZ. Notably, the network size and connectivity expand substantially 
with increased C4A copy number, indicating that C4A plays more of a driver role with increasing genetic risk for 
SCZ.  
 
We find that C4A CNV is strongly associated with—but does not fully explain—the observed C4A up-regulation 
in SCZ brain. Similarly, although our results suggest that C4A-mediated SCZ risk occurs through synaptic 
mechanisms rather than complement signaling, several additional complement system genes exhibit differential 
expression in SCZ, even when controlling for C4A copy number. This included up-regulation of early components 
(e.g. C1R, C1S), but also significant down-regulation of downstream components including known complement 
receptors (e.g. ITGAM, ITGAX, C3AR1, C5AR2). We hypothesize that some of these observed transcriptomic 
alterations reflect a compensatory response to synaptic dysfunction, as C4A up-regulation has also been 
observed in ASD brain19, despite not being considered a genetic risk factor. Additionally, we find that brain C4A 
expression is elevated with smoking. Intriguingly, smoking is associated with diffuse, dose-dependent cortical 
thinning42 and there is epidemiological evidence supporting a directional effect of smoking on SCZ risk40, 
although confounding factors (e.g. cannabis use) likely also contribute43. Overall, these results highlight a 
neurobiological mechanism through which genetic and environmental risk factors converge and contribute to 
SCZ risk. 
 
Finally, comparison of the network size provided additional insights into the spatiotemporal and sex-specific 
effects of C4A. Males showed greater degree of C4A co-expression, despite comparable C4A expression level 
across sexes, which is consistent with larger effects of C4A alleles in males relative to females36. Compared to 
its female counterpart, male C4A-seeded network showed greater activation of lipid and mTOR signaling 
pathways as well as greater disruption of cilia-related processes and excitatory neuron markers (Fig. 8). Both 
mTOR signaling and primary cilia are known to be critical regulators of neurogenesis and synaptic pruning44-47. 
Primary cilia, the solitary microtubule-based structure present in most neurons, glia, and their progenitors, also 
serve as a major hub for signaling pathways, including mTOR, Sonic hedgehog (Shh), Wnt, autophagy, and 
ubiquitin-proteasome system48, several of which have intriguing links to SCZ and other neurodevelopmental 
disorders29,49 that warrant further experimental investigation. Together, these findings highlight several potential 
mechanisms underlying greater disease vulnerability in males. Importantly, these observations are only evident 
through analysis of co-expression, rather than expression patterns alone, demonstrating the importance of this 
approach. 
 
We note that several important questions remain for C4A in relation to SCZ. Although we identify C4A-specific 
interaction with C4A copy number variation, C4A and C4B co-expression partners are highly similar in general, 
making it difficult to disambiguate the effects of C4A from C4B. Further work in characterizing the biochemical 
properties of C4 proteins in the human brain is necessary to fully elucidate the mechanism through which C4A 
exerts larger effects in SCZ. In addition, human cell-types that express C4A in either physiology or 
pathophysiology remain unclear, due to dropout events in single-cell/nucleus RNA-seq. Although C4A-positive 
genes at low copy number (i.e. CN < 2) show strong and selective enrichment for astrocytes, and expression 
specificity of C4A is similarly the highest in astrocytes according to various mouse single-cell RNA-seq datasets35, 
this remains to be validated for humans in future studies. Spatiotemporal resolution is also relatively restricted 
in this study, since the scope of our analyses is inherently limited to the range of available functional genomic 
resources, and our use of post-mortem samples is limited to retrospective analyses which cannot directly infer 
causal relationships. As larger and more diverse samples spanning all SCZ-relevant regions (e.g. striatum) and 
developmental time points become available, spatiotemporal specificity will undoubtedly improve. Likewise, as 
human brain genomic panels increase in size, we anticipate additional insights to be gained from distal genetic 
regulators (e.g. trans-eQTL) of C4A. Lastly, model systems capable of fully recapitulating postnatal neuronal-
glial interactions in the human frontal cortex will be necessary for experimental validation. 
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Methods 
 
Annotation of the complement system and its protein-protein interactions (PPIs) 
We compiled a list of 57 genes annotated as part of the complement system in the HUGO Gene Nomenclature 
Committee (HGNC) database (genenames.org)51. Of these, 42 genes were found to be expressed in the 
PsychENCODE RNA-seq data, after filtering for genes with TPM > 0.1 in at least 25% of samples19. Those 
missing (n = 15 genes) due to low expression included: C6, C8A, C8B, C9, FCN2, MBL2, C4BPA, C4BPB, 
CFHR1, CFHR2, CFHR3, CFHR4, CFHR5, F2, and CR2. The annotation was also expanded by including high-
confidence human PPIs for the complement system with score > 0.7 from the InWeb3 database27 (n = 57 + 488 
= 545 genes) (Supplementary Table 1). 
 
Evaluation of the complement system for common variant association 
We evaluated the proximity of the complement components to genome-wide significant loci from two recent SCZ 
GWAS studies4,5. Four genes (C4A, C4B, CFB, C2) were within the MHC region. Excluding the MHC, nine genes 
(SERPING1, CLU, CSMD1, CD46, CD55, CR1, CR2, C4BPA, and F2) were within 1 Mb of GWAS loci. These 
genes were subsequently assessed for Hi-C interactions in fetal and adult brain23 and significance from SMR 
method using brain and whole blood eQTL panels from PsychENCODE19 and eQTLGen52, respectively.  
 
Stratified LD score regression (sLDSC) 
sLDSC25 was used to test whether a gene set of interest is enriched for SNP-based heritability in various 
phenotypes (i.e. disease and trait)5,53-70. SNPs were assigned to custom gene categories if they fell within ±100 
kb of a gene in the set. For the complement system, we also tested a range of window sizes (±1 kb to 1 Mb) 
around each gene. These categories were then added to a full baseline model that includes 53 functional 
categories capturing a broad set of genomic annotations. The MHC region was excluded from all analyses by 
default. Enrichment was calculated as the proportion of SNP-based heritability accounted for by each category 
divided by the proportion of total SNPs within the category. Significance was assessed using a block jackknife 
procedure, followed by Bonferroni correction for the number of phenotypes tested. 
 
MAGMA  
MAGMA (v1.07b)26 was used to assess enrichment of SCZ GWAS signals among the complement system. An 
annotation step was first performed in which SNPs in a specified window surrounding each gene were combined, 
while accounting for linkage disequilibrium (LD). We tested several window sizes ranging from ±0 kb to 100 kb, 
and LD was calculated using the European panel of 1000 Genomes Project71. A competitive gene-level analysis 
was then performed using the complement annotations defined above. 
 
Rare variant enrichment 
Multiple gene sets were assessed for enrichment of rare variants identified in neurodevelopmental disorders. 
These included: ~100 high-confidence autism spectrum disorder (ASD) risk genes harboring rare de novo 
variants72,73; ASD risk genes harboring rare inherited variants74; genes harboring recurrent de novo copy number 
variants associated with ASD or SCZ, as compiled in ref. 39; genes harboring an excess of rare exonic variants 
in ASD, SCZ, intellectual disability (ID), developmental delay (DD), and epilepsy as assessed through an 
extended version of transmission and de novo association test (extTADA)75; syndromic and highly ranked (1 and 
2) genes from SFARI Gene database (https://gene.sfari.org/); genes harboring disruptive and damaging ultra-
rare variants (dURVs) in SCZ cases30; a list of high-confidence epilepsy risk genes compiled in ref. 76; risk genes 
for developmental disorders harboring rare de novo variants77; and ten high-confidence SCZ risk genes 
harboring rare exonic variants as identified by the SCHEMA consortium29. For binary gene sets, statistical 
enrichment analyses were performed using logistic regression, correcting for linear- and log-transformed gene 
and transcript lengths as well as GC content. For dURVs, a two-step procedure was used, first creating a logistic 
regression model for genes harboring dURVs in controls and a second model for those affected in cases and 
controls. The likelihood ratio test (LRT) was used to assess significance. For SCHEMA and extTADA gene sets, 
the -log10-transformed P value and posterior-probability (PP) was used, respectively, in place of binary annotation 
in the above logistic regression model. All results were FDR-corrected for multiple comparisons. 
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The PsychENCODE brain genomic dataset 
Genotype array and frontal cortex RNA-seq data from Freeze 1 and 2 of PsychENCODE were obtained from 
www.doi.org/10.7303/syn12080241. This consisted of uniformly processed data from six studies: BipSeq, 
LIBD_szControl, CMC_HBCC, CommonMind, BrainGVEX, and UCLA-ASD (see Table S1 and Fig. S33 in ref. 
20). Genotype data for these individual studies were previously harmonized20 through phasing and imputation 
with the Haplotype Reference Consortium (HRC) reference panel. We used post-QC RNA-seq data that were 
fully processed, filtered, normalized, and extensively corrected for all known biological and technical covariates 
except the diagnosis status (see Materials/Methods and Fig. S3 in ref. 19). Of note, RNA-seq reads were 
previously aligned to the hg19 reference genome with STAR 2.4.2a and gene-level quantifications calculated 
using RSEM v1.2.29. Genes were filtered to include those with TPM > 0.1 in at least 25% of samples19. The 
same expression data were used for all downstream analyses unless otherwise stated. 
 
Imputation of C4 structural alleles 
The C4 locus harbors multiallelic CNV (mCNV), where human C4 encoded by two genes (C4A and C4B) can 
exist in different combinations of copy numbers. The two paralogs are defined based on four amino acid residues 
in exon 26, which are thought to alter binding affinities for distinct molecular targets. Either paralog can also 
contain a human endogenous retroviral insertion (C4-HERV) in intron 9, which then functions as an enhancer 
and preferentially increases C4A expression9. Recent work demonstrated that four common C4 structural alleles 
are in linkage disequilibrium (LD) with nearby SNPs9 and hence can be accurately imputed from genotype array 
data. Accordingly, we imputed C4 alleles in six studies from PsychENCODE separately using Beagle4.178 with 
a custom HapMap3 CEU reference panel as described9. We began with the HRC imputed genotype data and 
filtered for high-quality SNPs by setting the R2 > 0.3 threshold from Minimac3. We restricted imputation and 
subsequent downstream analyses to samples of European ancestry (N = 812) based on genetic principal 
component analysis with the 1000 Genomes Project reference panel71 (Extended Data Fig. 1). There was an 
overlap of individuals in BipSeq, LIBD_szControl, and CMC_HBCC studies, which used different SNP 
genotyping platforms (see Table S1 in ref. 20). For these duplicate samples, the concordance rate of imputation 
result was high (N = 181/204 individuals with matching result), indicating robust C4 imputation. For 23 samples 
with discordant imputation results, we calculated the average dosage for each structural allele and inferred the 
most likely pair of structural alleles.  
 
Effect of C4 variation on gene expression 
Inferred copy number of C4 structural elements (C4A, C4B, and C4-HERV) based on the imputed C4 alleles was 
associated with C4A and C4B RNA expression using a linear model. Both best-guess copy number and 
probabilistic dosage were tested for association, which yielded an analogous result. As shown previously9,19,79, 
C4A expression was strongly associated with C4A copy number (R = 0.37, P = 2.8 × 10-27) and C4-HERV copy 
number (R = 0.33, P = 7.9 × 10-22), but not with C4B copy number (R = -0.03, P = 0.39; Extended Data Fig. 5). 
Likewise for C4B, expression was associated with corresponding gene dosage (R = 0.12, P = 3.8 × 10-4), but 
not with C4A copy number (R = -0.05, P = 0.15) or C4-HERV copy number (R = -0.05, P = 0.17). 
 
Construction of C4A-seeded networks 
To ensure imputation quality and thereby draw robust biological inference, we restricted our network analyses 
to samples with average imputed probabilistic dosage > 0.7 (N = 552/812). Most studies had high probabilistic 
dosage, except BrainGVEX and UCLA-ASD. In the case of BrainGVEX, this was because there were many 
missing SNPs in the vicinity of C4 locus. This filtering step hence removed most samples with low-quality 
imputation from BrainGVEX and UCLA-ASD. Neurotypical control samples with diploid C4A CN = 2 (N = 145/552) 
(Extended Data Fig. 2) were then used to generate a C4A-seeded network by calculating pairwise PCC between 
C4A and 25,774 features, which included 16,541 protein-coding and 9,233 noncoding genes based on Gencode 
v19 annotations (Supplementary Table 2). To test whether this network is enriched for the known complement 
components than can be expected by chance, we randomly sampled 10,000 seed genes and generated 10,000 
seeded networks. For each network, genes positively correlated with the seed gene at FDR < 0.05 were 
assessed for overlap with the annotated complement system (n = 57 genes), while genes negatively correlated 
with the seed gene at FDR < 0.05 were assessed for overlap with genes annotated within the SynGo database31 
(n = 1,103 genes; Extended Data Fig. 4).  
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To capture broad genetic effects of C4A CNV on C4A co-expression, we stratified PsychENCODE samples into 
three CNV groups (i.e. CN < 2, CN = 2, and CN > 2). For control samples, there were at least 54 samples in 
each group (Extended Data Fig. 2). To account for uneven sample sizes, we used 10,000 bootstrapping 
replicates to downsample to 50 samples across each group. We calculated PCC in every iteration as above and 
eventually took the median PCC and its corresponding P value. Generated using only the control samples, these 
networks were not influenced by case-control status and disease-associated confounding factors (e.g. 
medication and RNA degradation effects). Additionally, the control samples were balanced in covariates such 
as age, RIN, postmortem interval (PMI), brain pH, and sex (Supplementary Fig. 5).  
 
To maximize sample size and hence power to detect significant co-expression, particularly for rarer C4A CNV 
groups (i.e. CN < 2 and CN > 2), we also constructed the seeded networks by using every sample that passed 
the above quality control (N = 552). Combining all samples irrespective of the diagnosis status led to a minimum 
of 109 samples in each CNV group (Extended Data Fig. 2), allowing us to generate the networks with bootstrap 
by downsampling to 100 samples. Such all-sample networks yielded analogous results to control-only networks 
in terms of the network expansion with respect to C4A CNV, effect sizes of C4A co-expression, and the patterns 
of pathway, cell-type, and genetic enrichments (Supplementary Fig. 6). Given the robustness of these network 
findings, we present results from all-sample networks. For visualization of the C4A-seeded networks, a hard-
threshold of PCC > 0.5 and FDR < 0.05 was applied. All network plots were drawn using igraph and ggplot2 
packages in R.  
 
The GTEx brain genomic dataset 
GTEx v7 was used for external replication21. We downloaded the GTEx genotype data from dbGaP (accession 
phs000424.v7.p2) and imputed C4 alleles in samples of European ancestry according to genetic principal 
component analysis. We obtained transcript-level counts from www.gtexportal.org and derived gene-level counts 
using tximport package in R. Briefly, RNA-seq reads were aligned to the hg19 reference genome with STAR 
2.4.2a and transcript-level counts quantified with RSEM v1.2.22. We started with samples and features that were 
used for GTEx eQTL analyses. We then dropped samples from non-brain tissues and tissues with different 
sample preparation (i.e. cortex and cerebellar hemisphere). We also dropped samples with a history of disease 
possibly affecting the brain prior to filtering for features with CPM > 0.1 in at least 25% of samples. Gene-level 
counts were then normalized using TMM normalization in edgeR and log2-transformed to match PsychENCODE. 
Each brain region was then assessed for outlier samples, defined as those with standardized sample network 
connectivity Z scores < -3, which were removed. These quality control steps resulted in 20,765 features based 
on Gencode v19 annotations and 920 samples across ten brain regions, out of which 540 samples were imputed 
for C4 alleles. 
 
We next regressed out biological and technical covariates except region and subject terms using a linear mixed 
model via lme4 package in R. We entered region, age, sex, 13 seqPCs (top 13 principal components of 
sequencing QC metrics from RNA-SeQC), RIN, ischemic time, interval of onset to death for immediate cause, 
Hardy Scale, body refrigeration status as fixed effects and subject as a random intercept term. To evaluate the 
relationship between several non-genetic factors and C4A gene expression, we added 3 genetic PCs, brain pH, 
and a covariate of interest (e.g. BMI, weight, height, smoking status, or drinking status) as fixed effects to the 
above model. Significance was assessed by the likelihood ratio test (LRT) of the full model with the effect in 
question against the null model without the effect in question. 
 
Due to the relatively limited sample size of GTEx (i.e. less than 10 samples for CN < 2 and CN > 2 in each brain 
region), we focused on samples with two C4A copy number in subsequent analyses. We constructed a C4A-
seeded network using frontal cortical samples (N = 36) and combined this with the above PsychENCODE control-
only network (N = 145) using the Olkin-Pratt (OP) fixed-effect meta-analytical approach as implemented in 
metacor R package. 
 
Interaction of C4A copy number with C4A expression 
The specificity of the C4A-seeded network expansion with respect to C4A CNV was evaluated statistically via 
multiple linear regression. We tested for an interaction term between C4A copy number variation and C4A gene 
expression on other gene targets transcriptome-wide (i.e. 25,774 brain-expressed genes). Given that C4A copy 
number and C4B copy number are negatively correlated with one another (Pearson’s R = -0.41, P = 1.3 × 10-23), 
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both terms were included in our regression. The model we tested was: genej ~ (C4A CN + C4B CN) × C4A expr, 
where the subscript j refers to the expression of gene j (Extended Data Fig. 7). To determine how these results 
compare to what would be expected by chance, we replaced C4A expression in the above model by a randomly 
selected gene and calculated the number of times the interaction term was significant. We repeated this until we 
had randomly sampled 10,000 genes, and the empirical P values for C4A and C4B expression were 
subsequently calculated (P = 10-4 and 0.11, respectively). 
 
Pathway enrichment 
For pathway enrichment, we focused on genes co-expressed with C4A at FDR < 0.05. Enrichment for GO terms 
was performed using gProfileR v0.6.7 package in R with strong hierarchical filtering (Supplementary Fig. 1). 
Only pathways containing less than 1,000 genes and more than 10 genes were assessed. Background was 
restricted to brain-expressed genes and an ordered query was used, ranking genes by correlation with C4A. 
Overlap with PsychENCODE WGCNA modules19 was assessed using Fisher’s exact test, followed by Bonferroni 
correction for multiple testing (Supplementary Fig. 2). The same gene sets were finally assessed for overlap 
with differentially expressed genes (DEG) in SCZ brain from PsychENCODE19 and LIBD BrainSeq Phase II33. 
For PsychENCODE, DEG at FDR < 0.05 were tested, while for LIBD BrainSeq, DEG at FDR < 0.1 were tested. 
 
Expression-weighted cell-type enrichment (EWCE) 
We used 10,000 bootstrapping replicates for EWCE with genes co-expressed with C4A at various FDR 
thresholds (Supplementary Figs. 3-4). Briefly, EWCE statistically evaluates whether a gene set of interest is 
expressed highly in a given cell-type than can be expected by chance. Z-score is estimated by the distance of 
the mean expression of the target gene set from the mean expression of bootstrapping replicates34. We 
downloaded pre-computed expression specificity values for several single-cell/nucleus RNA-seq data from 
http://www.hjerling-leffler-lab.org/data/scz_singlecell/. For independent single-nucleus RNA-seq datasets from 
refs. 20,50, we processed and computed the expression specificity metric of each gene as described34,35. 
 
Sex differences in C4A co-expression 
As there were fewer female than male samples in PsychENCODE, we combined the control samples with two 
C4A copy number in the 12- to 80-year-old period for each sex separately. The resulting samples were balanced 
in age (Welch’s t-test, P = 0.70; Wilcoxon rank-sum test, P = 0.54). We then tested for sex differences in C4A 
co-expression using bootstrapping to match the sample size (37 samples + 10,000 iterations). To identify 
pathways and cell-types differentially co-expressed with C4A across sex, we ranked genes by the magnitude of 
C4A co-expression in male and female samples separately. This ranked list was then used for gene set 
enrichment analysis (GSEA)80 using the clusterProfiler R package. The union of GO and Hallmark gene sets 
from the MSigDB collections (C5 + H v7.1)81, gene sets from SynGO31, and the human brain cell-type markers 
defined in ref. 37 were tested for enrichment. To assess significance of GSEA results, we randomly sampled 
10,000 seed genes. For each seed gene, we calculated male and female-specific co-expression and performed 
GSEA as above. The difference in normalized enrichment score (NES) between sexes was used as the test 
statistic. The empirical P value for each gene set was subsequently calculated by comparing the rank of this 
difference for C4A to the empirical null distribution of the test statistic from randomly sampled seed genes 
(Extended Data Fig. 9). 
 
Spatial resolution of C4A co-expression 
To ensure the robustness of co-expression results, we focused on eight brain tissues from GTEx that had at 
least 35 samples with two C4A copy number82,83. As the number of samples varied across brain regions (i.e. N 
= 36, 38, 45, 47, 39, 45, 39, and 45 for frontal cortex, anterior cingulate cortex, hippocampus, caudate, putamen, 
cerebellum, hypothalamus, and nucleus accumbens, respectively), we used 10,000 bootstrapping replicates to 
downsample to 36 samples. In each iteration, we calculated PCC between C4A and every other gene and 
estimated the number of significantly co-expressed genes at FDR < 0.05. Other threshold metrics were tested 
as well, which gave similar results (Extended Data Fig. 8). We did not control for other biological covariates 
such as age and sex to maximize sample size and also because they were not significantly different across brain 
regions (one-way ANOVA, P = 0.99; Fisher’s exact test, P = 0.95).  
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Temporal resolution of C4A co-expression 
As our analyses suggest that C4A copy number variation exhibits strong genetic effects on C4A co-expression, 
we controlled for C4A copy number by focusing on samples with two C4A copy number in PsychENCODE. In 
order to reduce other sources of bias such as sex and diagnosis, we only used male samples and performed 
separate analyses for controls and SCZ cases. We divided the samples by six overlapping time windows and 
calculated the number of co-expressed genes for C4A in each time period with bootstrap (30 samples + 10,000 
iterations). Here, we note relatively limited sample size and crude time windows post-stratification of the 
PsychENCODE dataset in order to control for potential confounding factors. 
 
Differential expression of the complement system 
Differential gene expression of the complement was calculated using a linear mixed model via nlme package in 
R as previously reported19. We repeated this analysis by randomly downsampling SCZ samples to match the 
sample size of BD. We additionally performed several conditional analyses by adjusting for C4A expression 
and/or C4A copy number (Extended Data Fig. 10). As C4 alleles were imputed in only the samples of European 
ancestry, a subset of PsychENCODE was used for such conditional analyses. 
 
Statistics and reproducibility 
No statistical methods were used to pre-determine sample sizes, but our study makes use of the largest publicly 
available genomic dataset of postmortem human brains19,20. Even after stratifying samples by imputed C4A copy 
number, this sample size was sufficient82,83 to detect significant gene co-expression, as we observed. 
Randomization and blinding were not possible due to the study being retrospective and observational. 
Accordingly, subject-level covariates were used to account for variation in gene expression as well as to remove 
unwanted confounding effects. We downloaded and uniformly processed the independent data from the GTEx 
project for external replication of PsychENCODE findings. Overall co-expression pattern and subsequent cell-
type, pathway, and genetic enrichment results were replicated. We did not attempt to replicate the network 
expansion findings due to the small sample size of GTEx for rare copy number variant groups. For differential 
expression analyses across sex and case-control status, normalized gene expression was assumed to follow 
normal distribution, but this was not formally tested. Effects of genetic and environmental factors on gene 
expression were also assessed using a linear model. Additional details for statistical analyses are provided in 
relevant sub-sections of the Methods.  
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Data availability 
 
PsychENCODE raw genotype and RNA-seq data that support the findings of this study are available at 
www.doi.org/10.7303/syn12080241. Processed PsychENCODE summary-level data are available at 
Resource.PsychENCODE.org. GTEx genotype and RNA-seq data used for the analyses described in this 
manuscript were obtained from: the GTEx Portal (www.gtexportal.org) and dbGaP accession number 
phs000424.v7.p2.  
 
Code availability 
 
The code used to perform bioinformatic analyses are available at: https://github.com/gandallab/C4A-network.  
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