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 43 

Abstract 44 

 There are multiple magnet resonance imaging (MRI) based approaches to studying the 45 

ageing brain. Getting older affects both the structure of the brain and our cognitive capabilities, 46 

but there is still no solid evidence on how ageing influences the mechanisms underlying the MRI 47 

signal. Here, we apply a zero-spin echoes (ZSEs) weighted MRI sequence which recently was 48 

found to be sensitive to wakefulness. We investigated the complexity of the signal time series of 49 

this sequence in two age groups; young (18-29 years) and old (over 65 years). While comparing 50 

young and old participants, we found qualitative and quantitative evidence that the dynamics of 51 

ZSE fluctuations undergo strong changes with age. Finally, we study how differences in 52 

complexity of the ZSE signal relate with measures from different cognitive batteries, suggesting 53 

that ZSE may reveal cognitive functioning in a new. fashion. The profound sensitivity for dynamic 54 

changes shows the potential of ZSE and its underlying physiological mechanism with clinical 55 

relevance for all neurovascular diseases. 56 
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Introduction 66 

 It is well established that normal ageing has cascading effects on many cognitive domains 67 

and affects the brain at multiples levels ranging from sub- to macro-cellular (e.g., Salat et al., 2004; 68 

Allen et al., 2005). For instance, older adults have particular difficulties with episodic memory 69 

(Craik & Bosman, 1992), working memory (e.g., Balota, Dolan, & Duchek, 2000) or are slower 70 

processing different stimuli (e.g., Salthouse, 1996). At the same time, some aspects of cognition 71 

are maintained, such as semantic memory (Laver, 2009) or emotional regulation (Carstensen, 72 

2011). However, the cerebral mechanisms that underlie this better or lesser performance are still 73 

poorly understood (Grady, 2012). A vast number of studies have tried to link these structural 74 

changes to age differences in cognitive function. Magnetic resonance imaging (MRI) based 75 

methods have been mainly used to study changes in the ageing brain. Among the various MRI 76 

methods, functional MRI (fMRI), with more than 10000 published papers, is probably the one 77 

more widely applied (e.g., Tsvetanov, Henson, & Rowe, 2019). The blood oxygen level-dependent 78 

(BOLD) signal obtained from fMRI is an indirect index of neural activity and reflects small 79 

metabolic changes in deoxyhaemoglobin concentrations that take place when a specific region of 80 

the brain is active (Ogawa et al., 1990). These responses have been found to be similar in both 81 

young and older adults (Grady, 2012), but in some cases, the magnitude of the BOLD response 82 

was reduced in older adults (e.g., Archer et al., 2018) while sometimes was increased (e.g., Liu et 83 

al., 2013). The former is often related to cognitive deficits in older adults (e.g., Grady et al., 1995), 84 

while the latter is often interpreted as compensatory (e.g., Grady et al., 1994) or as a reduction in 85 

the selectivity of responses (Grady, 2008). Independently of the direction of these magnitude 86 

variations, changes in cerebral vasculature with age (e.g., Goyal et al., 2016), are somehow 87 

expected to influence the mechanisms underlying the fMRI signal. Although still unknown, these 88 

changes should be related to differences in cognitive performance, but no substantial evidence has 89 

been found so far. 90 
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 This comes as a surprise because heart functions also alter with age which should, in turn, 91 

affect cerebral blood flow. Even more, it is well known that several heartbeat-related effects 92 

influence conscious perception where the cardiac cycle may impact the perception of visual or 93 

auditory stimuli (e.g., Al et al., 2020). The existence of heartbeat-evoked potential (HEP) in 94 

general is strong evidence that the heartbeat influences neuronal functions (Montoya, Schandry, 95 

& Müller, 1993). In a recent study, López Pérez and Kerskens (2019) discovered zero-spin echoes 96 

(ZSEs) in fast MRI time series which were evoked by the blood pulsation. Surprisingly, they found 97 

those signals only if the volunteers were awake which suggest that they have found another 98 

measure like the HEPs that relates heartbeat with conscious perceptions. The contrast mechanism 99 

of ZSEs is usually based on long-range zero quantum coherence (ZQC) or similar quantum effects 100 

which has not traditionally been considered as a powerful tuning element for enhancing or 101 

explaining functions in biology (Scholes et al., 2017). However, a growing body of literature has 102 

recently demonstrated that quantum coherence in living organisms exists and it is itself essential 103 

for their functioning (e.g., Engel et al., 2007; Huelga & Plenio, 2013). With the recent rise of the 104 

field of quantum biology, it has been suggested that quantum phenomena might also influence 105 

brain activity and affect its cognition (Jedlicka, 2017). Although, the ZSE signals were robust and 106 

reliable (López Pérez & Kerskens, 2019), it showed a high variability and complexity, which 107 

suggest that the interaction between the brain and the heart would be high-dimensional, and thus, 108 

the complexity of the system (i.e., its ability to adapt and function in an ever-changing 109 

environment) would also be high-dimensional (Jedlicka, 2017; Peng, Costa, & Goldberger, 2009). 110 

Recent studies have shown that high complexity is characteristic to healthy systems and that can 111 

degrade because of disease or ageing (Dos Santos et al., 2014). Thus, if this mechanism is vital for 112 

cerebral dynamics, the complexity of these fluctuations needs to be kept high and any variation on 113 

the dynamics with age should affect the complexity of the system. 114 

 In this paper, we want to study, for the first time, how the dynamical complexity of the 115 

long-range quantum coherence signal may vary with age. To characterise these fluctuations as 116 
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entirely as possible, we use a broad range of dynamical systems measures. First, we applied 117 

Recurrence Quantification Analysis (RQA; Zbilut & Webber, 1992), which is an increasingly 118 

popular method to analyse dynamical changes of behaviour in complex systems. This concept has 119 

been used to study physiological signals (Marwan & Webber, 2015; Wessel et al., 2003) heart rate 120 

variability (Dos Santos et al., 2014) or the dynamics of heart rhythm modulation (Censi, 121 

Calcagnini, & Cerutti; 2015). The main benefits of RQA in comparison to standard analysis resides 122 

in its sensitivity to small changes in the system dynamics (Dos Santos et al., 2014). Secondly, we 123 

employed MultiFractal Detrended Fluctuation Analysis to extract the fractal properties of the 124 

signal (MFDFA; Ihlen, 2012). Multifractal Analysis is another efficient chaos theory method to 125 

study the fractal scaling properties and long-range correlations of noisy signals (Peng et al., 2009; 126 

for a review see Lopes & Betrouni, 2009). Fractal differences as a consequence of ageing have 127 

been found between monofractal or multifractal signals in EEG (Pereda et al., 1998) or due to 128 

HRV changes (Makowiec et al., 2011). Finally, we relate these measures with different cognitive 129 

batteries and show that those quantum fluctuations may be key for cerebral dynamics and cognitive 130 

functioning. 131 

Methods 132 

Participants 133 

 60 subjects (29 participants between 18 and 29 years old, and 31 participants over 65 years 134 

old) were scanned with the protocols approved by the St. James Hospital and the Adelaide and 135 

Meath Hospital, incorporating the National Children Hospital Research Ethics Committee. All 136 

participants were adults recruited for a larger study (Kehoe et al., 2015; Alderson et al., 2017; 137 

Gilligan et al., 2019) and came from the greater Dublin area. 138 

 All participants underwent the Cambridge Neuropsychological Test Automated Battery 139 

(CANTAB; Robbins et al., 1994) which has been used to detect changes in neuropsychological 140 

performance and include tests of working memory, learning and executive function; visual, verbal 141 
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and episodic memory; attention, information processing and reaction time; social and emotion 142 

recognition, decision making and response control. The CANTAB scores were normalised for age 143 

and IQ. Particularly, the following subtest were administered: 144 

 - The Paired Associate Learning Test is a measure of episodic memory where boxes are 145 

displayed on the screen, and each one has a distinct pattern. The boxes are opened in random order, 146 

revealing the pattern behind the box. In the test phase, patterns are individually displayed in the 147 

centre of the screen, and participants must press the box that shields the respective pattern. 148 

 - Pattern Recognition Memory is a test of visual pattern recognition memory in which the 149 

participant is presented with a series of visual patterns, one at a time, in the centre of the screen. 150 

In the recognition phase, the participant is required to choose between a pattern they have already 151 

seen and a novel pattern. In this phase, the test patterns are presented in the reverse order to the 152 

original order of presentation. This is then repeated, with new patterns. The second recognition 153 

phase can be given either immediately (immediate recall) or after a delay (delay recall). 154 

 - The Spatial Working Memory Test assesses spatial working memory in which boxes are 155 

presented on the computer screen and hidden behind one of the boxes is a yellow circle. 156 

Participants must find the box where the yellow circle is located. As the task progresses, the 157 

number of boxes on the screen increases. We analysed the spatial working memory strategies (i.e., 158 

the number of times participants begin a new search strategy from the same box). 159 

 Moreover, participants performed the trail making test (TNT; Reitan, 1958) which is a 160 

neuropsychological test of visual attention and task switching. TNT test that can provide 161 

information about visual search speed, scanning, speed of processing, mental flexibility, as well 162 

as executive functioning (Arnett & Labovitz, 1995). 163 

MRI data acquisition 164 
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 Each participant was imaged in a 3.0 T Philips whole-body MRI scanner (Philips, The 165 

Netherlands) using a standard single-shot GE EPI sequence operating with a 8-channel array 166 

receiver coil in all cases. The parameters of the EPI time-series sequence were as follows: Flip 167 

angle = 30o, TR = 60 ms and the TE = 18 ms with a voxel size was 3.5 x 3.5 x 3.5 mm, matrix size 168 

was 64 x 64, SENSE factor 3, bandwidth readout direction was 2148 Hz and saturation pulse was 169 

6 ms with 21 mT/m gradient strength. The imaging slice was set coronal above the ventricle to 170 

avoid pulsation effects (see Figure 1 for example). In addition, two saturation slices of 5 mm in 171 

thickness were placed parallel to the imaging slice (15 mm above and 20 mm below). These slabs 172 

were applied to introduce asymmetrical magnetic gradient scheme to generate ZSE (for a full 173 

description see López Pérez and Kerskens, 2019). Additional scans without the saturation slabs 174 

using the same imaging parameters were carried out which had two effects on the ZSE; a change 175 

of the angulation between the asymmetric gradient field and the main magnet field towards the 176 

magic angle (lowering the dipole-dipole coupling effect) and a lengthening of the ZQC correlation 177 

distance. As a result, ZSE were strongly reduced leaving only higher-order coherence in the time-178 

series and very long-distance quantum coherence. In this manuscript, we refer to these scans as the 179 

single quantum coherence (SQC) weighted signal to differentiate it from the ones that contain 180 

higher amount of ZSE component (ZSE weighted signal). The average angulation of the imaging 181 
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slice was 14.76 ± 5.65 degrees and for each participant the angulation was always the same during 182 

the acquisition with the slab and without it. 183 

Anatomical MRI images in all studies included a high-resolution sagittal, T1-weighted 184 

MP-RAGE (TR = 2.1 s, TE = 3.93 ms, flip angle = 7o). The ZSE-weighted sequence was acquired 185 

after the resting-state fMRI part of the session. The radiographer always contacted the participants 186 

before the acquisition to make sure that they were awake. This step is important given that the ZSE 187 

signal has been suggested to be sensitive to changes in wakefulness of the participant (López Pérez 188 

and Kerskens, 2019). 189 

Signal Preprocessing 190 

 All calculations were developed in a Dell Optiplex 790 with 12 Gb RAM using Matlab 191 

2017a (The MathWorks Inc., Natick, MA, 2017). Since motion correction could not be applied 192 

due to the single slice nature of the experiment, average time-series were visually inspected in 193 

Figure 1. Acquisition model which includes the image slice (central red line) and the 

REST slabs above and below the imaging slice both 5 mm thick and separated 15 mm and 
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search for irregularities which were manually removed from the analysis leaving the rest of the 194 

time-series unaltered. In addition, the data was not smoothed to avoid removing low frequencies 195 

which may lead to the loss of information (Pignat et al., 2013). Manual segmentation was used to 196 

create a mask to remove cerebrospinal fluid (CSF) contributions which were later eroded to avoid 197 

partial volume effects at the edges. The first 100 scans were removed to avoid signal saturation 198 

effects. 199 

Recurrence Quantification Analysis 200 

 We used Recurrence Quantification Analysis (RQA) to analyse the dynamical temporal 201 

characteristics of the MRI signals. RQA quantifies the repeated occurrences of a given state of a 202 

system (i.e., recurrences) by analysing the different structures present in a recurrence plot, which 203 

is a graphical representation of the recurrences in the dynamical system (Zbilut & Webber, 1992). 204 

In our analysis, we considered the following RQA measures (Bosl, Loddenkemper, & Nelson, 205 

2017): 206 

• Determinism (Det): it represents a measure that quantifies repeating patterns in a system 207 

and it is a measure of its predictability. Regular, periodic signals, such as sine waves,have 208 

higher DET values, while uncorrelated time-series cause low DET. 209 

• Mean Line (MeanL): it is the average length of repeating patterns in the system. It 210 

represents the mean prediction time of the signal, a measure of chaos or divergence from 211 

an initial point. 212 

• Entropy (Ent): it is the Shannon entropy of the distribution of the repeating patterns of 213 

the system. If a signal has high entropy it exhibits diversity in short- and long-duration 214 

periodicities. 215 
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• Laminarity (Lam): it determines the frequency of transitions from one state to another, 216 

without describing the length of these transition phases. It indexes the general level of 217 

persistence in some particular state of one of the time-series (Hirata & Aihara, 2010). 218 

• Trapping Time (TT): it represents the average time the system remains on a given state 219 

and it is a measure of the stability of the system. It was calculated here using the tt 220 

function from the CRP Toolbox for Matlab (Marwan et al., 2002). 221 

• Maximum Line (MaxL): it is the largest Lyapunov exponent of a chaotic signal, which 222 

gives the longest time spent in a single state by the system (Gómez & Hornero, 2010). 223 

 Three critical parameters need to be set to calculate the recurrence plots. First, the smallest 224 

sufficient embedding dimension was determined using the fnn function (Kennel, Brown & 225 

Abarnel, 1992) within the CRP Toolbox (Marwan, N.: Cross Recurrence Plot Toolbox; Marwan 226 

et al., 2007, for MATLAB, Ver. 5.22 (R31.2), http://tocsy.pik-potsdam.de/CRPtoolbox/). This 227 

function estimates the minimum embedding dimension where the false nearest neighbours vanish. 228 

We applied the fnn to all time-series and obtained an average value of 15, which agrees with the 229 

typical values recommended for biological signals (Marwan & Webber, 2015). The second 230 

parameter is the delay which we calculated using the mi function from the CRP Toolbox (Marwan 231 

et al., 2007; Roulston, 1999). This function finds the non-linear interrelations in the data and 232 

determines which delay fulfils the criterion of independence. In the same way as the embedding 233 

dimension, we applied the mi function to all time-series and we obtained an average value of 3. 234 

Finally, several criteria have been suggested for the choice of the recurrence threshold (Thiel et 235 

al., 2002). Here, we adapted the radius for each time-series using the embedding dimension and 236 

delay computed together with a recurrence rate sufficiently low (i.e., RR = 3%) (Marwan et al., 237 

2002). Additional parameters in the RQA calculations were Euclidean normalisation for each time-238 

series and minimum line length equal to 2. 239 

 Multifractal Detrended Fluctuation Analysis 240 
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 In biological systems, the coupling between different systems often exhibits (Peng et al., 241 

2009) different spatial and temporal scales and hence its complexity is also multi-scale and 242 

hierarchical (Peng et al., 2009). Thus, to analyse the scale-invariant properties of the MRI 243 

segments and its changes with age we used Multifractal Detrended Fluctuation Analysis 244 

(MFDFA). To do so, we first, calculated the multifractal spectrum, D, of each time-series using 245 

the MFDFA Matlab Toolbox (Ihlen, 2012). The multifractal spectrum identifies the deviations in 246 

fractal structure within time-periods with large and small fluctuations (Ihlen, 2012). Each spectrum 247 

was computed using a window length with a minimum value of 2 and a maximum value of half 248 

the length of the time-series. The q-order statistical moments were chosen between -11 and 11 and 249 

divided into 21 steps (see further description in Ihlen, 2012). 250 

 From each fractal spectrum, two parameters were calculated, i.e., the width of the spectrum 251 

W and the position of the spectrum maxima H. The width W is calculated by subtracting the lower 252 

part of the spectrum, h, to the upper part of the spectrum, h (Ihlen, 2012; Makowiec et al., 2011; 253 

Ma et al., 2006). A small width indicates that the time-series has fewer singularities and tends to 254 

be more monofractal. Finally, the H parameter represents the value h in which the singularity 255 

spectra has its maximum h(D)  (Makowiec et al., 2011). The position of h moves to higher values 256 

when the stronger singularities are present. Highly deterministic signals can often be explained by 257 

a lower number of fractal dimensions and are characterised by smaller W and H due to a decrease 258 

in the number of singularities. 259 

Statistical Analysis 260 

 Before any statistical analysis all variables were converted to z-scores. Those participants 261 

having z-scores larger than 3 standard deviations in three non-linear parameters or more were 262 

rejected from the analysis. In total only 1 participant in the old group was removed. Independent 263 

t-tests were computed to test differences between the RQA and fractal measures of the average 264 

MRI signals in both groups. Inspection of Q-Q Plots was carried out to all the measures to check 265 
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if the data were normally distributed. Additionally, Levene!s test for equality of variances was 266 

applied and, in those cases, where this assumption was violated, a t statistic not assuming 267 

homogeneity of variance were computed on these measures. Finally, a linear regression between 268 

the non-linear measures and the participants age were performed. 269 

Results 270 

The ZQC weighted signals 271 

 Examples of the ZSE-weighted signals and their Fourier transform of both age groups are 272 

shown in figure 2a-h. As it can be seen, strong cardiac signal fluctuations are resolved only in the 273 

average time-series of young subjects (Figure 2a and 2c) while in older subjects the strong cardiac 274 

signals are diminished (Figure 2e and 2g). The frequency spectra of the time-series (Figure 2b, 2d, 275 

2f and 2h) showed the strongest cardiac frequencies for the young group, while in the older group, 276 

however, the spectra show stronger harmonics, envelope waves or both, in addition to the weaker 277 

cardiac frequencies. These envelope waves have a beat frequency of the (cardiac frequency)/n, 278 

where n takes values of (2,3,4,6,9 ...). These results are consistent over most subjects. 279 

  280 
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 281 

 Figure 2. Example of the time-series as well as its frequency spectra for two young (a-c and b-

d) and two healthy old adults (e-g and f-h). These examples are representing the typical results 

in these groups. 
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Non-linear dynamics of the ZSE weighted signal 282 

 We also tested how the non-linear dynamics varied in the ZSE weighted time-series in all 283 

participants (see Supplementary Results for the SQC results). At a group level all the RQA 284 

parameters but the DET were statistically significantly higher in the old group in comparison to 285 

the young one (see Table 1 for group averages): MeanLine (t(57) = 2.23, p = .02; d = .58), MaxLine 286 

(t(57) = 2.81, p = .007; d = .73), Ent (t(57) = 2.62, p =.01; d = .68), Lam (t(57) = 3.68, p = .001; d 287 

= 0.96) and TT (t(57) = 4.57, p <.001; d = 1.19) and Det (t(57) = 1.23, p = .22; d = .32). 288 

 Likewise, the fractal properties of the ZSE weighted signal in the old group were 289 

statistically higher in W (t (57) = 5.44, p <.001; d = 1.41) and H (t (57) = 3.53, p = .001; d = .92) 290 

in comparison to the young group, suggesting a more chaotic behaviour in the old population. 291 

Are group differences coming from movement or cognitive differences? 292 

Table 1. Group mean averages of the RQA and MFDFA parameters extracted from the ZQC 

weighted time-series for the young and old groups (p < .05(*), p < .01(**), p <.001(***)). 

Parameter Young Old 
Det 32.16 ± 10.12 35.72 ± 11.99 

MeanLine* 2.81 ±.34 3.07 ± .51 

MaxLine** 99.10 ± 38.35 135.53 ± 58.63 

Ent* .77 ±.19 .92 ±.24 

Lam** 35.42 ± 8.24 46.50 ± 14.00 

TT*** 2.24 ±.11 2.48 ± .26 

W*** .15 ± .08 .27 ± .07 

H*** .02 ± .01 .03 ± .01 
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 Since the ZSE effects are sensitive to movement, we explored the relationship between the 293 

non-linear parameters and motion quality control variables from the rs-fMRI as a proxy for 294 

potential average movement of the participant Although the information was not available for the 295 

young group, there were no significant correlations between these measures (see Table 2) or in 296 

other words, the non-linear dynamics in the old cohort were not worsened by motion. 297 

 Finally, we explored any possible relation to cognitive measures and tests performed during 298 

the study. CANTAB scores showed consistent negative correlations and trends (see Table 3, Figure 299 

3) between visual memory scores (pattern recognition memory and working memory) and the 300 

RQA parameters while no correlations arose with the TNT scores. Consistently, young participants 301 

that showed higher complexity (i.e., smaller non-linear parameters) also had better cognitive 302 

scores. Altogether, there were significant changes with ageing but even more with these cognitive 303 

scores which suggest that the ZSE signal may be related to aspects of cognition. 304 

Table 2. Spearman correlations between quality control movement measures from the rs-fMRI 

session and the non-linear parameters of the ZQC signals. In these correlations, n was equal 

to 27 since movement information was not available for one participant and another did not 

pass quality control (see section 2.5). 

Parameter QC max movement QC mean movement 
Det -.36 (.07) .13 (.50) 

MeanLine -.10 (.60) .00 (.97) 

MaxLine -.30 (.13) -.01 (.95) 

Ent -.26 (.19) .08 (.69) 

Lam -.27 (.17) .17 (.38) 

TT -.13 (.52) .22 (.27) 

W .06 (.77) .02 (.92) 

H -.14 (.47) -.06 (.77) 
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  305 

Discussion 306 

 In this paper, we have analysed if the dynamical complexity of ZSE fluctuations in the 307 

brain tissue varies with age. While comparing two populations, we presented qualitative evidence 308 

that the strong cardiac constant fluctuations are more likely resolved for the younger subjects while 309 

for the older ones, the strong cardiac effect is diminished. Non-linear analyses confirmed this effect 310 

and showed quantitative differences between both age groups, which were related to variations in 311 

complexity and chaos of the measured signals. Particularly, the higher complexity of ZSE 312 

weighted signal was related to better cognitive performance in some of the CANTAB scales, which 313 

was not correlated to age. Altogether, this may suggest that the ZSE fluctuations may be sensitive 314 

to ageing, cognition or even differences in wakefulness. 315 

Table 3. Spearman correlations between the non-linear parameters of the ZQC signals and the 

CANTAB and TNT scores. In these correlations, n varies between 59 (CANTAB scores) and 55 (TNT 

scores) since one participant did not pass quality control (see section 2.5) and the measures were not 

available to all of them. p-values are in parenthensis (trend (+) p <.05(*) and p <.01(**)). 

Parameter 

Pat. 
Recognition 

Mem. 
(immediate 

recall) 

Paired 
Associates 
Learning 

Spat. 
working 
Mem. 

(strategy) 

Pat. 
Recognition 

Mem. 
(delayed 
recall) Trial A Trial B 

Det -.31 (.01)* .06 (.62) -.19 (.13) -.02 (.87) .05 (.69) -.02 (.87) 

MeanLine -.33 (.009)** -.04 (.71) -.17 (.17) -.13 (.31) .00 (.98) -.04 (.74) 

MaxLine -.34 (.008)** -.18 (.16) -.26 (.04)* -.19 (.12) -.00 (.96) -.02 (.86) 

Ent -.33 (.009)** .06 (.65) -.21 (.10) -.12 (.33) .09 (.49) -.04 (.76) 

Lam -.29 (.02)* .03 (.78) -.34 (.008)** -.09 (.48) -.04 (.72) -.05 (.68) 

TT -.25 (.05)+ -.08 (.51) -.29 (.02)* -.18 (.15) .01 (.90) -.07 (.57) 

W -.18 (.14) -.04 (.71) -.13 (.29) -.17 (.17) .25 (.06)+ .13 (.31) 

H -.24 (.06)+ .04 (.75) -.22 (.10) -.09 (.48) .00 (.95) .07 (.60) 
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 The changes in the ZSE weighted signal were manifold, varying in shape, amplitude and 316 

frequency (see Figure 2). In particular, older participants possessed a higher number of frequencies 317 

as well as a decrease in the size and number of the cardiac bursts. On the other hand, the younger 318 

group was characterised by roughly constant bursts and clear cardiac frequencies with almost no 319 

harmonics. Initially, one may think that differences between both groups can be due to old 320 

participants moving more inside the scanner. In fact, López Pérez and Kerskens (2019) reported 321 

that during hyperventilation inside the scanner the ZSE effect entirely vanished due to increased 322 

movement. Although the information was not available for the young group, motion quality control 323 

variables from an fMRI study within the same session did not correlate with any of the non-linear 324 

parameters (see Table 2). Thus, we can conclude that the dynamics in the older cohort were not 325 

worsened by motion. Regardless of this, future studies using the sequence should try to minimise 326 

Figure 3. Examples of linear regressions between mean line (a) and entropy(b), and Standardised 

CANTAB Pattern Recognition Memory Scores (Inmediate Recall), and between Laminarity (c) 

and Trapping Time (d), and standardised CANTAB working memory strategy scores.  
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the effect of movement during the data acquisition (e.g., adding extra cushions to hold the head) 327 

which might help improve the intensity of the quantum effect (López Pérez & Kerskens, 2019).  328 

 A second possibility is that the ZSE signal declines with changes in cognition or age. To 329 

check that, we first quantified the apparent differences between both groups using non-linear time-330 

series analyses to determine changes in the dynamics of the MRI signals. First, we applied 331 

Recurrence Quantification Analysis (RQA), which was proven to be sensitive to small changes in 332 

the system dynamics and a powerful discriminatory tool to detect significant differences between 333 

both age groups (see Supplementary files for further discrimination analysis between both groups 334 

based on these measures). All the RQA measures (see Table 1 and Supplementary Table 1) were 335 

lower in the young group in comparison to the older group in both types of MRI signals, suggesting 336 

differences in the complexity of the underlying signal dynamics in both populations. Second, we 337 

applied fractal analysis to study the fractal scaling properties and long-range correlations of the 338 

signals. We showed an increase in the number of singularities with age, which is characterised by 339 

an increase in the width and position of the spectral maxima (Ihlen, 2012; Dick & Svyatogor, 340 

2012). These differences were supported by the RQA entropy which denotes the Shannon entropy 341 

of the histogram of the lengths of diagonal segments and thus indicates the complexity of the 342 

deterministic structure of the system (Dos Santos et al., 2014). This increase in the chaoticity of 343 

the signal is only visible when the quantum effects are measured since no differences were found 344 

between the fractal parameters in the control condition (see Supplementary Table 1). Additionally, 345 

exploratory analyses showed an incremental tendency with age (see Supplementary Figures 1 and 346 

2), but these results need to be replicated with an independent sample where a whole range of ages 347 

gets included.  348 

 The ZSE declines with age but does it relate to cognition? Our results are in line with recent 349 

studies indicating that higher complexity in a system is a feature of healthy dynamics (Dos Santos et 350 

al., 2014) or higher degree of functional specialisation and integration in brain dynamics (Ho et al., 351 

2017) and that this complexity declines with disease and age (e.g., Manor & Lipsitz, 2013). In fact, 352 
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we observed some significant negative correlations between CANTAB scores, and RQA measures 353 

(see Table 3), were lower scores (i.e., higher complexity) were related to better cognitive scores. 354 

Particularly significant were the relations with pattern recognition memory and working memory 355 

subscales, suggesting a link between the ZSE signal and short-term memory abilities. A potential 356 

explanation why the ZSE signal was correlated to pattern recognition memory and spatial working 357 

memory is that the acquisition slice was roughly located in parietal and posterior cingulate regions 358 

and these are areas associated with these cognitive domains (e.g., Guttmann et al., 1998; Gunning-359 

Dixon & Raz, 2003). Paired associates learning, however, is a hippocampus-based task (Provyn, 360 

Sliwinski & Howard, 2007) and therefore one would not expect to find a correlation with the 361 

measured signal. Besides, fMRI studies have shown that healthy old adults present higher activity 362 

levels in some brain regions during the performance of cognitive tasks and these changes coexist with 363 

disrupted connectivity (for a review see Sala-Llonch, Bartrés-Faz & Junqué, 2015). However, to the 364 

best of our knowledge, there are not fMRI-based signals that are able to predict these CANTAB 365 

scores consistently. This is especially surprising since the ZSE signal represents the average over the 366 

imaging slice and is a very rough and functional measurement. More importantly, the pattern 367 

recognition memory and working memory subscales that were strongly correlated with the non-linear 368 

parameters did not correlate with age (see Supplementary Table 3), which emphasises the sensitivity 369 

of the ZSE signal to cognitive changes. Thus, we believe that these fluctuations, which may originate 370 

from exotic phase transitions over the entire brain (Kerskens, 2020), could be a global physiological 371 

effect essential for understanding cognition and consciousness with clinical relevance for all 372 

neurovascular diseases. 373 

 However, several limitations arise in this study. First, the acquisition protocol applied to 374 

obtain the ZSE weighted signal required fast repetition times, which limits the number of imaging 375 

slices to just one. The use of one imaging slice complicates the study of particular areas and it 376 

could induce variability in the results across all the participants even when the position of the 377 

imaging slice is carefully planned. As a consequence, different slices should be acquired to study 378 
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a larger region and improve the comparison between groups. Some approaches could be used to 379 

overcome this limitation. For example, next-generation MRI systems can acquire three or more 380 

imaging slabs by means of Multi-band excitation (Feinberg et al., 2010) with the same time 381 

resolution. A second improvement can be achieved with the increase in the number of channels in 382 

the receiver coil, which allow the acquisition of data with shorter repetition times and better signal 383 

to noise ratio. Future research should focus on expanding the sequence protocol to be able to cover 384 

larger brain areas that would allow the use of the sequence in a wide range of studies. Secondly, 385 

differences in wakefulness among participants and between groups may have impacted the results. 386 

Lopez Pérez and Kerskens (2019) showed that participants that fell asleep during testing showed 387 

no significant ZSE signal. Despite the fact that the radiographer was checking that all volunteers 388 

were awake before the data acquisition, under these conditions (i.e., testing in a supine position 389 

inside a dark room with no specific instructions but to remain still) participants in the older group 390 

are more likely to feel sleepy, thus potentially affecting their wakefulness. Finally, the group sizes 391 

in this study were small and the results need to be considered preliminary. Further research is 392 

needed to confirm these findings. 393 

Conclusions 394 

 We have provided further evidence that heartbeat related ZSE signals in the brain are 395 

related to consciousness, cognition and ageing. We showed qualitatively and quantitatively that 396 

these fluctuations worsen with age and that their decline is related to a decrease in the complexity 397 

of the signal time series. Consistent with the idea that higher complexity is related to healthier 398 

dynamics, our signal contrast showed higher complexity in the younger population. Altogether, 399 

the ZSE signal is a promising biomarker that needs to be tested in larger and more diverse 400 

populations with clinical relevance for all neurovascular diseases. 401 
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