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Abstract
Uncovering the structure of the transcriptional regulatory network (TRN) that modulates gene
expression in prokaryotes remains an important challenge. Transcriptomics data is plentiful,
necessitating the development of scalable methods for converting this data into useful
knowledge about the TRN. Previously, we published the PRECISE dataset for Escherichia coli
K-12 MG1655, containing 278 RNA-seq datasets created using a standardized protocol. Here,
we present PRECISE 2.0, which is nearly three times the size of the original PRECISE dataset
and also created using a standardized protocol. We analyze PRECISE 2.0 at multiple scales,
demonstrating multiple analytical strategies for extracting knowledge from this dataset.
Specifically, we: (1) highlight patterns in gene expression across the dataset; (2) utilize
independent component analysis to extract 218 independently modulated groups of genes
(iModulons) that describe the TRN at the systems level; (3) demonstrate the utility of iModulons
over traditional differential expression analysis; and (4) uncover 6 new potential regulons. Thus,
PRECISE 2.0 is a large-scale, high-quality transcriptomics dataset which may be analyzed at
multiple scales to yield important biological insights.

Introduction
Over the past decade, RNA sequencing (RNA-seq) has emerged as an efficient,
high-throughput method to probe the expression state of a cell population. Advances in
next-generation sequencing have accelerated the creation of large RNA-seq datasets (1–4),
which subsequently enabled the successful development and application of machine learning
methods to advance our understanding of transcriptional regulation (5–7).

Previously, we presented the Precision RNA-seq Expression Compendium for Independent
Signal Extraction, or PRECISE, containing 278 expression profiles for Escherichia coli
generated across a five-year period (1). We applied Independent Component Analysis (ICA), a
signal deconvolution algorithm, to this dataset to reveal 92 independently-modulated sets of
genes, or iModulons, that encoded the structure and dynamics of transcriptional regulation in
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this model organism. Two-thirds of iModulons represented the quantitative effects of specific
transcriptional regulators on the transcriptome, while most of the remaining iModulons captured
interpretable biological signals.

In a comprehensive analysis of module detection methods, ICA outperformed over 40 other
algorithms in modeling regulatory networks across multiple organisms (8). Applications of ICA to
human transcriptomics datasets include elucidation of cancer pathways (9), prediction of drug
responses (10) and gene functions (11), and characterization of tumor subtypes (12, 13).
Additionally, ICA has shown promise in extracting functional modules from single cell RNA-seq
data (14, 15).

We have also applied ICA to transcriptomics datasets for two additional microbes, Bacillus
subtilis (16) and Staphylococcus aureus (17), to identify their respective iModulon structures. All
microbial iModulons can be explored through the interactive dashboards available at
iModulonDB (18).

iModulons are usually associated with a specific transcriptional regulator, and have two major
properties: (1) iModulon gene weights, which determine the relative effect of the transcriptional
regulator on each gene in an iModulon, and (2) iModulon activities, which represent the overall
activity state of the transcriptional regulator under each condition in the dataset. These
properties accelerate the interpretation of complex transcriptional changes. For example,
application of iModulons to a transcriptomics dataset for 40 heterologous proteins expressed in
E. coli could explain over half of the gene expression variation through five specific host
responses (19). iModulons have also been applied to reconstruct the regulons for
two-component systems (20), characterize transcription factor (TF) mutations (21), and
interrogate transcriptional changes during naphthoquinone-based aerobic respiration (22).

In the two years following the release of PRECISE 1.0, we have nearly tripled the size of this
dataset. Here, we present PRECISE 2.0, a high-quality transcriptomic dataset containing 815
RNA-seq datasets generated using a standardized protocol. We conduct a multi-scale analysis
of PRECISE 2.0 to extract knowledge about the TRN. Specifically, we: (1) compare expression
patterns amongst groups of genes; (2) apply independent component analysis (ICA) to extract
218 independently modulated groups of genes (iModulons) and map them onto the TRN; (3)
compare iModulon-based and gene-based methods for differential expression analysis; and (4)
discover novel regulons for 6 transcription factors. Thus, PRECISE 2.0 is a large-scale,
high-quality transcriptomics dataset which may be analyzed at multiple scales to yield important
biological insights.
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Results

Multi-scale analysis of RNA-seq datasets
PRECISE 2.0’s size motivates the development of multi-scale analytical methods.

Figure 1 summarizes the distinct scales of analysis that become available upon construction of
such a large dataset. RNA-seq experiments yield data at the individual gene scale, with around
4,000 observations per experiment. Classical differential expression of gene (DEG) analysis
operates on the scale of thousands of genes. Given the large number of observations , this
approach to transcriptomic analysis can quickly become cumbersome.

Recently, iModulons, or independently modulated groups of genes discovered through
ICA, have been used to summarize and interpret patterns in gene expression (1). iModulons
can be viewed as top-down omics-driven analogues to the bottom-up bi-molecular association
driven definition of regulon (23, 24). iModulons enable a massive dimensionality reduction in the
interpretation of gene expression data, decomposing thousands of variables to around a
hundred. Thus, iModulons allow for the description of transcriptome allocation to different
cellular functions. This systems viewpoint in turn enables differential iModulon activity (DIMA)
analysis, which identifies a set of transcriptional signals (representing transcriptional regulators)
that can efficiently explain changes to transcriptome composition.

Furthermore, iModulons may be automatically clustered into tens of groups that
correspond to shared cellular processes. Again, this analytical scale has a biological
representation, corresponding to the concept of a stimulon, or a set of regulatory and cellular
processes induced by a certain environmental stimulus. Certain physiological measurements
correspond to the activities of such clusters of iModulons (16, 25).
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Figure 1: Multi-scale analysis of PRECISE 2.0. The levels of analysis approximately correspond
to the definition of an operon and a regulon, and the notion of a stimulon. The ‘scale’ indicates
the reduction of dimensionality over the levels shown.

PRECISE 2.0 contains a wide range of genetic perturbations and
environmental conditions

To investigate the properties of RNA-seq data on a large scale, we constructed
PRECISE 2.0 to enable multi-scale analysis of the systems biology of E. coli K-12 MG1655.
PRECISE 2.0 is a large, high-fidelity expression compendium consisting of 815 individual
RNA-seq samples generated using a standardized protocol executed in a single lab (cite SI for
the Protocol). PRECISE 2.0 constitutes a nearly 3-fold increase in size from the 278-sample
PRECISE 1.0 (1), published two years previously (Figure 2A).

The samples in PRECISE 2.0 span 32 unique growth conditions, including 167 samples
from gene deletion strains and 94 samples of heterologous protein production. 375 samples -
almost half of the dataset - are derived from adaptive laboratory evolution (ALE) endpoints.
PRECISE 2.0 thus contains changes in nutrients, stresses, genetic parameters, adaptation to
new growth conditions (21, 22, 26–28), and forced expression of heterologous (19) and
orthologous genes (29). It thus represents a wide range of conditions under which changes in
the composition of the E. coli transcriptome can be studied.

The first two principal components of the dataset capture 32.3% of the overall variance
(Figure 2B). While many studies are grouped along the same axis, some projects are outliers in
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principal component space. Studies involving ALE endpoints tend to produce more diverse
transcriptomes as cells evolve for growth after an environmental or genomic perturbation.
Furthermore, projects that use diverse growth media, such as the Two-Component System
project (20) or AntibiotICA project (25), likewise result in more distinct gene expression profiles.

To gain further appreciation of the diversity of PRECISE 2.0, we computed the
differentially expressed genes (DEGs) across all unique condition pairs in the database. On
average, 765 genes were differentially expressed between two conditions, with some
comparisons producing over 2000 DEGs (47% of the 4211 genes included in the dataset)
(Figure 2C). The condition producing the fewest DEGs on average compared to all other
conditions was the glucose-fed growth of rpoB point mutant E546V, yielding an average of 417
DEGs. Conversely, the condition involving growth in 5% w/v ethanol-supplemented LB media
with deletion of two-component system response regulator baeR resulted in 1775 DEGs on
average.

PRECISE 2.0 also contains 145 expression profiles of strains with knocked-out TFs. This
dataset therefore provides an opportunity to compare the number of DEGs resulting from such
knockouts. In particular, we find that there is no clear relationship between regulon size and
number of DEGs after TF knockout (Figure 2D). In particular, TCS response regulators typically
have small direct regulons, but knocking them out significantly perturbs the expression of
hundreds of genes. This large number of DEGs may be related to the key role of TCSs in
instigating broad adaptations to extracellular signals (30).
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Figure 2: PRECISE 2.0 reveals broad gene expression trends in the E. coli transcriptome. A)
The growth in transcriptomics samples contained in the PRECISE 1.0 to PRECISE 2.0
databases. All transcriptomics samples were generated using the same protocol in the same
laboratory. B) Principal component plot of PRECISE 2.0. C) Numbers of differentially expressed
genes (DEGs) determined for all pairs of conditions within PRECISE 2.0 using classical
differential gene expression analysis. D) Numbers of DEGs for specific pairs of PRECISE 2.0
samples involving transcription factor knockout (TF KO), plotted against the number of genes in
the TF’s regulon. KO of two-component system (TCS) response regulators tends to produce
hundreds of DEGs despite small direct regulon size. E-H) Breakdown of gene expression and
expression variance by category. SG iMs = single-gene iModulons.
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PRECISE 2.0 highlights both global and environment-specific
gene expression patterns

PRECISE 2.0 provides a high-level view of absolute expression and expression variance
across the E. coli genome. To gain further insight into the processes that contribute to overall
expression and variability, we compared genes based on their presence or absence in four
categories.

First, we compared genes that were part of at least one iModulon against genes not in
any iModulon, since expression variance is key to detecting independent regulatory signals with
ICA. Although genes in iModulons have higher expression variation than genes not in iModulons
(P=0.00, Mann-Whitney U test, m=2069, n=2142), average expression itself does not depend
significantly on iModulon membership (P = 0.32) (Figure 2E). Next, we also found that the
expression of metabolic gene s (as defined by the most up-to-date metabolic model, iML1515
(31)) was significantly higher than that of non-metabolic genes (P=3.52E-14, m=1478, n=2733)
(Figure 2F).

We also compared the expression distribution of uncharacterized genes (referred to as
y-genes in E. coli (32)) to genes with known functions. Y-genes have significantly lower
expression (P=7.31E-8, m=290, n=3921) than non y-genes, highlighting the lack of transcription
in many conditions as a potential reason for these genes’ relative lack of annotation. However,
expression variance is not significantly different based on y-gene status (P=0.47) (Figure 2F).
Thus, 144 of 290 y-genes (50%) are actually found in iModulons, highlighting the potential for
iModulons to uncover putative functions for these uncharacterized genes. Finally, we observed
that genes for which proteomics data is available (33, 34) have significantly higher expression
(P=0.00, m=1932, n=2279), which is consistent with a known bias towards higher-expressed
genes amongst proteomics samples (Figure 2G).

iModulons extracted from PRECISE 2.0 summarize systems-level
regulatory and biological processes

PRECISE 2.0 can be decomposed into 218 iModulons using ICA. As previously shown,
these iModulons map closely onto experimentally-determined regulons, or groups of
co-regulated genes (1).

The 218 iModulons extracted from PRECISE 2.0 reconstruct 79% of the total variance in
the dataset. 116 of these iModulons are classified as Regulatory, as they are significantly
enriched in genes known to belong to the corresponding regulon (Figure 3A). These Regulatory
iModulons explain 58% of the total variance in PRECISE 2.0 The 34 Genomic and 29 Biological
iModulons that lack significant regulator enrichment account for another 17% of the variance
(Figure 3B). Genomic iModulons are associated with genetic interventions such as knockouts,
whereas Biological iModulons are enriched with functionally related groups of genes. An
additional 37 iModulons captured single variant genes, although these iModulons only account
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for 5% of the variance. Finally, a single uncharacterized iModulon accounts for just 0.4% of the
variance in PRECISE 2.0. Thus, functional annotation explains >99% of the variance
represented by iModulons.

iModulons related to metabolism and stress responses each account for 22% of the
variance in PRECISE 2.0, as well as accounting for 58 and 46 of the 116 Regulatory iModulons
by count, respectively (Figure 3C-D). The 8 iModulons containing genes encoding transcription
and translation-related proteins account for a substantial 13% of the variance, highlighting their
central role in the cellular response to changing environmental conditions throughout the
dataset. Given the inclusion of a project targeting two-component systems in PRECISE 2.0, 19
two-component system iModulons are extracted from PRECISE 2.0. Thus, ICA with a large
dataset like PRECISE 2.0 can capture sensory functions of an organism through transcriptomic
changes, in addition to core metabolic and stress functions.

Certain individual iModulons account for outsize proportions of the overall variance in the
dataset. In particular, the RpoS (stringent response sigma factor) and ppGpp (stringent
response alarmone) iModulons - both influencing transcription and translation - account for
5.2% and 2.3% of all dataset variance, respectively (Figure 3E). These data highlight the ability
of these regulators to mobilize large-scale transcriptomic responses. Flagella-related regulators
FlhDC and FliA also combine to explain a full 6.9% of the variance.

The decomposition of PRECISE 2.0 into iModulons enables differential iModulon activity
(DIMA) analysis, where the differential expression of hundreds to thousands of genes can be
summarized by on average 38 differentially activated iModulons (Figure 3F). On average, a
comparison between two conditions in PRECISE 2.0 yields almost twenty times fewer
significantly different iModulon activities than significant DEGs (Figure 3G).
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Figure 3: PRECISE 2.0 has 218 iModulons that represent a range of cellular processes. A) A
breakdown of PRECISE 2.0 iModulons by their annotation category: ‘Regulatory’ denotes
significant enrichment of one or more regulators; ‘Technical’ includes a single gene or technical
artifact iModulon; ‘Genomic’ includes iModulons related to known genomic interventions (i.e.
knockouts or segmental amplifications due to ALE); and ‘Biological’ includes iModulons
containing genes of related function without significant regulator enrichment, or potential new
regulons. B) iModulon annotation categories by percentage of variance explained. The 218

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.04.08.439047doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.08.439047
http://creativecommons.org/licenses/by-nc-nd/4.0/


annotated iModulons together explain 80% of the variance. C) More specific functional
annotation of the iModulons in PRECISE 2.0. D) Explained variances of the functional
annotation categories in panel C. Color code matches panel C. Explanation of transcriptional
responses comes through the functional annotation of the iModulons that provides a direct
biological explanation of the transcriptomic response. E) Top 25 iModulons ranked by % of
variance explained. Color code matches panel C. F) Distribution of differential iModulon
activities (DIMAs) for all-to-all condition comparisons. G) Relationship between DEGs and
DIMAs discovered across all condition comparisons. This graph demonstrates the utility and
accuracy of the dimensionality reduction from DEGs to DIMAs, with each condition comparison
yielding almost 20 times fewer DIMAs than DEGs.

PRECISE 2.0 enables regulon discovery

Putative TF Putative Genes in
Regulon

Putative Function TK KO strain
included in PRECISE
2.0 experiments?

YmfT fur, sulA, intE, xisE,
ymfH, ymfJ, ymfT,
ymfL, ymfM, ymfN,
beeE, jayE, ymfQ,
stfE, icdC, recN

e14 prophage
regulator activated by
DNA damage

no

YgeV ybiY, rcsB, xdhA,
xdhB, xdhC, ygeW,
ygeX, ygeY, hyuA,
ygfK, ssnA, ygfM,
xdhD, ygfT, uacT,
cpxR

Nucleoside
degradation activated
by ethanol treatment

no

YheO xisR, hslJ, ldhA, ydfK,
yniD, mqo, tusC,
tusD, yheO, tnaA,
tnaB

Unknown yes

YciT ybiU, ybiV, ybiW,
ybiY, fsaA, yciT

Unknown yes

YbaQ ybaQ, xisD, ymcF,
yohC, yfeC, yfeD

Unknown yes

PdeL pdeL, gsiB, gsiC,
gsiD, pdeI, dgcI

c-di-GMP control no

Table 1: Putative regulons discovered from PRECISE 2.0 by ICA

Functional annotation for many putative TFs in E. coli still remains elusive (35).
Fortunately, iModulons are a powerful tool for the discovery and analysis of new regulons. Our
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previous work with PRECISE 1.0 enabled the elucidation of regulons for three previously
uncharacterized TFs (YieP, YiaJ/PlaR, and YdhB/AdnB), and expanded the regulons of three
known TFs (MetJ, CysB, and KdgR) (1). Many of these regulatory interactions were confirmed
through DNA-binding profiles (1, 36, 37). Furthermore, three novel regulons were predicted from
iModulons derived from a microarray dataset (24).

iModulons from PRECISE 2.0 have revealed potential regulons for 6 new putative TFs
(Table 1). Three of these regulons (YheO, YciT, and YbaQ) were identified due to the presence
of TF knock-out strains in the compendium. The remaining three regulons (YgeV, YmfT, and
PdeL) were identified due to the presence of activating conditions in the database.

The putative YgeV iModulon contains 16 genes, of which 8 are putatively involved in
nucleotide transport and metabolism (Figure 4A). YgeV is predicted to be a
Sigma54-dependent transcriptional regulator, and Sigma54-dependent promoters were
previously identified upstream of the xdhABC and ygeWXY operons, which are in the YgeV
iModulon (38). Although the iModulon does not contain the gene ygeV, ygeV is divergently
transcribed from ygeWXY. A prior study found that expression of ygfT was reduced in a YgeV
mutant strain. Since ygfT is in the YgeV iModulon, this indicates that YgeV may serve as an
activator for the genes in its iModulon.

Although the activity of the YgeV iModulon rarely deviates from the reference condition,
it is most active when BaeR or CpxR mutant strains are exposed to ethanol (Figure 4B).
Therefore, we predict that the TF YgeV responds (directly or indirectly) to ethanol to activate
genes related to purine catabolism, and is repressed by the two-component systems BaeRS
and CpxAR.

The putative YmfT iModulon contains 14 of the 23 genes in the e14 prophage, including
ymfT (39) (Figure 4C). This iModulon differs from the e14-excision iModulon, whose activities
clearly denote strains lacking e14 prophage gene expression (Figure 4D). The putative YmfT
iModulon is most active in strains lacking the ferric uptake regulator Fur, or in strains challenged
by oxidative stress through hydrogen peroxide (Figure 4E). Absence of Fur leads to
overproduction of iron uptake proteins, oxidative damage, and subsequently mutagenesis (40).
Therefore, we predict that YmfT responds to oxidative stress to regulate the genes in the e14
prophage.

The putative PdeL iModulon contains 6 genes across three operons (Figure 4F). Five
genes (gsiB, gsiC, gsiD, pdeI, and dgcI) have positive gene weights, whereas pdeL has a
negative gene weight. PdeL is a dual transcriptional regulator and c-di-GMP phosphodiesterase
that activates its own transcription (41). Since the gene weight of pdeL is opposite of the other
genes in the iModulon, we propose that the remaining genes may be repressed by PdeL.

These three examples illustrate the potential for iModulons to predict new regulons.
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Figure 4: iModulons predict the putative YgeV, YmfT, and PdeL regulons. A) iModulon gene
weights for the putative YgeV iModulon vs genome position. B) Activity of the YgeV iModulon in
different media conditions. Each colored bar is the mean of two biological replicates (shown as
individual black points). C) Venn diagram comparing genes in the e14 prophage, genes in the
e14-excision iModulon, and the putative YmfT iModulon D) iModulon activities of the
e14-excision iModulon, separated between strains with the e14 prophage excised vs. wild-type
strains. E) Activity of the YmfT iModulon in different media conditions. Each bar is the mean of
two biological replicates (shown as black points). F) iModulon gene weights for the putative
PdeL iModulon vs genome position.

Discussion
In this work, we establish PRECISE 2.0, a high-fidelity E. coli expression compendium

that enables the discovery of independently-modulated regulatory signals. We use PRECISE
2.0’s unprecedented quality and scale to deliver meaningful insights into the regulatory
dynamics of E. coli at multiple scales. First, we find that gene expression levels and variance
across the dataset are differentiated by factors such as measurability in the proteome, functional
characterization, and membership in an iModulon. Moreover, we present 218 iModulons that
explain nearly 80% of the total variance in our dataset. Over half of these iModulons correspond
to known regulons. iModulons derived from PRECISE 2.0 cover the full range of cellular
processes, from sensory two-component systems to core metabolic pathways to translation.
Differential iModulon activity analysis also greatly simplifies differential expression analysis; with
an average of twenty times fewer significantly differential expressions to analyze, DIMA analysis
simplifies systems-level analysis of transcriptomic changes.

Perhaps most importantly, PRECISE 2.0 enables us to discover and partially
characterize putative regulons for predicted TFs. We demonstrate this capability by assigning a
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putative function in either ethanol stress tolerance or nucleotide metabolism to the YgeV
regulon, based on the YgeV iModulon activation pattern and backed by ChIP-exo binding data.
In particular, this activation coincides with knockouts of two-component system response
regulators BaeR and CpxR; thus, YgeV’s role in nucleotide metabolism upon ethanol stress
response may arise as a compensatory mechanism following inactivation of these more
prominent TCS regulators. The specificity of this activating condition may play a role explaining
why the functions of this regulator and the genes in its regulon remain unknown.

PRECISE 2.0’s success at uncovering E. coli’s transcriptome demonstrates the power of
ICA and iModulon analysis for the systems-level analysis of the transcriptional regulatory
network. We find that by increasing the size of our dataset 3-fold, we have more than doubled
the number of discovered iModulons. In addition, we have retained nearly all of the iModulons
extracted from PRECISE 1.0, indicating that the iModulons represent fundamental regulatory
modes, and not dataset-specific artifacts (Figure S1). In some cases, we have discovered
multiple iModulons from PRECISE 2.0 that correspond to a single PRECISE 1.0 iModulon.
Here, we see an opportunity to refine the sometimes broad definition of a regulon to its most
incisive and functionally-relevant form, especially for global regulators that can have hundreds
of regulon members.

PRECISE 2.0 adds to a series of successes using ICA and iModulons to characterize
bacterial transcriptional regulatory networks. While this dataset was generated entirely from a
single laboratory, many more transcriptomics datasets are publicly available for E. coli and other
common microorganisms from the NCBI’s Sequence Read Archive. We have previously shown
that ICA can discover stable iModulon cohorts from combined datasets (24). Thus, the time is
right to apply these mature analytical techniques to a wider range of organisms for which a
critical quantity of transcriptional data is available. We believe that our analytical pipeline for
generating, curating, decomposing, and analyzing PRECISE 2.0 can be readily applied to many
other microorganisms, with the potential to yield equally impactful insights into those organisms’
regulatory network structure.

Methods

Compiling PRECISE 2.0
PRECISE 2.0 consists of all data in PRECISE 1.0 (1), along with data from the following
BioProject accession numbers: PRJNA546062, PRJNA559161, PRJNA560374,
PRJNA689602, PRJNA704556 and PRJNA601908.

Data was processed using a Nextflow (42) pipeline designed for processing microbial RNA-seq
datasets (https://github.com/avsastry/modulome-workflow), and run on Amazon Web Services
(AWS) Batch.
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First, raw read trimming was performed using Trim Galore
(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) with the default options,
followed by FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) on the trimmed
reads. Next, reads were aligned to the genome using Bowtie (43). The read direction was
inferred using RSEQC (44) before generating read counts using featureCounts (45). Finally, all
quality control metrics were compiled using MultiQC (46) and the final expression dataset was
reported in units of log-transformed Transcripts per Million (log-TPM).

PRECISE 2.0 and associated data files can be found at https://github.com/SBRG/precise2.

Computing the optimal number of robust Independent
Components
To compute the optimal independent components, an extension of ICA was performed on the
RNA-seq dataset as described in McConn et al. (unpublished).

Briefly, the scikit-learn (v0.23.2) (47) implementation of FastICA (48) was executed 100 times
with random seeds and a convergence tolerance of 10-7. The resulting independent components
(ICs) were clustered using DBSCAN (49) to identify robust ICs, using an epsilon of 0.1 and
minimum cluster seed size of 50. To account for identical with opposite signs, the following
distance metric was used for computing the distance matrix:

𝑑
𝑥,𝑦
= 1 − ||ρ

𝑥,𝑦
||

where ρx,y is the Pearson correlation between components x and y. The final robust ICs were
defined as the centroids of the cluster.

Since the number of dimensions selected in ICA can alter the results, we applied the above
procedure to the B subtilis dataset multiple times, ranging the number of dimensions from 10 to
260 (i.e. the approximate size of the dataset) with a step size of 10. To identify the optimal
dimensionality, we compared the number of ICs with single genes to the number of ICs that
were correlated (Pearson R > 0.7) with the ICs in the largest dimension (called “final
components”). We selected the number of dimensions where the number of non-single gene ICs
was equal to the number of final components in that dimension.

Identifying differentially expressed genes (DEGs)
Differentially expressed genes (DEGs) were identified using the DESeq2 package (50) on the
PRECISE 2.0 RNA-seq dataset. Genes with a log2 fold change greater than 1.5 and a false
discovery rate (FDR) value less than 0.05 were considered to be differentially expressed genes.
Genes with p-values assigned “NA” based on extreme count outlier detection were not
considered as potential DEGs. The number of DEGs was computed for each unique pair of
conditions in the PRECISE 2.0 compendium.
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Identifying differential iModulon activities (DIMAs)
Differentially activated iModulons were computed with a similar process as previously detailed
(1). For each iModulon, the average activity of the iModulon between biological replicates, if
available, was computed. Then, the absolute value of the difference in iModulon activities
between the two conditions was compared to the fitted log-normal distribution of all differences
in activity for the iModulon. iModulons that had an absolute value of activity greater than 5, and
an FDR below 0.05 were considered to be significant. The number of DIMAs was computed for
each unique pair of conditions in the PRECISE 2.0 compendium.

Computing iModulon enrichments
The TRN was taken from RegulonDB (51). iModulon enrichments against known regulons were
computed using Fisher’s Exact Test, with the FDR controlled at 10-5 using the
Benjamini-Hochberg correction. Fisher’s Exact Test was used to identify GO and KEGG
annotations as well, with an FDR < 0.01. By default, iModulons were compared to all possible
single regulons and all possible combinations of two regulons (both union and intersection) to
yield significant enrichments. The regulons used by default consisted of only strong and
confirmed evidence regulatory interactions, per RegulonDB. When multiple significant
enrichments were available, the enrichment with the lowest adjusted P value was used for
annotation. If no significant enrichments were available, the following adjustments were used, in
this order: relax evidence requirement to include weak evidence regulatory interactions; search
only for single regulon enrichments; allow up to 3 regulons to be combined for enrichment. If
none of these adjustments yielded a significant enrichment, the iModulon was annotated as
non-regulatory. iModulons annotated not using the default enrichment setup are noted in the
iModulon table available as part of the included dataset.

Code Availability
Code and Jupyter notebooks are available at: https://github.com/SBRG/precise2
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Supplementary Figures

Figure S1: Comparison of PRECISE 1.0 iModulons to PRECISE 2.0 iModulons
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