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Missense SNVs and InDels Using Deep Learning

Chang Li,Degui Zhi,Kai Wang, Xiaoming Liu

Method

Training Datasets

ClinVar! datasefiles clinvar_20190102.vcf.gz and clinvar_20200&cf.gz were downloaded
from https:Avww.ncbi.nim.nih.gov/clinvar/Mutations inthe olderfile were used in the training
phase of model development. Next, we prepared separate datapeistfonutationsand
insertion/deletions (Dels). For SNVs, norsynonymous SNV&sSNVs)labeled as
'‘Pathogenic’ or 'Likely pathogenic' were used as true posifives) and nsSNVs labeled as
'‘Benign’ or 'Likely Benign' were used as true negat{Vés). Rare \ariantsthat are absent from
at least onef thethreedatasetggnomAD?, EXACS, and the 1000 Genomes Profgetere
retained A further filter removed any nsSNVs that are absent in all three datasets.end,
26,517rare nsSNVsvith 9,009 TPs and 17,508 TSupplementaryTable ) were used for
training For InDels, the same criteria were appli¢d obtaintrue positive and tue negatives
Additionally, onlyInDels annotated as neftameshift(nfINDELS) and hae length 3 and <50
basepairs were includedA total of 2,057rarenfINDELs with 1,348 TPs and 709 TNmssed
the filtering criteria(SupplementaryTable?2).

Test Datasets

We constructed test sets to evaluate the performancewfSNV basednode| namely
MetaRNN(Summary inSupplementaryTable3). The frsttest dataset (ramsSNVtest set,
RNTS) was constructed from rapgathogenic nsSNV&bsent from at least one of the three
datasets, namely gnomAD, EXAC and the 1000 Genomes Plaojéngt absenin all three
datasetsadded tahe ClinVar database after 20190102 aacensSNVsabsent from at least one
of the three datasets but not absent in all three datesetes not reported in ClinVar and
matching orgenomic locatiorfrandomly selected nepathogenic nsSNVwithin 200kb from

the pathogenioneg, resulting in12,406variantswith 6,203TPs and,203TNs
(SupplementaryTable4). The second test datagedre clinvaronly test set, RCTS) was
constructed fromnecentlyadded (after 20190108)inVar pathogenic nsSNVs (47528 and
benign nsSNVs (n2,389 that were absent from at least one of the tdegaset but notabsent

in all threedataset (SupplementaryTableb). The thirdtest dataset (allelrequencyfiltered
RNTS, ARRNTS) was constructed from RNTS replacing the allele count filter with an AF filter
that only variants with A8 0.01 in allthree datasetsere keptwhich resulted in a data set with
5,770 TPsand 5,770 TN¢SupplementaryTable6). Thefourthtest dataset (allelgequency
filtered RCTS, AFRCTS) was constructed from RCTS replacing the allele count filter with an
AF filter that only variants with A8 0.001 in all populations were kepthich resulted in 6065
TPs and3,220 TNS(SupplementaryTable7). Thefifth test datasdfall-allele-frequency set,
AAFS) was constructed from all pathogenic and benign nsSNVs addeel@inVar database
after 20190102resulting in 29,924 variantsith 6,205 TPs and 2,808 TNs
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(SupplementaryTable8). Thesixthtest setTP53 test set (TP33), wasconstructedrom the
TP53mutation websitehttps://p53.fr/index.php). Variantswith median activity <5Qvere
considered pathogeniwhile variantswith median activity >=10@reconsidered benigrifter
removingvariants used ithetrainingset 824 variantsremainedwith 385 TPs and 439 TNs
(SupplementaryTable9). Forour InDel-based model, namely MetaRNRdel, the test dataset
wasconstructed froninDels added tahe ClinVar database after 2019010#hich resuledin
989 InDels with 491 TPs and 498 TNSupplementaryTable10).

Flanking region mutation

After obtaining all target variants, we retrievbeir flanking sequences using doNSFP4.
Specifically,thevariant's genomic locaticendthe affected amino acid position as to the protein
and the affected codon were firdentified in doNSFP. Then, a window size éfi+1 codon
aroundthe affected codon asidentified and all nsSNVs inside this window were retrievgth
maximum length 09 basepairs (bp). For a givertargetmutation, the maximum number of
nucleotides omrither side is 5 bp (3 bp froomeflanking codon and 2 bp from the target codon).
To center the input window on target mutateord have uniform shape for alputs the input
window is padded for an additional 2 bp to reacii A bp window for each tget mutation so

that there are 5 bp around the target mutafitus window, including the target variantsasv
used as onmputfor our modelS.Figure 1). For each position, multiplalternativeallelesmay
exist Thus, to reduce the dimension of aysut data, anotations were averaged across all
allelesatthe samdocus, except for the target mutation where the actual mutation isAfsed.
these steps, the input dimensiontfie MetaRNN model beconsel 1 (bp) by 28(features, see
below)

The sameule to adopting flankingegionapplies tdnDels with one difference: instead of
affecting onlyonecodon,targetinDels may affect multiple codorssmultaneouslyThus, the #
1 codon window vasdefined as the window beyond all the directly affectedions.Since we
focus oninDels with length < 50, the input dimension foe MetaRNNindel model is 5&bp)
by 28(features, see below)

Feature selection

For each variantncluding target variant and flanking sequence vari@&@dgeatures were
calculated oretrieved fromthe dbNSFPdatabasgincluding16 functional prediction scores
including SIFT®, Polyphen2_HDIV, Polyphen2_HVARMutationAssessdt PROVEAN,
VEST#, M-CAP'°, REVEL'!, MutPred?, MVP*3 PrimateAl*, DEOGENZ° CADD?,
fathmmXF'’, Eigen® andGenoCanyol?, eightconservation scoréscluding GERP?,
phyloP100way_vertebrate phyloP30way mammaliaphyloP17way_primate,
phastCons100way_vertebrapdastCons30way mammaligghastConsl7way_primaged
SiPhy??, andfour calculatedallele frequency (AF) related scor@he highest AF values among
subpopulations were used as the AF score for each duhdata sets from threstudies,
namely the 1000 Genomes Project (1000GP), EXAC, gnomAD exarmdegnomAD genome.
All missing scoes inthedbNSFP database were first imputed using BPCGAfdind all scores
were standardized before feeding to the model for traidogie more recently developed scores
were removedo minimize type | circularityin training our ensemble modslch aClinPred
which used ClinVar variants in their training process.


https://p53.fr/index.php)
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Model development

We appliedarecurrent neuratetworkwith Gated Recurrent UnR§GRU) toextract and learn

the sequence informati@round target varian{$.Figure 2. To select the begierforning

model structureBayesian Hyperparameter Optimizafidwas usegand a wide range of model
structures \astested. This process used 70% training data for model training and 30% of training
data for performance evali@at, so no test dasets were used this stepPython packages sci
kit-learrf® andTensorffow 2.0 (https://www.tensorflow.orgiyere used to develop the models
andKerasTune(https://kerageam.qgithub.io/keratuner) was adopted to apply Bayesian
Hyperparameter Optimizatioimhe search space fall thehyperparametensas shown in
SupplementaryTable 8.The models with th smallest validation log losseneused as our final
models for nsSNV (MetaRNN) andINDEL (MetaRNNindel).

Compare the Performance of Individual Predictors

As a model diagnosis step, for each model, a permutation féapwetance was calculated for
each of the individual features. ThermutationmportancgPl) was calculated as

.. DET I
V0O —F7—+
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A Pl value of 1 means the feature is uselegth higher values indicating more important
features.

To quantitatively evaluate model performance, we retrieved 28 annotations from dbNSFP to
compare with our MetaRNN model. Rine MetaRNNindel model four popular methods were
comparegincluding DDIGin?’, CADD*¢, PROVEAN, and VEST48. We plotted receiver
operating characteristic (ROC) curves and calcdldtearea under the ROC curve (AUC) for
eachmethod being comparagsing our test datase®ython package matplotlib
(https://matplotlib.org/) was uséd plot ROC curves, and Python packagek#eclearn was used
to calculate AUQog loss.

RESULTS
Comparison of other model structures

To show that our MetaRNN model, which adopted flanking sequence information, can provide
additional predictive power, we trained another fé®avard neural network model using only

dense layers (MetaRNN.feedforwad). Thmea&KerasTuner parameters were used, such as the
maximum number of trials and the number of hidden layers. Additionally, we checked if limiting
training data to only those rare nsSNVs (MAB.01 in all populations; n=18,070) could

improve the model's perfoiance in separating rare pathogenic from rare benign nsSNVs
(MetaRNN.rare). The comparison showed that our MetaRNN model outperforms all these model
structures $. Figure 3. Models which adopted flanking information (MetaRNN and
MetaRNN.rare) outperformetie model structure that used only target site information
(MetaRNN.feedforward). Additionally, limiting training data to only rare variants did not help

with model performance. This observation could have two implications. First, our initial training
datainclude more data points (26,517 vs. 18,070). These additional data points can provide more
information that may be missed in the new training set. Second, limiting training data to have


https://keras-team.github.io/keras-tuner/
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MAFd 0.01 may lead to a loss of useful information otherwise provigedlF features. Our

initial training data, which removed only those "easy" benign nsSNVs observed in all
populations, seem to be a good tradiebetween posing a difficult enough training set for the
model to learn useful information and presegwaluable information from AF features.

Characterization of MetaRNN Features

MetaRNN ensemble score combined 24 individual prediction scordeamallele frequency
features from the 1000 Genomes Project, Ex&@ gnomAD. As shown i8. Figure 4A, most
of the conservation scores and ensemble scores showed maastedagcorrelatiors
(correlation coefficienbetweerD.4and 1. However, MutationTastétand GenoCanyd#f
showedaweak correlation with all other featur&&ince most SNVs are not observed in multiple
populatons, correlationbetween different AF featurese also strong (>0.8However, AF
features showedweakcorrelation with all other individual predictors implying tipaevious
annotation scores have not fully exploited such informafitis observatio is also supported
by the permutation feature importance analySig-{gure 4B). The most important features are
two exome AF feature$pllowed by two wholegenome AF feature&§ome functional predictors
showed higher importance compared vathers, such as VEST4, MutationTastard MutPred.
This observation is in concordance with a recent observatiaghlightingthe importance of
populationAF datain inferring the functional importance n§SNVs.

Ensemble score outperforms competitors regaraiss of test set allele frequency

We composed two main test sets to compare the performaMsta@iRNN with24 other
methodsncluding MutationTaste?®, FATHMM3, FATHMM-XFY', VEST#, MetaSVM?,
MetalLR®2, M-CAP°, REVEL, MutPred? MVP?!3, PrimateAl*, DEOGEN2Z?,
BayesDel_addA¥®, ClinPred®, LIST-S24 CADD?®, Eigert®, GERP®,
phyloP100way_vertebrate phyloP30way mammaliaphyloP17way_primate,
phastCons100way_vertebraphastCons30way mammaliaandphastConsl17way_primaté)
RarensSNVtest set (RITS) is comprised afare ClinVar pathogenic SNVs and rare control
SNVs from gnomAD matchingrogenomic location; 2All-allele-frequencyset (AAFS)is
comprised of havailable ClinVar pathogenic SNVs and benign SNksse+commonjhat are
not used for model developmeAss shownin S.Figure 7, usingAAFS as benchmarking
dataset,MetaRNN outperformall competitors with an AUC equatis 0.9862 The secondbest
modelis ClinPred(AUC=0.9841) andfollowed byBayesDelAUC=0.9759. In general,
ensemble methods and functional predictors outperform conserbats@a methods in this
comparison whiclagreeswith previous findings.

Performance Evaluation in an Independent Test Set

Next,we comparedetaRNNs ability to identify e mast functionally important nsSN\Ma the
TP53 geneAs shown inS. Figure 8, MetaRNN topped the listith an AUC equal$o 0.8074
The PrimateAl, BayesDel _addAF, REVEAnd VEST4 showesdlightly inferior performance.
Methods based purely monservation again had the worst performaifibés result indicates
that MetaRNN can effectively preditte pathogenicity of nsSNVs aftfte functional impagt,
while other top methods are only good at some test datasets.

MetaRNN-indel significantly outperformed all competitors onnfINDEL s
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Using the holebut set fronthe ClinVar database as benchmarking dataset, we compared
MetaRNNindel withfour other currently available scores. As showirigure 4, MetaRNN

indel performed the best with an Al&gquals 0.943Followed by PROVEAN (AUC=0.9271)

and DDIGIn (AUC=0.9152). These results indicate that our training framework for MetaRNN
and MetaRNNndel consistently outperforsrother methodsoncerningooth nsSNVs and
nfINDELSs.
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SupplementaryTable 3. Summary statistics for test datasets used to evaluate MetaRNN

Name Allele frequency filter Allele count filter No. TP  No. Total No.
TN
RNTS NA Observed in at least 1 datase 6203 6203 12406
removedf observed in all 3
RCTS NA Observed in at leastdataset, 1528 2389 3917
removed if observed in all 3
AF- MAF<=0.01 in all 3 NA 5770 5770 11540
RNTS datasets
AF- MAF<=0.001 in all 3 NA 6065 3220 9285
RCTS datasets
AAFS NA NA 6295 22808 29103
TP53TS NA NA 385 439 824
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SupplementaryTable 8 Search space for all hyperparameters using Bay©&gamization.

Hyperparameters Minimum Maximum Step
GRU layers 1 3 1
GRU units 16 128 16

Dropout rate 0.1 0.5 0.1
Dense layers 1 4 1
Dense units 16 128 16

Learning rate 1x10° 1x10? Log sampling
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S.Figure 3. Performance of differentmodel structures and selecteg@redictors
benchmarked usingthe allele-frequency-filtered rare nsSNVtest set AF-RNTS).
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S.Figure 7. Performance of different methods benchmarked usingare ClinVar-only test
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S.Figure 8. Performance of different methods benchmarked usingllele-frequency-filtered
rare ClinVar -only test set (AFRCTS).
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S.Figure 9. Performance of different methods benchmarked usinthe all-allele-frequency
set (AAFS).
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S.Figure 10. Performance of different methods benchmarked using TP53 test set
(TP53TS).



