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Method 

Training Datasets 

ClinVar1 dataset files clinvar_20190102.vcf.gz and clinvar_20200609.vcf.gz were downloaded 

from https://www.ncbi.nlm.nih.gov/clinvar/. Mutations in the older file were used in the training 

phase of model development. Next, we prepared separate datasets for point mutations and 

insertion/deletions (InDels).  For SNVs, non-synonymous SNVs (nsSNVs) labeled as 

'Pathogenic' or 'Likely pathogenic' were used as true positives (TPs), and nsSNVs labeled as 

'Benign' or 'Likely Benign' were used as true negatives (TNs). Rare variants that are absent from 

at least one of the three datasets (gnomAD2, ExAC3, and the 1000 Genomes Project4) were 

retained. A further filter removed any nsSNVs that are absent in all three datasets. In the end, 

26,517 rare nsSNVs with 9,009 TPs and 17,508 TNs (SupplementaryTable 1) were used for 

training. For InDels, the same criteria were applied to obtain true positives and true negatives. 

Additionally, only InDels annotated as non-frameshift (nfINDELs) and have length >1 and < 50 

base-pairs were included. A total of 2,057 rare nfINDELs with 1,348 TPs and 709 TNs passed 

the filtering criteria (SupplementaryTable 2). 

Test Datasets 

We constructed 6 test sets to evaluate the performance of our SNV based model, namely 

MetaRNN (Summary in SupplementaryTable 3). The first test dataset (rare nsSNV test set, 

RNTS) was constructed from rare  pathogenic nsSNVs (absent from at least one of the three 

datasets, namely gnomAD, ExAC and the 1000 Genomes Project, but not absent in all three 

datasets) added to the ClinVar database after 20190102 and rare nsSNVs absent from at least one 

of the three datasets but not absent in all three datasets  while not reported in ClinVar and 

matching on genomic location (randomly selected non-pathogenic nsSNVs within 200kb from 

the pathogenic ones), resulting in 12,406 variants with 6,203 TPs and 6,203 TNs 

(SupplementaryTable 4). The second test dataset (rare clinvar-only test set, RCTS) was 

constructed from recently-added (after 20190102) ClinVar pathogenic nsSNVs (n=1,528) and 

benign nsSNVs (n=2,389) that were absent from at least one of the three datasets but not absent 

in all three datasets (SupplementaryTable 5). The third test dataset (allele-frequency-filtered 

RNTS, AF-RNTS) was constructed from RNTS replacing the allele count filter with an AF filter 

that only variants with AF≤0.01 in all three datasets were kept which resulted in a data set with 

5,770 TPs and 5,770 TNs (SupplementaryTable 6). The fourth test dataset (allele-frequency-

filtered RCTS, AF-RCTS) was constructed from RCTS replacing the allele count filter with an 

AF filter that only variants with AF≤0.001 in all populations were kept which resulted in 6065 

TPs and 3,220 TNs (SupplementaryTable 7).  The fifth test dataset (all-allele-frequency set, 

AAFS) was constructed from all pathogenic and benign nsSNVs added to the ClinVar database 

after 20190102, resulting in 29,924 variants with 6,205 TPs and 22,808 TNs 
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(SupplementaryTable 8).  The sixth test set, TP53 test set (TP53TS), was constructed from the 

TP53 mutation website (https://p53.fr/index.php).). Variants with median activity <50 were 

considered pathogenic, while variants with median activity >=100 are considered benign. After 

removing variants used in the training set, 824 variants remained with 385 TPs and 439 TNs 

(SupplementaryTable 9). For our InDel-based model, namely MetaRNN-indel, the test dataset 

was constructed from InDels added to the ClinVar database after 20190102, which resulted in 

989 InDels with 491 TPs and 498 TNs (SupplementaryTable 10).  

Flanking region mutation 

After obtaining all target variants, we retrieved their flanking sequences using dbNSFP4.1a. 

Specifically, the variant's genomic location and the affected amino acid position as to the protein 

and the affected codon were first identified in dbNSFP. Then, a window size of +/ – 1 codon 

around the affected codon was identified, and all nsSNVs inside this window were retrieved with 

maximum length of 9 base-pairs (bp). For a given target mutation, the maximum number of 

nucleotides on either side is 5 bp (3 bp from one flanking codon and 2 bp from the target codon). 

To center the input window on target mutation and have uniform shape for all inputs, the input 

window is padded for an additional 2 bp to reach an 11 bp window for each target mutation so 

that there are 5 bp around the target mutation. This window, including the target variants, was 

used as one input for our model (S.Figure 1). For each position, multiple alternative alleles may 

exist. Thus, to reduce the dimension of our input data, annotations were averaged across all 

alleles at the same locus, except for the target mutation where the actual mutation is used. After 

these steps, the input dimension for the MetaRNN model becomes 11 (bp) by 28 (features, see 

below). 

The same rule to adopting flanking region applies to InDels with one difference: instead of 

affecting only one codon, target InDels may affect multiple codons simultaneously. Thus, the +/– 

1 codon window was defined as the window beyond all the directly affected codons. Since we 

focus on InDels with length < 50, the input dimension for the MetaRNN-indel model is 58 (bp) 

by 28 (features, see below). 

Feature selection 

For each variant, including target variant and flanking sequence variants, 28 features were 

calculated or retrieved from the dbNSFP database, including 16 functional prediction scores 

including SIFT5, Polyphen2_HDIV6, Polyphen2_HVAR, MutationAssessor7, PROVEAN8, 

VEST49, M-CAP10, REVEL11, MutPred12, MVP13, PrimateAI14, DEOGEN215, CADD16, 

fathmm-XF17, Eigen18 and GenoCanyon19, eight conservation scores including GERP20, 

phyloP100way_vertebrate21, phyloP30way_mammalian, phyloP17way_primate, 

phastCons100way_vertebrate, phastCons30way_mammalian, phastCons17way_primate and 

SiPhy22, and four calculated allele frequency (AF) related scores. The highest AF values among 

subpopulations were used as the AF score for each of the four data sets from three studies, 

namely the 1000 Genomes Project (1000GP), ExAC, gnomAD exome, and gnomAD genome. 

All missing scores in the dbNSFP database were first imputed using BPCAfill23, and all scores 

were standardized before feeding to the model for training. Some more recently developed scores 

were removed to minimize type I circularity in training our ensemble model, such as ClinPred, 

which used ClinVar variants in their training process. 

https://p53.fr/index.php)
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Model development 

We applied a recurrent neural network with Gated Recurrent Units24(GRU) to extract and learn 

the sequence information around target variants (S.Figure 2). To select the best performing 

model structure, Bayesian Hyperparameter Optimization25 was used, and a wide range of model 

structures was tested. This process used 70% training data for model training and 30% of training 

data for performance evaluation, so no test datasets were used in this step. Python packages sci-

kit-learn26 and TensorFlow 2.0 (https://www.tensorflow.org/) were used to develop the models, 

and KerasTuner (https://keras-team.github.io/keras-tuner/) was adopted to apply Bayesian 

Hyperparameter Optimization. The search space for all the hyperparameters was shown in 

SupplementaryTable 8. The models with the smallest validation log loss were used as our final 

models for nsSNV (MetaRNN) and nfINDEL (MetaRNN-indel). 

Compare the Performance of Individual Predictors 

As a model diagnosis step, for each model, a permutation feature importance was calculated for 

each of the individual features. The permutation importance (PI) was calculated as: 

𝑃𝐼 =  
𝐿𝑜𝑠𝑠𝑃𝑒𝑟𝑚

𝐿𝑜𝑠𝑠𝑜𝑟𝑖𝑔
 

A PI value of 1 means the feature is useless, with higher values indicating more important 

features. 

To quantitatively evaluate model performance, we retrieved 28 annotations from dbNSFP to 

compare with our MetaRNN model. For the MetaRNN-indel model, four popular methods were 

compared, including DDIG-in27, CADD16, PROVEAN8, and VEST428. We plotted receiver 

operating characteristic (ROC) curves and calculated the area under the ROC curve (AUC) for 

each method being compared using our test datasets. Python package matplotlib 

(https://matplotlib.org/) was used to plot ROC curves, and Python package sci-kit-learn was used 

to calculate AUC log loss.  

RESULTS 

Comparison of other model structures 

To show that our MetaRNN model, which adopted flanking sequence information, can provide 

additional predictive power, we trained another feed-forward neural network model using only 

dense layers (MetaRNN.feedforwad). The same KerasTuner parameters were used, such as the 

maximum number of trials and the number of hidden layers. Additionally, we checked if limiting 

training data to only those rare nsSNVs (MAF≤0.01 in all populations; n=18,070) could 

improve the model's performance in separating rare pathogenic from rare benign nsSNVs 

(MetaRNN.rare). The comparison showed that our MetaRNN model outperforms all these model 

structures (S. Figure 3). Models which adopted flanking information (MetaRNN and 

MetaRNN.rare) outperformed the model structure that used only target site information 

(MetaRNN.feedforward). Additionally, limiting training data to only rare variants did not help 

with model performance. This observation could have two implications. First, our initial training 

data include more data points (26,517 vs. 18,070). These additional data points can provide more 

information that may be missed in the new training set. Second, limiting training data to have 

https://keras-team.github.io/keras-tuner/
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MAF≤0.01 may lead to a loss of useful information otherwise provided by AF features. Our 

initial training data, which removed only those "easy" benign nsSNVs observed in all 

populations, seem to be a good trade-off between posing a difficult enough training set for the 

model to learn useful information and preserving valuable information from AF features. 

Characterization of MetaRNN Features 

MetaRNN ensemble score combined 24 individual prediction scores and four allele frequency 

features from the 1000 Genomes Project, ExAC, and gnomAD. As shown in S. Figure 4A, most 

of the conservation scores and ensemble scores showed moderate to strong correlations 

(correlation coefficient between 0.4 and 1). However, MutationTaster29 and GenoCanyon19 

showed a weak correlation with all other features. Since most SNVs are not observed in multiple 

populations, correlations between different AF features are also strong (>0.8). However, AF 

features showed a weak correlation with all other individual predictors implying that previous 

annotation scores have not fully exploited such information. This observation is also supported 

by the permutation feature importance analysis (S. Figure 4B). The most important features are 

two exome AF features, followed by two whole-genome AF features. Some functional predictors 

showed higher importance compared with others, such as VEST4, MutationTaster, and MutPred. 

This observation is in concordance with a recent observation30 highlighting the importance of 

population AF data in inferring the functional importance of nsSNVs. 

Ensemble score outperforms competitors regardless of test set allele frequency 

We composed two main test sets to compare the performance of MetaRNN with 24 other 

methods including MutationTaster29, FATHMM31, FATHMM-XF17, VEST49, MetaSVM32, 

MetaLR32, M-CAP10, REVEL11, MutPred12, MVP13, PrimateAI14, DEOGEN215, 

BayesDel_addAF33, ClinPred30, LIST-S234, CADD16, Eigen18, GERP35, 

phyloP100way_vertebrate21, phyloP30way_mammalian, phyloP17way_primate, 

phastCons100way_vertebrate, phastCons30way_mammalian, and phastCons17way_primate : 1) 

Rare nsSNV test set (RNTS) is comprised of rare ClinVar pathogenic SNVs and rare control 

SNVs from gnomAD matching on genomic location; 2) All-allele-frequency set (AAFS) is 

comprised of all available ClinVar pathogenic SNVs and benign SNVs (rare+common) that are 

not used for model development. As shown in S. Figure 7, using AAFS as benchmarking 

dataset, MetaRNN outperforms all competitors with an AUC equals to 0.9862. The second-best 

model is ClinPred (AUC=0.9841) and followed by BayesDel (AUC=0.9759). In general, 

ensemble methods and functional predictors outperform conservation-based methods in this 

comparison which agrees with previous findings. 

Performance Evaluation in an Independent Test Set 

Next, we compared MetaRNN's ability to identify the most functionally important nsSNVs in the 

TP53 gene. As shown in S. Figure 8, MetaRNN topped the list with an AUC equals to 0.8074. 

The PrimateAI, BayesDel_addAF, REVEL, and VEST4 showed slightly inferior performances. 

Methods based purely on conservation again had the worst performance. This result indicates 

that MetaRNN can effectively predict the pathogenicity of nsSNVs and the functional impacts, 

while other top methods are only good at some test datasets. 

MetaRNN-indel significantly outperformed all competitors on nfINDELs 
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Using the hold-out set from the ClinVar database as benchmarking dataset, we compared 

MetaRNN-indel with four other currently available scores. As shown in Figure 4, MetaRNN-

indel performed the best with an AUC equals 0.9433, followed by PROVEAN (AUC=0.9271) 

and DDIG-in (AUC=0.9152). These results indicate that our training framework for MetaRNN 

and MetaRNN-indel consistently outperforms other methods concerning both nsSNVs and 

nfINDELs. 
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SupplementaryTable 3. Summary statistics for test datasets used to evaluate MetaRNN 

Name Allele frequency filter Allele count filter No. TP No. 

TN 

Total No. 

RNTS NA Observed in at least 1 dataset, 

removed if observed in all 3 

datasets 

6203 6203 12406 

RCTS NA Observed in at least 1 dataset, 

removed if observed in all 3 

datasets 

1528 2389 3917 

AF-

RNTS 

MAF<=0.01 in all 3 

datasets 

NA 5770 5770 11540 

AF-

RCTS 

MAF<=0.001 in all 3 

datasets 

NA 6065 3220 9285 

AAFS NA NA 6295 22808 29103 

TP53TS NA NA 385 439 824 
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SupplementaryTable 8. Search space for all hyperparameters using Bayesian Optimization. 

Hyperparameters Minimum Maximum Step 

GRU layers 1 3 1 

GRU units 16 128 16 

Dropout rate 0.1 0.5 0.1 

Dense layers 1 4 1 

Dense units 16 128 16 

Learning rate 1x10-5 1x10-2 Log sampling 
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S. Figure 1. Steps to prepare data for model input. 

 

 

S. Figure 2. Illustration of MetaRNN models. 



Supplementary Note 

 

S. Figure 3. Performance of different model structures and selected predictors 

benchmarked using the allele-frequency-filtered rare nsSNV test set (AF-RNTS). 
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S. Figure 4. A. Correlation between features used to train MetaRNN. B. Feature 

importance for all features used in the MetaRNN model. 
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S. Figure 5. Performance of different methods benchmarked using the rare nsSNV test set 

(RNTS). 
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S. Figure 6. Performance of different methods benchmarked using the allele-frequency-

filtered rare nsSNV test set (AF-RNTS). 
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S. Figure 7. Performance of different methods benchmarked using rare ClinVar-only test 

set (RCTS). 
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S. Figure 8. Performance of different methods benchmarked using allele-frequency-filtered 

rare ClinVar-only test set (AF-RCTS). 
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S. Figure 9. Performance of different methods benchmarked using the all-allele-frequency 

set (AAFS). 
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S. Figure 10. Performance of different methods benchmarked using TP53 test set 

(TP53TS). 
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