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Summary: 

Malignant melanoma (MM) develops from the melanocytes and 
in its advanced stage is the most aggressive type of skin cancer. 
Here we report a comprehensive analysis on a prospective 
cohort study, including non-tumor, primary and metastasis 
tissues (n=77) with the corresponding plasma samples (n=56) 
from patients with malignant melanoma. The tumors and 
surrounding tissues were characterized with a combination of 
high-throughput analyses including quantitative proteomics, 
phosphoproteomics, acetylomics, and whole exome sequencing 
(WES) combined with in-depth histopathology analysis. 
Melanoma cell proliferation highly correlates with dysregulation 
at the proteome, at the posttranslational- and at the 
transcriptome level. Some of the changes were also verified in 
the plasma proteome. The metabolic reprogramming in 
melanoma includes upregulation of the glycolysis and the 
oxidative phosphorylation, and an increase in glutamine 
consumption, while downregulated proteins involved in the 
degradation of amino acids, fatty acids, and the extracellular 
matrix (ECM) receptor interaction. The pathways most 
dysregulated in MM including the MAP kinases-, the PI3K-AKT 
signaling, and the calcium homeostasis, are among the most 
affected by mutations, thus, dysregulation in these pathways can 
be manifested as drivers in melanoma development and 
progression.  

The phosphoproteome analysis combined with target-based 
prediction mapped 75% of the human kinome. Melanoma cell 
proliferation was driven by two key factors: i) metabolic 
reprogramming leading to upregulation of the glycolysis and 
oxidative phosphorylation, supported by HIF-1 signaling pathway 
and mitochondrial translation; and ii) a dysregulation of the 
immune system response, which was mirrored by immune 
system processes in the plasma proteome. Regulation of the 
melanoma acetylome and expression of deacetylase enzymes 
discriminated between groups based on tissue origin and 
proliferation, indicating a way to guide the successful use of 
HDAC inhibitors in melanoma. The disease progression toward 
metastasis is driven by the downregulation of the immune 
system response, including MHC class I and II, which allows 
tumors to evade immune surveillance. Altogether, new evidence 
is provided at different molecular levels to allow improved 
understanding of the melanoma progression, ultimately 
contributing to better treatment strategies. 
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1. Introduction 

Among the skin cancers, malignant melanoma is the deadliest, 
and its incidence and mortality are rising, particularly in Europe 
1,2. However, the early surgical intervention, and more recently 
the advent of targeted therapy and immunotherapy have 
substantially improved the mortality rate of the disease. 
Melanoma is one of the most heterogeneous cancers at the 
genomic level, which results in a variety of distinct phenotypes 
of the disease 3. The high level of heterogeneity in melanoma has 
been previously linked to disease progression and short survival 
4,5. Additionally, the levels of mutated proteins and dysregulation 
of their biological pathways, critically impact the tumor biology 
and survival 6. Signaling pathways such as the PI3K-AKT, mTOR, 
and MAPK are usually dysregulated in melanoma. BRAF, which is 
a kinase involved in the MAPK/ERK signaling pathway is the most 
frequently observed driver mutation in melanoma counting for 
approximately 50% of cases 7. Thus, a common treatment 
strategy to target this pathway is to use a combination of BRAF 
and MEK inhibitors. After a progression free period, however, 
most of the responsive patients in stage 4 of the disease develop 
resistance to treatment and ultimately die. 

Large cohorts of melanoma samples have been studied through 
genomics, transcriptomics, proteomics in attempts to decipher 
the molecular mechanisms driving the development and 
progression of the disease 8,9. Phosphoproteomics and 
acetylomics on melanoma have shown dysregulation during the 
progression of the disease at the posttranslational level 10,11. 
Additionally, a recent international milestone was reported; the 
high-stringency blueprint of the human proteome 12, mapping 
the expression and functional annotation of the coded genome. 
In an attempt to integrate several high-throughput analyses into 
the biological understanding of the development and 
progression of melanoma, we performed a comprehensive 
multi-omic analysis including proteomics, PTM profiling, 
metabolomics, and whole-exome sequencing of 77 tissue 
samples coming from 47 melanoma patients, supplemented by 
the proteomic analysis of 56 plasma samples. The metabolic 
changes that take place during the development and progression 
of the disease were traced at different molecular levels. We 
demonstrated that the characterization of melanoma in such an 
integrative manner at different molecular levels led to a better 
biological understanding of the disease that will ultimately help 
to advance future therapeutic interventions 

2. Results 

2.1. Characteristics of the melanoma-related 
prospective cohort study 

A cohort of 77 solid tissues, and 56 blood samples, originating 
from 47 different melanoma patients, enrolled in a prospective 
study, were submitted to a multi-omic analysis. Fresh frozen 
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biopsies originated from different organs and body localizations, 
including non-tumors (NT; >2 cm from the tumor edges; n=11), 
tumor microenvironments (TM; tumor edge without countable 
tumor cells; n=6), primary tumors (PT; n=16), local recurrences 
(LR; n=6), cutaneous metastases (CM; n=10), regional lymph 
node metastases (LN; n=23), and distant metastases (DM; 
coming from gallbladder, brain, liver, spleen, and breast; n=5) 
(Figure 1A). Blood sampling was performed prior to the surgical 
isolation of the tumor tissues. The relevant clinical information 
of the patients included in the study is presented in Table S1. All 

samples were submitted to quantitative proteomics. Besides, the 
tissue samples were subjected to quantitative 
phosphoproteomics and lysine acetylation stoichiometry 
analysis (Figure 1B). Complementary whole-exome sequencing 
(WES) was performed on the tumor tissue samples (60). The 
disease presentation within the tumors from the patients is 
outlined in Figure 1C, where grading was made according to the 
immune competence, as well as the tumor burden encompassing 
the metastasis types, the primary and non-tumors. 

Figure 1. Melanoma-related cohort submitted to multi-omics approach. A) Tissue samples originated from non-tumor (green, n=11), tumor 
microenvironment (purple, n=6), primary tumor (n=16), local recurrence (orange, n=6), cutaneous metastasis (n=10), lymph node metastases (n=23), 
and distant metastasis (n=5). B) Workflow for the global proteomics, phosphoproteomics, and acetylomics used in tissue-derived samples. Tissue 
samples were sectioned (10 µM thickness), sonicated using Bioruptor plus in SDS containing buffer. The proteins were acetylated with N-

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.04.10.439245doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.10.439245


Gil J. et al. | Malignant melanoma proteogenomics 
 

5 

acetoxysuccinimide-d3 (NAS-d3), followed by trypsin digestion. Generated peptides were divided into three different analyses; one fraction was 
directly injected onto LC-MS/MS system and analyzed following a data-independent analysis (DIA) method. A second fraction was submitted to an 
automated phosphopeptide enrichment analysis before LC-MS/MS analysis in a classical DDA method. The third fraction was measured following a 
DDA method without additional processing. Global proteomics data were analyzed with Spectronaut software, phosphoproteomics data was 
processed with Proteome Discoverer and acetylomics data by the combination of Proteome Discoverer and Pview. C) Spectrum of tumor-immune 
system imbalance is depicted during the progression of the disease. Starting from a relatively competent immunologic state both in peritumoral and 
intratumoral regions of low tumor load the pathological process ultimately results in high tumor burden with an exhausted immune system. Greyscale 
images correspond to the color figures above displaying areas of tumor (T), lymphoid infiltrate (L), and stroma (S). Oftentimes, this latter 
microenvironment adjacent to actual tumor cell nests is also dark (macroscopically), contains macrophages performing melanin phagocytosis. 

 

2.2. Dysregulated pathways in melanoma carry a 
large mutation load 

The tumor tissue samples were submitted to whole-exome 
sequencing (WES) analysis. In the absence of normal tissues as 
control, we relied on the gnomAD database’s non The Cancer 
Genome Atlas (TCGA) subset of ExAC release 1 to estimate the 
“population background”. The analysis revealed that melanoma 
does carry a higher number of somatic mutations, as compared 
to germline mutations (A>T and T>A SNP mutations, and indels 
are 15 and 224 times more abundant). However, the variants 
corresponding to SNP changes; A>G and T>C, were found to be 
underrepresented, whereas C>T and G>A were at comparable 
levels in somatic compared to germline mutations (Table S2). 
The relative ratio of different equivalent base-pair changes in 
somatic and germline SNPs variants are consistent across 
samples and the somatic patterns are different from the 
germline one. Germline patterns show high similarity with the 
population background except for A>G and T>C mutations, which 
is considerably larger in the germline pattern of the analyzed 
tumors compared to the population background (Figure S1A-B). 
The ratio of indels and SNPs in somatic mutations is substantially 
lower than in germline variants (0.81±0.03 and 74.53±4.48 
SNPs/indels ratio respectively), indicating that melanoma is 
driven by indels rather than SNPs (Figure 2D). Differences in this 
ratio were not observable, based on the sample origin. We also 
found that indels are slightly extending exon and protein 
sequences in somatic variants, while germline indels tend to 
mainly shorten them (Figure S2). The highly reproducible 
somatic patterns suggest that mutations in melanoma are driven 
by similar underlying molecular mechanisms across all patients. 

The high genetic heterogeneity of melanoma tumors was 
highlighted by lower sequence coverage of somatic compared to 
germline variants. While germline mutations are expected to be 
present in all cells, somatic mutations are only present in tumor 
cells, and different clones carry different somatic mutations 
(Figure S3). We performed hot spot analysis to identify the genes 
most frequently found carrying somatic mutations across the 
samples using a Chi-squared test followed by a multiple testing 
with Bonferroni correction. We were able to locate the 
chromosomal regions with somatic mutation burden (Figure S4). 
Genes that were significantly mutated in at least one-third of the 
samples (20 out of 60) were selected as hot spots (132 genes in 
total) (Figure 2A, Table S3). The functional annotation analysis 
revealed that to a large extent, these genes are involved in the 
interaction and regulation of the immune system (Figure 2B). 
Particularly, the genes coding for the protein elements of both 
MHC complexes class I and II carry mutations in most melanoma 
samples. To a lesser extent, genes functionally related to 
metabolism and signaling cascades were also among the most 
mutated genes. 

The most dysregulated pathways in melanoma found in this 
study at the transcriptional, translational, and posttranslational 
level, were also found to carry a significantly higher level of both 
germline and somatic mutations than the background 
population (Figure 2C, Table S4). In this sense, the pathways 
most affected by mutations in melanoma are the signaling 
cascades including MAP kinases and PI3K-AKT, and the calcium 
homeostasis. Not surprisingly, dysregulations of these pathways 
have been considered drivers in melanoma development and 
progression. On average, these pathways carry at least 11 times 
more somatic than germline mutations, which indicates that the 
genes of these pathways are heavily affected by the mutation 
burden in melanoma. 
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Figure 2. Most mutated genes in melanoma are involved in the regulation of the immune system. A) List of genes identified as hot spots in at least 
one-third (20 samples out of 60) of the tumor cohort. B) Protein-protein interaction network of the hot spot genes. Highlighted in red are the protein 
elements of the complexes MHC class I and II, and in blue additional proteins involved in processes related to the regulation of the immune system. 
C) Violin plots showing the number of somatic (left axis) and germline (right axis) mutations in genes involved in 16 KEGG pathways known to play 
crucial roles and found dysregulated in melanoma. The numbers inside the graph represent the number of mutations in the pathway and the 
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percentage indicates the total number of genes detected in WES data relative to the total number of genes in the pathway. Data with the summary 
of the figure are outlined in Table S4. D) Number of mutations (indels vs. SNPs) for somatic and germline mutations in each sample on a logarithmic 
scale. Zoomed-in regions for somatic and germline mutations are shown. 

 

2.3. Proteome profiling of biopsies from melanoma 
patients 

Tissue samples were submitted to a workflow that allows, from 
the same sample processing, to perform quantitative proteomic, 
phosphoproteomic, and lysine acetylation stoichiometry analysis 
10,13 (Figure 1B). Briefly, the frozen tissue was sliced, and 15 
consecutive slices were used for proteomics and PTMs analysis, 
or whole-exome sequencing. The first and last slices were H&E 
stained for computing the sample composition (tumor, stroma, 
and immune cell content). Proteins extracted, followed by 
chemically acetylated with NAS-d3 and digested with trypsin. 
Generated peptides were delimited by arginine residues. For 
global proteomics, peptides were directly analyzed by high-
resolution mass spectrometry following a data-independent 
analysis (DIA) method. The phosphoproteome analysis included 
an automated phosphopeptide enrichment step using IMAC 
(Fe(III)-NTA), followed by high-resolution mass spectrometry 
data-dependent analysis (DDA). For lysine acetylation 
stoichiometry analysis, peptides were analyzed following a DDA 
method for acquisition (Figure 1B). 

The proteomic analysis resulted in the identification and 
quantification of 9040 proteins with more than 2500 identified 
in all analyzed samples (Figure 3). On average, we identified 
approximately 7000 proteins in the tumor samples. 17237 

phosphorylated peptides were identified in phosphoproteomics 
data, approximately 8000 in each sample. Additionally, we 
identified and determined the site-specific occupancy of 6844 
acetylated peptides in at least 3 different samples, which 
correspond to 3024 different proteins. The plasma proteome 
analysis of the patients resulted in the identification of 1370 
proteins. 

From the proteomic data, the relative abundance profiles of the 
protein elements of the minichromosome maintenance (MCM) 
complex were extracted and submitted to hierarchical clustering 
analysis. As a resulting outcome, all samples were grouped into 
four groups from lower to higher levels of the complex elements 
(Figure 3). MCM is a hetero-hexameric complex required for DNA 
replication, which possesses DNA helicase activity 14–17. Due to its 
role in DNA replication and because their protein elements have 
been reported as proliferation markers and associated with 
progression in many cancers 14,15,25,26,16,18–24, we procured their 
protein abundance profiles as a measure of the proliferation-rate 
of the sample. The levels of the well-known proliferation marker 
Ki-67 showed significant differences between the proliferation 
groups, where the groups with higher MCM complex levels, also 
upregulate Ki-67 (Figure 3). As expected, non-tumor and tumor 
microenvironment samples were grouped in the low 
proliferative groups and Ki-67 was not detectable in any of them. 
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Figure 3. Proteomics of fresh frozen tissue biopsies from melanoma patients. A total of 77 samples coming from 47 different patients are grouped 
according to their origin. Eleven Non-tumor (NT) biopsies from more than 2 cm from the tumor boundaries, six tumor microenvironment (TM) 
samples taken from the tumor edges without the presence of tumor cells, sixteen biopsies from primary tumors (PT), six biopsies from local 
recurrence (LR) of the disease, ten biopsies of cutaneous metastases (CM), twenty-three metastases in regional lymph nodes, and five distant 
metastases (DM) coming from the gallbladder (DM036), brain (DM078), liver (DM087), spleen (DM107) and breast (DM116). Bars indicate the number 
of proteins quantified in each sample. The cell composition of each sample, taking into account tumor cell, stroma, and immune cells was estimated 
and expressed in percentage of the total sample area. The heatmap was built with the relative abundance levels shown as Z-scores of the six protein 
elements of the mini-chromosome maintenance complex and four clusters were created to represent the proliferation status of the samples. The 
abundance of the proliferation marker Ki-67 was plotted for each sample in the proliferation groups. A line indicates the mean value for each group 
relative to the most proliferative sample group. The colored connection arcs link the samples’ origin with their proliferation status. 
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2.4. Melanoma proliferation relies on repressing the 
immune system response-related pathways 

We sought to gain a deeper understanding of what processes are 
altered with increased tumor cell proliferation. This was 
addressed using the proteomic data of the 60 tumor tissue 
samples and 56 paired plasma samples as well as the Skin 
Cutaneous Melanoma TCGA PanCancer data with 443 tumor 
tissue samples (involving 20531 transcripts). TCGA tissue 
samples were classified into proliferation groups based on the 
MCM complex levels (in the same manner as the proteomic 
dataset), whereas the plasma samples were annotated according 
to the corresponding tissue sample. Sparse partial least squares 
discriminant analysis (sPLS-DA, 27) of these plasma samples 
showed there is good discrimination between the high and low 
proliferation groups, indicating that tumor proliferation status is 
reflected in the plasma proteome (Figure 4D). 

Differential expression analysis resulted in 598 proteins (Figure 
4A) and 1523 transcripts (Figure 4B) with significant differential 
expression across the proliferation groups (ANOVA test FDR < 
0.001). The overlap between these significant components was 
rather sparse on the gene level (Figure 4C), however, this list of 
proteins and genes both suggest an upregulation of cell cycle 
processes. Also, similar upregulation of proteins that were 
involved in the organization and localization of cellular 
components, and an increased biosynthesis of nucleotides. The 
latter process is particularly important for proliferation because 
nucleotides cannot be directly taken up from the extracellular 
space in larger quantities 28. We additionally performed pre-
ranked Gene Set Enrichment Analysis (GSEA) to see which 
MSigDB hallmark gene sets are concordantly up-, or down-
regulated in highly proliferating tumors. The majority of these 
processes received similar enrichment scores, in both omics data 
(Figure 4E), strengthening the idea, that RNA-level data from 
TCGA is a valuable resource for supplementing our protein-level 
results. We observed a systematic downregulation of immune-
related processes, which is associated with increased 
proliferation, possibly due to a lack of immunoediting at a more 
progressed stage of the disease 29. The relation between immune 

system modulation and tumorigenesis in melanoma has been 
studied for the past few years, where today immunotherapies 
are the most effective treatment options for melanoma patients 
30. Our observation provides evidence, supported by the high 
mutational load, that melanoma development and proliferation 
rely on evasion of the immune surveillance by downregulating 
immune response-related pathways. 

Plasma proteins with altered abundance profiles across 
proliferation groups were delineated by selecting the top 100 
proteins that drive the discrimination of groups according to the 
sPLS-DA analysis. These proteins are related to the: immune 
system, extracellular structure organization, vesicle-mediated 
transport, platelet degranulation and activation, acute-phase, 
cell migration, and apoptosis (Figure 4F). It has been shown that 
the platelets play a central role in the tumor growth and 
metastasis development in, melanoma, along with additional 
other cancer diseases. There is evidence postulating that tumor 
cells interact with platelets, thereby inducing aggregation as well 
as degranulation 31–34. Regarding the extracellular structure 
organization, it has been shown that extracellular matrix 
proteins have a role in the cell transformation process since they 
are responsible for the interaction between cells and the 
microenvironment 35. Moreover, inflammatory process and 
cancer development are inter-connected, positioning acute-
phase proteins as potential biomarkers in several types of cancer 
36. Some members of these plasma proteins are prognostic 
serum/plasma biomarkers (LDH 37, e.g., Serum amyloid A 36,38,39), 
with increased expression in patients with short survival (CRP 
36,40, as well as ORM1 41). Notably, all these proteins were 
identified as upregulated in the medium-high/high proliferative 
groups, which indicates a correlation to tumor cell proliferation. 
The observation that the main plasma proteins that discriminate 
between groups of tumors based on proliferation are mainly 
involved in biological pathways and processes related to the 
response of the immune system, has strong implications on the 
influence that melanoma exerts on the immune system, outside 
their physical limits. 
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Figure 4. Biological processes altered with increased proliferation are similar across tumor proteome, tumor transcriptome, and plasma proteome. 
A) Volcano plot of the -log10 transformed ANOVA test p-value (FDR-corrected) and the average log2 FCHigh-Low of the proteins, and the Gene Ontology 
Biological Process (GO BP) over-representation analysis of the significant proteins (FDR < 0.001). B) Volcano plot of the -log10 transformed ANOVA 
test p-value (FDR-corrected) and the log2 FCHigh-Low of transcripts, as well as the GO BP over-representation analysis of the significant transcripts (FDR 
< 0.001). C) Overlap between significantly overexpressed proteins and transcripts in higher proliferation groups. D) sPLS-DA on melanoma plasma 
proteome. Ellipses delimit the sample groups created based on the proliferation status of the corresponding tumor samples. E) Enrichment scores 
for hallmark gene sets as provided by pre-ranked GSEA. The analysis provides further evidence that similar processes are up- and downregulated 
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with increased proliferation in both data sets. F) Biological pathways and processes significantly enriched in the top plasma proteins discriminating 
between high and low proliferation. 

 

2.5. Study of the melanoma kinome in the context of 
tumor proliferation 

The study of the kinome through proteomics and 
phosphoproteomics provided further insight into the interplay 
between tumor proliferation and the repressed immune system. 
We first explored the kinome data of our sample cohort 
(including non-tumor and tumor microenvironment samples) 
comprehensively. We identified members of each major protein 
kinase class, with a fairly even distribution (Figure 5A). Out of the 
522 human kinases present in the KinMap database 42, we were 
able to directly identify 334 kinases, from which 297 and 232 
were quantified in our proteomic and phosphoproteomic data 
respectively. Furthermore, we performed motif analysis using 
motifeR 43 on the phosphorylated peptides and found 104 
enriched motifs. These are predicted to be substrates of 260 
kinases, out of which 58 kinases were not experimentally 
identified in our study. The number of identified and predicted 
kinases thus reached 75% of all human kinases, which indicates 
that our data of the melanoma proteome and phosphoproteome 
can capture the majority of phosphorylation events occurring in 
melanoma (Figure 5B-C). The GMGC group is an interesting 
kinase family where many kinases were detected at the protein 
level, which we also found to be upregulated in highly 
proliferating tumors. This group entails cyclin-dependent kinases 
(CDK) as well as mitogen-activated protein kinases (MAPK), both 
mediators of cell proliferation 44,45. 

Turning our focus only to the tumor tissue samples, we were 
interested in the changes of kinase activities between high and 
low proliferating tumors. We performed kinase-substrate 
enrichment analysis using the KSEA App 46–49 which allows us to 
computationally infer the relative kinase activity based on the 
quantitative phosphoproteomic data. We identified 20 kinases 
for which at least 5 substrates were quantified in our data, and 
also showed altered activity (the p-value of the kinase Z-score 
was less than 0.15) (Figure 5D). Many of these kinases are well-

known to be directly or indirectly regulators of cell proliferation-
related processes, as expected. Interestingly, we identified 
multiple kinases involved in the immune system which has been 
mentioned in the literature as notable players in 
immunotherapies. A recent study suggested that CDK1 might 
contribute to a mechanism that induces immune escape in 
hepatocellular carcinoma and could be utilized to predict the 
patient’s response to immunotherapy 50. Another study on 
SKOV3 ovarian carcinoma cells proposed that CDK2 (and CDK4) 
may play an important role in the proliferation-promoting effects 
of tumor-associated macrophages 51. mTOR is viewed as a 
potential oncogene in targeted immunotherapies as studies 
suggest that the mTOR signaling is vital in the functions of the 
immune cells 52. The GSK3 kinase (ergo its two isoforms, GSK3A 
and GSK3B) have been proposed to be a good candidate for 
immunotherapy, as its inhibitors promote an immune response 
against a wide range of human cancer cells, including melanoma 
53. The RAF kinases (ARAF, BRAF, CRAF) are intensively studied 
due to their role in tumorigenesis regulation, however, it was 
also found that they are required for the differentiation and 
function of dendritic cells 54. PRKCA was shown to be involved in 
the proliferation and differentiation of immune cells, although its 
function shows both pro- and anti-oncogenic properties 55. 
Moreover, PRKCA phosphorylates TRPC1 and thus regulates the 
Ca2+ entry in human endothelial cells 56. A research study 
recently suggested that tumors that harbor loss-of-function 
PRKDC mutations, including melanoma, may benefit from 
immune therapy 57. The inactivation of SGK1 can be associated 
with anti-oncogenic effects both on tumor cells and on the 
immune microenvironment and is considered a potential target 
in non-small cell lung cancer 58. In summary, our kinome data 
suggested the importance of a couple of kinases in melanoma 
cell proliferation and the regulation of the immune system. To 
the best of our knowledge, not all kinases were previously 
connected to melanoma, thus, the role of these kinases at the 
level of immune-regulation in this particular cancer is yet to be 
established. 
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Figure 5. Kinase activities altered with increased proliferation. A) A kinome tree illustrating the wide range of kinases identified and predicted in 
our multi-omic study of tissue samples (including non-tumor and tumor microenvironment samples). Coloring of the branches was according to the 
mean log2 FC (higher vs lower proliferation status) of the kinases. The figure was made using Coral 59. B) Venn diagram indicating the number of 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.04.10.439245doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.10.439245


Gil J. et al. | Malignant melanoma proteogenomics 
 

13 

kinases directly identified in our proteomic and phosphoproteomic data, and the overlap between the predicted and identified kinases. C) The top 8 
enriched motifs in the phosphoproteome. The peptide sequence motif plots were generated using motifeR. D) Inference of relative kinase activities 
between higher and lower proliferating tumors using kinase-substrate enrichment analysis. Here we show only the kinases for which at least 5 
substrates were detected in the phosphoproteomic data and showed significantly altered activity (p-value of the Z-score < 0.15). The total amount 
of detected substrates (phosphopeptides), as well as the protein abundance change for each kinase between high and low proliferation groups (if 
available) is also noted. Grey colored cells represent a missing value. 

 

2.6. Metabolic reprogramming in melanoma 

The metabolic shift from oxidative phosphorylation to glycolytic 
phenotype has been considered an established common feature 
for most cancers 60,61. Previously, it was reported that melanoma 
metastases upregulate glycolysis compared to primary tumors 10. 
Our observations confirm that melanoma shows upregulation of 
the glycolysis, moreover, its upregulation correlates with high 
proliferation (Figure 6A-B). The isoforms M1 and M2 of the 
pyruvate kinase (PKM) gene are produced by differential splicing. 
PKM-M1 is the main form in muscle, heart, and brain, and PKM-
M2 is found in early fetal tissues as well as in most cancer cells. 
In melanoma we found PKM-M2 upregulated in all tumor sample 
groups and the tumor microenvironment, confirming the 
hypothesis that metabolic reprogramming in melanoma extends 
to the tumor microenvironment (Figure 6C). The upregulation of 
the hexokinases (HK1-3), and the Phosphoenolpyruvate 

carboxykinase (PCK2) support the accumulation of intermediates 
of glycolysis required for cell proliferation. However, the 
enzymes involved in the conversion of pyruvate to Acetyl-CoA 
were upregulated in tumors, which indicates that part of 
glycolysis intermediates are directed to the TCA cycle. In addition 
to the glycolysis, the tumors and their microenvironment 
significantly upregulated the oxidative phosphorylation 
(OXPHOS) and the mitochondrial translation (Figure 6D). These 
findings suggest that to support their high proliferation rate, 
tumors rely on glycolysis and OXPHOS for the production of 
energy and proliferation-related intermediates. In agreement 
with these results, we found that most of the protein elements 
of the hypoxia-inducible factor 1 (HIF-1) signaling pathway were 
upregulated in tumors (Figure 7A). Consequently, the activation 
of the HIF-1 signaling pathway provides melanoma with a 
continuously proliferating activation signal, even under 
conditions of nutrient deprivation. 
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Figure 6. Melanoma progression is characterized by alteration of energy production pathways. A) Hierarchical clustering and heatmap of the 
Pearson correlation values between the relative abundance of proteins reported as part of the glycolysis pathway and the groups of samples based 
on the sample origin and the proliferation status. Two major protein clusters were identified, those that show a negative correlation (blue rectangle) 
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and those that show a positive correlation (red rectangle) with the melanoma progression and higher proliferation. B) Schematic representation of 
the glycolysis pathway where the proteins identified and quantified in the study were highlighted. The proteins that are marked with red and blue 
color show a correlation between their abundance profile and the progression of the disease (red: positive, blue: negative correlation) The protein 
pyruvate kinase PKM is also highlighted in pink, for which two isoforms were identified and PKM-M2 showed a strong positive correlation with the 
disease progression while the PKM-M1 isoform showed a weak negative correlation. C)  Relative abundance of proteins across different sample 
groups. Grouping was both based on the sample origin (from Non-tumor to Distant metastasis) and based on the proliferation status (from Low to 
High proliferative). Selected proteins were: hexokinases 1-3 (left panels), phosphoenolpyruvate carboxykinase [GTP], mitochondrial, and isoforms 
M1 and M2 of the pyruvate kinase PKM (right panels). D) Mitochondrial oxidative phosphorylation and translation machinery pathways altered across 
different sample origins and proliferation groups. Proteins reported to be involved in the Oxidative phosphorylation pathway (upper panel) and those 
involved in mitochondrial translation (bottom panel) were plotted with their mean relative level in the groups of samples. *, **, *** and **** means 
significant differences between groups (p<0.05, p<0.01, p<0.001 and p<0.0001 respectively). 

 
Moreover, the calcium signaling pathway which impacts the 
metabolism and the proliferation of the cell was found 
dysregulated in melanoma (Figure 7B). Proteins involved in 
controlling the levels of intracellular calcium showed 
dysregulation. Plasma membrane calcium-transporting ATPases 
1, 3, and 4 (ATP2B1, ATP2B3, and ATP2B4), involved in the active 
release of intracellular calcium through the plasma membrane, 
were downregulated in the microenvironment. In the case of 

ATP2B4, it was also significantly downregulated in tumor groups 
compared to non-tumors. On the other hand, the main 
intracellular calcium-binding protein, calmodulin, was 
upregulated in the microenvironment and all tumor sample 
groups compared to non-tumors (Figure 7C). These findings 
highlight the dependence of melanoma on intracellular calcium, 
at the level of preventing the release of calcium not only from 
tumor cells but also from their microenvironment. 
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Figure 7. Hypoxia-inducible factor 1 and Calcium signaling pathways are dysregulated during melanoma progression. A) Schematic representation 
of Hypoxia-inducible factor 1 signaling pathway where proteins identified in the study are highlighted. Color indicates the correlation observed 
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between the protein levels and the groups of samples (see legend). B) Schematic representation of Calcium signaling pathway where proteins 
identified in the study are highlighted. Color indicates the correlation observed between the protein levels and the groups of samples (see legend). 
C) Relative levels of the ATPases 1, 3 and 4 (ATP2B1, ATP2B3 and ATP2B4) and calmodulin in groups of samples based on the origin. 

 

2.7. Lysine acetylation in melanoma 

The acetylation workflow allows not only the identification of 
site-specific lysine acetylation, but also of the stoichiometry 
impacting the melanoma staging. On average, more than 1100 
peptides and 800 proteins were identified carrying acetylation 
marks in tumor samples, while for non-tumor and 
microenvironment samples the acetylated peptides and proteins 
were about 500 and 350 respectively (Figure 8A). The abundance 
distribution of acetylated proteins highlights the fact that with 
the current technology and workflow, we can detect acetylation 
sites and quantify their occupancy in relatively higher abundant 
proteins compared to the total of identified proteins (Figure 8B). 
This is a reflection of what has been previously reported, that 
acetylation in lysine residues is a post-translational- modification 
that generally shows very low occupancy on their target sites 
13,62,63. In all the samples submitted to the analysis the site-
specific occupancy distribution was very similar. At least 50 % of 
the acetylated peptides identified in all samples, showed a 
stoichiometry of less than 15% (Figure S5), which is also 
highlighted after normalization of the data using probit 
transformation 64,65 (Figure 8C).  

The melanoma acetylome reported here includes about 3000 
proteins, in most of them, only one acetylation site was detected. 
However, it was found that several proteins have multiple 
acetylation sites (Figure 8D). Particularly, the 100 topmost 
acetylated proteins were found with at least 7 different 
acetylated peptides. A functional annotation enrichment 
analysis of the proteins with at least 7 acetylation sites in 
melanoma reveals that acetylation regulates pathways involved 

in the cytoskeleton, its organization, the actin filaments, and the 
regulation of cell shape. Besides, as previously reported, a large 
number of proteins from the translation machinery, the 
spliceosome, and metabolic enzymes were found to have 
multiple acetylation target sites 66,67 (Figure 8E). Among the 
proteins with more acetylation sites in melanoma, we also found 
a cluster of biological annotations that includes the protein 
processing in the endoplasmic reticulum, and the antigen 
process and presentation to be significantly enriched. 
Particularly these pathways are among the most mutated and 
dysregulated in melanoma. These findings reveal an important 
role of lysine acetylation in the regulation of critical pathways for 
melanoma development and progression. 

From the proteomic data, we were able to quantify in at least 
two-thirds of the samples 9 out of the 18 deacetylases reported 
in the human genome. HDAC1 and 2 from class I, HDAC4 and 7 
from class IIa, HDAC6 from class IIb, and four out of the seven 
sirtuins or class III HDACs (SIRT2, 3, 5, and 6). The role in cancer 
of several members of these families has been highlighted 68–70. 
In melanoma, several clinical studies have shown benefit to the 
patients by targeting HDAC class I, particularly for those with 
acquired resistance to targeted therapy 71. The combination of 
HDAC inhibitors with immunotherapy has shown an enhanced 
response to the therapy 72,73. Here we show that most of these 
enzymes, not only are upregulated in melanoma but also their 
abundance is higher in the more proliferative groups of tumors 
(Figure 8F). The relative level of the deacetylase enzymes in 
melanoma together with quantitative analysis on the site-
specific acetylation targets allow a better understanding of how 
the treatment with HDAC or specific target inhibitors can be 
implemented in a personalized treatment strategy.
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Figure 8. Lysine acetylome in melanoma. A) Identified acetylated peptides and proteins in melanoma-related tissue biopsies, distributed based on 
sample origin. B) Abundance distribution based on the sample origin of all identified proteins and those detected being acetylated. C) Frequency 
distribution of site-specific occupancy of acetylated peptides in each sample. The original values in percentage of the site modified were probit 
transform before plotting to fit normal distributions. D) Distribution of acetylated proteins based on the number of acetylated peptides identified in 
melanoma-related biopsies. Dashed line delimits the proteins with at least 7 different acetylated peptides in the study (122). E) Most targeted 
proteins with acetylation as a post-translation modification in melanoma are connected to their most relevant enriched functional annotation 
clusters. The enrichment analysis was performed in DAVID Bioinformatics 74. F) Hierarchical clustering of the tissue samples based on the relative 
protein abundance of the nine enzymes with reported deacetylase activity, identified in at least two-thirds of the samples. 

 

2.8. The melanoma progression involves repression 
of the tumor amino acid metabolism pathway 
and the evasion of the immune surveillance  

Primary tumors, when compared to non-tumors upregulate 
proliferation-related pathways such as DNA replication, 

ribosome biogenesis, spliceosome, and RNA transport. 
Oppositely, tumors downregulate a set of proteins involved in 
the communication with the extracellular environment and cell 
adhesion (Figure 9C). The changes in the metabolism of the 
primary tumors include downregulation of pathways linked to 
the degradation of amino acids and fatty acids. When compared 
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to non-tumors, although the tumor microenvironment samples 
do not show upregulation of proliferation-related pathways as 
primary tumors do, they show similar alterations in the pathways 
related to the extracellular matrix communication (Figure 9A-C). 
Interestingly, similar pathways and biological annotations of the 
proteins were significantly enriched in proteins dysregulated at 
the level of acetylation in their lysine residues. The glycolysis 
pathway, which upregulation has correlated with the 
development of melanoma, was found under-acetylated in both 

primary tumors and their microenvironment compared to non-
tumors. Similar results were obtained for ribosomal and 
translational proteins, suggesting that acetylation on those 
proteins could primarily have a downregulatory effect on the 
pathways. Oppositely, several proteins involved in the 
extracellular matrix and cell-cell adhesion, downregulated in 
primary tumors showed increased levels of acetylation (Figure 
9D-F).  
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Figure 9. Dysregulated proteome and acetylome in primary melanoma and their microenvironment. Biological pathways significantly enriched 
when comparing the mean protein abundances between the group of samples based on their origin, according to 1D functional enrichment analysis 
provided by Perseus software 75. Data is represented as volcano plots where the annotation enrichment p-value and the score of the differences 
were plotted. A false discovery rate (FDR) of 0.02 was set as the cut-off for significance. A) Comparison between the tumor microenvironment and 
the non-tumor samples, B) between the primary tumor and the tumor microenvironment, and C) the primary tumor and the non-tumor. D-F) 
Functional annotation clusters significantly enriched in acetylated proteins that showed significant differences in their site-specific acetylation 
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occupancy between origin-based groups. D) Comparison between the tumor microenvironment and the non-tumor samples, E) between the primary 
tumor and the tumor microenvironment, and F) the primary tumor and the non-tumor. 

 
Among the most mutated genes in melanoma identified as hot 
spot, it was highlighted several members of the antigen 
presenting MHC class I and class II. A quantitative analysis from 
the proteomic data reveals that when taken together, the 
members of the MHC class I on average show lower level in the 
metastasis groups compare to both non-tumor and primary 
tumors, although not all the comparisons were statistically 
significant (Figure 10A (left panel)). Moreover, when analyzing 
only the tumor samples grouped based their proliferation 
groups, there is a downregulation of this proteins in relation to 
the proliferation. The average repression of this proteins, 
between the high and low proliferative groups, was found to be 
significant (Figure 10A (right panel)). Similar results were 
obtained from the analysis on the identified family members of 
the MHC class II (Figure 10B). These findings provide more insight 
into how melanoma manages to evade the immune surveillance, 
by heavily mutating and downregulating the antigen processing 
and presenting machinery, which ultimately affect the immune 
system response 76. 

The progression of melanoma from primary lesions towards 
metastasis was studied through a biological pathway enrichment 
analysis on dysregulated proteins between metastases and 

primary melanomas. Represented pathways were found 
significantly dysregulated in at least one of the metastasis groups 
compared to primary tumors (Figure 10C). The metabolic 
changes in metastatic melanoma continue with the 
downregulation of the amino acid metabolism, as observed in 
the comparison between the primary and non-tumor samples. 
Similarly, pathways linked to the communication with the 
extracellular environment, including proteins involved in cell-cell 
adhesion were downregulated in metastases. In this sense, the 
repression of amino acid metabolic and cell communication 
pathways is a common feature of melanoma development and 
progression. Additionally, one of the most relevant 
characteristics of metastatic melanomas compared to primary 
tumors is the downregulation of immune system response-
related pathways (Figure 10C). The repression of pathways 
linked to the immune system is a common feature of melanoma 
proliferation and progression. Pathways involved in DNA 
replication and repair, transcription, and translation showed 
upregulation in the metastasis groups, mostly in cutaneous 
metastases. Altogether, the aggressiveness of melanoma is 
supported by a combined upregulation of proliferation-related 
pathways, rewiring of the metabolism, and repressing the 
immune system response. 
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Figure 10. Melanoma progression toward metastasis is driven by changes in the metabolism and downregulation of the immune system-related 
pathways. Relative levels of the identified family members of the MHC class I (A) and class II (B). Samples were grouped based on their tissue origin 
(left panels), and based on their proliferation status (right panels). C) Dysregulated biological KEGG pathways between the primary tumors and the 
different groups of metastases included in the study. The pathways were distributed according to their classification (general and specific). Bar length 
correspond to the –log10 (q-value), and the gray area correspond to non-significantly enriched. Negative and positive values correspond to down- 
and upregulated in the metastasis compared to the primary tumor group, respectively. 

 

3. Discussion 

In this study, we provided new insights into the progression of 
melanoma through a comprehensive proteogenomic analysis on 
primary-, and metastasis tumors, including 77 tissue-, and 56 
plasma- samples from 47 melanoma patients and with various 

sample origins (non-tumor, tumor microenvironment, primary 
tumor, local recurrence, cutaneous, lymph node, and distant 
metastasis). We included deep proteomics and PTM data 
accompanied by whole exome sequencing to provide an 
integrated characterization of MM. Several studies have been 
conducted in large melanoma cohorts using high throughput 
omic analyses 8,9,77 to gain a better understanding of the 
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molecular mechanism that underlies the development and 
progression of melanoma. We emphasize the processes that are 
dysregulated with increased melanoma cell proliferation. Hence, 
we inferred the proliferation status of each tissue sample based 
on the relative protein levels of the MCM complex elements. The 
plasma samples originating from patients with high or low 
proliferation tumors were also distinguishable at the plasma 
proteome level. Including the Skin Cutaneous Melanoma TCGA 
PanCancer data in the analysis, we further validated and 
supplemented our findings using a larger sample cohort.  

Whole exome sequencing of the tumor samples highlighted that 
mutations occurring in melanoma stem from similar underlying 
molecular mechanisms in all samples. Hot spot analysis identified 
132 genes with frequent somatic mutations, and notably, many 
members of this list were known to be interactors or regulators 
of the immune system, such as the MHC class I and II elements. 
Furthermore, the signaling cascades (MAP kinases and PI2K-AKT) 
and the calcium homeostasis were the most heavily dysregulated 
pathways due to the high mutation burden in melanoma. These 
observations on exome level were reaffirmed on protein level. 
Firstly, we systematically identified proteins and genes that 
indicate the suppression of the immune response throughout 
our analyses, both during the exploratory analysis of the tissue 
and plasma proteome and the TCGA data, and both during the 
more targeted analyses. Our findings point to a direct link 
between the repression of members of the MHC family by 
mutations or translational downregulation, and progression of 
melanoma. Moreover, we found this repression in correlation to 
tumor proliferation. The relation between immune system 
modulation and tumorigenesis in melanoma has been 
extensively studied for the past few years, as increased 
proliferation and lack of immunoediting go hand in hand at a 
more progressed stage of the disease 78–80. While 
immunotherapies are the most effective treatments for 
melanoma patients nowadays, far from all patients respond 
favorably, and there is therefore still a need for increasing our 
knowledge of melanoma biology to develop new therapies, 
strategies to overcome resistance, and increase the number of 
patients responding to the immunotherapeutic agents 29,30.  

The quantitative analysis of two of the most important 
posttranslational modifications, the phosphorylation and lysine 
acetylation, deeply complements the proteomics analysis by 
adding elements of regulation at a level usually ignored by other 
large-scale analyses. Our analysis of the melanoma kinome 
highlighted that 75% of all human kinases were detected or 
predicted based on their phosphorylated targets, which allows 
to capture the major phosphorylation events. The kinase-
substrate analysis outlined multiple kinases that are activated or 
deactivated with increased proliferation. Moreover, several of 
these kinases are considered potential therapeutic targets due 
to their role in the function of the immune system, such as the 
GSK3A kinases or the SGK1. Additionally, to the best of our 
knowledge, this is the first lysine acetylome stoichiometry 
analysis reported for a large number of melanoma tumor 

samples. Our observations highlight that the translation 
machinery and metabolic enzymes are regulated by acetylation 
and as a general trend lower acetylation degree resulted in 
upregulation of the pathway. This is particularly interesting 
because several of the deacetylase enzymes identified in the 
study were indeed upregulated in melanoma. Our findings 
support previous reports that HDAC inhibitors treatment in 
melanoma particularly in combination with immunotherapy 
enhance the response of the patients 72,73,81. 

We found that both glycolysis and OXPHOS are utilized by highly 
proliferating melanoma cells to produce energy and the 
proliferation-related intermediates, supported by the observed 
activation of the HIF-1 signaling pathway, leading to continued 
proliferation even in the event of nutrient deficit. We further 
characterized melanoma by the downregulation of proteins 
involved controlling the levels of intracellular calcium, the 
repression of amino acid metabolism, and the suppression of cell 
communication. The observed metabolic reprogramming 
extended to the tumor microenvironment, but was not 
discovered in non-tumor samples. 

We acknowledge the limitations of our study. An experimental 
design involving samples from 7 different tissue origins is 
ultimately more prone to bias due to the low sample sizes within 
each sub-cohort. Nonetheless, the integration of genetic level 
information and PTM data next to proteomics represents a rich 
resource to investigate melanoma biology, and main 
observations from one type of omic data were supplemented on 
another molecular layer, thus confirming the validity of our 
results. We envision that the hypotheses underlined in this 
manuscript will contribute to a better understanding of 
melanoma and will aid the development of new therapies. 

4. Experimental section 

4.1. Sample processing and peptide/protein 
identification 

A protein extraction buffer containing SDS 2%, DTT 50 mM, Tris 
100 mM, pH 8.6, was added to the sliced tissues or cell pellet, 
rest for one minute, and sonicated using a Bioruptor plus (40 
cycles, 15 s On, 15 s Off, at 4 °C). Samples were incubated at 95 
°C for 5 min. Proteins were alkylated by adding IAA to a final 
concentration of 100 mM for 20 min in the dark at room 
temperature (RT). The proteins were precipitated overnight by 
adding 9 volumes of cold ethanol. Proteins were dissolved in 
TEAB buffer containing SDS 1%, SDC 0.5%, and submitted to a 
chemical acetylation reaction of all free amino groups. The 
reaction was performed with N-acetoxy-succinimide-d3 (NAS-
d3). O-acetylation was reverted by treating the samples with 5% 
hydroxylamine. Proteins were precipitated as described above to 
remove the excess reagents and dissolved in AmBiC containing 
SDC 0.5%. Proteins were digested with trypsin (1:50, 
enzyme:protein) at 37 °C, overnight. The SDC was removed from 
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the peptide solution by adding ethyl-acetate and TFA 13. After 
discarding the organic phase, the mixtures of peptides were 
quantified and kept at -80 °C until MS analysis. 

For phosphopeptide enrichment, 80 mg of peptides was 
submitted to an automated workflow, performed on an 
AssayMAP Bravo system (Agilent Technologies). The procedure 
was performed as previously described 11. Phosphopeptides 
were dried and kept at -80 °C until MS analysis. 

Peptide spectral library: Pools of peptides including all the tumor 
samples were spiked with iRT and analyzed in a high-resolution 
LC-MS system (Dionex Ultimate 3000 RSLCnano UPLC coupled to 
a Q-Exactive HF-X mass spectrometer (Thermo Fischer 
Scientific)). Peptides were desalted on a trap column Acclaim 
PepMap100 C18 (3 µm, 100 Å, 75 µm i.d. × 2 cm, nanoViper) and 
then connected in line with an analytical column EASY-spray RSLC 
C18 (2 µm, 100 Å, 75 µm i.d. × 50 cm). The temperature of the 
trap column and analytical column was set at 35 °C and 60 °C 
respectively, and the flow rate was 300 nL/min. A non-linear 
gradient of 137 min was used for peptide elution. Data were 
acquired applying a DDA method covering a mass range of 385-
1460 m/z. The parameters for MS1 included a resolution of 
120,000 (@ 200 m/z), the target AGC value of 3·106, and the 
maximum injection time was set at 100 ms. For MS2, the 
resolution was 15,000, the AGC value 1·105, the injection time 50 
ms, the threshold for ion selection 8·103, and the normalized 
collision energy (NCE) 28. The isolation window was 1.2 Th. 

DIA analysis: samples were analyzed in duplicates using the same 
LC-MS system and with the same chromatographic conditions as 
described above. Data were acquired using a DIA method 
intended for peptide quantification using MS1 scans. The DIA 
method contains 54 variable width MS2 windows, based on the 
empirical distribution of peptides, and 3 full scan MS1. A full MS1 
scan was placed every 18 MS2 scans. The parameters for MS1 
were: resolution 120,000 (@200 m/z), AGC target 3E+06, 
injection time 50 ms, range 385-1460 Th. For the MS2 were: 
resolution 30,000, AGC target 1·106, injection time 50 ms, NCE 
28. 

Protein and peptide identification and quantification were 
performed with the Spectronaut software (Biognosys, AG). DDA 
raw files were searched against a human protein database 
downloaded from UniProt in 2018, to create a spectral library. 
The search engine used was pulsar, which is integrated into the 
Spectronaut platform. The parameters included Arg-C as the 
cleavage enzyme, 2 missed cleavages were allowed, lysine 
acetylation (d3) and carbamidomethyl-cysteine were set as fix 
modifications, methionine oxidation and protein N-terminal 
acetylation (d3) and (d0) were set as variable modifications. For 
the postmortem cohort, the selected enzyme was trypsin, two 
missed cleavages were allowed, carbamidomethyl-cysteine was 
fixed, and methionine oxidation and protein N-terminal 
acetylation were set as a variable. The identifications were 

controlled by an FDR of 1% at the PSM, peptide, and protein 
levels.  

For identification and quantification of lysine acetylation, raw 
files were analyzed by two different software Pview 82 and 
Proteome discoverer (Thermo scientific). Acetylation 
stoichiometry was only considered for those peptides commonly 
identified by the two search engines. The parameters included 
Arg-C as the cleavage enzyme, carbamidomethyl cysteine as fix 
modification, methionine oxidation, and lysine acetylation (d0 
and d3) were set as variable modifications. The number of 
identifications was controlled by FDR of 1% at peptide and 
protein level. The parameters for the stoichiometry calculation 
were as previously reported 13. For comparison of the acetylation 
occupancy between groups, a probit transformation of the data 
was applied. 

4.2. Proteomic, phosphoproteomic, and 
transcriptomic data processing, statistics, and 
bioinformatics 

The data processing and statistics were performed in R (vs. 4.0) 
unless specified otherwise. The Skin Cutaneous Melanoma TCGA 
PanCancer data 9,83,84) was downloaded from the cBioPortal 
website 85,86. 

A similar data pre-processing workflow was applied on protein 
and phosphopeptide intensities as well as on the transcriptome 
data. For the RNA expressions, counts equal to 0 were treated as 
NA values. Intensities/counts were log2 transformed, followed by 
global median centering for normalization, and sample replicates 
averaging in case of the proteomic data. The correlation in 
abundance between proteins from the MCM protein complex 
was used as a criterion to evaluate the normalization 
performance. Differential expression analysis was performed 
using Analysis of Variance (ANOVA test), followed by ANOVA p-
value adjustment with the Benjamini-Hochberg method and an 
additional Tukey-Kramer post hoc test for each ANOVA analysis. 
No prior filter for valid values was applied on either data set, 
however, only those groups were compared where the 
protein/phosphopeptide/gene had valid values in at least 70% of 
the groups’ samples. Comparison between proteomic and 
transcriptomic signatures related to proliferation status was 
done using Gene Set Enrichment Analysis (GSEA) on the 50 
hallmark gene sets that were downloaded from 
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp. The 
ordered list of mean log2 FC values across the proliferation 
groups was used as the input and no p-value threshold was set. 
The hallmark gene sets were further categorized according to 
Liberzon et al. 87. Gene Ontology over-representation test on the 
biological processes and Gene Set Enrichment Analysis was 
performed using the R package “clusterProfiler” (vs. 3.18.1). 

Kinome analysis: The list of human kinases was downloaded from 
http://www.kinhub.org/kinases.html (on 10 March 2021). 
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Sequence pre-alignment and motif analyses were done using the 
motifeR web server 
(https://www.omicsolution.org/wukong/motifeR/). In this 
analysis, we included only the phosphopeptides that were 
identified in at least 30% of the samples and where the 
phosphorylation site was confidently identified (8994 
sequences). Sequence data were aligned to have 15-amino-acid 
long sequences where the central residue is the phosphorylated 
S/T amino acid. For the motif analysis, the following settings 
were applied: each motif had to appear at least 20 times in the 
data set, and the p-value threshold for the binomial probability 
was set to 1e-06 for the selection of significant residues in the 
motif. The default human database was used as a background 
and classical multiple sites analysis was chosen. Motif 
enrichment analysis was done both on peptides with one and 
with multiple modification sites. Kinases were predicted based 
on all the enriched motifs and the minimum NetworKin score 
was set to 3. 

Kinase-substrate enrichment analysis was performed using the 
KSEAapp R package. Both curated annotations from 
PhosphoSitePlus and kinase-substrate predictions from 
NetworKIN were considered (Kinase-Substrate dataset 
downloaded from the KSEAapp Github page 
https://github.com/casecpb/KSEA), and the minimum 
NetworKIN score was set to 5. 

 

 

4.3. WES analysis 

WES data analysis: The WES sequencing data of the 60 samples 
were mapped against GRCh38 and analyzed according to 
standard workflows as described by GATK (Broad Institute). 
Additional filtering was applied to remove variants with coverage 
of less than 3 reads. Next, the exome panel enrichment regions 
from Twist Bioscience (downloaded from 
https://www.twistbioscience.com/sites/default/files/resources
/2019-06/Twist_Exome_Target_hg38.bed) were used to filter 
out all identified variants outside of these WES targeted regions. 
The non GCTA nonTCGA_gnomAD subset was used as 
“population background” information to distinguish between 
variants annotated in this database referred to as germline and 
those missing (referred to as somatic variants). Summary 
statistics about the variants in each of these 2 categories were 
created using the “bcftools stats” utility. 

Hot spot analysis: The somatic and germline variant counts were 
grouped and summed by the gene they overlap with. Chi-square 
tests were performed to determine genes within individual 
samples for which the number of somatic variants was different 
than expected based on the sample’s ratio of these counts across 
all genes. Similarly, the variant counts per gene were grouped 
and summed on a pathway level. Bonferroni correction was 
applied on the obtained p-values. Genes with significant 
enrichment were selected by using the significance level 0.05 
and requiring the presence of significant enrichment in ⅓ of the 
data (20 out of 60 samples). Data visualization and final statistics 
were made with a custom R script. 
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7. Supplemental figures 

 

 

Figure S1. The ratio of various base-pair changes in somatic (A) and germline (B) SNPs compared to population reference (gnomAD_only excluding 
mutations identified in all tumor samples). The pattern is highly reproducible for both cases with difference between somatic and germline SNPs (A 
and B). 
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Figure S2. Distribution of sequence length shortening or extension of indels with somatic (A) and germline (B) origin. Somatic indels tend to extend, 
while germline indels generally shorten exons and protein variants. Y axis show the range of ±15 base pair lengths. 
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Figure S3. Sequence coverage of somatic (A) and germline (B) mutations below 500 reads. log2 ratio of several variants with more than 500 reads 
and less than 500 reads is somatic and germline mutations (C) in WES data of 60 tumor samples indicating the lower sequence coverage of somatic 
mutations compared to the germline. 
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Figure S4. Manhattan plots showing the enrichment of somatic mutations compared to germline in 6 tumor samples shown as examples. Low p-
values (I.e., a high -log10(p-value)) indicate a high mutation load of genes at a given chromosomal location (x-axis), indicating a hot spot. Genes found 
to be significant in at least ⅓ of the 60 samples were selected as a hotspot in this study and are listed in Table S3. All sample shows a peak in 
chromosome 6 corresponding to the HLA region. 
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Figure S5. Distribution of the lysine acetylation stoichiometry in the percentage of occupancy of the target site, in all the solid biopsies enrolled in 
the study. The dashed line indicates a site-specific acetylation occupancy of less than 15%. 
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8. Supplementary Tables 

Table S1. Relevant information of the patients and samples.  
Patient 
Code 

Age 
diagnosis 

Gender Pathological 
stage 

Primary 
Tumor 
Type 

Braf 
Mutation 
Status 

Sample Origin Proliferation 
status 

Tumor 
cell (%) 

Immune 
cells (%) 

Metastasis treatment 

P002 60 Female PT4B ALM V600K CM002 Cutaneous metastasis Medium-High 56.72 0.67 YES 

P003 75 Female PT3B SSM WT LR003 Local recurrence Low 16.95 0.65 NO 

P003 75 Female PT3B SSM WT LR024 Local recurrence High 13.49 0.76 NO 

P004 64 Male PT3A NM V600E LR075 Local recurrence High 58.83 0 YES 

P004 64 Male PT3A NM V600E CM004 Cutaneous metastasis Medium-High 43.02 0.01 YES 

P005 81 Female N/A N/A N/A TM005 Tumor microenvironment Low 1 0.01 N/A 

P005 81 Female PT3A SSM WT LR005 Cutaneous metastasis Low 12.6 3.6 NO 

P007 74 Female N/A N/A N/A TM071 Tumor microenvironment Low 2 53.85 N/A 

P007 74 Female PT4A UNCLASS V600K PT007 Primary tumor Low 24.57 0.001 N/A 

P007 74 Female PT4A UNCLASS V600K LN071 Lymph node metastasis Medium-Low N/A N/A NO 

P008 67 Female PT3A NM WT LR008 Local recurrence Medium-High 26.37 1.34 YES 

P008 67 Female PT3A NM WT CM153 Cutaneous metastasis Medium-Low 48.01 6.37 YES 

P014 67 Male N/A N/A V600E CM014 Cutaneous metastasis High 86.50 0.03 NO 

P027 69 Male PT4B ALM WT PT027 Primary tumor Low 24.19 0.02 N/A 

P028 25 Male PT4B NM V600E PT028 Primary tumor Medium-High 29.69 0.05 N/A 

P028 25 Male PT4B NM V600E LN090 Lymph node metastasis Medium-Low 20.52 56.08 NO 

P029 83 Female N/A N/A N/A TM029 Tumor microenvironment Low 0 0.10 N/A 

P029 83 Female PT1A SSM V600E PT029 Primary tumor Medium-Low 26 13.4 N/A 

P033 71 Male PT2B N/A V600K LN033 Lymph node metastasis Low 13.25 20.38 NO 

P034 40 Female PT4B NM WT CM034 Cutaneous metastasis High 67.49 0.10 NO 

P036 59 Male N/A SSM WT DM036 gallbladder metastasis Medium-High 30.59 0.80 YES 

P037 63 Female N/A NM V600E LN037 Lymph node metastasis High 17.36 16.14 NO 

P039 84 Male N/A N/A N/A NT039 Non-tumor Low 0 0 N/A 

P039 84 Male PT3A ALM WT PT039 Primary tumor Low 48.53 0.436871032 N/A 

P041 81 Male N/A N/A N/A NT046 Non-tumor Low 0 0 N/A 

P041 81 Male N/A N/A N/A TM046 Tumor microenvironment Low 2 0 N/A 

P041 81 Male PT3A UNCLASS V600E PT041 Primary tumor High 44.24 0.41 N/A 

P041 81 Male PT2A SSM V600E PT046 Primary tumor Medium-Low 12.41 0.04 N/A 

P044 80 Male N/A N/A N/A NT044 Non-tumor Low 0 0 N/A 

P044 80 Male N/A SSM V600K PT044 Primary tumor Medium-Low 39.57 0.51 N/A 

P048 68 Female N/A N/A N/A NT048 Non-tumor Low 0 0 N/A 

P048 68 Female PT4B SSM V600E PT048 Primary tumor Medium-High 68.07 0.011 N/A 

P050 73 Male PT4B UNCLASS WT PT050 Primary tumor High 40.57 0 N/A 

P050 73 Male PT4B UNCLASS WT LN079 Lymph node metastasis High 19.17 36.59 NO 

P054 70 Female N/A N/A N/A NT054 Non-tumor Low 0 0 N/A 

P054 70 Female N/A N/A N/A TM054 Tumor microenvironment Low 2 0.03 N/A 

P054 70 Female PT3B SSM V600E PT054 Primary tumor Medium-Low 32.2 14.4 N/A 

P056 67 Female N/A N/A N/A NT056 Non-tumor Low 0 0 N/A 

P056 67 Female N/A N/A N/A TM083 Tumor microenvironment Low N/A N/A N/A 

P056 67 Female PT3B UNCLASS V600E PT056 Primary tumor High 26.03 4.80 N/A 

P056 67 Female PT3B UNCLASS V600E LN083 Lymph node metastasis Low 1.67 6 NO 

P057 66 Female PT3B UNCLASS V600K LN057 Lymph node metastasis Medium-High 27.67 4.87 YES 

P059 39 Female N/A N/A WT LN059 Lymph node metastasis Medium-High 18.90 1.52 NO 

P060 89 Female N/A N/A N/A NT060 Non-tumor Low 0 0 N/A 

P060 89 Female N/A NM WT LR060 Local recurrence Medium-Low 31.65 2.40 NO 

P062 69 Male PT4B NM V600E LN062 Lymph node metastasis Medium-High 52.17 0.96 NO 

P063 75 Male PT2B SSM WT LR063 Local recurrence Medium-High 38.10 0 NO 

P066 71 Male N/A N/A N/A NT066 Non-tumor Low 0 0 N/A 

P066 71 Male PT3A UNCLASS V600E CM066 Cutaneous metastasis Medium-High 49.01 0.21 YES 

P068 75 Female N/A N/A N/A NT068 Non-tumor Low 0 0 N/A 

P068 75 Female PT4B NM V600E PT068 Primary tumor Medium-High 32.02 0.32 N/A 

P069 53 Female PT2A N/A V600E LN069 Lymph node metastasis Medium-High 51.69 0.13 NO 

P073 58 Male N/A N/A WT LN073 Lymph node metastasis High 83.72 0.004 NO 

P074 80 Male N/A ALM N/A LN074 Lymph node metastasis Medium-High 31.43 0.06 YES 

P076 64 Male N/A N/A N/A LN076 Lymph node metastasis Medium-Low 47.19 17.62 NO 

P078 43 Male N/A SSM WT DM078 Brain metastasis Low 23.15 0 YES 

P080 39 Male PT3B ALM V600E LN080 Lymph node metastasis Low 20.33 4.38 NO 

P081 69 Male N/A UNCLASS V600E LN081 Lymph node metastasis Medium-Low 36.99 10.71 YES 

P082 48 Male PT4A NM WT PT082 Primary tumor Medium-High 46.94 0.63 N/A 

P082 48 Male PT4A NM WT LN092 Lymph node metastasis Medium-High 75.22 0.30 NO 

P087 23 Male N/A N/A V600E LN087 Lymph node metastasis Low 47.69 0 YES 

P087 23 Male N/A N/A V600E DM087 Liver metastasis Medium-High 65.37 0 YES 

P089 44 Female PT4B ALM WT PT089 Primary tumor Low 41.94 0 N/A 

P089 44 Female PT4B ALM WT LN093 Lymph node metastasis Medium-High 46.59 14.24 NO 

P091 75 Male PT4B NM V600E LN091 Lymph node metastasis High 20.94 3.82 YES 

P096 66 Male N/A NM V600K CM096 Cutaneous metastasis Medium-High 30.62 12.70 NO 

P098 75 Male N/A N/A N/A LN098 Lymph node metastasis Medium-High 35.09 23.38 YES 

P100 67 Male N/A NM V600E LN100 Lymph node metastasis Medium-Low 49.42 6.06 NO 

P107 75 Male PT3A UNCLASS V600K LN185 Lymph node metastasis Medium-Low 35.59 0.08 YES 
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P107 75 Male PT3A UNCLASS V600K DM107 Spleen metastasis Medium-High 47.70 8.67 YES 

P110 81 Female N/A N/A N/A NT110 Non-tumor Medium-Low 0 0 N/A 

P110 81 Female PT3B SSM V600K PT110 Primary tumor Medium-High 44.01 3.57 N/A 

P110 81 Female PT3B SSM V600K LN146 Lymph node metastasis Medium-High 52.96 17.27 NO 

P115 82 Female N/A N/A N/A NT115 Non-tumor Medium-Low 0 0 N/A 

P115 82 Female N/A N/A WT CM115 Cutaneous metastasis Medium-Low 71.49 3.17 NO 

P116 47 Female N/A UNCLASS WT DM116 Breast metastasis Medium-Low 29.47 1 YES 

P164 51 Male N/A SSM V600E CM164 Cutaneous metastasis High 26.13 6.03 NO 

 

Table S2 Summary of average (± standard variation) of variants (SNPs, indels) identified in WES data of 60 tumors. 

Type of mutations Somatic Germline 

SNPs A>C and T>G 4361 ± 716 872 ± 29 

SNPs A>G and T>C 4573 ± 635 6104 ± 119 

SNPs A>T and T>A 11681 ± 1916 738 ± 41 

SNPs C>A and G>T 9497 ± 1622 1158 ± 62 

SNPs C>G and G>C 5585 ± 888 1325 ± 42 

SNPs C>T and G>A 10479 ± 1593 8818 ± 299 

All SNPs 46177 ± 7162 19015 ± 547 

indels 57423 ± 10369 256 ± 19 

All variants 113609 ± 19156 19271 ± 256 

 

Table S3. List of genes identified as a hotspot in melanoma WES data requiring presence of the hot spot in 20 out of the 60 analyzed samples. 

Ensembl gene ID chromosome start position gene symbol description 
number of significant 

samples 

ENSG00000185519 1 16057769 FAM131C family with sequence similarity 131 member C [Source:HGNC Symbol;Acc:HGNC:26717] 27 

ENSG00000142794 1 21440128 NBPF3 NBPF member 3 [Source:HGNC Symbol;Acc:HGNC:25076] 39 

ENSG00000132849 1 61742477 PATJ PATJ crumbs cell polarity complex component [Source:HGNC Symbol;Acc:HGNC:28881] 31 

ENSG00000122417 1 86346824 ODF2L outer dense fiber of sperm tails 2 like [Source:HGNC Symbol;Acc:HGNC:29225] 28 

ENSG00000116299 1 109113679 ELAPOR1 endosome-lysosome associated apoptosis and autophagy regulator 1 [Source:HGNC Symbol;Acc:HGNC:29618] 26 

ENSG00000237975 1 152168125 FLG-AS1 FLG antisense RNA 1 [Source:HGNC Symbol;Acc:HGNC:27913] 28 

ENSG00000244414 1 196819731 CFHR1 complement factor H related 1 [Source:HGNC Symbol;Acc:HGNC:4888] 26 

ENSG00000119285 1 236549005 HEATR1 HEAT repeat containing 1 [Source:HGNC Symbol;Acc:HGNC:25517] 43 

ENSG00000197591 1 247840928 OR11L1 olfactory receptor family 11 subfamily L member 1 [Source:HGNC Symbol;Acc:HGNC:14998] 33 

ENSG00000177462 1 247920252 OR2T8 olfactory receptor family 2 subfamily T member 8 [Source:HGNC Symbol;Acc:HGNC:15020] 37 

ENSG00000224521 1 248548756 AC098483.1 novel transcript 35 

ENSG00000177151 1 248636356 OR2T35 olfactory receptor family 2 subfamily T member 35 [Source:HGNC Symbol;Acc:HGNC:31257] 23 

ENSG00000187701 1 248649838 OR2T27 olfactory receptor family 2 subfamily T member 27 [Source:HGNC Symbol;Acc:HGNC:31252] 32 

ENSG00000134463 10 11742366 ECHDC3 enoyl-CoA hydratase domain containing 3 [Source:HGNC Symbol;Acc:HGNC:23489] 48 

ENSG00000204740 10 19048801 MALRD1 MAM and LDL receptor class A domain containing 1 [Source:HGNC Symbol;Acc:HGNC:24331] 26 

ENSG00000148513 10 37125725 ANKRD30A ankyrin repeat domain 30A [Source:HGNC Symbol;Acc:HGNC:17234] 25 

ENSG00000197893 10 113588714 NRAP nebulin related anchoring protein [Source:HGNC Symbol;Acc:HGNC:7988] 42 

ENSG00000288107 10 133565797 AL731769.2 novel transcript, antisense to FRG2Band SYCE1 50 

ENSG00000185627 11 236966 PSMD13 proteasome 26S subunit, non-ATPase 13 [Source:HGNC Symbol;Acc:HGNC:9558] 52 

ENSG00000184956 11 1012823 MUC6 mucin 6, oligomeric mucus/gel-forming [Source:HGNC Symbol;Acc:HGNC:7517] 60 

ENSG00000196565 11 5253188 HBG2 hemoglobin subunit gamma 2 [Source:HGNC Symbol;Acc:HGNC:4832] 38 

ENSG00000239920 11 5254392 AC104389.5 novel transcript 39 

ENSG00000132256 11 5663195 TRIM5 tripartite motif containing 5 [Source:HGNC Symbol;Acc:HGNC:16276] 40 

ENSG00000271758 11 7704628 AC044810.3 novel transcript, sense overlapping OR5P2, OR5P3 and OR5P1P 20 

ENSG00000255071 11 18231423 SAA2-SAA4 SAA2-SAA4 readthrough [Source:HGNC Symbol;Acc:HGNC:39550] 25 

ENSG00000172199 11 56375624 OR8U1 olfactory receptor family 8 subfamily U member 1 [Source:HGNC Symbol;Acc:HGNC:19611] 60 

ENSG00000174914 11 56699095 OR9G1 olfactory receptor family 9 subfamily G member 1 [Source:HGNC Symbol;Acc:HGNC:15319] 60 

ENSG00000197658 11 63079940 SLC22A24 solute carrier family 22 member 24 [Source:HGNC Symbol;Acc:HGNC:28542] 35 

ENSG00000173153 11 64305497 ESRRA estrogen related receptor alpha [Source:HGNC Symbol;Acc:HGNC:3471] 27 

ENSG00000137675 11 102691487 MMP27 matrix metallopeptidase 27 [Source:HGNC Symbol;Acc:HGNC:14250] 23 

ENSG00000182634 11 124036013 OR10G7 olfactory receptor family 10 subfamily G member 7 [Source:HGNC Symbol;Acc:HGNC:14842] 25 
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ENSG00000120451 11 130866250 SNX19 sorting nexin 19 [Source:HGNC Symbol;Acc:HGNC:21532] 21 

ENSG00000111704 12 7787794 NANOG Nanog homeobox [Source:HGNC Symbol;Acc:HGNC:20857] 52 

ENSG00000166535 12 8822621 A2ML1 alpha-2-macroglobulin like 1 [Source:HGNC Symbol;Acc:HGNC:23336] 26 

ENSG00000255641 12 10412312 AC068775.1 novel protein 58 

ENSG00000231887 12 10824960 PRH1 proline rich protein HaeIII subfamily 1 [Source:HGNC Symbol;Acc:HGNC:9366] 58 

ENSG00000188906 12 40196744 LRRK2 leucine rich repeat kinase 2 [Source:HGNC Symbol;Acc:HGNC:18618] 23 

ENSG00000151233 12 42081845 GXYLT1 glucoside xylosyltransferase 1 [Source:HGNC Symbol;Acc:HGNC:27482] 41 

ENSG00000240654 13 24307166 C1QTNF9 C1q and TNF related 9 [Source:HGNC Symbol;Acc:HGNC:28732] 29 

ENSG00000102699 13 24420931 PARP4 poly(ADP-ribose) polymerase family member 4 [Source:HGNC Symbol;Acc:HGNC:271] 47 

ENSG00000151846 13 25096136 PABPC3 poly(A) binding protein cytoplasmic 3 [Source:HGNC Symbol;Acc:HGNC:8556] 57 

ENSG00000134871 13 110305812 COL4A2 collagen type IV alpha 2 chain [Source:HGNC Symbol;Acc:HGNC:2203] 21 

ENSG00000257115 14 18601045 OR11H12 olfactory receptor family 11 subfamily H member 12 [Source:HGNC Symbol;Acc:HGNC:30738] 24 

ENSG00000176219 14 20223710 OR11H6 olfactory receptor family 11 subfamily H member 6 [Source:HGNC Symbol;Acc:HGNC:15349] 28 

ENSG00000181803 14 20640696 OR6S1 olfactory receptor family 6 subfamily S member 1 [Source:HGNC Symbol;Acc:HGNC:15363] 20 

ENSG00000185567 14 104937244 AHNAK2 AHNAK nucleoprotein 2 [Source:HGNC Symbol;Acc:HGNC:20125] 44 

ENSG00000174450 15 23439038 GOLGA6L2 golgin A6 family like 2 [Source:HGNC Symbol;Acc:HGNC:26695] 39 

ENSG00000136378 15 78759206 ADAMTS7 ADAM metallopeptidase with thrombospondin type 1 motif 7 [Source:HGNC Symbol;Acc:HGNC:223] 45 

ENSG00000196557 16 1153106 CACNA1H calcium voltage-gated channel subunit alpha1 H [Source:HGNC Symbol;Acc:HGNC:1395] 22 

ENSG00000172236 16 1240379 TPSAB1 tryptase alpha/beta 1 [Source:HGNC Symbol;Acc:HGNC:12019] 30 

ENSG00000095917 16 1256059 TPSD1 tryptase delta 1 [Source:HGNC Symbol;Acc:HGNC:14118] 39 

ENSG00000251692 16 1485886 PTX4 pentraxin 4 [Source:HGNC Symbol;Acc:HGNC:14171] 25 

ENSG00000198848 16 55802851 CES1 carboxylesterase 1 [Source:HGNC Symbol;Acc:HGNC:1863] 26 

ENSG00000125166 16 58707131 GOT2 glutamic-oxaloacetic transaminase 2 [Source:HGNC Symbol;Acc:HGNC:4433] 21 

ENSG00000157322 16 69950705 CLEC18A C-type lectin domain family 18 member A [Source:HGNC Symbol;Acc:HGNC:30388] 27 

ENSG00000277481 16 71929538 PKD1L3 polycystin 1 like 3, transient receptor potential channel interacting [Source:HGNC Symbol;Acc:HGNC:21716] 24 

ENSG00000034152 17 21284672 MAP2K3 mitogen-activated protein kinase kinase 3 [Source:HGNC Symbol;Acc:HGNC:6843] 60 

ENSG00000184185 17 21376357 KCNJ12 potassium inwardly rectifying channel subfamily J member 12 [Source:HGNC Symbol;Acc:HGNC:6258] 60 

ENSG00000204889 17 40977716 KRT40 keratin 40 [Source:HGNC Symbol;Acc:HGNC:26707] 35 

ENSG00000236396 18 11609596 SLC35G4 solute carrier family 35 member G4 [Source:HGNC Symbol;Acc:HGNC:31043] 41 

ENSG00000198796 18 58481247 ALPK2 alpha kinase 2 [Source:HGNC Symbol;Acc:HGNC:20565] 33 

ENSG00000197563 18 61905255 PIGN phosphatidylinositol glycan anchor biosynthesis class N [Source:HGNC Symbol;Acc:HGNC:8967] 29 

ENSG00000116032 19 1000419 GRIN3B glutamate ionotropic receptor NMDA type subunit 3B [Source:HGNC Symbol;Acc:HGNC:16768] 29 

ENSG00000064666 19 1026586 CNN2 calponin 2 [Source:HGNC Symbol;Acc:HGNC:2156] 56 

ENSG00000167676 19 4502180 PLIN4 perilipin 4 [Source:HGNC Symbol;Acc:HGNC:29393] 23 

ENSG00000130383 19 5865826 FUT5 fucosyltransferase 5 [Source:HGNC Symbol;Acc:HGNC:4016] 24 

ENSG00000181143 19 8848844 MUC16 mucin 16, cell surface associated [Source:HGNC Symbol;Acc:HGNC:15582] 55 

ENSG00000198453 19 36916329 ZNF568 zinc finger protein 568 [Source:HGNC Symbol;Acc:HGNC:25392] 40 

ENSG00000268797 19 40801297 AC008537.1 novel protein 28 

ENSG00000198633 19 52429187 ZNF534 zinc finger protein 534 [Source:HGNC Symbol;Acc:HGNC:26337] 43 

ENSG00000239998 19 54572920 LILRA2 leukocyte immunoglobulin like receptor A2 [Source:HGNC Symbol;Acc:HGNC:6603] 55 

ENSG00000104974 19 54593582 LILRA1 leukocyte immunoglobulin like receptor A1 [Source:HGNC Symbol;Acc:HGNC:6602] 25 

ENSG00000104972 19 54617158 LILRB1 leukocyte immunoglobulin like receptor B1 [Source:HGNC Symbol;Acc:HGNC:6605] 54 

ENSG00000267265 19 55006193 AC011476.3 novel transcript, antisense to RDH13 and GP6 26 

ENSG00000223638 19 55759014 RFPL4A ret finger protein like 4A [Source:HGNC Symbol;Acc:HGNC:16449] 32 

ENSG00000229292 19 55769118 RFPL4AL1 ret finger protein like 4A like 1 [Source:HGNC Symbol;Acc:HGNC:45147] 56 

ENSG00000219626 2 24076526 FAM228B family with sequence similarity 228 member B [Source:HGNC Symbol;Acc:HGNC:24736] 21 

ENSG00000135976 2 97113153 ANKRD36 ankyrin repeat domain 36 [Source:HGNC Symbol;Acc:HGNC:24079] 56 

ENSG00000152086 2 130191745 TUBA3E tubulin alpha 3e [Source:HGNC Symbol;Acc:HGNC:20765] 37 

ENSG00000185038 2 233775679 MROH2A maestro heat like repeat family member 2A [Source:HGNC Symbol;Acc:HGNC:27936] 30 

ENSG00000260861 20 1540144 AL049634.2 novel protein, SIRPB1-SIRPD readthrough 29 

ENSG00000154719 21 25585656 MRPL39 mitochondrial ribosomal protein L39 [Source:HGNC Symbol;Acc:HGNC:14027] 27 

ENSG00000175894 21 44497893 TSPEAR thrombospondin type laminin G domain and EAR repeats [Source:HGNC Symbol;Acc:HGNC:1268] 35 

ENSG00000073146 22 50089879 MOV10L1 Mov10 like RISC complex RNA helicase 1 [Source:HGNC Symbol;Acc:HGNC:7201] 20 

ENSG00000144554 3 10026414 FANCD2 FA complementation group D2 [Source:HGNC Symbol;Acc:HGNC:3585] 38 

ENSG00000168038 3 41246599 ULK4 unc-51 like kinase 4 [Source:HGNC Symbol;Acc:HGNC:15784] 30 

ENSG00000242516 3 75672300 LINC00960 long intergenic non-protein coding RNA 960 [Source:HGNC Symbol;Acc:HGNC:48710] 56 

ENSG00000172139 3 112140898 SLC9C1 solute carrier family 9 member C1 [Source:HGNC Symbol;Acc:HGNC:31401] 50 

ENSG00000169064 3 167239843 ZBBX zinc finger B-box domain containing [Source:HGNC Symbol;Acc:HGNC:26245] 32 

ENSG00000177694 3 174438573 NAALADL2 N-acetylated alpha-linked acidic dipeptidase like 2 [Source:HGNC Symbol;Acc:HGNC:23219] 23 

ENSG00000152492 3 191329085 CCDC50 coiled-coil domain containing 50 [Source:HGNC Symbol;Acc:HGNC:18111] 38 

ENSG00000242086 3 195658062 MUC20-OT1 MUC20 overlapping transcript [Source:HGNC Symbol;Acc:HGNC:53807] 42 

ENSG00000145113 3 195746765 MUC4 mucin 4, cell surface associated [Source:HGNC Symbol;Acc:HGNC:7514] 49 

ENSG00000164037 4 102885048 SLC9B1 solute carrier family 9 member B1 [Source:HGNC Symbol;Acc:HGNC:24244] 33 

ENSG00000181381 4 168356735 DDX60L DExD/H-box 60 like [Source:HGNC Symbol;Acc:HGNC:26429] 34 

ENSG00000113492 5 34998101 AGXT2 alanine--glyoxylate aminotransferase 2 [Source:HGNC Symbol;Acc:HGNC:14412] 30 

ENSG00000129595 5 112142441 EPB41L4A erythrocyte membrane protein band 4.1 like 4A [Source:HGNC Symbol;Acc:HGNC:13278] 21 

ENSG00000133710 5 148025683 SPINK5 serine peptidase inhibitor Kazal type 5 [Source:HGNC Symbol;Acc:HGNC:15464] 42 

ENSG00000206503 6 29941260 HLA-A major histocompatibility complex, class I, A [Source:HGNC Symbol;Acc:HGNC:4931] 52 

ENSG00000261272 6 31010474 MUC22 mucin 22 [Source:HGNC Symbol;Acc:HGNC:39755] 20 

ENSG00000204536 6 31142439 CCHCR1 coiled-coil alpha-helical rod protein 1 [Source:HGNC Symbol;Acc:HGNC:13930] 33 

ENSG00000204525 6 31268749 HLA-C major histocompatibility complex, class I, C [Source:HGNC Symbol;Acc:HGNC:4933] 58 

ENSG00000234745 6 31353872 HLA-B major histocompatibility complex, class I, B [Source:HGNC Symbol;Acc:HGNC:4932] 58 
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ENSG00000204520 6 31399784 MICA MHC class I polypeptide-related sequence A [Source:HGNC Symbol;Acc:HGNC:7090] 25 

ENSG00000168477 6 32041153 TNXB tenascin XB [Source:HGNC Symbol;Acc:HGNC:11976] 23 

ENSG00000225914 6 32254640 TSBP1-AS1 TSBP1 and BTNL2 antisense RNA 1 [Source:HGNC Symbol;Acc:HGNC:39756] 29 

ENSG00000198502 6 32517353 HLA-DRB5 major histocompatibility complex, class II, DR beta 5 [Source:HGNC Symbol;Acc:HGNC:4953] 53 

ENSG00000196126 6 32578769 HLA-DRB1 major histocompatibility complex, class II, DR beta 1 [Source:HGNC Symbol;Acc:HGNC:4948] 60 

ENSG00000196735 6 32628179 HLA-DQA1 major histocompatibility complex, class II, DQ alpha 1 [Source:HGNC Symbol;Acc:HGNC:4942] 53 

ENSG00000179344 6 32659467 HLA-DQB1 major histocompatibility complex, class II, DQ beta 1 [Source:HGNC Symbol;Acc:HGNC:4944] 59 

ENSG00000237541 6 32741391 HLA-DQA2 major histocompatibility complex, class II, DQ alpha 2 [Source:HGNC Symbol;Acc:HGNC:4943] 43 

ENSG00000232629 6 32756098 HLA-DQB2 major histocompatibility complex, class II, DQ beta 2 [Source:HGNC Symbol;Acc:HGNC:4945] 35 

ENSG00000231389 6 33064569 HLA-DPA1 major histocompatibility complex, class II, DP alpha 1 [Source:HGNC Symbol;Acc:HGNC:4938] 24 

ENSG00000176381 6 166305300 PRR18 proline rich 18 [Source:HGNC Symbol;Acc:HGNC:28574] 24 

ENSG00000146733 7 56011051 PSPH phosphoserine phosphatase [Source:HGNC Symbol;Acc:HGNC:9577] 25 

ENSG00000205277 7 100969623 MUC12 mucin 12, cell surface associated [Source:HGNC Symbol;Acc:HGNC:7510] 57 

ENSG00000204983 7 142749468 PRSS1 serine protease 1 [Source:HGNC Symbol;Acc:HGNC:9475] 48 

ENSG00000177710 8 11331012 SLC35G5 solute carrier family 35 member G5 [Source:HGNC Symbol;Acc:HGNC:15546] 20 

ENSG00000145002 8 12425614 FAM86B2 family with sequence similarity 86 member B2 [Source:HGNC Symbol;Acc:HGNC:32222] 25 

ENSG00000104763 8 18055992 ASAH1 N-acylsphingosine amidohydrolase 1 [Source:HGNC Symbol;Acc:HGNC:735] 20 

ENSG00000253125 8 22690150 AC055854.1 novel transcript 20 

ENSG00000070756 8 100685816 PABPC1 poly(A) binding protein cytoplasmic 1 [Source:HGNC Symbol;Acc:HGNC:8554] 56 

ENSG00000156795 8 123416726 NTAQ1 N-terminal glutamine amidase 1 [Source:HGNC Symbol;Acc:HGNC:25490] 21 

ENSG00000044459 9 17134982 CNTLN centlein [Source:HGNC Symbol;Acc:HGNC:23432] 25 

ENSG00000010438 9 33750679 PRSS3 serine protease 3 [Source:HGNC Symbol;Acc:HGNC:9486] 51 

ENSG00000137054 9 37485948 POLR1E RNA polymerase I subunit E [Source:HGNC Symbol;Acc:HGNC:17631] 23 

ENSG00000106772 9 76611376 PRUNE2 prune homolog 2 with BCH domain [Source:HGNC Symbol;Acc:HGNC:25209] 25 

ENSG00000277556 9 104598457 OR13C5 olfactory receptor family 13 subfamily C member 5 [Source:HGNC Symbol;Acc:HGNC:15100] 27 

ENSG00000165181 9 111686173 SHOC1 shortage in chiasmata 1 [Source:HGNC Symbol;Acc:HGNC:26535] 23 

ENSG00000122136 9 135546126 OBP2A odorant binding protein 2A [Source:HGNC Symbol;Acc:HGNC:23380] 20 

ENSG00000005022 NA 119468422 SLC25A5 solute carrier family 25 member 5 [Source:HGNC Symbol;Acc:HGNC:10991] 59 

ENSG00000147274 NA 136848004 RBMX RNA binding motif protein X-linked [Source: HGNC Symbol;Acc:HGNC:9910] 40 

 

Table S4. Summary statistics showing the average number of somatic and germline mutations in 16 KEGG pathways known to be dysregulated in 
melanoma. The pathways were selected our proteomic data and previous knowledge. 

No. of genes in 

the pathway 

No. of genes detected in 

WES data 
KEGGID Pathway 

Number of 

somatic 

mutations 

Number of 

germline 

mutations 

133 105 hsa00190 Oxidative phosphorylation 202 ± 52 17 ± 4 

51 45 hsa00330 Arginine and proline metabolism 187 ± 45 21 ± 4 

48 46 hsa00280 Valine, leucine and isoleucine degradation 146 ± 41 20 ± 3 

57 47 hsa00480 Glutathione metabolism 153 ± 38 11 ± 3 

151 123 hsa03040 Spliceosome 485 ± 117 26 ± 7 

98 88 hsa03015 mRNA surveillance pathway 422 ± 98 56 ± 10 

46 42 hsa03050 Proteasome 120 ± 31 12 ± 4 

294 276 hsa04010 MAPK signaling pathway 1568 ± 313 118 ± 13 

240 214 hsa04020 Calcium signaling pathway 1578 ± 300 179 ± 14 

354 317 hsa04151 PI3K-Akt signaling pathway 1932 ± 383 222 ± 17 

120 109 hsa04152 AMPK signaling pathway 634 ± 131 48 ± 7 

166 158 hsa04310 Wnt signaling pathway 832 ± 170 55 ± 6 

67 52 hsa00010 Glycolysis / Gluconeogenesis 218 ± 54 28 ± 5 

140 131 hsa04120 Ubiquitin mediated proteolysis 701 ± 179 45 ± 6 

79 75 hsa03018 RNA degradation 315 ± 79 55 ± 11 

109 95 hsa04066 HIF-1 signaling pathway 494 ± 112 35 ± 6 
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