1	Mate sharing in male stump-tailed macaques as a possible case of coalition-
2	like behavior to modify the group-wise fitness distribution
3	
4	Aru Toyoda ^{1,2} *, Tamaki Maruhashi ³ , Suchinda Malaivijitnond ^{4,5} , Hiroki Koda ² , Yasuo Ihara ⁶ *
5	
6	¹ Chubu University Academy of Emerging Science, Aichi, Japan.
7	² Primate Research Institute, Kyoto University, Aichi, Japan.
8	³ Musashi University, Tokyo, Japan.
9	⁴ Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
10	⁵ National Primate Research Center of Thailand, Saraburi, Thailand.
11	⁶ Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan.
12	
13	*Correspondence to:
14	Aru Toyoda: aru.toyoda@gmail.com
15	Yasuo Ihara: <u>iharay@bs.s.u-tokyo.ac.jp</u>
16	

17 ABSTRACT

In multi-male multi-female groups of animals, male reproductive success is often skewed toward 18 top-ranking males. Coalition formation by middle- to low-rankers can be seen as a collaborative 19 effort to modify the distribution of reproductive success within the group, so that they gain more 20 21 than they would do otherwise. It has been pointed out, on the other hand, that a coalition of topranking males could hardly be profitable in the sense that they would gain little additional benefit 22 from making collaborative effort. Here we report our novel observation of facultative sharing of 23 mating opportunities among males in a wild population of stump-tailed macaques (Macaca 24 *arctoides*) as a possible case of coalition-like behavior in which dominant males jointly guard 25 26 females from mating with subordinate males and actively share mating opportunities within the allies. First, we report our novel observation of facultative sharing of mating opportunities in 27 male stump-tailed macaques, where two or more males remain in close proximity to and copulate 28 29 with a female in turn without contesting or sneaking. Second, considering the kind of coalition formation in which dominant males collaboratively exclude subordinates from mating 30 competition and thereby strengthen the reproductive skew that already exists, we specify, by 31 means of mathematical modeling, the condition for this kind of coalition formation to be 32 selectively favored. Finally, we derive predictions about the occurrence of the coalition-like 33 behavior depending on ecological and demographic factors, and test them empirically using data 34 from the five groups of stump-tailed macaques in our study population. 35

36

37 KEY WORDS

38 cooperation, sexual traits, socioecological modeling, stump-tailed macaques

39

40	Male reproductive success in a multi-male multi-female group is often skewed in favor of high-
41	ranking males (Kutsukake & Nunn, 2006). As a countermeasure, low-ranking males may
42	collaborate to modify the distribution of reproductive success within group so that they gain
43	more than they would do otherwise. Male collaboration that results in modification of within-
44	group resource allocation has been theoretically investigated in the context of coalition or
45	alliance formation (Pandit & van Schaik, 2003; van Schaik et al., 2004, 2006). Assuming that a
46	male's share of mating opportunity decreases monotonically with descending rank position,
47	Pandit & van Schaik (2003) developed a mathematical model of leveling coalition, in which a
48	skew in the access to females in favor of dominant males is mitigated by coalition formation of
49	middle- to low-ranking males. While animal coalition is typically manifested as a coordinated
50	aggression by multiple individuals on one or more targets (Bissonnette et al., 2009; Smith et al.,
51	2010) or an individual's intervention in an ongoing conflict between two parties to support one
52	side (Widdig et al., 2000), the Pandit-van Schaik model is potentially applicable to any case
53	where male-male collaboration serves to flatten the group-wise fitness distribution, even in the
54	absence of overt expression of coordinated aggression.
55	In Pandit & van Schaik's (2003) terminology, a coalition of males ranking below the
56	target (i.e., revolutionary or all-up coalition; (Chapais, 1995; van Schaik et al., 2006) is profitable
57	in the sense that it confers, if successful, a fitness benefit to all coalition members. Hence,
58	whenever the coalition is also feasible, that is, if the subordinates are able to jointly beat the
59	dominant target, this type of coalition is predicted to occur. In contrast, a coalition of top-ranking

61 Schaik et al., 2006) would not be profitable because each of the top-rankers can beat the target

60

males against a lower-ranker (i.e., conservative or all-down coalition; (Chapais, 1995; van

62 even without help. A simplest implication from the Pandit-van Schaik model is, therefore, that

63	male-male collaboration to modify the group-wise distribution of reproductive success is more
64	likely to occur among middle- to low-ranking males than among top-rankers (Pandit & van
65	Schaik, 2003; van Schaik et al., 2004, 2006). The expectation is at least partially supported in
66	some species of primates (Bercovitch, 1988; Noë & Sluijter, 1995), but not in others (Young et
67	al., 2014).

In this article, we report a novel observation of facultative sharing of mating 68 opportunities among males in a wild population of stump-tailed macaques (Macaca arctoides). 69 We regard the observed mate sharing as facultative because there the males copulate with a 70 71 female in turn without contesting or sneaking. As an illustration, Fig. 1 shows two male stumptailed macaques sharing a female without exhibiting any sign of antagonism, where the male on 72 the right is copulating with the female while the male on the left is waiting for his turn. In some, 73 but not all, groups in our study population of stump-tailed macaques, the alpha (i.e., the highest-74 ranking) male forms a coalition-like unit with one or more other males in the same group. The 75 allied males seem to jointly guard a female from mating with other males, while within the 76 coalition-like unit they share the mating opportunities. 77

Strictly speaking, the observed collaborative unit of males is not to be called a "coalition" 78 as it lacks an overt expression of coordinated aggression; nonetheless, we choose to refer to it as 79 "coalition like" because it is a form of male-male collaboration that can potentially modify the 80 group-wise distribution of male reproductive success, as the genuine coalition does in the Pandit-81 82 van Schaik model. In particular, suppose that the number of sexually receptive females in a group is larger than that would allow the alpha male to monopolize reproduction (i.e., complete 83 contest competition), but smaller than that would lead to complete scramble competition. In such 84 85 cases, top-ranking males may be able to exclude subordinates more efficiently from mating

competition by guarding females collaboratively than by doing so individually. This raises the
 possibility that dominant males may gain a fitness benefit by having collaborative partners
 despite the cost of sharing mating opportunities with them.

Since mate sharing in stump-tailed macaques occurs around the alpha male, it is similar 89 to all-down coalition. Within the framework of Pandit and van Schaik's (2003) leveling coalition, 90 however, all-down coalition is not predicted to occur. Instead, the mate sharing by dominant 91 males may be better represented as a novel kind of coalition formation that deprives subordinate 92 males of mating opportunities, whereby "steepens" the reproductive skew. For the purpose of 93 94 investigating the coalition-like behavior in stump-tailed macaques, we extend the Pandit-van Schaik model by allowing all-down coalition to enhance the efficiency with which top-ranking 95 males keep subordinates from mating, as a result of which the reproductive skew is strengthened. 96 97 To keep the model simple and tractable, we do not explicitly specify the underlying mechanism by which subordinates are excluded. A recent study by Pandit, Pradhan, & van Schaik (2020) 98 took a different approach to a similar question. They extended the original Pandit-van Schaik 99 100 model by incorporating a specific mechanism to realize more skewed resource allocation, namely, higher-rankers' usurping of resources owned by lower-rankers. However, since Pandit et 101 al.'s (2020) model is designed to explore the origins of class formation in human societies, and 102 non-human primates are unlikely to meet the presumption that individuals possess exploitable or 103 tradable resources, it is not applicable to the current context. 104

In what follows, we describe our observation of facultative mate sharing among male
 stump-tailed macaques, develop a mathematical model to explore the underlying mechanism of
 the behavior, and empirically test predictions derived from the model.

108

109 **METHODS**

110 <u>Study site and animals</u>

111	A wild population of stump-tailed macaques inhabiting the Khao Krapuk Khao Taomor non-
112	hunting area in the Phetchaburi Province of central Thailand (99°44' E, 12°48' N, encompassing
113	an area of 3.5–4 km ²) was observed. This site consists primarily of secondary forests, including
114	stands of bamboo and agricultural areas. The macaques also visited areas immediately adjacent
115	to this site (including a nearby temple, cassava and pineapple plantations, and human
116	settlements) on a daily basis. The macaques were occasionally fed by humans, both locals and
117	tourists, on the temple grounds or along the roadside. This population was first documented in
118	June of 1984, at which time there were only 22 individuals. Since then, it has grown to a large
119	population, including at least 391 individuals (97 adult males, 124 adult females, 114 infants
120	(\leq 2 years), and 56 subadult unidentified subjects, who were divided into five groups, namely,
121	Ting, Nadam, Third, Fourth, and Wngklm groups (Table S1 in Supplementary Materials) by
122	2017. The Wngklm group separated from the Third group in November–December 2015. All
123	adults (completely mature monkeys), most subadults (sexually mature but not completely
124	developed), and some juveniles (sexually immature, around 3 years of age) were identified based
125	on facial characteristics. This population is geographically isolated from the other populations,
126	and no new immigrant males from other sites were detected during the study period (Toyoda et
127	al., 2017; Toyoda & Malaivijitnond, 2018).

128 Stump-tailed macaques are reported in general as non-seasonal breeders (some local 129 populations/captive groups show seasonality, but that is not the case for the populations in 130 Thailand). No clear sign of estrus is observed in females, and thus it is not possible, at least for 131 human observers, to detect ovulation. Concealed ovulation is generally considered to affect the

132	distribution of male reproductive success by hindering the alpha male from monopolizing fertile
133	females. It should be noted, however, that there is an ongoing debate about whether or not males
134	can infer reproductive status of females. One paper has suggested that males can detect female
135	ovulation by vagina testing behavior (Cerda-Molina et al., 2006) although this is not congruent
136	with our data suggesting that more than half of copulations occurred in non-fertile period
137	(Toyoda, unpublished data).
138	
139	Daily observations
140	AT performed 21-month field observations for the five groups, between September 25, 2015 to
141	June 15, 2017. In total, the animals were observed for 289 days (970.7 hours). The monkeys
142	were followed daily between 09:00 and 17:00 h; the group that was first encountered each day
143	was followed for as long as possible. When the target group could not be followed further (e.g.,
144	when the monkeys travelled along cliffs), the observation of the target group was terminated, and
145	another group was sought out and followed.
146	All copulations during our observation were recorded using video cameras (JVC GZ-
147	RX500 and Sony HDR-PJ675) and their descriptions were noted.
148	
149	Data on copulation
150	Following a previous report (Estep et al., 1984), single copulation was defined as a sequence of
151	copulating behavior consisting of mount, insertion, and separation, irrespective of the presence
152	or absence of ejaculation. The starting and ending times of each single copulation were recorded,
153	and the inter-copulation intervals (ICIs) of all adjacent events of single copulations recorded
154	within a day were calculated. A series of single copulations by a female at an interval of less than

155	30 min was considered collectively as a <i>serial copulation bout</i> if it included four or more single
156	copulations. We adopted this definition for its improved objectivity as compared with the
157	relatively ambiguous definition in previous studies (Brereton, 1994; Estep et al., 1984). Each of
158	all single copulations not included in any serial copulation bouts was considered a non-serial
159	copulation bout.
160	
161	Mathematical model
162	To understand the logic behind the coalition-like behavior in male stump-tailed macaques, we
163	designed a simple mathematical model based on the framework developed by Pandit & van
164	Schaik (2003). Our motivation for the mathematical modeling was two-fold. First, it is intuitively
165	conceivable that concealed ovulation, as in stump-tailed macaques, hinders the alpha male from
166	guarding all fertilizations, and thus necessitates collaboration of two or more dominant males for
167	reproductive monopoly. However, it is unclear as to whether and under what circumstances the
168	alpha male tolerates one or more allies copulating with females. Second, we observed within-
169	species variation in the occurrence of the coalition-like behavior: it occurs in the Ting, Nadam,
170	and Fourth groups, but not in the Third and Wngklm groups (see Results section). If our logic is
171	sound, the model should also explain this pattern of within-species variation.
172	We consider a group of N males and a constant number of females. In the case of a linear
173	order of dominance among the males, the relative access of the <i>i</i> th male to females, x_i , in the
174	absence of male-male coalition is described by the priority-of-access model (Altmann, 1962),
175	namely,

$$x_i = (1 - \beta)^{i - 1} x_1, \quad (1)$$

where β represents the degree to which dominant males can monopolize mating opportunities, called the despotic parameter ($0 < \beta < 1$).

Ecological and demographic factors have been suggested to affect β (van Schaik et al., 178 2006). Of these, cryptic ovulation in females probably reduces β as it prevents dominant males 179 180 from guarding each female intensively only during her fertile period. Thus, compared to species in which ovulation is advertised, species with cryptic ovulation are expected to have smaller β . 181 Other factors, such as the number of females in the group, the relative strengths of dominant 182 183 males, and the female preference for or against dominant males, are also likely to affect β . As the latter factors may vary within a species, we expect that different groups of stump-tailed 184 macaques are characterized by different β values. 185

There may exist circumstances such that it is beneficial for top-ranking males to form a coalition to guard potentially fertile females in a collaborative manner and share copulation opportunities among the allies. The effect of this behavior on the distribution of male reproductive success can be represented by the following equation:

$$x_i = (1 - s\beta)^{i-1} x_1$$
, (2)

190 where we assume $1 < s < 1/\beta$. Parameter *s* reflects the effect of male-male coalition to 191 "steepen," instead of "flatten," the male reproductive skew, where larger *s* indicates higher 192 reproductive monopolization by dominant males. It should be emphasized that our parameter *s* 193 differs from α , the similar parameter in the Pandit- van Schaik model, the latter of which 194 captures the effect of coalition among subordinate males to level the reproductive skew (i.e., 195 $0 \le \alpha \le 1$).

To evaluate the profitability of a male-male coalition, the cost and benefit of
collaboration has to be defined. We considered two components of a particular male's fitness: the

ratio of the mating opportunities gained by that male to all the existing mating opportunities. 198

which approximates the male's share of paternity, and the cost associated with the additional 199

effort of collaborating with others. As for the first component, y_i denotes the proportion of 200

mating opportunities obtained by the *i*th male among all matings; that is, 201

$$y_i = \frac{x_i}{\sum_{j=1}^N x_j}.$$
 (3)

From (1) and (2), in the absence of male-male coalition, we obtain 202

$$y_i = \frac{\beta (1-\beta)^{i-1}}{1 - (1-\beta)^N}, \quad (4)$$

203

while in the presence of a coalition,

$$y_i = \frac{s\beta(1-s\beta)^{i-1}}{1-(1-s\beta)^N}.$$
 (5)

Regarding the second component, we assume that the first components of males forming a 204 coalition are multiplied by 1 - c, where c represents the cost of collaboration (0 < c < 1), while 205 those of non-coalition males are multiplied by 1. Therefore, for the *i*th male, joining a coalition 206 is profitable if and only if 207

$$\frac{s\beta(1-s\beta)^{i-1}}{1-(1-s\beta)^N}(1-c) > \frac{\beta(1-\beta)^{i-1}}{1-(1-\beta)^{N'}}$$
(6)

or equivalently, 208

$$\left(\frac{1-s\beta}{1-\beta}\right)^{i-1} > \frac{1}{s(1-c)} \frac{1-(1-s\beta)^N}{1-(1-\beta)^N}.$$
 (7)

As $1 - s\beta < 1 - \beta$, the left-hand side of (7) decreases with increasing *i*; thus, whenever (7) 209 holds for the *m*th male ($m \ge 2$), it also holds for the first to m - 1th males. 210

211

Estimation of parameters 212

213	We estimated the despotic parameter, β in (1) or $s\beta$ in (2), using nonlinear regression analysis on
214	the observed distribution of the number of copulations, as a proxy to the reproductive success,
215	among males in each of the five groups. For the purpose of better approximating male
216	reproductive success, we considered only those single copulations for which ejaculation was
217	confirmed. Males were sorted according to the number of copulations by the descending order,
218	and a rank order, i , was assigned to each of them. We used the rank among males in the number
219	of copulations as a substitute for the dominance rank in the Pandit-van Schaik model, assuming
220	that coalition formation does not change the dominance ranks of the coalition members of the
221	target. The <i>i</i> th male's number of copulations, x_i , was regressed on the rank order, <i>i</i> , to estimate β
222	in (1) or $s\beta$ in (2) using the nonlinear regression function of Python (curve_fit method in SciPy
223	optimize module). In addition, R^2 values were reported for showing the goodness-of-fitting.
224	
225	Ethics approval
226	All data acquisitions and procedures during the fieldwork were approved by the National
227	
227	Research Council of Thailand (NRCT, Permission No. 0002/6910) and the Department of
228	Research Council of Thailand (NRCT, Permission No. 0002/6910) and the Department of National Parks, Wildlife and Plant Conservation of Thailand (DNPT). We also complied with the
228	National Parks, Wildlife and Plant Conservation of Thailand (DNPT). We also complied with the
228 229	National Parks, Wildlife and Plant Conservation of Thailand (DNPT). We also complied with the
228 229 230	National Parks, Wildlife and Plant Conservation of Thailand (DNPT). We also complied with the guidelines for field studies of the Primate Research Institute, Kyoto University.
228 229 230 231	National Parks, Wildlife and Plant Conservation of Thailand (DNPT). We also complied with the guidelines for field studies of the Primate Research Institute, Kyoto University. RESULTS
228 229 230 231 232	National Parks, Wildlife and Plant Conservation of Thailand (DNPT). We also complied with the guidelines for field studies of the Primate Research Institute, Kyoto University. RESULTS Description of the observed behavior

were 30 min or shorter (Fig. 2). Out of the 433 copulations, 213 (49.2 %) cases occurred in serial
copulation bouts, while 220 (50.8%) occurred as non-serial copulation bouts. In total, 26 serial
copulation bouts were recorded in the five groups (nine cases in the Ting group, four in Nadam,
five in Third, six in Fourth, and two in Wngklm; for details see Table S2 and Fig. S1 in
Supplementary Materials), among which the median and range of the per-bout number of single
copulations resulting in ejaculation were 6 and 1-31 times, respectively.

In the Third and Wngklm groups, a single male was responsible for all of the five and 242 two serial copulation bouts, respectively. These were the same males as those considered as the 243 244 alpha males throughout the study period on the basis of behavioral observation (named TRD-M01 and WKM-M01 for the Third and Wngklm groups, respectively), i.e., in these groups the 245 alpha males remained in the proximity of a female and copulated repeatedly. Pooling serial and 246 non-serial copulation bouts, we recorded 80 single copulations by TRD-M01, of which 68 were 247 associated with ejaculation, amounting to 81.8% of all copulations and 86.1% of all ejaculated 248 copulations in the Third group. Similarly, we observed 26 single copulations including 22 249 ejaculatory copulations by WKM-M01, which were 59.1% of all copulations and 78.6% of all 250 ejaculatory copulations in the Wngklm group. These indicate that the alpha males were able to 251 obtain considerable portion of copulation opportunities on their own in the Third and Wngklm 252 groups (Fig. 3, see "alpha-monopoly" type). 253

In contrast, we observed serial copulation bouts involving multiple males in the Ting, Nadam, and Fourth groups (Fig. 3, see "coalition" type). Interestingly, in each such multi-male serial copulation bout, males copulated with a female in turn without overt conflict; that is, while one male copulated with a female, the other male(s) maintained close proximity to the copulating pair, and only after one male performed several sequences of copulatory behaviors (i.e., mount,

insertion, and separation), did another male take over the role as the copulator (see Fig. 1). In 259 total, 14 cases of multi-male serial copulation bouts were observed, of which nine cases involved 260 two males and five involved three males, and in no cases four or more males were involved 261 (Table S2). The identities of the males sharing females were highly stable, particularly in the 262 Nadam and Fourth groups, in which the numbers of males participated in at least one case of 263 multi-male serial copulation bout were two and three, respectively, including NDM-M01 in 264 Nadam and FTH-M01 in Fourth, who were considered as the alpha males throughout the study 265 period. In the Ting group, where a clear dominance order was not established during the study 266 period among several dominant males, there were nine males that participated in at least one case 267 of multi-male serial copulation bout (Table S2). In addition, there were 108, 30, and 68 268 ejaculated copulations by those males that participated in at least one case of multi-male serial 269 copulation bout in the Ting, Nadam, and Fourth groups, respectively, which amounted to 93.1%, 270 96.8%, and 95.8% of all ejaculated copulations excluding those done by outgroup males (Table 271 S2, Fig. 3). This suggests that the copulation opportunities in the Ting, Nadam, and Fourth 272 groups were obtained almost exclusively by those males who were members of the facultative 273 mate sharing. From these findings, we hypothesize that those males sharing a female function as 274 a coalition-like unit to jointly guard females from mating with other males and actively share the 275 secured mating opportunities within the unit. 276

277

278 <u>Mathematical analysis</u>

Our mathematical analysis specifies the condition for a coalition by the *i* highest-ranking males to be profitable (i.e., (7)). Since a coalition of top-rankers is always feasible, such a coalition is predicted to occur whenever (7) holds.

282 Regarding within-species variation in the occurrence of coalition formation, we

investigate how ecological and demographic factors, which may vary among groups of stump-

- tailed macaques, affect the profitability condition (7). We derive from (7) the upper bound of
- coalition size, m^* , for given β , N, s, and c as

$$m^* = 1 + \frac{\log[s(1-c)] - \log\frac{1 - (1 - s\beta)^N}{1 - (1 - \beta)^N}}{\log\frac{1 - \beta}{1 - s\beta}}.$$
 (8)

Equation (8) immediately shows that s(1 - c) > 1 is necessary for any coalition to be profitable; otherwise, $m^* < 1$ always holds. It also shows that the right-hand side of (8) increases with *N* (Fig. 4a, 4b).

289

For large N, the upper bound of the coalition size is obtained approximately as

$$m^* \approx 1 + \frac{\log[s(1-c)]}{\log\frac{1-\beta}{1-s\beta}}, \quad (9)$$

290 which decreases with increasing β whenever s(1-c) > 1. On the other hand, when β is small,

291 (8) is approximated by

$$m^* \approx 1 + \frac{\log(1-c)}{\log[1+(s-1)\beta]},$$
 (10)

indicating that as β approaches zero, m^* diverges to minus infinity. In general, the dependence of m^* on β is not monotonic (Fig. 4c, 4d). For coalition of at least two males (i.e., $m^* > 2$), (9) shows that β should be smaller than a threshold, specified by

$$\beta < \frac{s(1-c)-1}{s^2(1-c)-1}.$$
 (11)

Hence, for any coalition to occur, β has to be relatively small, but not extremely small. Fig. 5 illustrates the combinations of *N* and β values, for which $m^* > 2$ (based on (8)).

297	In summary, we have established the theoretical possibility of coalition formation by
298	dominant males to steepen the reproductive skew that already exists, providing a formal
299	foundation for our hypothesis of coalition-like behavior in male stump-tailed macaques. We have
300	also specified the condition for this kind of coalition to occur, from which the following two
301	predictions are derived: first, a large coalition is more likely to be observed in larger male groups
302	(Fig. 5); and second, among sufficiently large male groups, a coalition is more likely to occur in
303	a group where the extent of reproductive monopolization by dominant males is relatively small,
304	unless it is extremely small (Fig. 5). If, as we have hypothesized, coalition-like behavior
305	underlies the observed facultative mate sharing in stump-tailed macaques, patterns of within-
306	species variation in the occurrence of the facultative mate sharing are expected to follow these
307	predictions.
308	
308 309	Test of model predictions
	<u>Test of model predictions</u> We evaluated the above predictions for within-species variation on the basis of our observational
309	
309 310	We evaluated the above predictions for within-species variation on the basis of our observational
309 310 311	We evaluated the above predictions for within-species variation on the basis of our observational data from the five groups of stump-tailed macaques. For each group, we estimated the despotic
309310311312	We evaluated the above predictions for within-species variation on the basis of our observational data from the five groups of stump-tailed macaques. For each group, we estimated the despotic parameter, β' , that was supposed to be either unmodified (i.e., $\beta' = \beta$ for Third and Wngklm) or
 309 310 311 312 313 	We evaluated the above predictions for within-species variation on the basis of our observational data from the five groups of stump-tailed macaques. For each group, we estimated the despotic parameter, β' , that was supposed to be either unmodified (i.e., $\beta' = \beta$ for Third and Wngklm) or modified (i.e., $\beta' = s\beta$ for Ting, Nadam, and Fourth) by male coalition-like behavior. Non-linear
 309 310 311 312 313 314 	We evaluated the above predictions for within-species variation on the basis of our observational data from the five groups of stump-tailed macaques. For each group, we estimated the despotic parameter, β' , that was supposed to be either unmodified (i.e., $\beta' = \beta$ for Third and Wngklm) or modified (i.e., $\beta' = s\beta$ for Ting, Nadam, and Fourth) by male coalition-like behavior. Non-linear regression analysis returned the following estimates of β' : 0.30, 0.72, 0.97, 0.59, and 0.78 for
 309 310 311 312 313 314 315 	We evaluated the above predictions for within-species variation on the basis of our observational data from the five groups of stump-tailed macaques. For each group, we estimated the despotic parameter, β' , that was supposed to be either unmodified (i.e., $\beta' = \beta$ for Third and Wngklm) or modified (i.e., $\beta' = s\beta$ for Ting, Nadam, and Fourth) by male coalition-like behavior. Non-linear regression analysis returned the following estimates of β' : 0.30, 0.72, 0.97, 0.59, and 0.78 for Ting, Nadam, Third, Fourth, and Wngklm, respectively (Fig. 6).
 309 310 311 312 313 314 315 316 	We evaluated the above predictions for within-species variation on the basis of our observational data from the five groups of stump-tailed macaques. For each group, we estimated the despotic parameter, β' , that was supposed to be either unmodified (i.e., $\beta' = \beta$ for Third and Wngklm) or modified (i.e., $\beta' = s\beta$ for Ting, Nadam, and Fourth) by male coalition-like behavior. Non-linear regression analysis returned the following estimates of β' : 0.30, 0.72, 0.97, 0.59, and 0.78 for Ting, Nadam, Third, Fourth, and Wngklm, respectively (Fig. 6). Figure 7 shows the estimates of β' and the numbers of males, <i>N</i> , in the five groups. It is

320	were nine males who participated at least one multi-male serial copulation bout ($m = 9$), had the
321	combination of the largest N and the smallest β' (and thus β) among the five groups. In addition,
322	as predicted, Fourth ($m = 3$) and Nadam ($m = 2$), the two other groups in which multi-male
323	serial copulation bouts were observed, had the second and third lowest values of β' (and thus β),
324	respectively. On the other hand, multi-male serial copulation bout is absent in the Third group
325	with the second largest N , which might appear to contradict our predictions. We tentatively
326	interpret this as a result of large β' in this group; in other words, β may be too large to satisfy
327	(11), although a quantitative evaluation of this claim has been challenging so far. In sum, we
328	conclude that our model accounts well for the patterns of within-species variation in the
329	coalition-like behavior in stump-tailed macaques.

331 **DISCUSSION**

Our observations, together with mathematical analysis and empirical test of model predictions, 332 suggest that the alpha male of stump-tailed macaques form a coalition-like unit with one or more 333 males in the group to jointly secure mating opportunities and actively share them within the unit. 334 To the best of our knowledge, this is the first mammalian observation of collaborative mate 335 guarding by males, followed by facultative sharing of mating opportunities. While males in other 336 species, such as chimpanzees, olive baboons, and lions, also collaborate to guard females against 337 other males, the coalition-like behavior in stump-tailed macaques differs from them in the 338 following aspects. In the case of lions, a group of females with a few males, called a pride, is 339 340 formed and the males collectively defend the females from other invasive males. The alpha male mostly monopolizes the mating opportunities, and the subordinate allies have either no access to 341 the females or only limited access not through active sharing (Bygott et al., 1979; Packer & 342

343	Pusey, 1982). This is in contrast to the case of stump-tailed macaques, where a coalition-like unit
344	is formed by a few males in a large multi-male multi-female group to exclude other males in the
345	same group from mating competition, and the mating opportunities thus secured are actively
346	shared within the unit. Similarly, in olive baboons, subordinate males form a coalition to jointly
347	attack a dominant male, thereby increasing their future access to females. However, unlike
348	stump-tailed macaques, olive baboons do not actively share copulations (Bercovitch, 1988). On
349	the other hand, the observed case of a chimpanzee female copulating with eight males within a
350	short time period (Watts, 1998) might be comparable to the facultative mate sharing in the
351	stump-tailed macaque, although this was considered exceptional, observed only in the Ngogo
352	population, which is considerably larger than the other populations (Watts, 1998).
353	A remarkable feature of the coalition-like behavior in stump-tailed macaques is that the
354	alpha male appears to pay a reproductive cost by giving mating opportunities away to his allies,
355	who in return offer collaborative work efforts, and as a result they gain reproductive advantage
356	as a team. Another point deserving attention is that coalition formation manifested as joint
357	aggression on a target may involve triadic awareness among the attacker, helper, and target
358	(Harcourt & de Waal, 1992; Paxton et al., 2010; Schino, Tiddi, & Di Sorrentino, 2006; Silk,
359	1999), which is deemed to be cognitively more demanding than understanding the dyadic
360	relationship between the self and another individual (Hemelrijk et al., 2013). For that matter, the
361	coalition-like behavior in stump-tailed macaques, which sometimes involves collaboration
362	among more than two individuals, may also require extra capacity of social cognition and that
363	may be why similar behavior is rare in non-human animals.
364	Why do male stump-tailed macaques, unlike males of closely related species, exhibit this

365 peculiar behavior? To put it in another way, what are the socio-ecological factors in stump-tailed

macaques that may have favored the evolution of this behavior? Here, we propose that the 366 absence of signs of ovulation in female stump-tailed macaques may be a key. In many primate 367 species, females exhibit visual or olfactory signs of ovulation during the fertile period of the 368 reproductive cycle. Conspicuous estrous signals such as sexual swellings enhance male-male 369 competition, providing females more opportunities for mate choice (Nunn, 1999; Nunn, van 370 Schaik, & Zinner, 2001; Zinner et al., 2004). Advertisement of female reproductive status is 371 often seen in Old World monkeys living in multi-male multi-female societies, such as most 372 macaques, baboons, and chimpanzees (Nunn, 1999; Nunn et al., 2001; Zinner et al., 2004). When 373 374 female reproductive status is advertised, it is relatively easy for the alpha male to monopolize fertilizations, as in that case he can concentrate all his guarding efforts on the females fertile at 375 that moment. On the other hand, when female ovulation is cryptic, the alpha male is no longer 376 able to adopt the selective guarding strategy, and reproductive monopoly is only possible if all 377 cycling females are guarded all the time. Our hypothesis is that the difficulty in establishing 378 reproductive monopoly by the alpha male due to concealed ovulation may have promoted the 379 380 formation of a coalition-like unit among dominant males. Our discovery of the formation of a coalition-like unit, followed by active sharing of 381

381 Our discovery of the formation of a coalition-like unit, followed by active sharing of 382 mating opportunities, in male stump-tailed macaques demands a revision of the existing 383 socioecological models in primate social systems. As far as we are aware, this is the first 384 documented case in non-human primates of collaborative effort for acquiring resources based on 385 active sharing among the collaborators. We have hypothesized that the lack of estrous signs in 386 female stump-tailed macaques, unlike many Old-World monkeys, is a key factor enhancing the 387 coalition-like behavior. Concealed ovulation is likely to reduce the extent to which fertilizations 388 are monopolized by dominant males. In our mathematical model, this effect is represented by the

reduction in parameter β . The model predicts that male-male coalition is more likely to occur 389 when β is small, confirming the logical consistency of our hypothesis. From the female's 390 perspective, monopolization by dominant males means limited opportunities for female mate 391 choice, particularly when they prefer copulations with subordinate or out-group males. Thus, 392 concealed ovulation may be considered as a female strategy to facilitate mate choice. Further 393 extending the argument, the formation of coalition followed by active sharing of mating 394 opportunities may be a counter strategy of dominant males. In other words, being unable to 395 396 control female reproduction on his own, the alpha male may gain more by surrendering some fertilization opportunities to elicit cooperation by subordinates. Hence, the intensified sperm 397 competition in stump-tailed macaques (García Granados et al., 2014) may be a joint consequence 398 399 of female concealment of fertility states and male sharing of mating opportunities. In addition, a potentially relevant observation is that female stump-tailed macaques do not produce copulation 400 401 calls (Blurton Jones & Trollope, 1968). Although the function of female copulation calls is still a 402 matter of contention (Bernstein et al., 2016; Maestripieri & Roney, 2005), a possible 403 interpretation is that female stump-tailed macaques do not make any effort to induce male mate guarding. 404

The present study has also revealed the importance of the number of males in a group as a predictor for the formation of coalitions among dominant males. In other words, male-male coalition is more likely to be formed when there are more males in a group. In our field site, we observed five groups of stump-tailed macaques consisting of 391 individuals, or on average 78.2 individuals per group. The relatively large group size is primarily due to the semi-provisioning conditions in our study site, and this factor also appears to affect the socioeconomic sex ratio, i.e., the ratio of the number of adult females to the number of adult males. The average

socioeconomic sex ratio in our sample is 1.33, while those that have been previously reported for
other populations of stump-tailed macaques are approximately 5.7 (Fooden, 1990). The smaller
socioeconomic sex ratio indicates more intense male-male competition. Hence, both large
number of males per group and small socioeconomic ratio may have facilitated the occurrence of
coalition formation by dominant males in our study population.

While our model predicts monotonic increase of the coalition size with the increasing 417 number of males in the group, we observed coalitions of two or three males, but never four or 418 more. This discrepancy might indicate that there exist additional factors restricting the coalition 419 420 size that are not considered in the model. A possible factor is, as mentioned earlier, the limited social cognition in non-human animals. Actually, psychological experiments on cooperative 421 tasks have revealed that collaboration is possible among two or three chimpanzee subjects, but is 422 much more difficult when four or more subjects are involved ((Hirata & Fuwa, 2007; Kaigaishi 423 et al., 2019; Tomonaga et al., 2004)). For the recognition of quadradic relations, an individual 424 has to recognize the possible combinations of dyadic and triadic relations, exponentially 425 increasing the socio-cognitive loading in the brain. 426

We have also observed within-species variation in the extent to which copulations are 427 monopolized by dominant males, which is represented by β in our model. Despite the marked 428 ecological similarities between groups, the estimated β' ranged from 0.30 to 0.97. In the Third 429 $(\beta' = 0.97)$ and Wngklm $(\beta' = 0.78)$ groups, copulations were almost completely monopolized 430 by the alpha males, a situation that is called "despotic." This contrasts with the conventional 431 classification of primate societies, in which stump-tailed macaques are characterized as having 432 433 "egalitarian" societies (Matsumura, 1999), or class 3 social systems (Thierry et al., 2004). The traditional classification intends to place each species on a single position on the despotic-434

435	egalitarian spectrum, based largely on the species-level characterizations of ecological factors,
436	such as whether or not a given species is seasonal breeder, or the abundance and spatial
437	distribution of food resources (Sterck et al., 1997). However, our observations clearly suggest
438	that the level of despotism as indicated by β is determined not necessarily in such a top-down
439	manner, but in a more bottom-up way, such that it may vary within species according to the
440	idiosyncrasies of each group. For example, our field observation indicates that the despotic
441	nature of the Third group may have been caused not only by the physical strength of the alpha
442	male, THR-M01, but by the absence of competent rivals; in fact, other males seem either too old
443	or immature to challenge him. Therefore, it appears that bottom-up mechanisms determine β in
444	each group, which then determines whether the alpha male will adopt the solo monopolization
445	strategy or the coalition strategy.
446	Finally, our model predicts the future dynamics in the stump-tailed macaque groups. For
447	example, when youngsters in the Third group become sufficiently mature to challenge the alpha
448	male, and as a consequence β is reduced, our model predicts that the alpha male will form a
449	coalition-like unit with other males. We expect that a longitudinal observation of wild stump-

example, when youngsters in the Third group become sufficiently mature to challenge the alpha male, and as a consequence β is reduced, our model predicts that the alpha male will form a coalition-like unit with other males. We expect that a longitudinal observation of wild stumptailed macaques will confirm these model predictions. In conclusion, stump-tailed macaques are characterized by societies ranging from despotism to egalitarianism, and from monopolization of females by a dominant male to male-male coalition coupled with active sharing of mating opportunities. Future studies on wild stump-tailed macaques may shed new light on the origins and evolution of altruism and cooperation in mammalian societies, including the hypercooperation in human societies (Burkart et al., 2014).

456

457 CONCLUSION

458	We have reported a novel observation of facultative sharing of mating opportunities among
459	males in a wild population of stump-tailed macaques. Our observational data, mathematical
460	analysis, and empirical test of model predictions altogether indicate that the observed behavior
461	can be interpreted as a coalition-like behavior, in which dominant males collaboratively guard
462	females from mating with subordinate males, and actively share the secured mating opportunities
463	within the allies. The mathematical analysis predicts that less intense despotism and greater
464	number of males in a group are to be associated with the coalition-like behavior. We have further
465	argued that the lack of estrus signs in stump-tailed macaque females may be a key factor that
466	accounts for the occurrence of the coalition-like behavior in this species.

468 **ACKNOWLEDGEMENTS**

We thank Warayut Nilpaung and Chuchat Choklap, Phanlerd Inprasoet, Wanchai Inprasoet, 469 470 Napatchaya Techaatiwatkun, Yuzuru Hamada, Ikuma Adachi, Takeshi Nishimura, Ikki Matsuda for their kind support. We got funding from JSPS KAKENHI (#16H04848, #16J0098), Young 471 Science Explorer Grant of National Geographic Foundation for Science and Exploration - Asia, 472 473 Kyoto University Foundation, the Cooperation Research Programs of Wildlife Research Center, 474 the Sasakawa Scientific Research Grant from The Japan Science Society, Japan Science and 475 Technology Agency Core Research for Evolutional Science and Technology 17941861 (#JPMJCR17A4), and Ministry of Education, Culture, Sports, Science and Technology, Grant-476 in-Aid for Scientific Research on Innovative Areas #4903 (Evolinguistic) 17H06380 and 477 478 17H06381.

479

480 **APPENSICS**

481	We have	Tables	S1, S2,	and Figure	S1 in	Supplementar	y Materials	as separately	attached.
-----	---------	--------	---------	------------	-------	--------------	-------------	---------------	-----------

482

483 **REFERENCES**

484	Altmann, S. A. (1962). A field study of the sociology of rhesus monkeys, Macaca mulatta.
485	Annals of the New York Academy of Sciences, 102(2), 338–435.
486	https://doi.org/10.1111/j.1749-6632.1962.tb13650.x

Bercovitch, F. B. (1988). Coalitions, cooperation and reproductive tactics among adult male
baboons. *Animal Behaviour*, *36*(4), 1198–1209. https://doi.org/10.1016/S00033472(88)80079-4

Bernstein, S. K., Sheeran, L. K., Wagner, R. S., Li, J.-H., & Koda, H. (2016). The vocal
repertoire of Tibetan macaques (Macaca thibetana): A quantitative classification.

492 *American Journal of Primatology*, 78(9), 937–949. https://doi.org/10.1002/ajp.22564

- Bissonnette, A., de Vries, H., & van Schaik, C. P. (2009). Coalitions in male Barbary macaques,
 Macaca sylvanus: strength, success and rules of thumb. *Animal Behaviour*, 78(2), 329–335.
 https://doi.org/10.1016/j.anbehav.2009.05.010
- Blurton Jones, N. G., & Trollope, J. (1968). Social behaviour of stump-tailed macaques in
 captivity. *Primates*, 9(4), 365–393.
- Brereton, A. R. (1994). Copulatory behavior in a free-ranging population of stumptail macaques
 (Macaca arctoides) in Mexico. *Primates*, *35*(2), 113–122.
- 500 https://doi.org/10.1007/BF02382048

501	Burkart, J. M., Allon, O., Amici, F., Fichtel, C., Finkenwirth, C., Heschl, A., Huber, J., Isler, K.,
502	Kosonen, Z. K., Martins, E., Meulman, E. J., Richiger, R., Rueth, K., Spillmann, B.,
503	Wiesendanger, S., & van Schaik, C. P. (2014). The evolutionary origin of human hyper-
504	cooperation. Nature Communications, 5(1), 4747. https://doi.org/10.1038/ncomms5747
505	Bygott, J. D., Bertram, B. C. R., & Hanby, J. P. (1979). Male lions in large coalitions gain
506	reproductive advantages. Nature, 282(5741), 839-841. https://doi.org/10.1038/282839a0
507	Cerda-Molina, A. L., Hernández-López, L., Rojas-Maya, S., Murcia-Mejía, C., & Mondragón-
508	Ceballos, R. (2006). Male-induced sociosexual behavior by vaginal secretions in Macaca
509	arctoides. International Journal of Primatology, 27(3), 791-807.
510	https://doi.org/10.1007/s10764-006-9045-0
511	Chapais, B. (1995). Alliances as a means of competition in primates. American Journal of
512	Physical Anthropology, 38, 115–136.
513	Estep, D. Q., Bruce, K. E. M., Johnston, M. E., & Gordon, T. P. (1984). Sexual Behavior of
514	Group-Housed Stumptail Macaques (Macaca arctoides): Temporal, Demographic and
515	Sociosexual Relationships. Folia Primatologica, 42(2), 115–126.
516	https://doi.org/10.1159/000156154
517	Fooden, J. (1990). The bear macaque, Macaca arctoides: a systematic review. Journal of Human
518	Evolution, 19(6-7), 607-686. https://doi.org/10.1016/0047-2484(90)90002-S
519	García Granados, M. D., Hernández López, L. E., Córdoba Aguilar, A., Cerda Molina, A. L.,
520	Pérez-Ramírez, O., & Mondragón-Ceballos, R. (2014). Effect of photoperiod on
521	characteristics of semen obtained by electroejaculation in stump-tailed macaques (Macaca
522	arctoides). Primates, 55(3), 393-401. https://doi.org/10.1007/s10329-014-0414-6

523	Harcourt, A. H., de Waal, F. B. M., & others. (1992). Coalitions and alliances in humans and
524	other animals. Oxford University Press Oxford.

- Hemelrijk, C. K., Puga-Gonzalez, I., & Steinhauser, J. (2013). Cooperation, Coalition, and
 Alliances. In *Handbook of Paleoanthropology* (Issue Hamilton 1964, pp. 1–27). Springer
 Berlin Heidelberg. https://doi.org/10.1007/978-3-642-27800-6_43-4
- Hirata, S., & Fuwa, K. (2007). Chimpanzees (Pan troglodytes) learn to act with other individuals
 in a cooperative task. *Primates*, 48(1), 13–21. https://doi.org/10.1007/s10329-006-0022-1

Kaigaishi, Y., Nakamichi, M., & Yamada, K. (2019). High but not low tolerance populations of
Japanese macaques solve a novel cooperative task. *Primates*, 60(5), 421–430.
https://doi.org/10.1007/s10329-019-00742-z

- Kutsukake, N., & Nunn, C. L. (2006). Comparative tests of reproductive skew in male primates:
 the roles of demographic factors and incomplete control. *Behavioral Ecology and Sociobiology*, *60*(5), 695–706. https://doi.org/10.1007/s00265-006-0213-1
- Maestripieri, D., & Roney, J. R. (2005). Primate copulation calls and postcopulatory female
 choice. *Behavioral Ecology*, *16*(1), 106–113. https://doi.org/10.1093/beheco/arh120
- Matsumura, S. (1999). The evolution of "egalitarian" and "despotic" social systems among
 macaques. *Primates*, 40(1), 23–31. https://doi.org/10.1007/BF02557699
- Noë, R., & Sluijter, A. A. (1995). Which adult male savanna baboons form coalitions? *International Journal of Primatology*, *16*(1), 77–105. https://doi.org/10.1007/BF02700154
- Nunn, C. L, van Schaik, C. P., & Zinner, D. (2001). Do exaggerated sexual swellings function in
 female mating competition in primates? A comparative test of the reliable indicator
 hypothesis. *Behavioral Ecology*, *12*(5), 646–654. https://doi.org/Article

545	Nunn, Charles L. (1999). The evolution of exaggerated sexual swellings in primates and the
546	graded-signal hypothesis. Animal Behaviour, 58(2), 229-246.
547	https://doi.org/10.1006/anbe.1999.1159
548	Packer, C., & Pusey, A. E. (1982). Cooperation and competition within coalitions of male lions:
549	kin selection or game theory? Nature, 296(5859), 740-742.
550	https://doi.org/10.1038/296740a0
551	Pandit, S. A., Pradhan, G. R., & van Schaik, C. P. (2020). Why Class Formation Occurs in
552	Humans but Not among Other Primates: A Primate Coalitions Model. Human Nature,
553	31(2), 155–173. https://doi.org/10.1007/s12110-020-09370-9
554	Pandit, S. A., & van Schaik, C. P. (2003). A model for leveling coalitions among primate males:
555	toward a theory of egalitarianism. Behavioral Ecology and Sociobiology, 55(2), 161–168.
556	https://doi.org/10.1007/s00265-003-0692-2
557	Paxton, R., Basile, B. M., Adachi, I., Suzuki, W. A., Wilson, M. E., & Hampton, R. R. (2010).
558	Rhesus monkeys (Macaca mulatta) rapidly learn to select dominant individuals in videos of
559	artificial social interactions between unfamiliar conspecifics. Journal of Comparative
560	Psychology, 124(4), 395-401. https://doi.org/10.1037/a0019751
561	Schino, G., Tiddi, B., & Di Sorrentino, E. P. (2006). Simultaneous classification by rank and
562	kinship in Japanese macaques. Animal Behaviour, 71(5), 1069–1074.
563	https://doi.org/10.1016/j.anbehav.2005.07.019
564	Silk, J. B. (1999). Male bonnet macaques use information about third-party rank relationships to
565	recruit allies. Animal Behaviour, 58(1), 45-51. https://doi.org/10.1006/anbe.1999.1129

566	Smith, J. E., Van Horn, R. C., Powning, K. S., Cole, A. R., Graham, K. E., Memenis, S. K., &
567	Holekamp, K. E. (2010). Evolutionary forces favoring intragroup coalitions among spotted
568	hyenas and other animals. Behavioral Ecology, 21(2), 284–303.
569	https://doi.org/10.1093/beheco/arp181
570	Sterck, E. H. M., Watts, D. P., & van Schaik, C. P. (1997). The evolution of female social
571	relationships in nonhuman primates. Behavioral Ecology and Sociobiology, 41(5), 291–309.
572	https://doi.org/10.1007/s002650050390
573	Thierry, B., Singh, M., & Kaumanns, W. (2004). Macaque societies: a model for the study of
574	social organization (Vol. 41). Cambridge University Press.
575	Tomonaga, M., Tanaka, M., Matsuzawa, T., Myowa-Yamakoshi, M., Kosugi, D., Mizuno, Y.,
576	Okamoto, S., Yamaguchi, M. K., & Bard, K. A. (2004). Development of social cognition in
577	infant chimpanzees (Pan troglodytes): Face recognition, smiling, gaze, and the lack of
578	triadic interactions. Japanese Psychological Research, 46(3), 227–235.
579	https://doi.org/10.1111/j.1468-5584.2004.00254.x
580	Toyoda, A., & Malaivijitnond, S. (2018). The First Record of Dizygotic Twins in Semi-Wild
581	Stump-Tailed Macaques (Macaca arctoides) Tested Using Microsatellite Markers and the
582	Occurrence of Supernumerary Nipples. Mammal Study, 43(3), 207–212.
583	https://doi.org/10.3106/ms2017-0081
584	Toyoda, A., Maruhashi, T., Malaivijitnond, S., & Koda, H. (2017). Speech-like orofacial
585	oscillations in stump-tailed macaque (Macaca arctoides) facial and vocal signals. American
586	Journal of Physical Anthropology, 164(2), 435-439. https://doi.org/10.1002/ajpa.23276

587	van Schaik, C. P., Pandit, S. A., & Vogel, E. R. (2004). A model for within-group coalitionary
588	aggression among males. Behavioral Ecology and Sociobiology, 57(2), 101-109.
589	https://doi.org/10.1007/s00265-004-0818-1
590	van Schaik, C. P., Pandit, S. A., & Vogel, E. R. (2006). Toward a general model for male-male
591	coalitions in primate groups. In Cooperation in Primates and Humans: Mechanisms and
592	Evolution (pp. 151–171). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-28277-
593	7_9
594	Van Schaik, C. P., Pandit, S. A., & Vogel, E. R. (2006). Toward a general model for male-male
595	coalitions in primate groups. In Cooperation in Primates and Humans: Mechanisms and
596	Evolution (pp. 151–171). https://doi.org/10.1007/3-540-28277-7_9
597	Watts, D. P. (1998). Coalitionary mate guarding by male chimpanzees at Ngogo, Kibale National
598	Park, Uganda. Behavioral Ecology and Sociobiology, 44(1), 43–55.
599	https://doi.org/10.1007/s002650050513
600	Widdig, A., Streich, W. J., & Tembrock, G. (2000). Coalition formation among male Barbary
601	macaques (Macaca sylvanus). American Journal of Primatology, 50(1), 37-51.
602	https://doi.org/10.1002/(SICI)1098-2345(200001)50:1<37::AID-AJP4>3.0.CO;2-3
603	Young, C., Schülke, O., & Ostner, J. (2014). How males form coalitions against group rivals and
604	the Pandit/van Schaik coalition model. Behaviour, 151(7), 907–934.
605	https://doi.org/10.1163/1568539X-00003166
606	Zinner, D., van Schaik, C. P., Nunn, C. L., & Kappeler, P. M. (2004). Sexual selection and
607	exaggerated sexual swellings of female primates. In Sexual Selection in Primates: New and
608	Comparative Perspectives (pp. 71-89). https://doi.org/10.1002/evan.10023

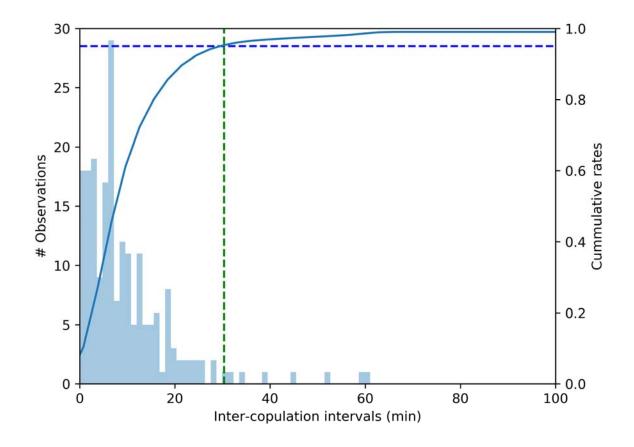
610 FIGURE LEGENDS

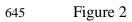
- Figure 1. Stamp-tailed macaque males (FTH-M01 and FTH-M02) sharing mating opportunities
 with a female (FHT-F11) without showing any sign of antagonism.
- 613

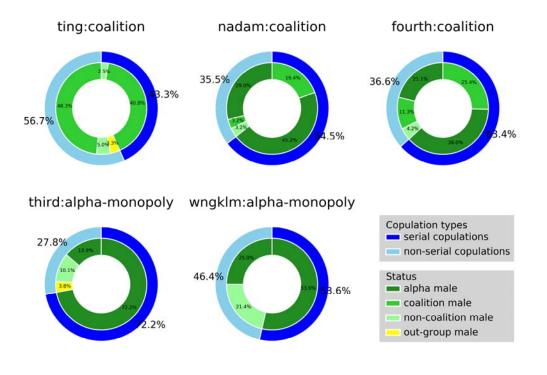
Figure 2. The distribution of the inter-copulation intervals (ICIs) between two consecutive single copulations that involved the same pair of male and female ($N_{ICI} = 206$). The green broken line represents the critical ICI value below which 95% of the observed ICIs were included. Note that only the cases where the same pair of male and female copulated more than once within a day are included.

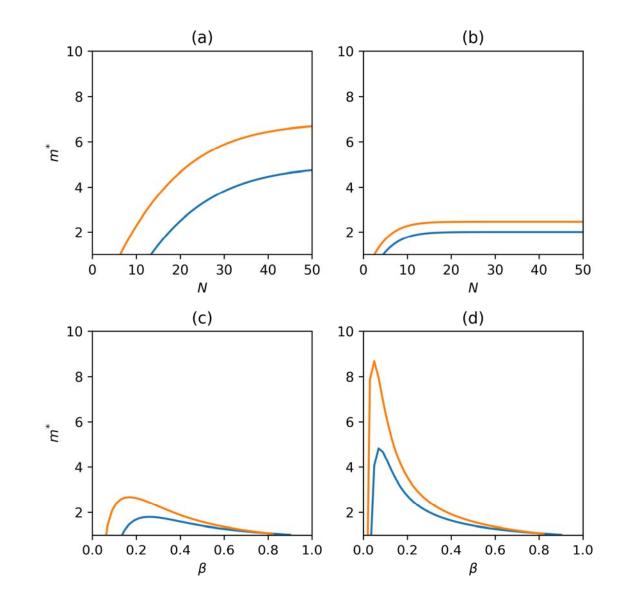
619

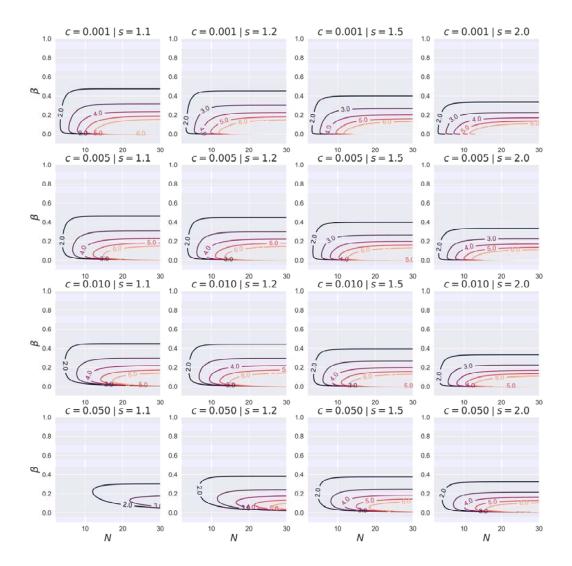
Figure 3. Proportions of single copulations with different characteristics to all single copulations in each of the five groups. Only are the single copulations associated with ejaculation included. The outer circle compares the proportions of single copulations that are part of serial copulation bouts and those that are non-serial copulation bouts. The inner circle shows the proportions of single copulations by the alpha males, non-alpha males forming a coalition unit, non-alpha males not forming a coalition unit, and males from outside of the group.


626

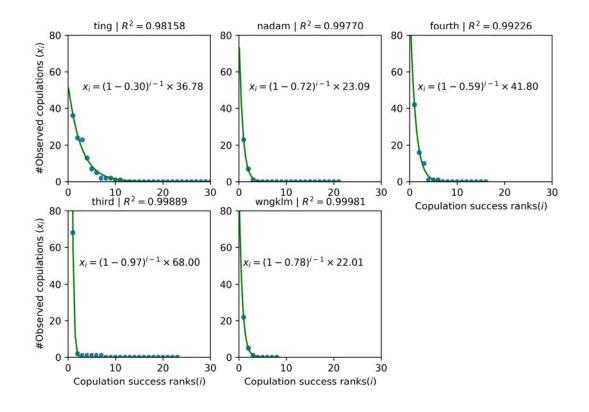

Figure 4. The dependence of the upper bound of coalition size, m^* , on the number of males, N, and the despotic parameter, β , in the absence of coalition formation. The blue and orange curves represent m^* for s = 1.1 and s = 1.2, respectively. For all panels, c = 0.05. (a) $\beta = 0.1$, (b) $\beta = 0.3$, (c) N = 10, (d) N = 40.


632	Figure 5. Contour plots of the upper bound of coalition size, m^* , on the N β -plane for given
633	values of c and s. Each contour represents (8) for the designated value of m^* .
634	
635	Figure 6. The observed distribution of the number of single copulations with ejaculation among
636	males in each of the five groups. The curves represent the results of nonlinear regression
637	analysis. R^2 gives the coefficient of determination.
638	
639	Figure 7. The estimates of β' and the numbers of males, <i>N</i> , in the five groups.

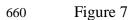

- 641
- 642 Figure 1



- 647
- 648 Figure 3
- 649






653

654 Figure 5

