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Abstract 14 

 15 

Background 16 

As the relevance of bacteriophages in shaping diversity in microbial ecosystems is becoming 17 

increasingly clear, the prediction of phage sequences in metagenomic datasets has become 18 

a topic of considerable interest, which has led to the development of many novel 19 

bioinformatic tools. A comprehensive comparative analysis of these tools has so far not been 20 

performed.  21 

Methods 22 

We benchmarked ten state-of-the-art phage identification tools. We used artificial contigs 23 

generated from complete RefSeq genomes representing phages, plasmids, and 24 

chromosomes, and a previously sequenced mock community containing four phage strains 25 

to evaluate the precision, recall and F1-scores of the tools. In addition, a set of previously 26 

simulated viromes was used to assess diversity bias in each tool’s output. 27 

Results  28 

DeepVirFinder performed best across the datasets of artificial contigs and the mock 29 

community, with the highest F1-scores (0.98 and 0.61 respectively). Generally, machine 30 

learning-based tools performed better on the artificial contigs, while reference and machine 31 

learning based tool performed comparably on the mock community. Most tools produced a 32 

viral genome set that had similar alpha and beta diversity patterns to the original population 33 

with the notable exception of Seeker, whose metrics differed significantly from the diversity 34 

of the underlying data. 35 

Conclusions 36 

This study provides key metrics used to assess performance of phage detection tools, offers 37 

a framework for further comparison of additional viral discovery tools, and discusses optimal 38 

strategies for using these tools.  39 
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Introduction 41 

Bacteriophages (phages) and archaeal viruses are globally ubiquitous, diverse and typically 42 

outnumber their prokaryotic hosts in most biomes [1].  Phages play a key role in microbial 43 

communities by shaping and maintaining microbial ecology by fostering coevolutionary 44 

relationships [2–4]; biogeochemical cycling of essential nutrients [5–7]; and facilitating 45 

microbial evolution through horizontal gene transfer [8–10]. Despite the abundance and 46 

perceived influence phages have on all microbial ecosystems, they continue to be one of the 47 

least studied and understood members of complex microbiomes [11]. Phages are obligate 48 

parasites which require their bacterial host’s machinery to replicate, and subsequently 49 

spread via cell lysis. They can either be lytic or temperate, and while the former can only 50 

follow the lytic life cycle, temperate phages can either follow the lytic or lysogenic cycle [12]. 51 

During the lytic cycle, phages hijack host cell machinery to produce new viral particles. In the 52 

lysogenic cycle, phages can integrate their genomes into the genome of the bacterial host as 53 

linear DNA or as a self-replicating autonomous plasmid.  In addition, an alternative life cycle, 54 

termed pseudolysogeny, has been documented, during which neither phage genome 55 

replication nor prophage formation occurs [13].  56 

Traditionally, phage identification and characterisation relied on isolation and culturing 57 

techniques, which are time-consuming and often fail to capture the full repertoire of phages 58 

in an ecosystem as many hosts, and their phages, cannot be cultured under laboratory 59 

conditions [14]. The arrival of high-throughput next generation sequencing has allowed 60 

metagenomic data from various environments to be generated routinely. Metagenomic 61 

sequencing allows direct identification and analysis of all genetic material in a sample, 62 

regardless of cultivability [15]. In metagenomic studies, researchers can opt to either 63 

sequence the whole community metagenome and then computationally isolate viral 64 

sequences, or physically separate the viral fraction before library preparation to produce a 65 

metavirome. The latter approach risks eliminating a large proportion of phages owing to their 66 

association with the cellular fraction, due to their integration into their hosts’ genome as 67 

prophages [16], attachment to their hosts’ surface [17], or their presence in a 68 

pseudolysogenic state [18–20]. Purification methods may also remove certain types of 69 

phage, e.g. chloroform can inactivate lipid enveloped and/or filamentous phages [21, 22], 70 

increasing sampling bias. The isolation of viral particles frequently results in low DNA yields, 71 

leading to metavirome studies having to use multiple displacement amplification (MDA) to 72 

achieve sufficient quantities of DNA for library generation [11]. MDA has been shown to 73 

produce significant bias into virome composition [23, 24], by preferentially amplifying small 74 

circular ssDNA phage, such as those from the family Microviridae [25]. Ideally, the 75 

purification of viral particles will lead to a metavirome with very little host contamination. 76 
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However, it is very difficult to produce a viral fraction that is devoid of DNA originating from 77 

microbes that are present in the ecosystem [26]. Alternatively, whole community 78 

metagenomic sequencing can present insights into the host and viral fractions concurrently, 79 

allowing host-phage dynamics to be analysed. Integrated phages or prophages which have 80 

been found to be prevalent in some environments [27], can be identified since host genomes 81 

are also sequenced in this process. 82 

Many tools for identifying viral sequences from mixed metagenomic and virome assemblies 83 

have been developed in the last five years (Table 1) and we will shortly discuss these here. 84 

VirSorter [28] was one of the first of these, with previous tools focusing on prophage 85 

prediction (PhiSpy [29], Phage_Finder [30], PHAST/PHASTER [31], ProPhinder [32]) or 86 

virome analysis (MetaVir2) [33], VIROME [34]). VirSorter identifies phage sequences by 87 

detecting viral hallmark genes that have homology to reference databases, and by building 88 

probabilistic models based on different metrics (viral-like genes, PFAM genes, 89 

uncharacterised genes, short genes, and strand switching) which measure the confidence of 90 

each prediction. Since VirSorter’s release, other homology based tools (MetaPhinder [35] 91 

and VirusSeeker [36]) have been developed. 92 

VirFinder was the first machine learning, reference-free viral identification tool, utilising k-mer 93 

signatures [37]. VirFinder had considerably better performance in recovering viral sequences 94 

than VirSorter, especially on shorter sequences (<5,000 bp). However, it displayed variable 95 

performance in different environments, perhaps due to biases introduced by the reference 96 

data used for training the machine learning model [38]. A number of machine/deep learning 97 

tools have since been published, including DeepVirFinder [39], which boasts increased viral 98 

identification at all contig lengths over its predecessor VirFinder, whilst mitigating the latter’s 99 

biases by including various metavirome datasets that contain uncultivated viral sequences.  100 

Other recent tools have started utilising alternative approaches. MARVEL [40], integrates the 101 

two approaches described above, using a random forest model to leverage sequence 102 

features (gene density and strand shifts) and homologies (hits to pVOGs (Prokaryotic Virus 103 

Orthologous Groups) database [41]). This allows the tool to identify metagenomic bins that 104 

resemble phages, with comparable specificity but improved sensitivity to VirSorter and 105 

VirFinder.  This detection is however currently limited to phages of the Caudovirales order. 106 

VIBRANT also employs a hybrid machine learning and protein similarity approach but is able 107 

to recover a diverse array of phages infecting bacteria and archaea, including integrated 108 

prophages. In addition, it characterises auxiliary metabolic genes and pathways after phage 109 

identification. 110 
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 MetaviralSPAdes [42] uses an entirely different approach by leveraging variations in depth 111 

between viral and bacterial chromosomes in assembly graphs. The tool is split into three 112 

separate modules: a specialised assembler based on metaSPAdes (viralAssembly); a viral 113 

identification module that classifies contigs as viral/bacterial/uncertain using a Naive 114 

Bayesian classifier (viralVerify); and a module which calculates the similarity of a constructed 115 

viral contig to known viruses (viralComplete). 116 

With the development of so many tools using a variety of approaches, a comprehensive 117 

comparison and benchmarking is needed to evaluate which tools are most useful to 118 

researchers. The performance of each method can vary based on sample content, assembly 119 

method, sequence length, classification thresholds and other custom parameters. To 120 

address these issues, we have benchmarked ten metagenomic viral identification tools using 121 

both artificial contigs, mock communities and real samples.  122 

  123 
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Results 124 

Benchmarking with RefSeq phage and non-viral artificial contigs 125 

Ten commonly used tools for viral sequence identification in metagenomes were selected for 126 

evaluation: DeepVirFinder; MARVEL; MetaPhinder; PPR Meta; Seeker; VIBRANT; 127 

ViralVerify; VirFinder; VirSorter; and VirSorter2. All of these tools can be run locally without 128 

the use of a web server; accept metagenomic contigs as input, except MARVEL which 129 

requires bins to be created first; and have been published in the past decade.  130 

We first evaluated all the programs on the same uniform datasets. All complete phage 131 

genomes deposited in RefSeq between 1 January 2018 and 2 July 2020 later were 132 

downloaded, quality controlled, and fragmented to create a true positive set of artificial 133 

contigs. A negative set was constructed from all RefSeq bacterial and archaeal plasmids, 134 

and a random 1:10 subsample of all RefSeq bacterial and archaeal chromosomes, 135 

submitted in the same time frame. As chromosomes often have prophages integrated within 136 

them, which would cause tools to falsely identify some contigs as viral, we removed these 137 

with two state-of-the-art prophage detection tools, Phigaro [43] and PhageBoost [44]. The 138 

negative dataset is considerably larger than the true positive dataset as we wanted to 139 

consider the performance of these tools in metagenomic shotgun sequencing datasets which 140 

are typically dominated by non-viral sequences. All evaluated programs, except MARVEL, 141 

produce thresholds or confidence ranges for viral identification. For tools (DeepVirFinder, 142 

MetaPhinder, PPR Meta, Seeker, VirFinder, and VirSorter2) that assign a continuous 143 

threshold (score, identity, or probability), a F1 curve was plotted, and an optimal threshold 144 

was determined (Additional File 1). For VIBRANT, VirSorter and ViralVerify, the categories 145 

that returned the highest F1 score were used. In most tools there was a trade-off between 146 

precision and recall. This is likely due to relaxed thresholds allowing for more viral and non-147 

viral sequences to be detected, increasing recall, and decreasing precision simultaneously. 148 

Additionally, for VIBRANT and VirSorter, the true positive dataset was run in virome mode 149 

and virome decontamination mode respectively, as this improves viral recovery in samples 150 

composed mainly of viral sequences by adjusting the tools sensitivity [28, 45]. The optimal 151 

settings for each of these two tools found determined using this dataset were then used for 152 

subsequent analyses The tools we benchmarked on this dataset had highly variable 153 

performance in terms of their F1-score (0.36 – 0.99), precision (0.23 – 0.98), and recall (0.46 154 

– 1.00) (Figure 1). DeepVirFinder and its predecessor VirFinder achieved the highest F1-155 

scores of 0.99 and 0.98 respectively. These tools identified the majority of the true positive 156 

dataset as viral, and classified markedly less of the bacterial chromosome and plasmids 157 

fragments as viral, compared to other tools. PPR Meta, another machine learning based 158 
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classifier, also performed well with an F1-score of 0.89. The homology-based tool ViralVerify 159 

similarly performed well (F1=0.81) with almost perfect recall (0.98) but a larger proportion of 160 

false positives resulted in a lower precision score (0.69). MetaPhinder, VIBRANT, VirSorter 161 

and VirSorter2 performed similarly (F1-scores of 0.60, 0.71, 0.63 and 0.68 respectively) with 162 

Seeker and MARVEL achieving relatively low scores due to their poor precision (0.39 and 163 

0.36 respectively). Generally, pure machine learning based tools (DeepVirFinder, Seeker, 164 

PPR Meta, VirFinder) outperformed both mixed methods (MARVEL, VIBRANT, VirSorter2) 165 

and reference-based methods (MetaPhinder, ViralVerify, VirSorter) with average F1-scores 166 

of 0.81, 0.58, and 0.68 respectively, although these differences are not statistically 167 

significant due to the small sample sizes. Across our benchmark, every true positive phage 168 

contig was found by at least one tool, with 19.6% (1648/8411) found by all 10 tools 169 

(Additional File 2). 170 

 171 

Benchmarking tools with mock community shotgun metagenomes 172 

We next sought to compare these tools on real community shotgun metagenomic contigs. 173 

Thus, we obtained sequencing data of an uneven mock community created by Kleiner et al. 174 

[46], containing 32 species from across the tree of life, including five bacteriophages, at a 175 

large range of cell abundances (0.25%- 21.25%; Additional File 3). This allowed us to 176 

assess the performance of our tools on real data whilst retaining knowledge of the ground 177 

truth (sample composition) and determine each tool’s detection limit on low abundance 178 

species. In general, the tools’ F1-scores were considerably lower on this dataset than on the 179 

RefSeq artificial contigs, with F1-scores of machine learning-based tools dropping by 42% 180 

and reference-based tools by 33%, compared to the RefSeq benchmark (Figure 2). 181 

DeepVirFinder again outperformed all other tools despite a lower F1-score (0.61) and was 182 

closely followed by MetaPhinder which obtained a similar score to the previous dataset 183 

(0.56). However, DeepVirFinder achieved this score by having a lower recall (0.51) but the 184 

best precision (0.76), with MetaPhinder generating the opposite result, with the highest recall 185 

(0.94) and poorer precision (0.40). VirSorter, PPR Meta, and Seeker achieved comparable 186 

scores of 0.47, 0.47, and 0.46 respectively, with the latter being the only tool that performed 187 

better on this dataset than the first. VirSorter2 attained a lower F1-score (0.35) than its 188 

predecessor in this experiment, as a result of predicting 26.1% more true positive contigs but 189 

returning 166% more false positives, resulting in a low precision score (0.23). MARVEL, 190 

despite now having real bins as input, had a 39% lower F1-score than its RefSeq benchmark 191 

score, which is almost identical to the average decrease in F1-score across tools (40%). 192 

VirFinder, one of the tools that performed very well on the previous dataset, only identified 193 

nine out of 96 viral contigs across the three replicate samples, resulting in a very low recall 194 
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(0.09) and thus the lowest F1-score of all the tools (0.15). Similarly, ViralVerify performed 195 

poorly with a F1-score of 0.25, as a result of relatively low recall (0.42) and very low 196 

precision (0.17). Unlike in the previous analyses using the RefSeq benchmark dataset, 197 

machine learning based tools and reference-based tools performed almost identically with 198 

average F1-scores of 0.42 and 0.43 respectively, with mixed methods having a lower 199 

average F1-score of 0.30. 200 

Out of the four phage species found in the assemblies, no tool was able to identify M13. 201 

PPR Meta, MetaPhinder, ViralVerify, and VirSorter2 were able to identify contigs belonging 202 

to the other three species – F0, ES18, and P22. VirSorter and VIBRANT were able to 203 

identify the three phage strains in two out of three samples and one out of three samples 204 

respectively, missing out contigs belonging to phage ES18. MARVEL predicted two phages 205 

across all samples, F0 and P22, with DeepVirFinder, VirFinder and Seeker only picking up 206 

the most abundant phage strain, F0. No correlation was found between F1-score and the 207 

number of phage strains detected (Rs = 0.146, p = 0.69) but a positive correlation was 208 

observed between tools that identified more contigs of viral origin (true positives + false 209 

positives), and the number of phage strains identified (Rs = 0.726, p = 0.02).  210 

We also recorded the running times of each tool on this dataset on a high-performance 211 

cluster (8 VCPU) (Figure 3). DeepVirFinder, MetaPhinder, PPR Meta, Seeker, and VirFinder 212 

were the fastest tools finishing each sample in under twenty minutes. Vibrant and ViralVerify 213 

performed their analyses in ~35 mins/sample and 1 hr/sample respectively. VirSorter 214 

required just under two hours to run each sample, with both MARVEL and VirSorter2 taking 215 

over four hours; MARVEL’s runtime was over five hours/sample in total, if binning time is 216 

included.  217 

 218 

Impact of tool prediction on diversity metric estimation 219 

To test the impact of these tools on diversity estimates, four simulated mock community 220 

metaviromes containing an average of 719 viral genomes were retrieved from Roux et al. 221 

[47]. Reads were mapped to contigs (>1 kb) that were identified as viral by each tool, and 222 

these mapped reads were then mapped to a set of population contigs to estimate their 223 

abundance in each sample. Original reads were also directly mapped to the population 224 

contigs as a control. Read counts were then normalised by their length and sequencing 225 

depth, which Roux et al. [47] found to be reliable normalisation method. Diversity estimation 226 

metrics were then calculated using the normalised population counts. All tools returned less 227 

genomes per sample compared to the initial population, although there was significant 228 

variation between tools. DeepVirFinder, MetaPhinder, PPR Meta, and VirFinder retrieved the 229 
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greatest percentage of genomes with 90.8%, 88.5%, 80.9%, and 88.1% respectively (Figure 230 

4A). All other tools were able to retrieve more than 50% of the genomes with the exception 231 

of Seeker, which was only able to recover 28.7% of the population genomes. All Shannon’s 232 

alpha diversities calculated from the count matrices of each tool were within 3% of the initial 233 

population with the exception of Seeker, whose H score was on average 27.2% lower 234 

(Figure 4B). Similarly, all but two tools identified populations with a Simpson alpha diversity 235 

index that was <1% different from the initial population, with MARVEL and Seeker’s being 236 

1.8% and 6.2% divergent, respectively (Figure 4C). MARVEL and ViralVerify, which only 237 

predicted ~50% of the total genomes in the initial population, were the only tools to estimate 238 

a comparatively higher alpha diversity than the initial population. For beta diversity, pairwise 239 

Bray-Curtis dissimilarities within a sample were small between all tools except for Seeker 240 

(Additional File 4), whose Analysis of Similarity (ANOSIM) showed significant dissimilarity 241 

when compared to other tools (r = 0.495, p = 0.0002 with Benjamini–Hochberg correction for 242 

multiple comparisons) (Figure 4D; Additional File 5). 243 

  244 
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Discussion 245 

Bacteriophages are crucial members of microbial communities in nearly every ecosystem on 246 

Earth and are responsible for controlling host population size as well as having wider 247 

impacts on community functions.  Tools designed to recover viral sequences from mixed 248 

community metagenomic and virome samples are fundamental to studying the role of 249 

bacteriophages in the wider context of their environment. Advancements in this field have 250 

produced an extensive suite of viral identification tools that each claim to improve on the 251 

performance of similar tools. Selecting which tool among these is ideal for a certain dataset 252 

is thus not straightforward, especially as each novel tool typically only benchmarks against 253 

two or three other existing tools. Most tools developed for this purpose, especially those 254 

released in recent years have utilised machine/deep learning to classify sequences, whereas 255 

others rely on direct sequence similarity to databases. Both these approaches have potential 256 

to improve over time with newly discovered viral genomes being added to training datasets 257 

and databases.  258 

Here, we compare ten methods for identifying viral sequences from metagenomes across 259 

three datasets. We first benchmarked the tools on positive and negative datasets to evaluate 260 

their performance on an ideal set of contigs (size ≥ 1kb, without mis-assemblies), and 261 

determine approximate optimal thresholds. There was no significant difference in 262 

performance between machine learning and similarity-based classifiers, although the 263 

variance within these categories were high. DeepVirFinder and VirFinder, which were the 264 

only tools benchmarked that rely on k-mer frequencies, outperformed all other tools, 265 

exemplifying the power of this method. Machine learning tools performed better than 266 

reference and mixed-method tools, although the relatively low number of tools compared 267 

here may not mean that this is a generalisable observation. Prior to this study, we expected 268 

that mixed-method tools would gain an edge by providing the benefits of both machine 269 

learning and reference-based methods and minimising their weaknesses, but this does not 270 

seem to have been realised in the current generation of tools. Whilst the optimal thresholds 271 

that we determined may not necessarily be ideal for all other datasets, we believe they can 272 

be used as a basis for further usage of these tools as in each case they produced 273 

considerably better results than the default parameters. We therefore encourage 274 

researchers to apply these thresholds and parameters within the context of their prospective 275 

dataset.  276 

When tested on real metagenomic data, most tools performed significantly worse compared 277 

to the RefSeq dataset, although DeepVirFinder had the best performance, along with 278 

MetaPhinder. Generally, reference similarity tools had a lower drop in F1-score compared to 279 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2021. ; https://doi.org/10.1101/2021.04.12.438782doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.12.438782
http://creativecommons.org/licenses/by-nc/4.0/


  11 

 

the RefSeq dataset than deep learning tools, which is probably due to the presence of only 280 

four phage strains in each sample, all of which are widely available in the public databases 281 

used by these programs. This suggests that when studying metagenomic datasets where 282 

viral species are expected to be present at low frequencies, or where only a few phage 283 

strains of interest are being searched for, reference-based tools such as MetaPhinder or 284 

VirSorter are reasonable choices, especially when recall is more important than precision. 285 

When high precision is preferred, DeepVirFinder is the ideal choice, whilst also producing 286 

the best F1-score overall. Runtime and computational load are also important factors to 287 

examine, since these can become practical limitations if large samples take many hours or 288 

days to be analysed. Most tools were reasonably fast, although a few took multiple hours to 289 

complete their run. Generally, tools that only relied of machine learning prediction were 290 

considerably faster. It is important to note that VIBRANT, VirSorter, and VirSorter2 annotate 291 

the identified viral genomes and predict prophages and MARVEL’s pipeline produces 292 

metagenomic bins at the expense of runtime, although these can be useful for some 293 

applications.   294 

We also gauged any potential biases and impact these tools may have on the diversity of its 295 

predicted viral population. Most tools performed well with alpha diversity indices within 10% 296 

of the default population with the exception of Seeker which returned a considerably lower 297 

value due to the very low number of viral population genomes Seeker originally predicted. 298 

Some tools such as MARVEL and ViralVerify predicted higher alpha diversity than default 299 

population. This is due to the tools missing some high abundance genomes from their 300 

predictions, resulting in a more even diversity distribution. When evaluating beta diversity, 301 

Seeker was the only tool that produced results that had significant dissimilarity from the 302 

other tools and did not cluster with the other programs, again as a result of the low 303 

proportion of genomes it recovered in this dataset. Hence beta diversity trends of the tools 304 

examined here, with the exception of Seeker, are accurate to the original population, even 305 

when only half the genomes are recovered.  306 

Although these benchmarks comprehensively compared the performance of state-of-the-art 307 

tools, there are a number of limitations with our study. First, whilst an effort was made to 308 

benchmark the machine learning based tools on data that it was not trained on, not all tools 309 

segregated their datasets by date or were not trained on NCBI RefSeq genome data (PPR 310 

Meta, VIBRANT, VirSorter2, ViralVerify), so there may be instances of overlap between a 311 

tool’s training dataset and our RefSeq benchmark contig set. Second, whilst we use RefSeq 312 

genomes, and a mock metagenomic community to benchmark these tools, we did not 313 

address the tools’ ability to identify viral sequences belonging to different phage families. 314 

Some tools such as MARVEL are specifically designed to detect certain families (those 315 
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within the order Caudovirales), and would therefore not perform as well on other phage 316 

families such as the Microviridae [11]. Third, we used the default database or the original 317 

trained model that was provided with each tool. Whilst providing each tool the same 318 

database, or dataset to be trained on, may have been a fairer comparison of the underlying 319 

algorithms, this was beyond the scope of our study. We note that most routine users are also 320 

unlikely to retrain these tools prior to their use. Fifth, we did not assess the performance of 321 

combining multiple tools, which could provide meaning insights that would be missed when 322 

only one single tool is used, as in Marquet et al. [48] where the authors combined multiple 323 

tools into a single workflow. Finally, a few recently developed tools we found during our 324 

study were not included in our benchmarking either due to (1) requiring the use of its own 325 

web server and therefore not being scalable (VIROME, VirMiner), (2) lack of clear 326 

installation/running instructions (ViraMiner), or (3) errors when attempting to use the tool that 327 

we were unable to resolve (PhaMers, VirNet, VirMine).  328 

Conclusion 329 

Our comprehensive, comparative analysis of 10 currently available metagenomic 330 

virus/phage identification tools provides valuable metrics, and insights for other investigators 331 

to use and build on. Using mock communities and artifical datasets, precision, recall and 332 

biases of these tools could be calculated. By adjusting the filtering thresholds for viral 333 

identification for each tool and comparing F1 scores, we were able to optimise performance 334 

in every case. Among the tested tools, DeepVirFinder performed best, with the highest F1-335 

score in both the artifical RefSeq contig and mock uneven community datasets, whilst 336 

displaying similar diversity indices to the original population. All tools, except Seeker, were 337 

able to produce a diversity profile with similar indices to the original population, and are 338 

therefore suitable for phage ecology studies. DeepVirFinder was also one of the fastest tools 339 

in our study as were all other solely machine learning based tools such as PPR Meta, and 340 

Seeker. Generally, we suggest that of currently available tools DeepVirFinder should be 341 

considered the as an optimal solution in most cases, although this will depend on the type of 342 

sample that is analysed, whether precision or recall is more valued, and whether the 343 

additional functionality of other tools is required.  344 

  345 
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Materials and Methods 346 

 347 

Benchmarking with RefSeq dataset 348 

Complete bacterial and archaeal chromosomes and plasmids, and phage genomes 349 

deposited in RefSeq [49] since January 2018 (inclusive) were downloaded (2 July 2020). 350 

Chromosomes were then randomly down-sampled by a factor of 10, using reformat.sh from 351 

BBTools suite [50], to reduce downstream computational load. Phigaro [43] (default settings) 352 

and PhageBoost [44] (default settings), with genomes being split and run individually before 353 

being concatenated back together, were run in succession on the chromosomal sequences 354 

to remove prophage sequences. All sequences were then uniformly fragmented to between 355 

1 kb and 15 kb, using a python script (available at [51]), to create artificial contigs. Each viral 356 

prediction tool was then run on the three sets of contigs (chromosome, plasmid, and phage) 357 

with default settings except for VIBRANT and VirSorter where the phage-derived contig set 358 

was additionally run using the virome mode, due to their improved performance in datasets 359 

consisting of mainly viral fragments [28, 45]. For tools where score/probability thresholds can 360 

be manually adjusted (DeepVirFinder, MetaPhinder, PPR Meta, Seeker and VirFinder), F1 361 

curves were plotted (100 data points) and optimal thresholds were determined by maximal 362 

F1 score. 363 

Benchmarking with mock community metagenomes 364 

Three shotgun metagenomic sequencing replicates of an uneven mock community [46] was 365 

retrieved from the European Nucleotide Archive (BioProject PRJEB19901). These 366 

communities contain five phage strains: the DNA viruses ES18 (H1), F0, M13, and P22 367 

(HT105), and the RNA virus F2. The quality of the data was checked using FASTQC (v11.8) 368 

[52] and overrepresented sequences were removed with Cutadapt (--max-n 0) (v2.10) [53].  369 

Cleaned paired-end reads were then assembled with MetaSPAdes (with default settings) 370 

(v3.14.1) [54] and contigs <1 kb were removed. Each tool was then run on the three sets of 371 

contigs using optimal parameters as determined previously. MetaQUAST (v5.0.2) [55] was 372 

used to map contigs to reference phage genomes and calculate coverage. Run time of each 373 

tool was recorded using a Linux virtual machine provided by Cloud Infrastructure for Big 374 

Data Microbial Bioinformatics (CLIMB-BIG-DATA), with the following configuration: CPU: 375 

Intel® Xeon® Processor E3-12xx v2 (8 VCPU); GPU: Cirrus Logic GD 5446; Memory: 64GB 376 

Multi-Bit ECC. 377 

Benchmarking with simulated mock virome communities  378 
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Four mock communities (samples 2, 7, 9, and 13) containing between 500 and 1000 viral 379 

genomes created by Roux et al. were selected for analysis [47]. These samples belonged to 380 

four different beta diversity groups and did not share any of their 50 most abundant viruses. 381 

Each simulation of 10 million paired-end reads were quality controlled with Trimmomatic 382 

(v.0.38) [56] and assembled with MetaSPAdes by Roux et al. [47]. The contigs were then 383 

downloaded for benchmarking. As before, contigs with length <1 kbp were removed, and 384 

then inputted into each viral identification program. Positive viral contig sets for each tool 385 

were then extracted and reads were mapped to these with BBMap [57] with ambiguous 386 

mapped reads assigned to contigs at random, as in Roux et al. [47]. Primary mapped reads 387 

with pairs mapping to the same contig (options -F 0x2 0x904) were then extracted with 388 

Samtools [58] and mapped to a pool of non-redundant population contigs. This pool was 389 

created by clustering all four samples with nucmer (v3.1) [59], at ≥95% ANI (average 390 

nucleotide identity) across ≥80% of their lengths. Abundance matrices for each tool were 391 

calculated by normalising read counts by contig length and total library size (counts per 392 

million) calculation commonly used in RNA-seq analyses. These abundance matrices were 393 

then used to calculate Shannon, Simpson, and Bray-Curtis dissimilarity indices using the 394 

vegan package [60]. Non-metric multidimensional scaling (NMDS) and analysis of similarity 395 

(ANOSIM) were also computed with vegan. ANOSIM p-values were corrected with the 396 

Benjamini–Hochberg method. Seed and permutations were set as 123 and 9999 397 

respectively, where possible. All plots were generated with ggplot2 [61] and arranged with 398 

ggarrange from ggpubr [62].  399 
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List of Abbreviations 400 

 401 

 402 

ANI    Average Nucleotide Identity 403 

ANOSIM  Analysis of Similarity 404 

GPU   Graphics Processing Unit 405 

kb   Kilobases 406 

MDA   Multiple Displacement Amplification 407 

NCBI   National Center for Biotechnology Information 408 

NMDS   Non-metric Multidimensional Scaling 409 

RefSeq  NCBI Reference Sequence Database 410 

ssDNA   Single-stranded DNA 411 

VCPU   Virtual Central Processing Unit 412 

  413 

  414 
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Tables 448 

 449 

 Software Description Reference 

DeepVirFinder Predicts viral sequences via a k-mer based deep 

learning method using convolutional neural networks 

(CNN). Based on VirFinder. 

[39]  

MARVEL Machine learning tool for predicting phage sequences 

in metagenomic bins. 

[40] 

MetaPhinder Integrates BLAST hits to multiple phage genomes in a 

database to identify phage sequences in assembled 

contigs. 

[35] 

metaviralSPAdes 

(ViralVerify)  

Identifies viral sequences by leveraging metagenomic 

assembly graphs and analyzing the variations in depth 

of coverage between viral and bacterial genomes. 

Made of three modules, it also calculates the 

completeness of predicted viral sequences. 

[42] 

PhaMers Identifies phage sequences by a machine learning 

model based on k-mer frequencies. 

[63] 

PPR-Meta Deep learning CNN approach to identify both phages 

and plasmids 

[64] 

Seeker Deep learning framework that uses Long Short-Term 

Memory models which does not depend on sequence 

motifs. 

[65] 

VIBRANT Deep learning neural network based on protein 

signatures which also highlights auxiliary metabolic 

genes and pathways. 

[45] 

ViraMiner Extension of DeepVirFinder that is trained to identify 

any virus that may colonise human samples. 

[66] 

VirFinder K-mer based machine learning method for 

identification of viral contigs. 

[37] 

virMine Iterative pipeline that relies on the abundance of non-

viral sequences in databases to strictly filter out 

unwanted contigs. Pipeline accepts both reads or 

assembled contigs. 

[67] 

VirMiner Web-based pipeline that handles genome assembly, [68] 
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functional annotation using a variety of databases and 

identification of phage contigs via a random forest 

algorithm 

VirNet Deep learning neural network using an attentional 

neural model trained on nucleotide viral fragments. 

[69] 

VIROME Web-based pipeline that classifies viral sequences 

based on homology to databases and functional 

annotates them. No local version. 

[34] 

VirSorter Uses referenced-based and reference-free 

approaches in unison relying on probabilistic similarity 

models and referenced based protein homology 

searches to increase novel virus detection. 

[28] 

VirSorter2 Builds on VirSorter by applying machine learning to 

evaluate “viralness” using genomic features. Works 

with a wider variety of viral groups than its 

predecessor.  

[70] 

VirusSeeker Consists of two BLAST-based pipelines – Virome and 

Discovery. Virome aligns reads to a curated database 

to identify viral sequences and compute their 

abundance in the sample. Discovery focuses on 

contig-based analysis to aid novel virus discovery. 

[36] 

Table 1. Overview of tools to identify and predict phage sequences in microbial 450 

ecosystems. Tools in italics were not included as they were either irrelevant to this study or 451 

insurmountable technical difficulties were encountered during their use. 452 

  453 
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 454 

Table 2. Sequences included in the RefSeq-based dataset. Numbers in parenthesis 455 

indicate the number of sequences before random down sampling. All sequences were 456 

randomly fragmented into artificial contigs of lengths between 1 kb and 15 kb. Identities of 457 

the included sequences are provided in Additional file 6. 458 

  459 

Sequence group Number of sequences Number of artificial contigs 

Bacterial and archaeal 
chromosomes 

719 (6,963) 326,595 

Bacterial and archaeal 
plasmids 

5,664 100,296 

Bacteriophage and 
archaeal virus 
genomes 

1,039 8,411 
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Figure legends 460 

 461 

Figure 1: Comparison of viral identification tools on artificial RefSeq contigs.  462 

Contigs were generated by randomly fragmenting complete bacterial/archaeal/phage 463 

genomes and plasmids deposited in the NCBI Reference Sequence Database (RefSeq) 464 

between 1 January 2018 and 2 July 2020, to a uniform distribution. Each tool was then 465 

separately run on the true positive (phage genome fragments) and negative 466 

(bacterial/archaeal chromosome and plasmid fragments) datasets. For tools which 467 

score/probability threshold or categories could be manually adjusted, values/categories were 468 

selected based on optimal F1-scores. As MARVEL accepts bins as input, each contig was 469 

treated as a separate bin. 470 

 471 

Figure 2: Comparison of viral identification tools on uneven mock community 472 

samples 473 

Mock community reads were retrieved from a previous study [46]. and assembled with 474 

metaSPAdes before running each identification tool using optimal thresholds based on 475 

previous benchmarks. F1-score, Precision, and Recall metrics are displayed as separate 476 

panels. Each sample is plotted as a single point for each tool, with a boxplot indicating the 477 

interquartile ranges, extremes and mean of all three samples. Where no contigs were 478 

identified as viral by the tool, precision was set as zero. 479 

 480 

Figure 3: Comparison of tool runtimes on uneven mock community samples 481 

Wall runtime of each tool on mock community samples was recorded on an 8 VCPU, 64GB 482 

RAM, Linux high performance cluster without GPU acceleration. Each assembly contains 483 

~50 million bp. For MARVEL, the lower bar indicates wall time of the prediction tool itself, 484 

and the top bar indicates the wall time for binning each sample. 485 

 486 

Figure 4: Estimation of diversity metrics of tool predicted virome populations.  487 

To assess the impact of each tool on population diversity, four simulated virome assemblies 488 

from Roux et al.[47] were downloaded. Each program was then run to determine the subset 489 

of predicted viral contigs. Reads were mapped to these contig subsets and mapped reads 490 

were then subsequently mapped to a pool of population contigs. All diversity metrics were 491 

computed by the R package “vegan” [60]. ‘Default’ in each plot indicates each sample’s 492 
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original assembly. A. Number of genomes observed from read mapping to predicted viral 493 

contig populations for each tool. B. Comparison of estimated Shannon diversity indices from 494 

each tool’s virome subset. Estimations are based on read counts that were normalised by 495 

contig size and sequencing depth of the virome. C. Comparison of Simpson diversity indices 496 

from each tool’s virome subset.  D. Non-metric multidimensional scaling (NMDS) ordination 497 

plot of Bray-Curtis dissimilarity of virome subsets predicted by each viral identification tool. 498 

Ellipses indicate the 95% confidence interval for each sample cluster’s centroid. Samples 499 

are represented by the same symbol and ellipse line type; tools are denoted by colour.  500 

 501 

 502 

 503 

  504 
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