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Abstract 1 

Beyond detecting brain lesions or tumors, comparatively little success has been attained in 2 

identifying brain disorders such as Alzheimer’s disease (AD), based on magnetic resonance 3 

imaging (MRI). Many machine learning algorithms to detect AD have been trained using 4 

limited training data, meaning they often generalize poorly when applied to scans from 5 

previously unseen populations. Here we aimed to build a practical brain imaging-based AD 6 

diagnostic classifier using deep learning/transfer learning on dataset of unprecedented size 7 

and diversity. We pooled MRI data from more than 217 sites/scanners to constitute the largest 8 

brain MRI sample to date (85,721 scans from 50,876 participants). Next, we applied a 9 

state-of-the-art deep convolutional neural network, Inception-ResNet-V2, to build a sex 10 

classifier with high generalization capability. The sex classifier achieved 94.9% accuracy and 11 

served as a base model in transfer learning for the objective diagnosis of AD. After transfer 12 

learning, the model fine-tuned for AD classification achieved 91.3% accuracy in 13 

leave-sites-out cross-validation on the Alzheimer's Disease Neuroimaging Initiative (ADNI) 14 

dataset and 94.2%/87.9% accuracy for direct tests on two unseen independent datasets 15 

(AIBL/OASIS). When this AD classifier was tested on brain images from unseen mild 16 

cognitive impairment (MCI) patients, MCI patients who finally converted to AD were 3 times 17 

more likely to be predicted as AD than MCI patients who did not convert (65.2% vs 20.6%). 18 

Predicted scores from the AD classifier showed significant correlations with illness severity. 19 

In sum, the proposed AD classifier could offer a medical-grade biomarker that could be 20 

integrated into AD diagnostic practice. Our trained model, code and preprocessed data are 21 

freely available to the research community.  22 

 23 

Keywords 24 

Alzheimer’s disease, convolutional neural network, magnetic resonance brain imaging, sex 25 

difference, transfer learning  26 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2021. ; https://doi.org/10.1101/2020.08.18.256594doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.256594
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

3 

1. Introduction 27 

Magnetic resonance imaging (MRI) is widely used in neuroradiology to detect brain lesions 28 

including stroke, vascular disease, and tumor tissue. Even so, MRI has been less useful in 29 

definitively identifying degenerative diseases including Alzheimer’s disease (AD), mainly 30 

because signatures of the disease are diffusely found in the images and hard to distinguish 31 

from normal aging. Machine learning and deep learning methods have been trained on 32 

relatively small datasets, but the limited training data often leads to poor generalization 33 

performance on new datasets not used the train the algorithms. In the current study, we aim to 34 

create a practical brain imaging-based AD classifier with high generalization capability via 35 

learning/transfer learning on a diverse range of large-scale datasets. 36 

 37 

In recently updated AD diagnostic criteria, such as those proposed by IWG-2 and NIA-AA, 38 

biomarkers such as amyloid measures from cerebrospinal fluid (CSF) and amyloid-sensitive 39 

positron emission tomography (PET) have been integrated to improve the specificity in 40 

diagnosing AD1,2. However, the invasive nature and the low sensitivity of these biomarkers 41 

hampers their application in routine clinical settings. For example, the IWG-1 criteria only 42 

achieved 68% sensitivity and the NIA-AA criteria achieved only 65.6% sensitivity3,4. A novel 43 

non-invasive biomarker with both high sensitivity and specificity is needed for diagnosing 44 

AD. Structural MRI is a promising candidate considering its non-invasive nature and wider 45 

availability than PET. In addition, there are well-developed MRI data preprocessing pipelines 46 

that make it feasible to integrate MRI biomarkers into automatic end-to-end deep learning 47 

algorithms. Deep learning has already been successfully deployed in real-world scenarios 48 

such as extreme weather condition prediction5, aftershock pattern prediction6 and automatic 49 

speech recognition7. In clinical scenarios, convolutional neural networks (CNN) – a 50 

widely-used architecture that is well-suited for image-based deep learning has been 51 

successfully used for objective diagnosis of retinal diseases8 and skin cancer9, and for breast 52 

cancer screening10. Given the success of recent CNN algorithms in pattern recognition, 53 

similar MRI-based diagnostic classifiers are likely to be highly valuable, if they can be 54 

integrated into routine neurological practice. 55 
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 56 

Even so, prior attempts at MRI-based AD diagnosis have yet to reach clinical utility. A major 57 

challenge for brain MRI-based algorithms, especially if they are trained on limited data, is 58 

their failure to generalize. Brain imaging data varies depending on scanner characteristics 59 

such as scanner vendor and magnetic field strength, head coil hardware, the pulse sequence, 60 

applied gradient fields, reconstruction methods, scanning parameters, voxel size, field of view, 61 

etc. Participants also differ in sex, age, race and education, and robust methods need to work 62 

well on diverse populations. These variations in the scans - and in the populations studied – 63 

make it hard for a brain imaging-based classifier trained on data from a single site (or a few 64 

sites) to generalize to data from unseen sites/scanners. This has prevented brain 65 

imaging-based classifiers from becoming practically useful, in clinical settings. For instance, 66 

Qiu and colleagues built a deep-learning classifier for AD with an average accuracy of 82.2% 67 

using brain imaging data from four datasets11. However, when tested on the FHS 68 

(Framingham Heart Study) dataset, the accuracy and specificity of the AD classifier dropped 69 

to 76.6% and 71.2%, with a relatively high sensitivity (90.1%). On the contrary, when tested 70 

on AIBL dataset (from the Australian Imaging, Biomarker and Lifestyle Study of Ageing), 71 

the same classifier achieved relatively high accuracy and specificity (87.0% and 92.4%), but 72 

the sensitivity was poor (59.4%). The variable accuracy and inconsistent tradeoff between 73 

sensitivity and specificity in data from different medical centers hampers these proposed 74 

methods from being deployed across multiple clinical institutions. To alleviate the 75 

unsatisfactory generalization performance, Bashyam et al. used a more heterogeneous sample 76 

to build a brain age prediction model that would be more generalizable to data from unseen 77 

sites/scanners12. However, when transfer learning to AD, they only used random 78 

cross-validation on the ADNI dataset with an accuracy of 86%, and did not implement 79 

independent dataset validation. Reviews of brain imaging-based AD classifiers suggest that 80 

most machine learning methods have been trained on scans from only a few hundreds of 81 

participants, which makes them unable to achieve stable performance when validated 82 

independently13.  83 

 84 
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Therefore, one bottleneck in developing a practical brain imaging-based classifier is the 85 

variety and comprehensiveness of training datasets. As most publicly available AD datasets 86 

only contain several hundred patients and corresponding healthy controls, directly training 87 

models on these datasets may result in overfitting with poor generalization to unseen test 88 

data13. In the current paper, we propose a transfer learning framework to solve this problem, 89 

by training a model on a certain characteristic for which there are abundant samples available, 90 

and fine-tuning it to another characteristic in smaller samples14, following successful 91 

examples in diagnosing retinal disease8 and skin cancer9. In the brain imaging field, the 92 

scientific community has shared hundreds of thousands of brain images from hundreds of 93 

sites/scanners all over the world. Nonetheless, no studies have fully implemented this 94 

abundant resource to promote the generalizability of an AD classifier. Thus, in the current 95 

study, we used the largest and most diverse sample to date (n = 85,721 from more than 217 96 

sites/scanners, see Supplementary Table 1) to pre-train a brain imaging based classifier, in 97 

order to ensure high generalization capability. After that, the pre-trained model was 98 

fine-tuned for AD classification and was validated through leave-sites-out cross-validation 99 

and independent validation. Mild cognitive impairment (MCI) is a syndrome defined as 100 

relative cognitive decline without symptoms interfering with daily life, but more than half of 101 

MCI patients progress to dementia within 5 years15. Discrimination between MCI patients 102 

who will progress to AD (pMCI) and MCI patients who will not progress to AD over a given 103 

time interval (stable MCI, or sMCI) would facilitate the early treatment of pMCI. Therefore, 104 

we used the present AD classifier to predict progression in MCI patients to further evaluate 105 

its generalization capability. 106 

 107 

The goal of the present study was to build a practical AD classifier with high generalization 108 

capability. We incorporated three design features to improve the clinical utility of the method.  109 

First, we trained and tested the algorithm on a datasets of unprecedented size and diversity - 110 

from more than 217 sites/scanners - the variety of training samples critical for improving the 111 

generalization capability of the models. Secondly, a rigorous leave-datasets/sites-out 112 

cross-validation and independent validation was implemented to make sure that the classifier 113 
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accuracy would be robust to site/scanner variability. Thirdly, compared to 2D modules 114 

(feature detectors) typically used in CNNs for natural images, fully 3D convolution filters in 115 

the present study were used capture more sophisticated and distributed spatial features for 116 

diagnostic classification. We also openly share our preprocessed data, trained model, code 117 

and framework, and have built an online predicting website (http://brainimagenet.org) for 118 

anyone interested in testing our classifier with brain imaging data from any research 119 

participants and any scanner. 120 

 121 

2. Materials and methods 122 

Data acquisition. We submitted data access applications to nearly all the open-access brain 123 

imaging data archives and received permissions from the administrators of 34 datasets. The 124 

full dataset list is shown in Table S1. Deidentified data were contributed from datasets 125 

approved by local Institutional Review Boards. The reanalysis of these data was approved by 126 

the Institutional Review Board of Institute of Psychology, Chinese Academy of Sciences. All 127 

participants had provided written informed consent at their local institution. All 50,876 128 

participants (contributing 85,721 samples) had at least one session with a T1-weighted 129 

structural brain image and information on their sex and age. For participants with multiple 130 

sessions of structural images, each image was considered as an independent sample for data 131 

augmentation in training. Importantly, scans from the same person were never split into 132 

training and testing sets, as that could artifactually inflate performance.  133 

  134 

MRI preprocessing. We did not feed raw data into the classifier for training, but used 135 

accepted pre-processing pipelines that are known to generate valuable features from the brain 136 

scans.  The brain structural data were segmented and normalized to acquire grey matter 137 

density (GMD) and grey matter volume (GMV) maps. Specifically, we used the voxel-based 138 

morphometry (VBM) analysis module within Data Processing Assistant for Resting-State 139 

fMRI  (DPARSF)16, which is based on SPM17, to segment individual T1-weighted images 140 

into grey matter, white matter and cerebrospinal fluid (CSF). Then, the segmented images 141 

were transformed from individual native space to MNI space (a coordinate system created by 142 
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Montreal Neurological Institute) using the Diffeomorphic Anatomical Registration Through 143 

Exponentiated Lie algebra (DARTEL) tool18. Two voxel-based structural metrics, GMD and 144 

GMV were fed into the deep learning classifier as two features for each participant. GMV 145 

was based on modulated GMD images by using the Jacobian determinants derived from the 146 

spatial normalization in the VBM analysis19.  147 

 148 

Quality control. Poor quality raw structural images would produce distorted GMD and 149 

GMV maps during segmentation and normalization. To remove such participants from 150 

affecting the training of the classifiers, we excluded participants in each dataset with a spatial 151 

correlation exceeding the threshold defined by (mean - 2SD) of the Pearson’s correlation 152 

between each participant’s GMV map and the grand mean GMV template (See Fig. S6 for 153 

the distribution of correlations for each dataset). The grand mean GMV template was 154 

generated by randomly selecting 10 participants from each dataset and averaging the GMV 155 

maps of all these 340 (from 34 datasets) participants. All these participants were visually 156 

checked for image quality. After quality control, 83,735 samples were retained for classifier 157 

training. 158 

 159 

Deep learning: classifier training and testing for sex. We trained a 3-dimensional 160 

Inception-ResNet-v220 model adopted from its 2-dimensional version in the Keras built-in 161 

application (see Fig. 1A for its structure). This is a state-of-the-art model in pattern 162 

recognition, and it integrates two classical series of CNN models, Inception and ResNet. We 163 

replaced the convolution, pooling and normalization modules with their 3-dimensional 164 

versions and adjusted the number of layers and convolutional kernels to make them suitable 165 

for 3-dimensional MRI inputs (e.g., GMD and GMV as different input channels). The present 166 

model consists of one stem module, three groups of convolutional modules 167 

(Inception-ResNet-A/B/C) and two reduction modules (Reduction-A/B). The model can take 168 

advantage of convolutional kernels with different shapes and sizes, and can extract features of 169 

different sizes. The model also can mitigate vanishing gradients and exploding gradients by 170 

adding residual modules. We utilized the Keras built-in stochastic gradient descent optimizer 171 
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with learning rate = 0.01, Nesterov momentum = 0.9, decay = 0.003 (e.g., learn rate = learn 172 

rate0 × (1 / (1 + decay × batch))). The loss function was set to binary cross-entropy. The batch 173 

size was set to 24 and the training procedure lasted 10 epochs for each fold. To avoid 174 

potential overfitting, we randomly split 600 samples out of the training sample as a validation 175 

sample and set a checking point at the end of every epoch. We saved the model in which the 176 

epoch classifier showed the lowest validation loss. Thereafter, the testing sample was fed into 177 

this model to test the classifier. 178 

 179 

While training the sex classifier, random cross-validation may share participants from the 180 

same sites between training and testing samples, so the model may not generalize well to 181 

datasets from unseen sites due to the site information leakage during training. To ensure 182 

generalizability, we used cross-dataset validation. In the testing phase, all the data from a 183 

given dataset would never be seen during the classifier training phase. This also ensured the 184 

data from a given site (and thus a given scanner) were unseen by the classifier during training 185 

(see Fig. 1B for an illustration). This strict setting can limit classifier performance, but it 186 

makes it feasible to generalize to any participant at any site (scanner). Five-fold cross-dataset 187 

validation was used to assess classifier accuracy. Of note, 3 datasets were always kept in the 188 

training sample due to the massive number of samples: Adolescent Brain Cognition 189 

Development (ABCD) (n = 31,176), UK Biobank (n = 20,124) and the Alzheimer's Disease 190 

Neuroimaging Initiative (ADNI) (n = 16,596). The remaining 31 datasets were randomly 191 

allocated to the training and testing samples. The allocating schemas were the solution that 192 

balanced the sample size of 5 folds the best from 10,000 random allocating procedures. 193 

 194 
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 195 

Fig. 1 | Flow diagram for the Alzheimer disease (AD) transfer learning framework and 196 

cross-validation procedure. (A) Schema for the 3D Inception-ResNet-V2 model and the 197 

transfer learning framework for the Alzheimer disease classifier. (B) Schematic diagram for 198 

the leave-datasets-out 5-fold cross-validation for the sex classifier. (C) Schematic diagram for 199 

the leave-sites-out 5-fold cross-validation for the AD classifier. 200 

 201 

Transfer learning: classifier training and testing for AD. After obtaining a highly robust 202 

and accurate brain imaging-based sex classifier as a base model, we used transfer learning to 203 

further fine-tune the AD classifier. Rather than retaining the intact sophisticated structure of 204 

the base model (Inception-ResNet-V2), we only leveraged the pre-trained weights in the stem 205 

module and simplified the upper layers (e.g., replacing Inception-ResNet modules with 206 
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ordinary convolutional layers). The retained bottom structure of the model works as a feature 207 

extractor and can take advantage of the massive training of sex classifier. And the pruned 208 

upper structure of the AD model can avoid potential overfitting and promote generalizability 209 

by reducing the number of parameters (10 million parameters for the AD classifier vs. 54 210 

million parameters for the sex classifier). This derived AD classifier was fine-tuned on the 211 

ADNI dataset (2,186 samples from 380 AD patients and 4,671 samples from 698 normal 212 

controls (NCs)). ADNI was launched in 2003 (Principal Investigator: Michael W. Weiner, 213 

MD) to investigate biological markers of the progression of MCI and early AD (see 214 

www.adni-info.org). We used the Keras built-in stochastic gradient descent optimizer with 215 

learning rate = 0.0003, Nesterov momentum = 0.9, decay = 0.002. The loss function was set 216 

to binary cross-entropy. The batch size was set to 24 and the training procedure lasted 10 217 

epochs for each fold. Similar to the cross-dataset validation for the sex classifier training, 218 

five-fold cross-site validation was used to assess classifier accuracy (see Fig. 1C for an 219 

illustration). By ensuring that the data from a given site (and thus a given scanner) were 220 

unseen by the classifier during training, this strict strategy made the classifier generalizable 221 

with non-inflated accuracy, thus better simulating realistic clinical applications than 222 

traditional five-fold cross-validation.  223 

 224 

Furthermore, to test the generalizability of the AD classifier, we directly tested the classifier 225 

on another unseen independent AD sample, i.e., Australian Imaging, Biomarker and Lifestyle 226 

Flagship Study of Ageing (AIBL)21 and Open Access Series of Imaging Studies (OASIS)22,23. 227 

We used the averaged output of 5 AD classifiers in the five-fold cross-validation trained on 228 

ADNI as the final output for a participant. We used diagnoses provided by the AIBL dataset 229 

as the labels of samples (101 samples from 82 AD patients and 523 samples from 324 NCs). 230 

As OASIS did not specify the criteria for an AD diagnosis, we adopted 2 criteria from 231 

ADNI-1 to define AD patients, i.e., 1) mini-mental state examination score between 20 and 232 

26 (inclusive) and 2) clinical dementia rating score = 0.5 or 1.0. Thus, we tested on 277 AD 233 

samples and 995 normal control samples who met the ADNI-1 criteria for AD and NC in the 234 

OASIS dataset. Of note, AIBL and OASIS scanning conditions and recruitment criteria 235 
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differed much more than variations among different ADNI sites (where scanning and 236 

recruitment was deliberately coordinated), so we expected the AD classifier to achieve lower 237 

performance.  238 

 239 

We further investigated whether the AD classifier could predict disease progression in people 240 

with MCI. MCI is a diagnosis defined as cognitive decline without impairment in everyday 241 

activities15. People with the amnestic subtype of MCI have a high risk of converting to AD. 242 

We screened imaging records of the MCI patients who converted to AD later in the ADNI 243 

1/2/’GO’ phases, and collected 2,371 images from 243 participants labeled as ‘pMCI’ (i.e., 244 

their early scans before entering the AD phase; the images labeled ‘Conversion: MCI to AD’ 245 

and images labeled as ‘AD’ after conversion were not included). We also assembled 4,018 246 

samples from 524 participants labeled ‘sMCI’ without later progression for contrast. We 247 

directly fed all these MCI images into the AD classifier without further fine-tuning, thus 248 

evaluating the performance of the AD classifier on unseen MCI information. 249 

 250 

Interpretation of the deep learning classifiers.  251 

To better understand the brain imaging-based deep learning classifier, we calculated 252 

occlusion maps for the classifiers. We repeatedly tested the images in testing sample using 253 

the model with the highest accuracy within the 5 folds, while successively masking brain 254 

areas (volume = 18mm*18mm*18mm, step = 9mm) of all input images. The accuracy 255 

achieved on “intact” samples by the classifier minus accuracy achieved on “defective” 256 

samples indicated the “importance” of the occluded brain area for the classifier. The 257 

occlusion maps were calculated for both sex and AD classifiers. To investigate the clinical 258 

significance of the output of the AD classifier, we calculated the Spearman’s correlation 259 

coefficient between the predicted scores and mini-mental state examination (MMSE) scores 260 

of AD, NC and MCI samples. We also used general linear models (GLM) to verify whether 261 

the predicted scores (or MMSE score) showed a group difference between people with sMCI 262 

and pMCI. The age and sex information of MCI participants was included in this GLM as 263 

covariates. We selected the T1-weighted images from the first visit for each MCI subject and 264 
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finally collected data from 243 pMCI patients and 524 sMCI patients. 265 

 266 

3. Results 267 

3.1. Large-Scale Brain imaging Data  268 

Only brain imaging data with enough size and variety can make deep learning accurate and 269 

robust enough to build a practical classifier. We received permissions from the administrators 270 

of 34 datasets (85,721 samples of 50,876 participants from more than 217 sites/scanners, see 271 

Table S1; there were no application requirements for some datasets). Data for each 272 

participant contained at least one session with a T1-weighted brain structural image and 273 

information on participant sex. After quality control, all these samples were used to pre-train 274 

the stem module to achieve better generalization for further AD classifier training. For the 275 

further fine-tuning of the AD classifier, ADNI (16,596 samples from 2,212 participants), 276 

AIBL (624 samples from 406 participants) and OASIS (3,150 samples from 1,664 277 

participants) were selected to train and test the model. 278 

  279 

3.2. Performance of the sex classifier  280 

We trained a 3-dimensional Inception-ResNet-v2 model adapted from its 2-dimensional 281 

version in the Keras built-in application (see Fig. 1A for structure). As noted in the Methods, 282 

we did not feed raw data into the classifier for training, but used prior knowledge regarding 283 

helpful analytic pipelines. The brain structural data were segmented and normalized to yield 284 

grey matter density (GMD) and grey matter volume (GMV) maps (i.e., GMD and GMV 285 

maps were treated as different input channels). To ensure generalizability, five-fold 286 

cross-dataset validation was used to assess classifier accuracy. The five-fold cross-dataset 287 

validation accuracies were: 94.8%, 94.0%, 94.8%, 95.7% and 95.8%. Taken together, 288 

accuracy was 94.9% in testing samples when pooling results across the five folds. The area 289 

under the curve (AUC) of the receiver operating characteristic (ROC) curve reached 0.981 290 

(see Fig. 2). In short, our model can classify the sex of a participant based on brain structural 291 

imaging data from anyone and any scanner with an accuracy of about 95%. Interested readers 292 

can test this model on our online prediction website (http://brainimagenet.org).  293 
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 295 

Fig. 2 | Performance of the sex classifier. (A) The receiver operating characteristic curve of 296 

the sex classifier. (B) The tensorboard monitor graph of the sex classifier in the training 297 

sample. The curve was smoothed for better visualization. (C) The tensorboard monitor graph 298 

of the sex classifier in the validation sample. 299 

 300 

3.3. Performance of the AD classifier 301 
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After creating a practical brain imaging-based classifier for sex with high cross-dataset 302 

accuracy, we used transfer learning to see if we could classify patients with AD. The AD 303 

classifier achieved an average accuracy of 91.3% (accuracy = 93.2%, 90.3%, 92.0%, 94.4% 304 

and 86.7% in 5 cross-site folds) in the test samples. Average sensitivity and specificity were 305 

0.848 and 0.943, respectively. The ROC AUC reached 0.962 when results from the 5 testing 306 

samples were taken together (see Fig. 3 and Table 1). The AD classifier achieved an average 307 

accuracy of 91.4% in 3T field strength MR testing samples and achieved an average accuracy 308 

of 91.1% in 1.5T MR testing samples. The accuracy in 3T MR testing sample was not 309 

significantly different from that of 1.5T MR testing sample (p = 0.316, statistical examined 310 

by permutation test of randomly allocating the testing samples into 1.5T group or 3T group 311 

and calculated the accuracy difference between the two groups for 100,000 times, see Fig. 312 

S7).  313 
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 314 

Fig. 3 | Performance of the Alzheimer's disease (AD) classifier. (A) The receiver 315 

operating characteristic curve of the AD classifier. (B) The tensorboard monitor panel of the 316 

AD classifier in the training sample. (C) The tensorboard monitor panel of the AD classifier 317 

in the validation sample. 318 

 319 

To test the generalizability of the AD classifier, we applied it to unseen independent AD 320 

datasets, i.e., AIBL and OASIS 1 and 2. The AD classifier achieved 94.2% accuracy in AIBL 321 
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with 0.97 AUC (see Fig. 4A). Sensitivity and specificity were 0.881 and 0.954, respectively. 322 

The AD classifier achieved 87.9% accuracy in OASIS with 0.936 AUC (see Fig. 4B). 323 

Sensitivity and specificity were 0.796 and 0.902, respectively. 324 

 325 

Table 1 | Performance of the Alzheimer's disease classifier 326 

Dataset n (AD) n 

(NC) 

Accuracy AUC Sensitivity Specificity 

ADNI 2,186 4,671 0.913 0.962 0.848 0.943 

AIBL 101 523 0.942 0.97 0.881 0.954 

OASIS 277 995 0.879 0.936 0.796 0.902 

AD = Alzheimer's disease; NC = normal control. The sample sizes shown here are the numbers of T1-weighted 327 

brain MRI scans. 328 

 329 

Importantly, although the AD classifier is agnostic to brain imaging data of MCI, we directly 330 

tested it on the MCI dataset in ADNI to see if it has the potential to predict the progression of 331 

MCI to AD. The idea behind this test is that even though people with MCI do not yet have 332 

AD, their scans may appear closer to the AD class learned by the deep learning model. In the 333 

end, 65.2% of pMCI patients were predicted as closer to the AD class but only 20.4% of 334 

sMCI patients were predicted as having AD by the AD classifier. If the percentage of pMCI 335 

patients who were predicted as AD was considered as sensitivity and the percentage of sMCI 336 

patients who were predicted as AD was considered as 1-specificity, the AUC of ROC curve 337 

for AD classifier reached 0.82. These results suggest that the classifier is practical for 338 

screening MCI patients who have a higher risk of progression to AD. In sum, we believe our 339 

AD classifier can provide important insights relevant to computer-aided diagnosis and 340 

prediction of AD, and we have freely provided it on the website http://brainimagenet.org. 341 

Importantly, classification results by the online classifier should be interpreted with caution, 342 

as they cannot replace diagnosis by licensed clinicians.  343 

 344 

 345 
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 346 

 347 

Fig. 4 | Receiver operating characteristic (ROC) curves for the Alzheimer disease (AD) 348 

classifier when tested on independent AD samples and a mild cognitive impairment 349 

sample. (A) The ROC curve of AD classifier tested on the AIBL sample. (B) The ROC curve 350 

of AD classifier tested on the OASIS sample. (C) The ROC curve of AD classifier tested on 351 

MCI sample in ADNI. The images of MCI subjects with future conversion to AD were 352 

labeled as “AD”, and the images of MCI subjects who had not shown conversion to AD were 353 

labeled as “NC”. 354 

 355 
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As a supplementary analysis, we also trained the AD classifier that kept the intact structure of 356 

the base model in transfer learning. The performance of the proposed model was 357 

comprehensively inferior to the optimized AD classifier. The “intact” AD classifier achieved 358 

an average accuracy of 88.4% with 0.938 AUC in the ADNI test samples (see Fig. S2A). 359 

Average sensitivity and specificity were 0.814 and 0.917, respectively. When tested on 360 

independent samples, the AD classifier achieved 91.2% accuracy in AIBL with 0.948 AUC 361 

(see Fig. S3A). Sensitivity and specificity were 0.851 and 0.924, respectively. The AD 362 

classifier achieved 86.1% accuracy in OASIS with 0.921 AUC (see Fig. S3B). Sensitivity and 363 

specificity were 0.789 and 0.881, respectively. When tested on MCI samples, 63.2% of pMCI 364 

patients were predicted as having AD and only 22.1% of sMCI patients was predicted as 365 

having AD by the AD classifier (see Fig. S3C).  366 

 367 

3.5. Interpretation of the deep learning classifiers  368 

To better understand the brain imaging-based deep learning classifier, we calculated 369 

occlusion maps for the classifiers. In brief, we continuously set a cubic brain area of every 370 

input image to zeros, and made the classifier attempt classification based on the defective 371 

samples. The occlusion map showed that hypothalamus, superior vermis, thalamus, amygdala, 372 

putamen, accumbens, hippocampus and parahippocampal gyrus played critical roles in 373 

predicting sex (see Fig. 5A). The occlusion map for the AD classifier highlighted that the 374 

hippocampus and parahippocampal gyrus - especially in the left hemisphere - played unique 375 

roles in predicting AD (see Fig. 5B).  376 
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 377 

Fig. 5 | Interpretation of the deep learning classifiers with occlusion maps. Classifier 378 

performance dropped considerably when the brain areas rendered in red were masked out of 379 

the model input. (A) The occlusion maps for the sex classifier. (B) The occlusion maps for 380 

Alzheimer disease classifier.  381 

 382 

To investigate the clinical significance of the output of the AD classifier, we calculated the 383 

Spearman’s correlation coefficient between the predicted scores by the classifier and 384 

mini-mental state examination (MMSE, provided by ADNI datasets) scores in AD, NC and 385 

MCI samples, although the classifier had not been trained for MMSE scores before. This 386 

analysis confirmed significant negative correlations between the predicted scores and MMSE 387 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2021. ; https://doi.org/10.1101/2020.08.18.256594doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.256594
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

20 

scores for AD (r = -0.37, p < 1 × 10-55), NC (r = -0.11, p < 1 × 10-11), MCI (r = -0.52, p < 1 × 388 

10-307) and the overall samples (r = -0.64, p < 1 × 10-307) (See Fig. 6). As lower MMSE scores 389 

indicate more severe cognitive impairment for AD and MCI patients, we confirmed that the 390 

more severe the disease, the higher the predicted score by the classifier. In addition, both the 391 

predicted scores and MMSE scores showed significant differences between pMCI and sMCI 392 

(predicted scores: t = 13.88, p < 0.001, Cohen’s d = 1.08; MMSE scores: t = -9.42, p < 0.01, 393 

Cohen’s d = -0.73, See Fig. S5). Importantly, the effect size of the predicted scores by the 394 

classifier is much larger than the behavioral measure (MMSE scores). 395 

 396 

Fig. 6 | Correlations between the output of the Alzheimer's disease (AD) classifier and 397 

the severity of illness. The predicted scores from the AD classifier showed significant 398 

negative correlations with the mini-mental state examination (MMSE) scores of AD, normal 399 
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control (NC) and mild cognitive impairment (MCI) samples. (A) Correlation between the 400 

predicted scores from AD classifier and the MMSE scores of AD samples. (B) Correlation 401 

between the predicted scores from the AD classifier and the MMSE scores of MCI samples. 402 

(C) Correlation between the predicted scores from AD classifier and the MMSE scores of NC 403 

samples. (D) Correlation between the predicted scores from AD classifier and the MMSE 404 

scores of AD, NC, and MCI samples. 405 

 406 

4. Discussion 407 

Using an unprecedentedly diverse brain imaging sample, we pre-trained an industrial-grade 408 

sex classifier with about 95% accuracy which served as a base-model for transfer learning to 409 

promote model generalization capability. After transfer learning, the model fine-tuned to AD 410 

achieved 91.3% accuracy in stringent leave-sites-out cross-validation and 94.2%/87.9% 411 

accuracy for direct tests on unseen independent datasets. Predicted scores from the AD 412 

classifier showed significant negative correlations with the severity of illness. The AD 413 

classifier also showed the potential to predict the prognosis of MCI patients.  414 

 415 

The industrial-grade high accuracy and generalization capability of our deep neural network 416 

classifiers demonstrate that brain imaging did have practical utility for auxiliary diagnosis. 417 

The current prototype may facilitate future research to apply brain imaging in many practical 418 

application fields. Of note, the output of the deep neural network model is a continuous 419 

variable, so the threshold can be adjusted to balance sensitivity and specificity. For example, 420 

when tested on the independent sample (OASIS), sensitivity and specificity results were 421 

0.796 and 0.902, respectively, as the default threshold was set at 0.5. However, for screening, 422 

the false-negative rate should be minimized even at the cost of higher false-positive rates. If 423 

we lower the threshold (e.g., to 0.2), sensitivity can be improved to 0.881 at a cost of 424 

decreasing specificity to 0.796. Thus, in our freely available AD prediction website, users can 425 

obtain continuous outputs and adjust the threshold by themselves. This adjustable 426 

characteristic of the present model makes itself more suitable for integration into the current 427 
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diagnostic criteria as a diagnostic biomarker. The proposed MRI-based biomarker has a high 428 

sensitivity, which may address the lack of sensitivity of other biomarkers.  429 

 430 

Except for the feasibility of being integrated into diagnostic criteria, the present AD model 431 

also showed outstanding characteristics as a progression biomarker. First, the present model 432 

was able to quantify key disease milestones by predicting disease progression in MCI patients. 433 

In fact, people with pMCI were 3 times more likely to be classified as AD than sMCI (65.2% 434 

vs 20.4%). Recently, a critical review about predicting the progression of MCI noted that 435 

about 40% of studies had methodological issues, such as lack of a test dataset, data-leakage in 436 

feature selection or parameter tuning, and leave-one-out validation performance bias24. The 437 

present AD classifier was only trained on AD/NC samples and was not fine-tuned using MCI 438 

data, so data leakage was avoided. The estimated true AUC of current published state-of-art 439 

classifiers for predicting progression of MCI is about 0.7513,24. The proposed AD classifier 440 

here outperformed the benchmark considerably (AUC = 0.82). Considering the discouraging 441 

clinical trial failures for AD treatments, early identification of people with MCI with potential 442 

to progress would help in evaluation of early treatments25. Clinicians can use the present AD 443 

classifier as auxiliary decision support system. Second, the output of the deep neural network 444 

can indicate the clinical severity for AD patients or people with MCI, as the predicted scores 445 

showed significant negative correlations with MMSE scores. Considering the “greedy” 446 

characteristic of CNN for reducing training loss, the prediction scores for AD and NC were 447 

overstated, so the magnitude of negative correlations might be even underestimated. Third, 448 

when directly comparing the predicted scores (or MMSE scores) between sMCI and pMCI 449 

groups, the predicted scores showed much higher effect size than MMSE scores (Cohen’s 450 

dprediction = 1.08 vs Cohen’s dMMSE = -0.73), indicating that predicted scores may offer better 451 

prompting or ‘warning’ effects for the physician to differentiate MCI patients.  452 

 453 

Although deep-learning algorithms have often been described as “black boxes” for their poor 454 

interpretability, our subsequent analyses showed that the current MRI-based AD biomarker 455 

was in line with former pathological findings and clinical practices. For example, AD induced 456 
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brain structural changes have been frequently reported by MRI studies. Among all the 457 

structural findings, hippocampal atrophy is the most prominent change and is used in imaging 458 

assisted diagnosis26. Neurobiological changes in the hippocampus typically precede 459 

progressive neocortical damage and AD symptoms. The convergence of our deep learning 460 

system and human physicians on alterations in hippocampal structure for classifying AD 461 

patients is in line with the crucial role of the hippocampus in AD. Furthermore, brain atrophy 462 

in AD has been frequently reported as left lateralized27,28. Compared to the un-optimized AD 463 

classifier, a slight left hemisphere preference for input features may help explain the 464 

improved performance of the optimized AD classifier (see Fig. 5 and Fig. S4 to compare the 465 

occlusion maps). 466 

 467 

Rather than indiscriminately imitate the structure of the base model in transfer learning, the 468 

present AD classifier significantly simplified the model before the fine-tuning procedure. In 469 

fact, the performance of the unoptimized AD classifier was far poorer than that of the 470 

optimized AD classifier in accuracy, sensitivity, specificity, and in independent validation 471 

performance (see Fig. S2-3). There is some reported evidence that truncating or pruning 472 

models before transfer learning may facilitate the performance of the transferred models29,30. 473 

As the sample for training the AD classifier is considerably smaller than that used to train the 474 

sex classifier, the simplified model structure may help to avoid overfitting and improve 475 

generalizability.  476 

 477 

By precisely predicting the sex of people, the present study also advances our understanding 478 

of sex differences in human brain. Daphna and colleagues extracted hundreds of VBM 479 

features from structural MRI and concluded that “the so-called male/female brain” does not 480 

exist as no individual structural feature supports a sexually dimorphic view of human brains31. 481 

However, human brains may embody sexually dimorphic features in a multivariate manner. 482 

The high accuracy and generalizability of the present sex classifier demonstrate that sex is 483 

separable in a 1,981,440-dimension (96*120*86*2) feature space. Among those 1,981,440 484 

features, hypothalamus played the most critical role in predicting sex. The hypothalamus 485 
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regulates testosterone secretion through the hypothalamic-pituitary-gonadal axis and thus 486 

plays a critical role in brain masculinization32. Men have significantly larger hypothalamus 487 

than women relative to cerebrum size33. Taken together, our machine learning evidence 488 

shows that the “male/female brain” does exist, in the sense that accurate classification is 489 

possible. 490 

 491 

In the deep learning field, the appearance of ImageNet tremendously accelerated the 492 

evolution of computer vision34. It provided large amounts of well-labeled image data for 493 

researchers to pre-train their models. Studies have shown that pre-trained models can 494 

facilitate the performance and robustness of subsequently fine-tuned models35. The present 495 

study confirms that the “pre-train + fine-tuning” paradigm does work for MRI-based 496 

auxiliary diagnosis. Unfortunately, no such well-preprocessed dataset exists in brain imaging 497 

domain. As data organization and preprocessing of MRI data require tremendous time, 498 

manpower and computational load, these constraints impede scientists from other fields 499 

entering brain imaging. Open access to large amounts of preprocessed brain imaging data is 500 

fundamental to facilitate the participation of a broader range of researchers. Beyond building 501 

and sharing a practical brain imaging-based deep learning classifier, we would openly share 502 

all sharable preprocessed data to invite researchers (especially computer scientists) to join the 503 

efforts to create predictive models using brain images (Link_To_Be_Added upon publication, 504 

preprocessed data of some datasets could not be shared as the raw data owners do not allow 505 

sharing of data derivatives). We anticipate that this dataset may boost the clinical utility of 506 

brain imaging as ImageNet has done in computer vision research. We openly share our 507 

models to allow other researchers to deploy them 508 

(https://github.com/Chaogan-Yan/BrainImageNet). Our code is also openly shared as well 509 

(https://github.com/Chaogan-Yan/BrainImageNet), allowing other researchers to replicate the 510 

present results and further develop brain imaging-based classifiers based on our existing 511 

work. Finally, we have also built a demonstration website for classifying sex and AD 512 

(http://brainimagenet.org). Users can upload their own raw T1-weighted or preprocessed 513 

GMD and GMV data to make predictions of sex or AD labels in real-time. 514 
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 515 

Some limitations of the current study should be acknowledged. Considering the lower 516 

reproducibility of functional MRI compared to structural MRI, only structural MRI derived 517 

images were used in the present deep learning model. Even so, functional measures of 518 

physiology and activation may further improve the performance of sex and brain disorder 519 

classifiers. In future studies, functional MRI, especially resting-state functional MRI, may 520 

provide additional information for model training. Furthermore, with advances in software 521 

such as FreeSurfer36, fmriprep37 and DPABISurf, surface-based algorithms have shown their 522 

superiority when compared with traditional volume-based algorithms38. Surface-based 523 

algorithms are more time consuming to run in terms of computation load, but can provide 524 

more precise brain registration and reproducibility. Future studies should take surface-based 525 

images as inputs for deep learning models. In addition, the present AD classification model 526 

was built based on labels provided by ADNI database. Further study may also benefit by 527 

using post-mortem neuropathological data as a gold standard for AD to further advance the 528 

clinical value of MRI-based biomarkers.  529 

 530 

In summary, we pooled MRI data from more than 217 sites/scanners to constitute the largest 531 

brain MRI sample to date, and applied a state-of-the-art architecture deep convolutional 532 

neural network, Inception-ResNet-V2, to pre-train an industrial-grade brain image-based 533 

classifier. The AD classifier obtained via transfer learning reached high accuracy and 534 

sufficient generalizability to be of practical use, demonstrating the feasibility of transfer 535 

learning in brain disorder applications. Future work is needed to deploy such a framework for 536 

assessment of psychiatric disorders, to predict treatment response, and other aspects of 537 

individual differences. 538 

 539 

Data and code availability  540 

The imaging, phenotype and clinical data used for the training, validation and test sets were 541 

applied from the administrators of 34 datasets. The preprocessed brain imaging data will be 542 

available on (Link_To_Be_Added upon publication, preprocessed data of some datasets 543 
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could not be shared as the raw data owners do not allow sharing data derivatives). The code 544 

for training and testing the model are openly shared at 545 

https://github.com/Chaogan-Yan/BrainImageNet.  546 

 547 

  548 
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