Supplementary Information for

Correcting artifacts in ratiometric biosensor imaging; an improved approach for dividing noisy signals

Daniel J. Marston ${ }^{2}$, Scott Slattery ${ }^{2}$, Klaus M. Hahn ${ }^{2,4, *}$, Denis Tsygankov ${ }^{1, *}$

${ }^{1}$ Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA.
${ }^{2}$ Department of Pharmacology, University of North Carolina, Chapel Hill, NC.
${ }^{4}$ Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC.

* To whom correspondence should be addressed

Email: denis.tsygankov@bme.gatech.edu

This PDF file includes:
Supplemental Text

Extended derivation of the mathematical expression in section "A hypothetical cell model

 illustrating effects of noise on ratio values":$$
\frac{s_{F} x+b_{F}+n_{F}}{s_{D} x+b_{D}+n_{D}}=\frac{s_{F}\left(x+\frac{b_{D}}{s_{D}}\right)+\left(b_{F}-s_{F} \frac{b_{D}}{s_{D}}\right)+n_{F}}{s_{D}\left(x+\frac{b_{D}}{s_{D}}\right)+n_{D}}
$$

Here, the first step is to add $\left(s_{F} \frac{b_{D}}{s_{D}}-s_{F} \frac{b_{D}}{s_{D}}\right)$, which is zero, to the numerator and multiply b_{D} by $\frac{s_{D}}{s_{D}}$, which is one, in the denominator. Second step is combining terms. The last step is taking s_{F} and S_{D} out of brackets:

$$
\begin{aligned}
\frac{s_{F} x+b_{F}+n_{F}}{s_{D} x+b_{D}+n_{D}} & =\frac{s_{F} x+\left(s_{F} \frac{b_{D}}{s_{D}}-s_{F} \frac{b_{D}}{s_{D}}\right)+b_{F}+n_{F}}{s_{D} x+\frac{s_{D}}{s_{D}} b_{D}+n_{D}}=\frac{s_{F} x+s_{F} \frac{b_{D}}{s_{D}}-s_{F} \frac{b_{D}}{s_{D}}+b_{F}+n_{F}}{s_{D} x+\frac{s_{D}}{s_{D}} b_{D}+n_{D}} \\
& =\frac{\left(s_{F} x+s_{F} \frac{b_{D}}{s_{D}}\right)+\left(-s_{F} \frac{b_{D}}{s_{D}}+b_{F}\right)+n_{F}}{\left(s_{D} x+\frac{s_{D}}{s_{D}} b_{D}\right)+n_{D}}=\frac{s_{F}\left(x+\frac{b_{D}}{s_{D}}\right)+\left(b_{F}-s_{F} \frac{b_{D}}{s_{D}}\right)+n_{F}}{s_{D}\left(x+\frac{b_{D}}{s_{D}}\right)+n_{D}}
\end{aligned}
$$

Extended derivation of the mathematical expression in section "Use of a noise correction factor; identification and correction of artifacts without using direct background subtraction":

$$
\operatorname{Ratio}(x, y)=\frac{\operatorname{image} 1(x, y)}{\operatorname{image} 2(x, y)}=\frac{a_{0}\left(S_{2}(x, y)+B_{2}\right)+\left(B_{1}-a_{0} B_{2}\right)+N_{1}(x, y)}{\left(S_{2}(x, y)+B_{2}\right)+N_{2}(x, y)}
$$

Here, the first step is to add ($a_{0} B_{2}-a_{0} B_{2}$), which is zero, to the numerator and combine the terms as highlighted in cyan and gray. The last step is taking a_{0} out of brackets:

$$
\begin{aligned}
\operatorname{Ratio}(x, y)= & \frac{\operatorname{image}(x, y)}{\operatorname{image} 2(x, y)}=\frac{a_{0} S_{2}(x, y)+B_{1}+N_{1}(x, y)}{S_{2}(x, y)+B_{2}+N_{2}(x, y)} \\
& =\frac{a_{0} S_{2}(x, y)+a_{0} B_{2}-a_{0} B_{2}+B_{1}+N_{1}(x, y)}{S_{2}(x, y)+B_{2}+N_{2}(x, y)} \\
& =\frac{a_{0} S_{2}(x, y)+a_{0} B_{2}-a_{0} B_{2}+B_{1}+N_{1}(x, y)}{S_{2}(x, y)+B_{2}+N_{2}(x, y)} \\
& =\frac{a_{0}\left(S_{2}(x, y)+B_{2}\right)+\left(B_{1}-a_{0} B_{2}\right)+N_{1}(x, y)}{\left(S_{2}(x, y)+B_{2}\right)+N_{2}(x, y)}
\end{aligned}
$$

