1	Time-series trend of pandemic SARS-CoV-2 variants visualized using batch-learning self-organizing
2	map for oligonucleotide compositions
3	
4	Takashi Abe ^{1,*} , Ryuki Furukawa ¹ , Yuki Iwasaki ² , Toshimichi Ikemura ^{2,*}
5	
6	1. Smart Information Systems, Faculty of Engineering, Niigata University, Niigata-ken 950-2181,
7	Japan
8	2. Department of Bioscience, Nagahama Institute of Bio-Science and Technology. Shiga-ken 526-
9	0829, Japan
10	
11	* CORRESPONDENCES:
12	Takashi Abe (takaabe@ie.niigata-u.ac.jp) and Toshimichi Ikemura (t_ikemura@nagahama-i-
13	bio.ac.jp)
14	
15	AUTHORS' CONTRIBUTIONS
16	TA and TI conceived and designed research; TA, RF, and TI performed research; TA, RF, and YI
17	analyzed data; and all authors wrote the paper.

19 ABSTRACT

20	To confront the global threat of coronavirus disease 2019, a massive number of the severe acute
21	respiratory syndrome coronavirus 2 (SARS-CoV-2) genome sequences have been decoded, with the
22	results promptly released through the GISAID database. Based on variant types, eight clades have
23	already been defined in GISAID, but the diversity can be far greater. Owing to the explosive increase
24	in available sequences, it is important to develop new technologies that can easily grasp the whole
25	picture of the big-sequence data and support efficient knowledge discovery. An ability to efficiently
26	clarify the detailed time-series changes in genome-wide mutation patterns will enable us to promptly
27	identify and characterize dangerous variants that rapidly increase their population frequency. Here,
28	we collectively analyzed over 150,000 SARS-CoV-2 genomes to understand their overall features
29	and time-dependent changes using a batch-learning self-organizing map (BLSOM) for
30	oligonucleotide composition, which is an unsupervised machine learning method. BLSOM can
31	separate clades defined by GISAID with high precision, and each clade is subdivided into clusters,
32	which shows a differential increase/decrease pattern based on geographic region and time. This
33	allowed us to identify prevalent strains in each region and to show the commonality and diversity of
34	the prevalent strains. Comprehensive characterization of the oligonucleotide composition of SARS-
35	CoV-2 and elucidation of time-series trends of the population frequency of variants can clarify the
36	viral adaptation processes after invasion into the human population and the time-dependent trend of
37	prevalent epidemic strains across various regions, such as continents.
38	

39 **KEYWORDS**

40 COVID-19, SARS-CoV-2, Oligonucleotide composition, Batch-Learning Self-Organizing Map

41 (BLSOM), Unsupervised explainable machine learning, Time-series trend

43 INTRODUCTION

45	The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rampantly
46	worldwide since it was first reported in December 2019, and its momentum is still ongoing (WHO.
47	2020). To address the SARS-CoV-2 pandemic in detail, genome sequencing has been performed on a
48	global scale and published by GISAID (Elbe et al. 2017), the SARS-CoV-2 genome database, having
49	more than 780,000 viral sequences as of March 2021 (https://www.gisaid.org/). SARS-CoV-2 is an
50	RNA virus with a fast evolutionary rate that has already been classified into eight clades by GISAID,
51	and epidemics caused by new variant have been known to occur (Benvenuto et al. 2020; Gorbalenya
52	et al. 2020; Sun et al. 2020; Hu et al. 2021; Kirby 2021; Wang et al. 2021). Because the number of
53	registered genome sequences is increasing explosively, it has become difficult to cope with the
54	current and future situation using only the conventional phylogenetic tree method based on multiple
55	sequence alignment, which requires an enormous amount of computation time for a massive number
56	of sequences. Therefore, it is imperative to develop a sequence alignment-free method that will
57	enable us to easily grasp the whole picture of the big-sequence data and support efficient knowledge
58	discovery from it.
59	By focusing on the frequency of short oligonucleotides (e.g., tetra- and penta-nucleotides) in a
60	large number of genomic fragments (e.g., 10 kb) derived from a wide variety of species, we have
61	developed an unsupervised explainable AI (batch-learning self-organizing map; BLSOM), which
62	enables separation (self-organization) of the genomic sequences by species and phylogeny and
63	explains the causes that contribute to this separation (Abe et al. 2003). In the analysis of genomic
64	fragments of a wide range of microbial genomes, over 5 million sequences can be separated by
65	phylogenetic groups with high accuracy (Abe et al. 2020).
66	In a prior analysis of all influenza A strains, viral genomes were separated (self-organized) by host

67	animals based only on the similarity of the oligonucleotide composition, although no host
68	information was provided during BLSOM learning (Iwasaki et al. 2011). On a single map, all viral
69	sequences could be separated, and notably, BLSOM is an explainable AI that can explain diagnostic
70	oligonucleotides, which contribute to host-dependent clustering. When studying the 2009 swine-
71	derived flu pandemic (H1N1/2009), we could detect directional time-series changes in
72	oligonucleotide composition because of possible adaptations to the new host, namely humans
73	(Iwasaki et al. 2011), showing that near-future prediction was possible, albeit partially (Iwasaki et al.
74	2013).
75	We have previously revealed lineage-specific oligonucleotide compositions for a wide range of virus
76	lineages and established a method to identify and classify viral-derived sequences in tick intestinal
77	metagenomic sequences (Qiu et al. 2019). In the case of SARS-CoV-2, we analyzed time-series
78	changes in mono- and oligo-nucleotide compositions and found their time-dependent directional
79	changes that are thought to be adaptive for growth in humans, which allowed us to predict candidates
80	of advantageous mutations for growth in human cells (Ikemura et al. 2020; Wada, Wada & Ikemura.
81	2020; Iwasaki Abe & Ikemura. 2021). Furthermore, we recently performed BLSOM analysis on di- to
82	penta-nucleotide compositions in approximately 150,000 SARS-CoV-2 genomes. Because the
83	accuracy of separation by clade increased as the oligonucleotide length increased, in this report, we
84	present the BLSOM results for the pentanucleotide composition. BLSOM could serve as a powerful
85	tool for elucidating comprehensive characterization of the oligonucleotide composition of SARS-CoV-
86	2 and time-series trends of prevalent epidemic strains across various regions, such as continents.
87	
88	METHODS
89	

90 SARS-CoV-2 genome sequences

91	The full-length genome sequences of SARS-CoV-2 were downloaded from the GISAID database on
92	November 4, 2020. The total number of sequences was 170,190. From these sequences, those with a

- 93 length of more than 27 kb after removing the polyA-tail sequences were selected.
- 94
- 95 Oligonucleotide frequency and odds ratio
- 96 Pentanucleotide frequencies and odds ratios were used in the present study. The pentanucleotide odd
- 97 ratios (observed/expected values) were calculated using the formula $P_{VWXYZ} = f_{VWXYZ}/f_V f_W f_X f_Y f_Z$,
- 98 where f_V , f_W , f_X , f_Y and f_Z denote the frequencies of mononucleotides V, W, X, Y and Z,
- 99 respectively, and f_{VWXYZ} denotes the frequency of pentanucleotide VWXYZ (Karlin et al. 1998).

- 101 BLSOM
- 102 Kohonen's self-organizing map (SOM), an unsupervised neural network algorithm, is a powerful
- 103 tool for clustering and visualizing high-dimensional complex data on a two-dimensional map
- 104 (Kohonen, 1990; Kohonen et al., 1996). We modified the conventional SOM for genome informatics
- 105 on the basis of batch learning, aiming to make the learning process and the resulting map
- 106 independent of the order of data input (Kanaya et al. 2001; Abe et al. 2003). The newly developed
- 107 SOM, BLSOM, is suitable for high-performance parallel computing and, therefore, for big data
- 108 analysis. The initial weight vectors were defined using principal component analysis (PCA), based
- 109 on the variance-covariance matrix, rather than by using random values. The weight vectors (w_{ij})
- 110 were arranged in a two-dimensional lattice denoted by i (= 0, 1, ..., I-1) and j (= 0, 1, ..., J-1) and
- 111 were set and updated as described previously (Kanaya et al. 2001; Abe et al. 2003). A BLSOM
- 112 program suitable for PC cluster systems is available on our website (http://bioinfo.ie.niigata-
- 113 u.ac.jp/?BLSOM).
- 114

115 **RESULTS and DISCUSSION**

116

117 BLSOM for pentanucleotide composition and their odds ratio

118 It should be mentioned here that SARS-CoV-2 genomes have changed their mononucleotide

119 composition during the course of the epidemic in humans, reducing C and increasing U, regardless

120 of clade (Mercatelli et al. 2020; Wada, Wada & Ikemura. 2020; Iwasaki Abe & Ikemura 2021), a

121 process which is thought to be caused by the APOBEC family enzymes (Mangeat et al. 2003;

122 Simmonds 2020). Considering this clade-independent tendency, we performed BLSOM analysis of

123 not only the pentanucleotide composition but also their odds ratio, which can reduce the effects

124 caused by changes in the mononucleotide composition. Additionally, to check the robustness of

sequence accuracy, we used datasets with different sequence accuracies: 167,905 sequences with less

126 than 10% unknown nucleotides other than ATGCs in the genome sequence and 130,753 sequences

127 with less than 1% unknown nucleotides; for each sequence dataset, the number of cases by region

128 and clade is shown in Table 1.

129 First, we constructed BLSOM for sequences with less than 10% unknown nucleotides, using the 130 pentanucleotide composition and their odds ratios (Figure 1A and B). BLSOM utilizes unsupervised 131 machine learning, and the genome sequences are clustered (self-organized) on a two-dimensional 132 plane, based only on the difference in the vector data in a $1024 (=4^5)$ -dimensional space. Lattice 133 points that include sequences from more than one clade are indicated in black, those that contain no 134 genomic sequences are indicated by blank, and those containing sequences from a single clade are 135 indicated in the color representing the clade. The odds ratio (Figure 1B) gave more accurate 136 separations (a smaller percentage of black grid points), possibly by excluding effects owing to the 137 clade-independent time-series change in the mononucleotide composition (Iwasaki Abe & Ikemura. 138 2021), which affected all SARS-CoV-2 clades. Even for the sequences with low-sequence accuracy,

139	clade-dependent separation occurs, allowing us to understand characteristics of the oligonucleotide
140	composition that are specific to each clade; thus, oligonucleotide-BLSOM is thought to be a robust
141	method. However, it is clear that BLSOMs for sequences with less than 1% unknown nucleotides
142	(Figure 1C and D) gave more accurate separation than those listed in Figure 1A and B, and the
143	highest resolution was obtained for the BLSOM for the odds ratio (Figure 1D).
144	Clades have been defined by the statistical distribution of phylogenetic distances in tree
145	construction based on multiple sequence alignments (Han et al. 2019; Tang et al. 2020), whereas
146	BLSOM is a sequence alignment-free analysis that is suitable for the analysis of massive data.
147	Because sequences at different locations on BLSOM have different oligonucleotide compositions,
148	clustering according to clades means that sequences belonging to different clades have different
149	oligonucleotide combinations, that is, differential combinations of mutations.

150

151 3D display of the data for different continents

152 Using BLSOM (Figure 1D) for the pentanucleotide odds ratio, Figure 1E examines the classification

153 according to four continents (Asia, Europe, North America, and Oceania) that have large numbers of

154 sequences. Here, the lattice points containing sequences of different continents are displayed in

155 black, and those containing only sequences of a single continent are displayed in the color specifying

156 each continent. Although not as clear as clade-dependent separations, regional differences have been

157 observed, which should reflect differential shares of prevalent variants among continents. However,

158 it is apparently difficult to obtain sufficient information from the results shown in Figure 1E alone.

159 BLSOM is equipped with various visualization tools for analysis results; therefore, we next show the

160 number of sequences belonging to each lattice point with a 3D display.

161 Again, using the BLSOM shown in Figure 1D, Figure 2 shows the number of sequences

162 belonging to each lattice point for each clade in each continent as a vertical bar, which is colored by

163	continent, as shown in Figure 1E. Looking laterally at a particular clade, each clade consists of
164	several subclusters, each consisting of several high peaks surrounded by many low peaks. Different
165	subclusters observed in each clade are distinguished by numbering in each figure, but if they are
166	located in the same zone on BLSOM, the same number is given even if they are of different
167	continents. Looking vertically at a particular continent, sequences of different subclusters of
168	different clades exist in different amounts, and some subclusters are only in a particular continent,
169	that is, the prevalent variants for each continent can be visualized in an easy-to-understand manner.
170	In Supplementary Figure S1, the data shown in Figure 2 are displayed in 2D, and referring to the
171	quantitative results in Figure 2, we defined sequences attributed to each subcluster in each clade.
172	
173	Time-series analysis
174	The fact that sequences belonging to one clade were clearly separated on BLSOM indicates the
175	importance of subdivision of each clade, and the separation on BLSOM is thought to be a good
176	indicator of this subdivision. To further examine the biological significance of the subclusters of
177	each clade on BLSOM, we visualized the number of sequences collected in each month in each
178	region as a vertical bar differentially colored according to clade (Figure 3). Looking laterally at a
179	continent, the time-series quantitative changes among different clades or different subclusters of one
180	clade are clear. Looking at the results for a particular collection month for different continents
181	longitudinally, quantitative changes among different clades or different subclusters of one clade are
182	again clear, depending on the continent.
183	Next, for each clade in each continent, we quantitatively analyzed the time-series changes in the
184	proportion of its subclusters using a 100% stack bar graph (Figure 4). The percentage of sequences
185	in different subclusters are distinguished by different colors, and when a total number of sequences
186	for a certain month is more than 100, the data for that month is indicated by a thick horizontal bar.

187 We focused mainly on such months.

188	In the clade S/L/V detected in the early stage of the epidemic (December 2019– March 2020),
189	three major subclusters of each clade were observed and distinguished by suffix numbers, and most
190	sequences belonged to the two subclusters: S1/L1/V1 and S2/L2/V2. In Asia, many sequences
191	belonging to S1/L1/V1 were detected in December 2019, but in Europe and other regions, S2/L2/V2
192	were more abundantly detected in March and April 2020 than S1/L1/V1, and the proportion became
193	more pronounced in April than in March. In March and April in Europe, a remarkable number of
194	sequences belonging to S3/L3/V3 were also detected, showing three different variants prevalent at
195	the beginning of the epidemic in Europe. Far fewer than 100 sequences were detected after May;
196	sequences belonging to $S1/L1/V1$ were mainly detected in Asia and those belonging to $S2/L2/V2$
197	were shown in other regions, presenting differential trends in prevalent variants among continents.
198	For clade G, which started the epidemic in Europe in February, we defined five subclusters. In
199	February, roughly equal amounts of sequences belonging to G1 and G2 were detected in Europe and
200	North America, but as the epidemic progressed, those belonging to G2 were mainly detected in
201	Europe, whereas those belonging to both G1 and G2 were prevalent in North America. In Asia, only
202	sequences belonging to G1 are detected; in Oceania, those belonging to G2 accounted for about 10%
203	in the early stage, but afterward, those belonging to Oceania-specific G5 accounted for the majority.
204	For GH, we defined seven subclusters, including GH1 and GH2, which dominated in North
205	America and Europe, respectively. In North America, in addition to GH1, several months contain
206	approximately 20% of the sequences belonging to GH3, GH5, and GH6. In Asia, only GH1 has been
207	detected. In Oceania, only GH4 and GH7, which were specific to this region, were detected; initially,
208	GH4 was dominant, but after July, GH7 was primarily detected.
209	For GR, we defined five subclusters, including GR1 and GR2, which dominated in North America
210	and Europe, respectively. Moreover, in Europe, GR1 was detected to the same extent as GR2 in

211	February, but as the epidemic progressed, GR2 began to predominate. In North America, the
212	occupancy of GR1 and GR2 varied to some extent depending on the collection month. In Asia, GR1
213	was mainly detected, and in Oceania, only region-specific subclusters have been detected.
214	These temporospatial changes in subclusters show that the subcluster is the separation (self-
215	organization) that reflects biological significance and is fundamental information for understanding
216	the overall picture of the SARS-CoV-2 variants.
217	
218	CONCLUSION and PERSPECTICES
219	
220	Based on the phylogenetic tree construction by multiple sequence alignments, GISAID has defined
221	seven clades of SARS-CoV-2, giving a total of eight if clade O corresponding to others is included.
222	However, these classifications are clearly inadequate to understand the current status of SARS-CoV-
223	2 because this RNA virus evolves at a high speed. Using only the oligonucleotide composition of
224	many genomic sequences, the unsupervised machine learning, BLSOM, could separate viral
225	sequences according to not only clades but also subclusters within each clade. The separation (self-
226	organization) that AI can accomplish without any hypothesis or model is thought to be a
227	classification from a new perspective. BLSOM is equipped with various tools that allow us to
228	visualize the analysis results in an easily understandable way and to visualize differences in the
229	number of subcluster sequences among continents (Figure 2) and their time-series changes (Figure
230	3), i.e., the distinct variations in the resulting subclusters depending on the region and the collection
231	time.
232	Herein, we focused on pentanucleotide composition, but similar separations were obtained for
233	other lengths of oligonucleotides (Ikemura et al. 2020). BLSOM is an explanatory AI that can clarify
234	combinatorial patterns of oligonucleotides that contribute to the separation according to clades and

235	their subclusters. BLSOM is a powerful method for elucidating comprehensive characterization of
236	the oligonucleotide composition in a massive number of SARS-CoV-2 genome sequences. Next, it
237	will be important to know the relationship between the strains isolated in clades and their subclusters
238	and the causative mutations. When it comes to oligonucleotides as long as 15-mers, most are only
239	present in one copy in the viral genome; therefore, changes in 15-mer sequences can be directly
240	linked to mutations, and we have already started analysis from this perspective (Ikemura et al. 2020).
241	The implementation of time-series oligonucleotide analysis of variants with rapidly expanding intra-
242	population frequencies has enabled the identification of candidates for advantageous mutations for
243	viral infection and growth in human cells (Wada, Wada & Ikemura. 2020).
244	Phylogenetic methods based on sequence alignment have been widely used in evolutionary studies
245	(Hadfield et al. 2018; Kumar et al. 2018), and these methods are undoubtedly essential for studying
246	the phylogenetic relationships between different viral species and variations in the same virus at the
247	single-nucleotide level. In contrast, AI can analyze a massive number of SARS-CoV-2 sequences at
248	once without difficulty, potentially reaching a level of one million in the near future. The AI method
249	for oligonucleotide composition has become increasingly important as a complement to the
250	phylogenetic tree construction method in preparing for future outbreaks of various infectious RNA
251	viruses.
252	
253	ACKNOWLEDGEMENTS
254	
255	We gratefully acknowledge the authors submitting their sequences from GISAID's Database.
256	
257	FUNDING INFORMATION
258	

259	This research was	supported by AM	ED Grant Number	r JP20he0622033h0001	, and by JST, C	REST

- 260 Grant Number JPMJCR20H1, and by KAKENHI Grant Number 18K07151 and 20H03140.
- 261

262 **CONFLICT OF INTEREST**

- 263
- 264 The authors declare that there is no conflict of interests regarding the publication of this paper.
- 265

266 **TABLE**

267 Table 1. Number of SARS-CoV-2 genome sequences with less than 10% (A) and less than 1% (B)

268 unknown nucleotides used in this study.

269

(A) Number of sequences with less than 10% unknown nucleotides

Clade Continent	Asia	Europe	North America	Oceania	Africa	South America	Unknown	Total
S	794	1,860	3,449	664	110	74	0	6,951
L	823	3,196	600	65	4	11	0	4,699
V	247	4,687	402	253	13	23	0	5,625
G	979	20,928	6,568	1,106	1,141	461	0	31,183
GH	2,058	10,325	23,916	964	232	176	0	37,671
GR	2,657	42,888	5,251	11,135	1,632	1,129	0	64,692
GV	3	12,229	3	14	0	0	0	12,249
0	2,220	1,127	553	531	60	25	0	4,516
Non-human host	35	247	19	0	1	4	13	319
#Total	9,816	97,487	40,761	14,732	3,193	1,903	13	167,905

(B) Number of sequences with less than 1% unknown nucleotides

Clade Continent	Asia	Europe	North America	Oceania	Africa	South America	Unknown	Total
S	731	1,047	3,056	466	71	58	0	5,429
L	760	1,964	549	49	2	10	0	3,334
V	228	3,036	366	207	10	17	0	3,864
G	877	15,200	5,071	858	634	300	0	22,940
GH	1,923	8,365	19,014	717	191	150	0	30,360
GR	2,425	32,518	4,549	9,166	1,180	871	0	50,709
GV	3	10,712	3	11	0	0	0	10,729
0	1,824	522	349	415	30	9	0	3,149
Non-human host	30	176	19	0	1	0	13	239
#Total	8,801	73,540	32,976	11,889	2,119	1,415	13	130,753

270 Unknown: genome sequences for which continent was not registered

271

273 FIGURE LEGENDS

274

275	Figure 1. BLSOM for pentanucleotide usage. (A) Pentanucleotide composition and (B) their odds
276	ratio for sequences with less than 10% unknown nucleotides. (C) Pentanucleotide composition and
277	(D) their odds ratio for sequences with less than 1% unknown nucleotides. Lattice points that include
278	sequences from more than one clade are indicated in black, those that contain no genomic sequences
279	are indicated by blank, and those containing sequences from a single clade are indicated in color as
280	follows: S (■), L (■), V (■), G (■), GH (■), GR (■), GV (■), O (■), non-human host
281	(). (E) Distribution of sequences by continent on the BLSOM with the pentanucleotide odds ratio.
282	Lattice points that include sequences from more than one continent are indicated in black, those that
283	contain no genomic sequences are indicated by blank, and those containing sequences from a single
284	continent are indicated in color as follows: Asia (), Europe (), North America (), Oceania
285	().
286	
287	Figure 2. 3D display of viral classification by clade and continent. The Z-axis corresponds to the
288	number of sequences attributed to each lattice point. Results for all continents are shown in the ALL
289	panel for each clade. In clades G, GH, GR and GV, lattice points where less than 5 sequences exist
290	are not shown. The vertical bars for individual continents are distinguished by the following colors:
291	Asia (), Europe (), North America (), Oceania (). Different subclusters are given suffix
292	numbers.
293	

Figure 3. 3D display of temporospatial changes. The Z-axis corresponds to the number of sequences

- attributed to each lattice point. Results for all collection months are shown in the ALL panel for each
- 296 continent. The vertical bars for individual clades are distinguished by the following colors: S (**■**), L
- 297 (**•**), V (**•**), G (**•**), GH (**•**), GR (**•**), GV (**•**).
- 298
- 299 Figure 4. Analysis of 100% stack bar graph for time-series transition in each continent for each
- 300 subcluster in clades S (A), L (B), V (C), G (D), GH (E) and GR (F). The colors of each subcluster
- 301 are indicated at the bottom of each figure. The results for months with more than 100 sequences are
- 302 shown as thick horizontal bars. The number of sequences used in this analysis is given in
- 303 Supplementary Table S1.
- 304

305 SUPPLEMENTARY DATA

306

307	Supplementary	Figure S1. 2D	display of the	classification b	v clade and	continent show	n in Figure 2.

- 308 Each subcluster territory is circled by a dotted line. In clades G, GH, GR and GV, lattice points
- 309 where less than 5 sequences exist are not shown. The sequences belonging to each territory defined
- 310 here are used for the analysis in Figure 4.

311

- 312 Supplementary Table S1. Sequence number of subdivided clusters in clade for each month by
- 313 continent.

314

316 **REFERENCES**

- 318 Abe T, Kanaya S, Kinouchi M, Ichiba Y, Kozuki T, Ikemura T. 2003. Informatics for unveiling hidden
- genome signatures. Genome research 13: 693-702. DOI: http://dx.doi.org/10.1101/gr.634603
- 320
- 321 Abe T, Akazawa Y, Toyoda A, Niki H, Baba T. 2020. Batch-Learning Self-Organizing Map Identifies
- 322 Horizontal Gene Transfer Candidates and Their Origins in Entire Genomes. Frontiers in microbiology
- 323 11: 1486. DOI: http://dx.doi.org/10.3389/fmicb.2020.01486
- 324
- 325 Benvenuto D, Giovanetti M, Salemi M, Prosperi M, De Flora C, Junior Alcantara LC, Angeletti S,
- 326 Ciccozzi M. 2020. The global spread of 2019-nCoV: a molecular evolutionary analysis. Pathogens and
- 327 global health 114: 64-67. DOI: http://dx.doi.org/10.1080/20477724.2020.1725339
- 328
- 329 Elbe S, Buckland-Merrett G. 2017. Data, disease and diplomacy: GISAID's innovative contribution to
- 330 global health. Global challenges (Hoboken, NJ) 1: 33-46. DOI: http://dx.doi.org/10.1002/gch2.1018
- 331
- 332 Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, Haagmans BL, Lauber
- 333 C, Leontovich AM, Neuman BW et al. 2020. The species Severe acute respiratory syndrome-related
- 334 coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature microbiology 5: 536-544.
- 335 DOI: http://dx.doi.org/10.1038/s41564-020-0695-z
- 336
- 337 Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, Sagulenko P, Bedford T, Neher
- 338 RA. 2018. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics (Oxford, England) 34:
- 339 4121-4123. DOI: 10.1093/bioinformatics/bty407

340

- 341 Han AX, Parker E, Scholer F, Maurer-Stroh S, Russell CA. 2019. Phylogenetic Clustering by Linear
- 342 Integer Programming (PhyCLIP). Molecular Biology and Evolution 36: 1580-1595. DOI:
- 343 http://dx.doi.org/10.1093/molbev/msz053
- 344
- Hu B, Guo H, Zhou P, Shi ZL. 2021. Characteristics of SARS-CoV-2 and COVID-19. Nature reviews
- 346 Microbiology 19: 141-154. DOI: http://dx.doi.org/10.1038/s41579-020-00459-7
- 347
- 348 Ikemura T, Wada K, Wada Y, Iwasaki Y, Abe T. 2020. Unsupervised explainable AI for simultaneous

molecular evolutionary study of forty thousand SARS-CoV-2 genomes. bioRxiv.
DOI:10.1101/2020.10.11.335406: 2020.2010.2011.335406.

- 352
- 353 Iwasaki Y, Abe T, Wada K, Itoh M, Ikemura T. 2011. Prediction of directional changes of influenza A
- virus genome sequences with emphasis on pandemic H1N1/09 as a model case. DNA research 18:
- 355 125-136. DOI: http://dx.doi.org/10.1093/dnares/dsr005
- 356
- Iwasaki Y, Abe T, Wada Y, Wada K, Ikemura T. 2013. Novel bioinformatics strategies for prediction
 of directional sequence changes in influenza virus genomes and for surveillance of potentially
 hazardous strains. BMC infectious diseases 13: 386. DOI: http://dx.doi.org/10.1186/1471-2334-13386
- 362 Iwasaki Y, Abe T, Ikemura T. 2021. Human cell-dependent, directional, time-dependent changes in the
 363 mono- and oligonucleotide compositions of SARS-CoV-2 genomes. bioRxiv.

364 DOI:10.1101/2021.01.05.425508: 2021.2001.2005.425508.

- 366 Kanaya S, Kinouchi M, Abe T, Kudo Y, Yamada Y, Nishi T, Mori H, Ikemura T. 2001. Analysis of
- 367 codon usage diversity of bacterial genes with a self-organizing map (SOM): characterization of
- 368 horizontally transferred genes with emphasis on the E. coli O157 genome. Gene 276: 89-99. DOI:
- 369 10.1016/s0378-1119(01)00673-4
- 370
- Karlin S, Campbell AM, Mrazek J. 1998. Comparative DNA analysis across diverse genomes. Annual
 review of genetics 32: 185-225.
- 373
- 374 Kirby T. 2021. New variant of SARS-CoV-2 in UK causes surge of COVID-19. The Lancet
- 375 Respiratory medicine 9: e20-e21. DOI: http://dx.doi.org/10.1016/s2213-2600(21)00005-9
- 376
- 377 Kohonen T. 1990. The self-organizing map. Proceedings of the IEEE 78: 1464-1480. DOI:
 378 10.1109/5.58325
- 379
- Kohonen T, Oja E, Simula O, Visa A, Kangas J. 1996. Engineering applications of the self-organizing
 map. Proceedings of the IEEE 84: 1358-1384. DOI: 10.1109/5.537105
- 382
- 383 Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics
- Analysis across Computing Platforms. Mol Biol Evol 35: 1547-1549. DOI: 10.1093/molbev/msy096
 385
- 386 Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D. 2003. Broad antiretroviral defence by
- 387 human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424: 99-103. DOI:

388 http://dx.doi.org/10.1038/nature01709

389

- 390 Mercatelli D, Giorgi FM. 2020. Geographic and Genomic Distribution of SARS-CoV-2 Mutations.
- 391 Frontiers in microbiology 11: 1800. DOI: http://dx.doi.org/10.3389/fmicb.2020.01800

392

- 393 Qiu Y, Abe T, Nakao R, Satoh K, Sugimoto C. 2019. Viral population analysis of the taiga tick, Ixodes
- 394 persulcatus, by using Batch Learning Self-Organizing Maps and BLAST search. The Journal of
- veterinary medical science 81: 401-410. DOI: http://dx.doi.org/10.1292/jvms.18-0483

396

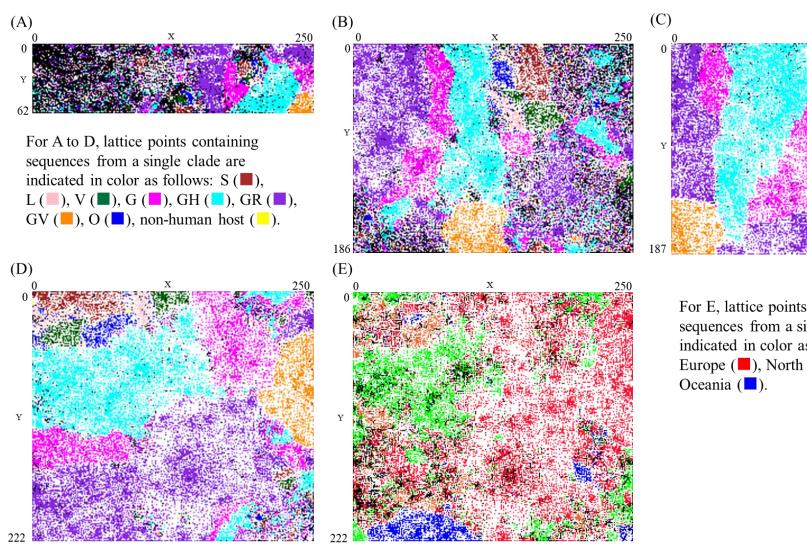
- 397 Simmonds P. 2020. Rampant C→U Hypermutation in the Genomes of SARS-CoV-2 and Other
- 398 Coronaviruses: Causes and Consequences for Their Short- and Long-Term Evolutionary Trajectories.

399 mSphere 5. DOI: http://dx.doi.org/10.1128/mSphere.00408-20

- 400
- 401 Sun J, He WT, Wang L, Lai A, Ji X, Zhai X, Li G, Suchard MA, Tian J, Zhou J et al. 2020. COVID-
- 402 19: Epidemiology, Evolution, and Cross-Disciplinary Perspectives. Trends in molecular medicine 26:

403 483-495. DOI: http://dx.doi.org/10.1016/j.molmed.2020.02.008

404


- Tang X, Wu C, Li X, Song Y, Yao X, Wu X, Duan Y, Zhang H, Wang Y, Qian Z et al. 2020. On the
- 406 origin and continuing evolution of SARS-CoV-2. National Science Review 7: 1012-1023 %@ 2095-
- 407 5138. DOI: http://dx.doi.org/10.1093/nsr/nwaa036

- 409 Wada K, Wada Y, Ikemura T. 2020. Time-series analyses of directional sequence changes in SARS-
- 410 CoV-2 genomes and an efficient search method for candidates for advantageous mutations for growth
- 411 in human cells. Gene: X 5: 100038. DOI: http://dx.doi.org/10.1016/j.gene.2020.100038

412

- 413 Wang R, Chen J, Gao K, Hozumi Y, Yin C, Wei GW. 2021. Analysis of SARS-CoV-2 mutations in the
- 414 United States suggests presence of four substrains and novel variants. Communications biology 4: 228.
- 415 DOI: http://dx.doi.org/10.1038/s42003-021-01754-6

- 417 World Health Organization. 2020. Coronavirus Disease (COVID-2019). Situation Reports. URL:
- 418 https://www.who.int/emergencies/diseases/novel-coronavirus-2019

For E, lattice points containing sequences from a single continent are indicated in color as follows: Asia (), Europe (), North America (), Oceania ().

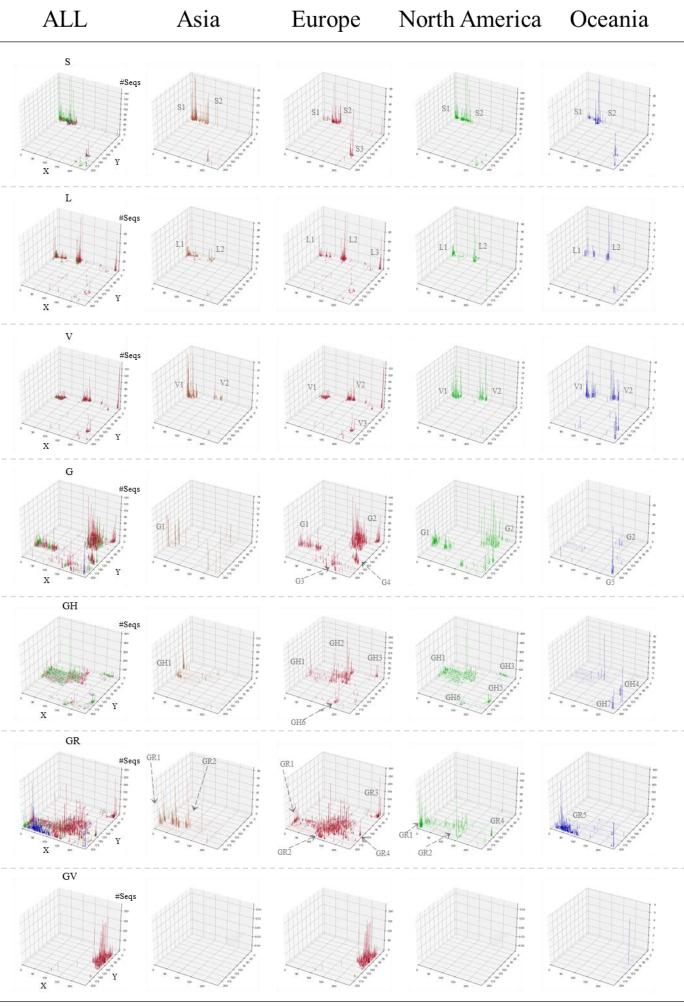


Figure 2

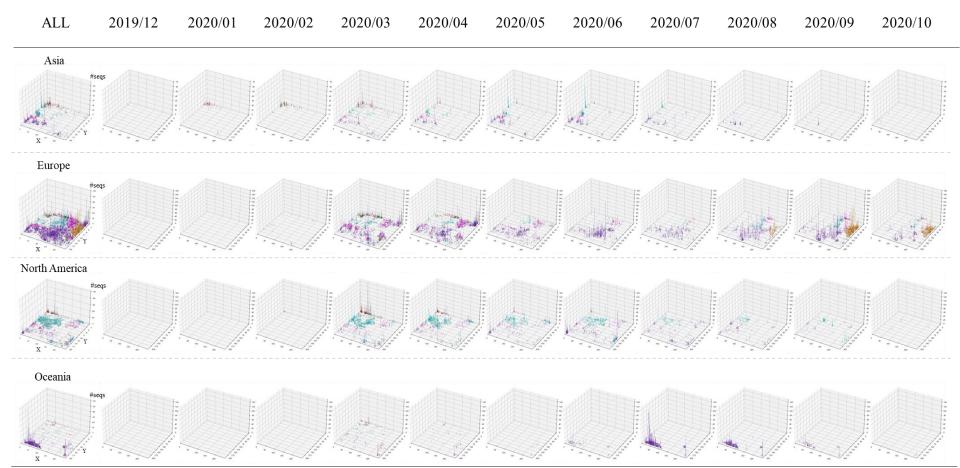


Figure 3

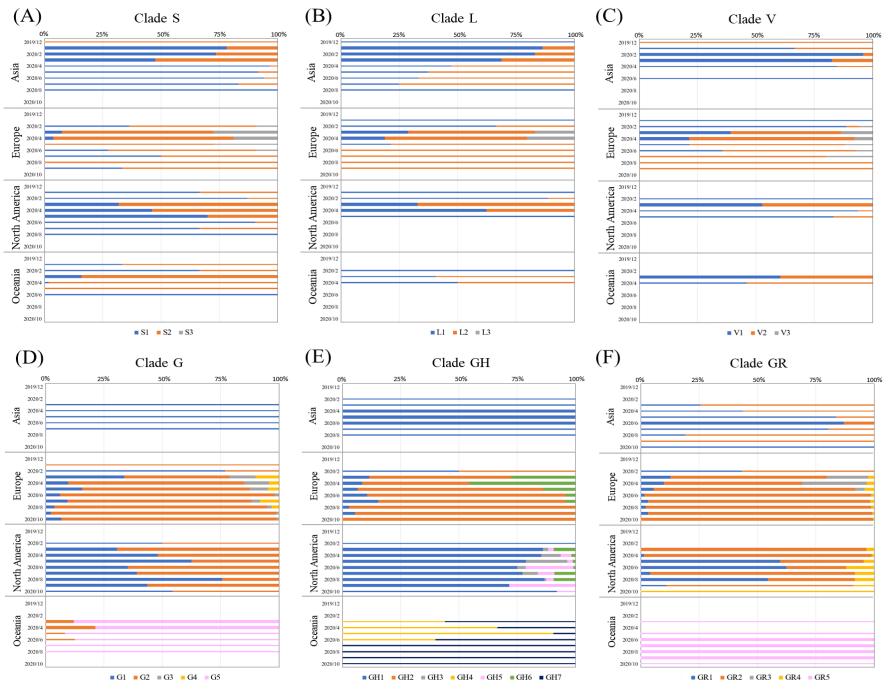
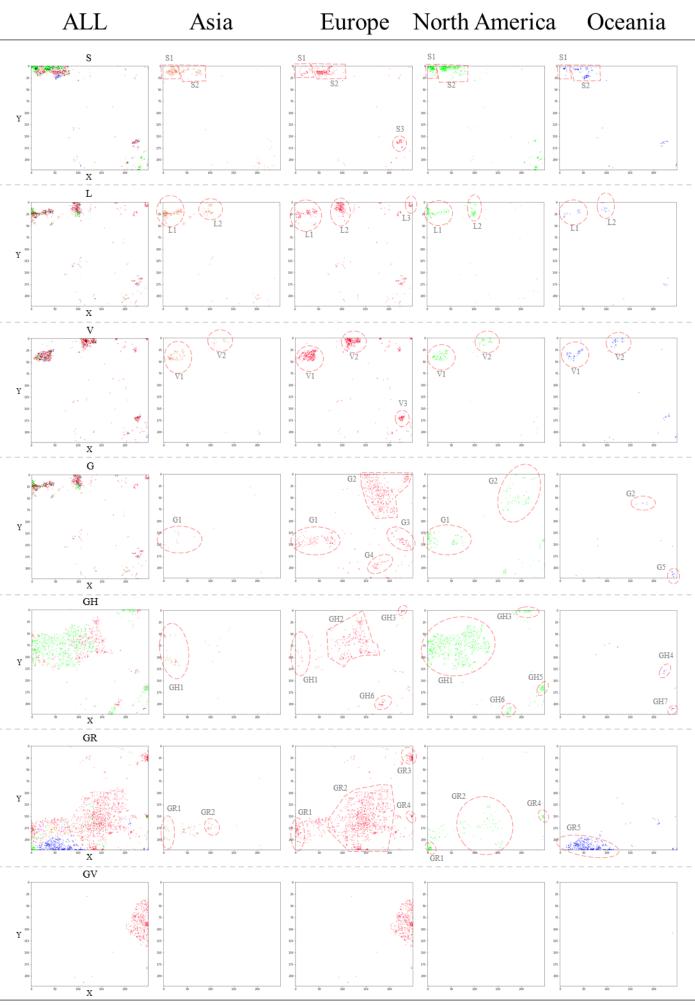



Figure 4

Supplementary Figure S1

Suppleme	ntary '	able 1. S	equence	numb	er of su	ubdivid	ed clus	ter in o	clade f	for eacl	h monti	h by co	ntinent	t.																																											
Continent							Asia															Europ														North A													Ocea								#Total
Clade							Clade															Clade 3														Clad													Clad								#Total
Month	2019	/12 2020	0/1 202	0/2 2	020/3	2020/4	2020/	5 202	20/6	2020/7	2020/3	8 202	0/9 20	020/10	2019	/12 20	020/1	2020/	2 202	0/3 2	020/4	2020/5	5 202	0/6 2	020/7	2020/8	2020/	9 2020	0/10 2	2019/12	2020	1 202	0/2 2	2020/3	2020/4	4 2020	0/5 20	020/6	2020/7	2020/	8 202	0/9 202	0/10	2019/12 2	.020/1	2020/2	2020/3	3 2020	J/4 202	20/5 2	2020/6	2020/7	/ 2020	1/8 20	20/9 2	:020/10	
S1		112	2 95	5	122	59	34	1	7	5	1							4	5.	2	8		3		1		1				2	47	7	603	276	91		67	2	1					1	2	46	1			1						1,654
S2	1	31	34		134	2	3		1	1								6	44	9	163	16	7		1	4	2				1	7	1	1,293	323	39)	7	1						2	1	244	54	2								2,829
S3																		1	19	1	40	6	1																																		239
#Total	1	143	3 12	9 :	256	61	37	1	8	6	1							11	69	2	211	22	11	1	2	4	3				3	54	4 1	1,896	599	130	0 3	74	3	1					3	3	290	55	2		1						4,722
Clade							Clade	L														Clade I	L													Clad	le L												Clad	de L							
Month	2019	/12 2020)/1 202	0/2 2	020/3	2020/4	2020/	5 202	20/6	2020/7	2020/3	8 202	0/9 20	020/10	2019	/12 2'	020/1	2020/	2 202	0/3 2	020/4	2020/5	5 202	0/6 2	020/7	2020/8	2020/	9 2020	0/10 2	2019/12	2020	1 202	0/2 2	2020/3	2020/4	4 2020	0/5 20)20/6	2020/7	2020/	8 202	0/9 202	0/10	2019/12 2	.020/1	2020/2	2020/3	3 2020	1/4 202	20/5 2	2020/6	2020/7	/ 2020)/8 20	20/9 2	2020/10	
Ll	21	172	2 16	9	144	9	3	1	3	1	3						1	14	29	7	92	11									4	8		88	113	19)									1	13	3									1,189
L2		27	34	L .	65	10	5		6	3								7	56	2	297	40	9		2	1	2					1		180	68												19	3									1,341
L3																			17	4	99																																				273
#Total	21	199	20	3	209	19	8	9	9	4	3						1	21	1.0	33	488	51	9		2	1	2				4	9		268	181	19)									1	32	6									2.803
Clade							Clade	V														Clade '	V													Clade	e V												Clad	ie V							1000 x 1
Month	2019	/12 2020)/1 202	0/2 2	020/3	2020/4	2020/	5 202	20/6	2020/7	2020/3	8 202	0/9 20	020/10	2019	/12 2	020/1	2020/	2 202	0/3 2	020/4	2020/5	5 202	0/6 2	020/7	2020/8	2020/	9 2020	0/10 2	2019/12	2020	1 202	0/2 2	2020/3	2020/4	4 2020	0/5 20)20/6	2020/7	2020/	8 202	0/9 202	0/10	2019/12 2	.020/1	2020/2	2020/3	3 2020	J/4 202	20/5 2	2020/6	2020/7	/ 2020	J/8 20	20/9 2	2020/10	#1otal
V1	1		95		85		0201	-	1								1	16			126	11									010			136													81	6									1.213
V2	1	ĩ			18				•									1	65						4	1	4					~				1											53	7									1 359
V3						-												÷				6				•									5												20										244
#Total	1	3	10	2	102	12			1								1									1	4					2		259	80	6							-				124	13									2.816
Clade		3	10	-	105	15	Clade											10	1,5	30		Clade (-	5		4					2		238	80	Clade							-				134	15	Clad	1- C							2,010
Month	2010	10 2020	202	0.0 0	020/2	2020/4			20.16	2020/7	20204	× 202	0.0 20	020/10	2010	42 2	20/1	2020/	2 202	0/2 2				0.6. 2	020/7	2020/8	20204	0 2020	0.10	2010/12	2020	. 202	0.2 2	2020/2	2020/			2016	2020/7	2020/	× 202	202	2/10	2019/12 2	020/1	2020/2	2020/	2 2020			2020/6	2020/5	7 2020	NR 20	20.00 7	020/10	#Total
Gl	2013	12 2020	J/1 202				33				20207	8 202	0.9 20	020/10	2019	12 20	020/1	30	2 202			118			21	2020/8	2020/			2019/12	2020	1 202		107	2020%				101		8 202 51			2019/12 2	320/1	2020/2	2020/3	5 2020	34 202	20/5 2	.020/6	2020/7	2020	78 20.	20/9 20	020/10	2.570
					3	25	55		.9	1								30	11		121	540	46		175	23 568	961	31	-			1		242	239				157	56							10										2,370
G2 G3																	4	9	28		,	540		-	1/5	500						1		242	280	10.	/ 3	508	157	20	66						19	25	1		1						680
																					294		9		8	12	8	3																													
G4																			25	3	122	36			18	19	3																								-						451
G5																																																	- 11								276
#Total					5		33		.9	1							4	39	2,5	54 :	1			5	222	622	994	34	2			2		349	539			568	258	230	11	7 1	1				157	117	7 12		8	27	1				11,616
Clade							Clade C															Clade G														Clade													Clade								#Total
Month	2019	/12 2020										8 202	0/9 20	020/10	2019	12 20	020/1	2020/										9 2020	0/10 2	2019/12	2020													2019/12 2	020/1	2020/2	2020/3	3 2020	1/4 202	20/5 2	2020/6	2020/7	2020	//8 20	20/9 2/	.020/10	L
GH1			4		39	142	239	3	10	97	6							1	11			30	16		23	24						1	2	2,936	1,946	1,17	78 1,	463	477	409	39	4 33	5														10,026
GH2																		1	60	6	441	363	12	9	121	814	1,034	29	5																												3,804
GH3																																		77	191	266	6 6	69	41	3																	647
GH4																																															11	16	29	9	2						58
GH5																																		80	106	36	5 4	102	44	16	15	5 3															843
GH6																			27	4	436	62	6		6		2							313	37	15	5 1	14	55	43																	1,263
GH7																																															14	8	3		3	13	8		9	1	59
#Total			4		39	142	239	3	10	97	6							2	99	5	959	455	15	1	150	838	1,095	29	15			1	3	3,406	2,280	1,49	95 1.	948	617	471	55) 3	3				25	24	32	2	5	13	8		9	1	16,700
Clade							Clade 0	GR														Clade G	R													Clade	GR												Clade	e GR							#Total
Month	2019	/12 2020)/1 202	0/2 2	020/3	2020/4	2020/	5 202	20/6	2020/7	2020/3	8 202	0/9 20	020/10	2019	/12 2	020/1	2020/	2 202	0/3 2	020/4	2020/5	5 202	0/6 2	020/7	2020/8	2020/	9 2020	0/10 2	2019/12	2020	1 202	0/2 2	2020/3	2020/4	4 2020	0/5 20)20/6	2020/7	2020/	8 202	0/9 202	0/10	2019/12 2	020/1	2020/2	2020/3	3 2020	0/4 202	20/5 2	2020/6	2020/7	/ 2020)/8 20	20/9 2	2020/10	#10tal
GR1						42	72			74	9			4				13			378	94	53		52	62	115					0			3	241		586	6	60																	2.295
GR2	1				61	54	14				38	34					0	17	1.4	99 3	.287	1.466	3.3	65 1	565	2.895	3,488	1.09	91			0		176	213		4 2		129	41	36																18,889
GR3	1				-				-								-		30		072	66	0		2	3	8	2,00				-					-	-																			1 559
GR4	1																		5		117	70	40		27	34	24	4						6	2	18	. 1	12	12	0	4	1															535
GR5	1																		5.	·	•••	70	41	,	- '	24	24								-	10			•	,							1		5		260	3 722	1.576	16 3	14	3	5 881
#Total	0	0			82	06	87	12	20	62	47	24		4	C		0	20	2.2	25	954	1.604	2.4	67 1	616	2.004	2.625	1.0	07	0	e	0		192	21.9	402	2 0	129	147	110	44		-	0	0	0	1	0								3	29 159
~ • Otai	1 0	0	0		04	70	- 00	1.	37	74	47		•		0		v	30	2,2	,	,0.24	1,090	2,41	0/ 1	,040	4,294	5,055	1,0	71	v	0	0		102	210	40.	2 9	00	1.41	110	- 42			v	V	0		0	2		200	3,122	1,3/1	3 3	1.46		22,139