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Abstract: Mycobacterium tuberculosis lung infection results in a complex multicellular structure, the granuloma. In 50 

some granulomas, immune activity promotes bacterial clearance; in others, bacteria persist and grow. We identified 

correlates of bacterial control in cynomolgus macaque granulomas by co-registering longitudinal PET-CT imaging, 

single-cell RNA-sequencing, and measures of bacterial clearance. Bacterial control associates with the dynamics of 

granuloma formation and cellular composition. Early granulomas have limited capacity for bacterial restriction and 

are characterized by Type 2 immune features—plasma cells, mast cells, and IL-4/13 signaling. Granulomas that 55 

emerge after the onset of adaptive responses exhibit superior bacterial killing and are enriched for hybrid Type1-

Type17 and certain cytotoxic T cells—host immune targets that can be leveraged to develop new vaccine and 

therapeutic strategies for TB. 

 
One-Sentence Summary: Bacterial control in TB lung granulomas correlates with the timing of granuloma 60 

formation and the cellular immune environment.  
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Main Text:  
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a major global health threat (1). Mtb 65 

infection is characterized by the formation of granulomas predominantly in the lungs and lymph nodes (2-5). These 

spatially organized structures, composed of a mixture of immune and non-immune cells (4-12), are key sites of host-

pathogen interactions which can either restrict or facilitate bacterial survival (Figure S1A). Understanding the cellular 

and molecular features in granulomas that are associated with bacterial restriction, versus failure to control infection, 

is critical for the development of next-generation treatments and vaccines for TB. Delineating such protective 70 

responses in humans has been challenging given the limited accessibility of affected lung tissue and difficulty 

determining the true extent of bacterial control. The cynomolgus macaque model of Mtb infection, which recapitulates 

the diversity of human infection outcomes and granuloma pathologies, has been a transformative advance in the field, 

enabling detailed studies of the features of immunologic success and failure in Mtb granulomas (4, 7, 13). 

 75 

A spectrum of granuloma types, organizations and cellular compositions have been described in both humans and 

NHP (4, 7, 13-15). Studies of Mtb infection in NHP have demonstrated that individual granulomas are dynamic (2, 

16, 17), changing in response to evolving interactions between bacteria and diverse host cell types (4, 5, 8-10, 18). 

The bacterial burden in individual granulomas is highest early in infection and then decreases due to increased bacterial 

killing as the immune response matures, even in animals that ultimately develop active TB (Figure S1B-C) (2, 19, 80 

20). Strikingly, however, individual granulomas within a single host follow independent trajectories with respect to 

inflammation, cellular composition, reactivation risk, and ability to kill Mtb (2, 16, 17, 21-24). We and others have 

profiled immune responses among individual cell types in macaque lung granulomas, including those of T cells (21, 

25-29), macrophages (8), B cells (9, 30), and neutrophils (6, 31), and also examined the instructive roles of cytokines, 

including IFN-g, IL-2, TNF, IL-17 and IL-10 (21, 32, 33). While these analyses have enabled key insights into how 85 

specific canonical cell types and effector molecules relate to bacterial burden, they have been relatively narrow and 

directed in focus and have not revealed how the integrated actions of diverse cell types within individual granulomas 

influence control.  

 

The recent emergence of high-throughput single-cell genomic profiling methods affords transformative 90 

opportunities to define the cell types, phenotypic states and intercellular circuits that comprise granulomas 

and inform their dynamics (34). Here, we developed and applied a multifactorial profiling pipeline—

integrating longitudinal PET-CT imaging, single-cell RNA-sequencing (scRNA-seq)-based 

immunophenotyping, and molecular measures of bacterial killing—to identify features of TB lung 

granulomas that correlate with bacterial clearance in cynomolgus macaques (Figure 1A). Collectively, 95 

our data provide a holistic view of the TB lung granuloma cellular microenvironments in which Mtb is 

controlled or persists, and these are influenced host immune state in which granulomas arise, suggesting 

several novel therapeutic and prophylactic targets for future investigation. In general, this should include 

a brief (1-2 paragraph) introduction, followed by a statement of the specific scope of the study, followed 
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by results and then interpretations. Please avoid statements of future work, claims of priority, and 100 

repetition of conclusions at the end.  
Results 

Timing of granuloma establishment is associated with bacterial burden 

We sought to define the complex cellular ecosystems of granulomas that manifest different degrees of bacterial control 

in NHP. Four cynomolgus macaques were infected with a low dose of Mtb (<10 CFU; Erdman strain) and followed 105 

for 10 weeks (Figure 1A). Progression of Mtb infection and individual granuloma dynamics were monitored at 4, 8, 

and 10 weeks post infection (p.i.) using PET-CT imaging of FDG avidity as a proxy for inflammation (Figure S1D-

E, Table S1) (16, 35). At necropsy, individual PET-CT identified lung granulomas were excised and dissociated to 

obtain a single-cell suspension; viable bacterial burden (CFU, colony forming units – i.e., culturable live bacterial 

burden) and cumulative (live + dead) bacterial load (chromosomal equivalents, CEQ) were measured to define the 110 

extent of bacterial growth and killing in each granuloma (2, 36) (Methods).  

 

Twenty-six granulomas from these four animals were randomly selected at the time of necropsy for scRNA-seq 

analysis. By serial PET-CT imaging, 15/26 granulomas were detected at 4 weeks p.i., while 11/26 granulomas were 

observed only at 10-week p.i. or necropsy, hereafter referred to as early and late granulomas, respectively (Figure 115 

S1E, Table S1). Among the 26, there was a range of granuloma-level bacterial burdens, from sterile (0 

CFU/granuloma) to high (4.6 log10 CFU/granuloma) (Figure 1B-C). There was a significant difference in CFU 

between early and late granulomas (3.6 vs 2 log10 CFU/granuloma, p<0.0001, Mann Whitney U test; Figure 1C), 

suggesting a relationship between bacterial burden and time of granuloma detection by PET-CT. To validate this 

finding, we further evaluated bacterial burden between early and late granulomas in a total of 10 animals at 10 weeks 120 

p.i. (Figure S1F-G) and again found that the median CFU/granuloma per animal was significantly lower in late 

granulomas as compared to early ones.  

 

To determine whether low CFU in late granulomas reflected reduced bacterial growth or increased bacterial killing, 

we evaluated cumulative bacterial burden. We observed no significant difference in CEQ values between late (4.2 125 

log10 CEQ/granuloma) and early granulomas (4.7 log10 CEQ/granuloma, p=0.07, Mann Whitney U test), indicating 

that the granulomas supported roughly similar cumulative Mtb growth over the course of infection (Figure 1D). 

However, the extent of bacterial killing, calculated as the ratio of CFU to CEQ, was significantly higher in late (-2.1 

log10 CFU/CEQ per granuloma) as compared to early granulomas (-1.2 log10 CFU/CEQ per granuloma, p=0.01, Mann 

Whitney U test) (Figure 1E), suggesting that the late granulomas have greater capacity to kill Mtb.  130 

 

Broad cellular composition of TB lung Granulomas 

To identify cellular and molecular factors associated with increased Mtb killing in an unbiased fashion, we loaded a 

single-cell suspension from each of the 26 granulomas onto a Seq-Well array (37) under Biosafety Level 3 conditions, 

and then processed and sequenced as previously described (37). After aligning the data to the Macaca fascicularis 135 

(cynomolgus macaque) genome and performing robust quality controls and granuloma-specific technical corrections, 

we retained 109,584 high-quality single-cell transcriptomes for downstream analysis (Figure S2; Table S2).  
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Among these, we resolved 13 general cell types (Figures 2A,B and S3A-G) through dimensionality reduction, 

Louvain clustering, and examination of canonical linage defining genes and reference signatures from the Tabula 140 

Muris (38), Mouse Cell Atlas (39) and SaVanT database (40) (Figure S3 A-G, Table S3). These 13 encompass groups 

of lymphocytes, including B cells (defined by expression of MS4A1, CD79B, & BANK1), T and NK cells (T/NK; 

GNLY, TRAC, CD3D, & GZMH) and plasma cells (IGHG1 & JCHAIN)); myeloid cells, including conventional 

dendritic cells (cDCs; CLEC9A, CST3, & CPVL), plasmacytoid dendritic cells (pDCs; LILRA4 and IRF8), and 

macrophages (APOC1, LYZ, and APOE); mast cells (CPA3 & TPSAB1); neutrophils (CCL2, CXCL8, & CSF3R); 145 

erythroid cells (HBA1 & HBB); stromal cells, including endothelial cells (RNASE1, EPAS1, & FCN3) and fibroblasts 

(COL3A1, COL1A1, & DCN); Type-1 pneumocytes (AGER); and, Type-2 pneumocytes (SFTPC, SFTPB, and 

SFTPA1) (Figure 2A & B, Figure S3G and Table S3 & S4). For each of the 13 cell types, we also performed further 

within cell-type subclustering; in these analyses, we only detected substructure among the T/NK and macrophage 

clusters (detailed below). 150 

 

Cell types associated with timing of granuloma formation and control  

We compared cellular frequencies between early and late granulomas, given the significant association between 

bacterial burden and the timing of granuloma detection. Our data reveal multiple cell types that are both significantly 

enriched in early granulomas and/or associated with increased bacterial burden, including B cells (relative cell 155 

abundance vs CFU, p=0.4, non-parametric Spearman’s rho correlation test; early vs late, p=0.04, Mann Whitney U 

test), plasma cells (p<0.0001; p=0.001), mast cells (p=0.0024; p=0.001), and endothelial cells (p=0.001; p=0.01) 

(Figure 2C-D, Table S5). T/NK cells were abundant in late granulomas and were associated with bacterial clearance 

(p=0.0055; p=0.01) (Figure 2C-D, Table S5). To control for inter-subject variability, each of the cellular associations 

with granuloma dynamics and bacterial control was examined both across all animals and lesions, and through a 160 

directed analysis of the granulomas from the NHP host for which we had captured a broad representation of early and 

late lesions (4017) (Figure S3H). We further confirmed these trends by performing deconvolution on bulk RNA-

sequencing of 12 additional granulomas (6 early and 6 late lesions) from separate macaques (Figure S4A).  

 

Early granulomas are characterized by Type 2 immune features 165 

The general presence of B and plasma cells is appreciated in TB granulomas, especially in well-defined lymphoid 

follicles (9). In mice and NHP, B cells have been described not only as protective regulators of the immune response 

to Mtb infection but also as markers of active TB in human studies (41-43). The increased B cell fractional abundances 

detected here may reflect elevated antigen levels or an attempt to limit a pathologic immune response. In contrast to 

our studies in individual granulomas, a recent study on lung tissue from Mtb infected macaques reported increased 170 

abundance of B cells in those that appear to be latently infected compared to those with active pulmonary TB (89).  

Plasma cells also have been noted histologically in NHP and human granulomas, and antibody features similarly have 

been implicated in Mtb control but also as a biomarker of active disease (44). Among the plasma cells in our scRNA-

seq dataset, the vast majority express either IGHA or IGHG constant chains (Figure S4B). This suggests that IgA and 

IgG are the dominant antibody classes induced by Mtb in the granuloma microenvironment.  175 
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In contrast, the presence and function of mast cells in Mtb lung granulomas has not been previously described. 

Therefore, to validate this observation, we performed immunohistochemistry on NHP and human granuloma sections 

using Tryptase and C-kit/CD117 markers (Figure S4D & E). This confirmed the presence of mast cells within both 

NHP and human granulomas, and further revealed that they primarily localize to the outer regions of NHP granulomas, 180 

including the lymphocyte cuff (Figure S4D), and can be found within and around human granulomas (Figure SE). 

In our data, mast cells are distinguished by their expression of IL-4 and IL-13 (Figure S4B), which we also recently 

observed in a study of human nasal polyposis, a type 2 inflammatory disease associated with dramatic epithelial 

remodeling (45). Taken together, these data suggest early granulomas represent a Type 2 immune enriched 

environment with poor capacity for bacterial clearance.  185 

 

T and NK functional subclusters as mediators of protection 

Of the 13 broad cell types, only the T/NK cell subcluster is associated with late granulomas and superior bacterial 

control (p=0.01 Mann Whitney U; p=0.007 Spearman rho, respectively) (Figure 2C-D). To further assess functional 

diversity within the 41,622 cells that comprise the T and NK cell cluster and their association with timing of granuloma 190 

detection and bacterial control, we performed additional subclustering analyses. This revealed 13 T/NK cell 

subclusters which we annotated based upon expression of lineage defining markers, known cytotoxic, regulatory and 

proliferation genes (Figure 3A,C and S5, Tables 1 and S6) and TCR constant gene (TRAC, TRBC and TRDC) 

expression (Figure 3B). The process of annotation revealed that most subclusters did not correspond neatly to 

canonical T and NK cell subsets, consistent with recent studies in other systems (46). Where possible, we annotated 195 

each based on known T cell markers and literature-derived genes of interest; we note that these genes are parts of 

broader transcriptional signatures that appear to reflect dominant cellular response states superimposed on cell lineage-

associated gene expression programs. Among the 13 T/NK cell subclusters, 7 were significantly associated with the 

timing of granuloma detection; 6 with late granulomas, and one with early lesions (Figure 3D, Table S5).  

 200 

A prominent role for Type1-Type 17 T cells in bacterial control 

One T/NK cell subcluster is the most abundant cell type across all granulomas (8.8%) (Table S4) and the strongest 

correlate with late granulomas and bacterial burden (p=0.0005 Mann Whitney U; p=0.001 Spearman rho) (Figure 3D; 

Table S4 & S5). This subcluster, designated Type1-Type17 (T1-T17), is enriched for expression of classical Th1-

associated genes, including IFNG and TNF (47), as well as transcription factors associated with Th17 differentiation 205 

(48), including RORA (49), RORC (50), RBPJ (51) and BHLHE40 (52-54). While we also detect additional features 

of T17 cells, including CCR6 (55) and IL23R (56), we do not observe expression of either IL17A or IL17F (Figure 

4A; Table S6). Collectively, this hybrid gene expression state is consistent with previously described expression 

programs for Th1* or ex-Th17 cells, which are believed to be precursors to tissue resident memory (57). Previous 

studies have revealed a prominent role for CD4 Th1 and Th17 cytokines in control of Mtb infection, including IFN-210 

𝛾, TNF, and IL-17 (58-66), and studies in NHP granulomas suggest an association between T1 and T17 cytokine 

expression and bacterial burden (21). In addition, in murine models, BHLHE40 is required for control of Mtb infection, 

as a repressor of IL-10 production (54). While Th1* and ex-Th17 subsets have been described primarily as CD4 T 
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cells (21, 58, 67, 68), our T1-T17 sub-cluster is characterized by the expression of both CD4 and CD8A/B transcripts 

(Figures 3C and 4C, Figure S5D-E).  215 

 

To resolve whether this subcluster was a mixture of T1 and T17 cells or a bona fide hybrid state, we further sub-

clustered the 9,234 T1-T17 cells. This revealed 4 distinct subpopulations, each of which represents a unique hybrid 

T1-T17 state (Figure 4B, Table S7): T1-T17 subpopulation 1 is distinguished by expression of CD4 and markers of 

activation and motility, including IL7R, CD6, TXNIP, PDE4D, ZFP36L2, ITGB1, CCR6 and CXCR3 (Figure 4B,C; 220 

Tables 1 and S4), making it most akin to ex-Th17 cells; T1-T17 subpopulation 2 is characterized by increased relative 

expression of cytotoxic effector molecules and both CD8A and CD8B; T1-T17 subpopulation 3, which includes cells 

expressing CD8A/B or CD4, is characterized by cytokine gene expression (IFNG, TNF, LTA, and LTB) and markers 

of an inhibitory cell state (CTLA4, GADD45B and SLA); T1-T17 subpopulation 4 is very low in abundance and 

characterized by heat shock and DNA damage associated transcripts (DNAJB1 and HSPH1). Late granulomas had 225 

higher proportions of T1-T17 subpopulation 1 (p=0.03; p=0.055) and T1-T17 subpopulation 2 (p=0.02; p=0.02) 

compared to early granulomas. Surprisingly, T1-T17 subpopulation 3 is not correlated with time of detection or 

bacterial burden, despite expressing elevated levels of IFNG and TNF (Figure 4E, Table S5), cytokines generally 

considered as critical mediators of control in Mtb infection (64, 65).  

 230 

CD4 and CD8 subclusters associated with granuloma formation dynamics  

Among the remaining 12 T/NK cell subclusters, 6 are enriched for both CD4 and CD8 expression. Of these, 4 

significantly associated with late lesions (Figure 3B,D & S5D-E). The most abundant of these (8.3% of granuloma 

cells, p=0.04 Mann Whitney U; p=0.03 Spearman rho, respectively; Figure 3D, Table S4, S5), we annotated as stem-

like T cells based on elevated expression of markers of naïve and memory T cells (TCF7, CCR7, IL7R, and TXNIP) 235 

and activation or memory state (CD69 and ITGB1) (Figure 3B). These cells may represent a “stem-like” population 

of T cells, which have been described as an early differentiating memory phenotype, distinct from naïve T cells, that 

are long-lived and possess a unique ability to proliferate and self-renew (69-71). The second, regulatory T cells (1.2%; 

p=0.03; p=0.1; Figure 3D, Table S4, S5), is defined by elevated expression of canonical Treg markers (FOXP3, 

CTLA4, TIGIT, and IL1RL1) and GATA3, a Th2 lineage-defining transcription factor that has been observed in a subset 240 

of tissue-resident Tregs (Figure 3B). The third, Metallothionein expressing T cells (0.05%; p=0.003; p=0.03; Figure 

3D, Table S4, S5), is defined by metallothionein genes such as MT1 and MT2 (Figure 3B,D) which play a role in 

negative regulation of Type 1 regulatory (Tr1) CD4+ cells (72). The fourth is a proliferating T cell subcluster (2.4%; 

p=0.002; p=0.03 Figure 3D, Table S4, S5), characterized by high expression of transcripts associated with cellular 

proliferation (MKI67, STMN1, and TOP2A) (Figure 3B, Table S4, S5), consistent with published data that T cell 245 

proliferation occurs within NHP and human granulomas (9, 21, 25, 30, 73, 74).  

 

The remaining 2 CD4/CD8 subclusters, both unassociated with the timing of granuloma formation, are interferon 

responsive T cells and SRRM2-T cells (Figure 3D, Table S4, S5). The interferon cluster (0.4%) is enriched for CD4 

expression and Type-I interferon inducible molecules (MX1, ISG15, IFIT3, IFI6, IFIT1, RSAD2, and MX2) (75), and 250 

may represent activated CD4+ T cells. The SRRM2-T cells (0.6%) are characterized by enrichment of genes associated 
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with nuclear speckles and splicing factors such as PNISR and SRRM2 (Figure 3B, Table S4, S5), the latter of which 

has been associated with alternate splicing in Parkinson disease (76) and has a critical role in organization of 3D 

genome (77).  

 255 

Bacterial control is associated with specific cytotoxic T cell states  

The remaining 6 T/NK subclusters are broadly defined by expression of cytotoxic genes (designated Cytotoxic 1-6; 

C1-6) including granzymes (GZMA, GZMB, GZMH, GZMK and GZMM), granulysin (GNLY), and/or perforin (PRF1) 

(Figure 3B, Table 1). We confirmed expression of multiple granzymes among CD8𝛼𝛽 T cells in Mtb granulomas by 

flow cytometry (Figure S6) from separate animals. Two of these cytotoxic subclusters are associated with the timing 260 

of granuloma formation and bacterial control.  

 

Late granulomas contained higher proportion of cells in subcluster C4 which is associated with bacterial control (3.8% 

of granuloma cells; p=0.04; Mann Whitney U; p=0.02) (Figure 3D; Table S4, S5). C4 expresses both CD8A and 

CD8B and TCRA and TCRB, but not TCRD, indicating that it is composed primarily of conventional CD8𝛼𝛽	T cells 265 

(Figure 3B,C, S5D). C4 is further enriched for genes associated with cytotoxic effector functions (PRF1, GZMH, 

GZMB, and GZMM), motility, migration and tissue residency (CX3CR1, TGFBR3, and S100A10), and regulators of 

cell state, such as AHNAK, KLF3, and ZEB2 (Figure 3C, Table S6). Conversely, C5, which also expresses both CD8A 

and CD8B and TCRA and TCRB, but not TCRD, was the only T/NK subcluster associated with early granulomas and 

failed control (p=0.047; p=0.7 ns; Figure 3D, Table S4, S5). C5 is distinguished by elevated expression of GZMK 270 

(Figure 3B); interestingly, granzyme K expressing CD8 cells have been recently described as a hallmark of immune 

dysfunction in inflammation (78).  

 

The remaining 4 cytotoxic subclusters did not associate with the timing of granuloma formation or bacterial burden. 

While C6 was not detected in sufficient frequency (<0.3%) to draw meaningful conclusions, C1-3 were abundant. All 275 

three are enriched for the expression of CD8A but not CD8B and elevated TCRD, implying that these cells possess 

innate cytotoxic function (Figure 3B-C). C1 is further characterized by high expression of all three classes of cytotoxic 

effectors genes—GNLY, PRF1 and GZMH, GZMA GZMB—as well as KLRD1, KLRC1, KLRC2, NKG7, which 

suggests that subcluster 1 contains a greater proportion of highly cytotoxic innate CD8+ T cells (possibly NKT cells), 

𝛾𝛿	T cells, and NK cells (Figure 3B, Table 1, S6). C2 is also enriched for NK receptors and CD8 T cell activation 280 

markers in addition to a trio of transcription factors (EGR1, EGR2 and DUSP2) described to distinguish peripherally 

tolerant CD8 T cells (79) (Figure 3B, Table 1, S6). C3 appears to be more selectively enriched for NK cells with 

elevated expression of cytotoxic and NK cell markers and low expression of CD3D and CD3G. The functional 

complexity of these 6 subclusters, along with the common and distinct responses they represent, suggest a significant 

and underappreciated role for cytotoxic cells in TB granulomas.  285 

 

Macrophage heterogeneity in Mtb granulomas 

While macrophages are responsible for much of the bacterial killing within granulomas, we did not observe any 

association between overall macrophage abundance and the timing of granuloma detection or burden (Figures 2 and 
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S7). Yet, like the T/NK cell cluster, the macrophage cluster had discernable substructure based on unbiased gene 290 

expression analyses. Among the 27,670 macrophages, we identified 9 subclusters (Table S8), 2 of which were 

significantly enriched among early granulomas . Most notably, in early granulomas, we uncovered expansion of 

alveolar macrophages defined by MCEMP1, MRC1 and PPARG (Mac 5; 2.3% of granuloma cells; p=0.0008) (Figure 

S7E, Table S8). These data are consistent with several recent studies demonstrating that alveolar macrophages are a 

more permissive niche for Mtb than recruited monocyte derived macrophages (80). In early lesions, we also found 295 

increased frequency of a subpopulation of macrophages expressing INSIG1 and EREG (Mac 4; p<0.0001), but this 

association may be driven by two outlier granulomas and will require further work to establish its potential biologic 

significance (Figure S7E).  

 

The remaining 7 macrophage subclusters were not associated with timing of granuloma formation or bacterial burden. 300 

Among these, we identified 2 subclusters of monocytes defined by expression of VCAN (Mac 2; 5.6%) and CD16 

(Mac 9; 0.5%), respectively. We also identified: a population of inflammatory macrophages (Mac 7; 0.9%), expressing 

multiple chemokines including CXCL9, CXCL10, and CXCL11; a subcluster of proliferating macrophages, defined by 

MKI67 and TOP2A (Mac 8; 0.5%); a subcluster of recruited monocytes defined by expression of FUCA1 and LGMN, 

lysosomal proteins involved in fucose metabolism and antigen processing (81) (Mac 3; 2.3%); a subcluster defined by 305 

expression of ATP13A3 (Mac 6; 1.0%), a component of the polyamine transport system linked to pulmonary 

hypertension ; and, a subcluster (Mac 1; 6.8%) distinguished by persistent expression of ambient RNA contaminants 

and non-macrophage lineage-defining gene expression (Methods), which possibly represents an efferocytotic 

macrophage population.  

 310 

Cellular ecology of pulmonary TB granulomas 

Given demonstrable differences in cellular composition between early and late granulomas (and bacterial burden), we 

assessed whether specific cell types co-occurred in TB lung granulomas more than would be expected by chance to 

collectively influence control. We calculated the pairwise Pearson correlation matrix between all major cell types and 

subclusters across 26 granulomas (Figure 5A; Methods). Using hierarchical clustering of this pairwise correlation 315 

matrix, we defined 5 groups of cell types whose collective abundances are associated across granulomas (Figure 5A, 

Table S9; Methods). Of these, group 2 (shown in red), which includes mast cells, plasma cells, macrophage subcluster 

4 and certain stromal populations, is significantly expanded in early granulomas. Group 4 (shown in navy blue), which 

consists of T cell subclusters T1-T17, Stem-like, Cytotoxic C2, C4, & C6, Metallothionein and SRRM2+, is 

significantly higher in late granulomas (Figure 5B, Table S10,S11).  320 

 

Cell-Cell Interactions Correlate with Granuloma-level Bacterial Burden 

To further explore how the distinct cellular ecosystems observed in early and late lesions may successfully or 

unsuccessfully coordinate bacterial control, we examined putative cell-cell interactions within each. We focused our 

analysis on signaling from the groups of cells uniquely enriched within early and late lesions. For each potential 325 

interacting cell-type pair, we constructed edge weights for receptor-ligand combinations, adjusting to account for 
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differences in the abundance of the sender cell type, relative ligand/receptor expression, and the percent of receptor 

positive cells (Methods).  

 

Collectively, our interaction analysis revealed dramatic potential differences between early and late-appearing lesions 330 

that may reinforce reduced bacterial control in the former and facilitate bacterial clearance in the latter. Specifically, 

in early-appearing granulomas, we infer dense communication between and from the cellular subsets of group 2; this 

is dominated by mast cells signaling to plasma cells, T/NK cells and multiple macrophage populations, including Mac 

2 and Mac 5 (Figure 5C, Table S12), via canonical type-2 cytokines, including IL-4/13, which may play a role in the 

macrophage epithelialization associated with granuloma formation (82), as well as active endothelial crosstalk. In late-335 

appearing granulomas, on the other hand, we observe augmented T1-T17 signaling to other T/NK populations and 

various macrophage populations (Figure 5D, Table S12). However, the majority of cells in group 4 also have the 

capacity drive bacterial control through cytolytic effector activity with limited intercellular coordination. 

 

Discussion 340 

Within an individual with Mtb infection, distinct granulomas can achieve sterilizing immunity, immune standoff, or 

frank immune failure (2, 4, 83, 84). In NHPs, which most closely recapitulate human Mtb infection and disease (85), 

this heterogeneity provides an opportunity to define the cellular and molecular factors that correlate with bacterial 

control to identify potential host-directed prevention and cure strategies for TB. While a spectrum of granuloma-level 

bacterial control has been appreciated previously, the relationship between the timing of granuloma formation and 345 

bacterial control has not been fully explored, nor have the correlates of bacterial control been mapped 

comprehensively. By coupling advanced serial imaging, scRNA-seq, and molecular measures of bacterial growth and 

killing, the present study provides new insights into the temporal evolution of granulomas and immunologic control 

in Mtb infection.  

 350 

Overall, our data highlight the importance of early host-pathogen interactions in control of Mtb. Granulomas that are 

identified late by PET-CT imaging may either be formed later, likely through dissemination (22), or take more time 

to reach the threshold to be identified by PET-CT scans (limit of detection >1mm) because of more efficient immune 

control or a reduction in the Type 2 signaling necessary to drive granuloma formation (82). Regardless of the exact 

mechanism, late granuloma evolution appears to occur in the context of a primed adaptive immune response, 355 

characterized by multiple T and NK cell subclusters. Moreover, our measures of cumulative bacterial burden (CEQ) 

indicate that late granulomas have lower bacterial burden because of greater bacterial killing (CFU/CEQ), linking 

these adaptive immune features to true sterilizing immunity. Consistent with previous observations, our findings 

reinforce a critical role for T cells in the control of Mtb infection. Nevertheless, given the substantial increase in 

resolution, our data paint a more nuanced picture, highlighting several key T/NK subsets—including those defined by 360 

specific hybrid Type1-Type 17, cytotoxic, and stem-like memory signatures—that may play a critical role in bacterial 

control at the local granuloma level and be actionable. 
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The strongest correlate of control was a subcluster of cells with transcriptional features of both Type 1 and Type 17 T 

cells that was expanded in late granulomas. Aspects of these data are consistent with recent observations that 365 

granulomas established in immune primed environments—e.g., existing Mtb infection (86) or intravenous or 

intrabronchial BCG vaccination—are characterized by Th1/17 expression patterns that are associated with protection 

(67, 87); however, we extend these findings, defining appreciable substructure among the T1-T17 subcluster of 

relevance to control. The CD4 T1-T17 subpopulation (subpopulation 1) is most consistent with published descriptions 

of Th1/17 cells (e.g., Th1* or ex-Th17) (57).  These cells may represent precursors to long lived tissue memory, which 370 

has been shown to play a crucial protective role in autoimmunity, bacterial control and memory immune responses to 

pathogens (57, 90-92), including Mtb infection. A recent study using flow cytometry and immunohistochemistry in 

Mtb infected rhesus macaques support an association of Th1 (IFNg+) and Th17 (IL-17+) cells in lung tissue with 

latent infection (88); in contrast, another study using scRNAseq reported activated CD4 and CD8 T cells including 

Th1 and Th17 in the lung tissue of macaques with pulmonary TB (89). The CD8 subsets within the T1/T17 subcluster 375 

(subpopulations 2 & 3), meanwhile, have not been described previously. The former of these is strongly associated 

with bacterial control and may represent a novel immunologic paradigm that can be exploited for vaccine 

development. Subpopulation 3 intriguingly, expresses elevated TNF and IFNG but does not associated with bacterial 

restriction; further profiling will be necessary to establish the significance of this subset and its relation to previously 

appreciated Type 1 and Type 17 features of control (21, 58-66).  380 

 

Our data also revealed an interesting CD4 and CD8 expressing T cell subcluster associated with late granulomas that 

resembles stem-like T cells (69-71, 93-96). We hypothesize that these cells may be a source of T cell renewal in 

granulomas, and may differentiate into the various functional subsets we observe within them. It is possible, however, 

that these represent memory T cells that are not specific for Mtb antigens, but migrate to the granuloma in response 385 

to inflammation and/or chemokine gradients. Indeed, flow-cytometry based studies support that a majority of T cells 

in granulomas do not respond to Mtb antigens by making cytokines and do not display hallmarks of exhaustion (21, 

25, 97). These stem-like T cells warrant additional study, as they associate with control of Mtb in granulomas and, if 

antigen specific, could be explored as a potential vaccine target.  

 390 

Although both CD4 and CD8 T cells have been implicated in control of Mtb infection, the cytotoxic function of 

lymphocytes in Mtb infection has been relatively understudied, with emphasis placed instead on macrophage 

activating cytokines, such as IFN-𝛾 and TNF. Here, we describe previously unappreciated complexity among 

granuloma cytotoxic cells of relevance to bacterial control. In accordance with another recent study (46), our 6 T/NK 

subclusters do not align neatly with canonical markers of cellular identity that would define them as classical CD8𝛼𝛽 395 

or CD4 T cells, NK, NK T cells, or 𝛾𝛿 T cells, but instead appear to be variable mixtures of innate and adaptive cell 

types with common transcriptional programming. Of these, cytotoxic subcluster 4, which is enriched in CD8𝛼𝛽 T 

cells and defined by expression of several granzymes and perforin, likely represents cytotoxic effector T cells that 

target infected cells for apoptosis and is associated with late granulomas. Cytotoxic C5, characterized by Granzyme 

K expression (98) which has been associated with T cell dysfunction in the setting of immune-aging, are enriched in 400 

early granulomas and associated with higher bacterial burden. A recent study on lung tissue (but not granulomas) from 
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Mtb infected macaques also found evidence of cytotoxic molecule expression associated with controlled infection 

(89). These findings reveal the importance of cytotoxic innate and adaptive lymphocytes in temporal control of Mtb 

in granulomas, and a potential role for in future prevention and cure strategies.  

 405 

Equally importantly, our data reveal an unexpected strong association between Type 2 immune features and 

granulomas that appear early in infection and fail to control. The high CFU, early granulomas are characterized by 

significantly higher proportions of B cells, plasma and mast cells. In other conditions such as rheumatoid arthritis, 

mast cells are known to induce differentiation of B cells to specific IgA secreting plasma cells (99). The expression 

of IGHA and IGHG and presence of plasma cells in granulomas support the notion that antibodies may play a 410 

prominent role in Mtb infection, perhaps with different effects as a function of antibody quality (44, 100, 101). The 

localization of mast cells—major producers of Type 2 cytokines, such as IL-4 and IL-13 which have been shown to 

modulate CD8 T cell function, inhibiting cytotoxic activity (102, 103)—in and around the lymphocyte cuff suggests 

potential regulatory interactions, further reinforced by our cell-cell interaction modeling. While mast cells have been 

described in granulomatous conditions, such as TB lymphadenitis (104), leprosy skin lesions (105), and liver 415 

granulomas (106), and may orchestrate immune cross talk in TB (107), this is the first description of direct correlation 

with failure of Mtb control in TB granulomas. However, it is possible that these cell types are a result of, rather than 

a cause of, higher bacterial burden and their regulatory features may reflect an attempt at curbing pathologic immune 

activation. While more detailed studies on the roles of mast cells in TB are indicated, this observation provides exciting 

new avenues to explore the immune architecture of failed immunity in TB lung granulomas and suggests novel 420 

intervention strategies.  

 

There are several limitations to this study. The granuloma is an inherently heterogenous environment and includes 

necrotic debris, requiring robust technical correction and quality control; this results in an analysis of only high-quality 

cells. Since only a fraction of cells from each granuloma are analyzed, proportions may not reflect the true composition 425 

of cells within a granuloma and may be skewed toward lymphocytes, highlighting the importance of orthogonal 

validations. In bulk RNA-sequencing analysis of a distinct set of early and late granulomas, we observed generally 

similar trends in cell-type composition. Further, we focused primarily on cell types, sub-clusters, and subpopulations 

that were correlated with time of granuloma appearance and control. While macrophages are clearly an important 

component of the immune response in TB granulomas, the heterogeneity of the myeloid populations requires further 430 

in-depth evaluation with additional samples and time points to appreciate which functions and cell types are associated 

with bacterial restriction or permissiveness, and how. Relatedly, the granuloma landscape investigated here is from a 

single, albeit pivotal, time point. It is likely that expression of certain genes that arise early in infection and then are 

downregulated as infection progresses will be missed, as will some populations critical to guiding overall granuloma 

outcome. More generally, matched analyses of earlier and later time point post-infection, along with analysis of lung 435 

tissue and granulomas from vaccinated or reinfected and protected animals will provide a more complete picture of 

the temporal control of Mtb in granulomas and is the subject of future work.  
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In summary, our data represent the first scRNA-seq investigation of the cellular and molecular features that 

dynamically associate with natural control of Mtb in pulmonary granulomas. Beyond recapitulating canonical 440 

correlates, our analysis defines nuanced actionable innate and adaptive functional cell states, and sheds light on 

essential dynamics among host-pathogen interactions (108). Collectively, our data substantiate a model where Mtb 

burden within early forming lesions is dictated by the interplay among restrictive, inflammatory innate-like and 

permissive, protective type-2 (wound healing) responses seeking to balance bacterial control with the maintenance of 

essential tissue functionality, respectively. In those lesions forming later in infection, this balance can be tipped by the 445 

emergence of adaptive T1-T17 and cytotoxic responses which are capable of controlling local disease, given sufficient 

access. Such a framework is consistent with previous observations of natural (86) or induced (67) control, and 

nominates several putative axes of intra- and intercellular signaling that may prove therapeutically or prophylactically 

valuable, as well as intellectual links to other inflammatory and infectious diseases that affect epithelial barrier tissues 

(45, 109). 450 
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Figures 

 770 
Figure 1. Study design, experimental set up, characteristics of animals over the course of Mtb infection and 
granuloma bacterial burden. 

(A) Study design: Cynomolgus macaques (n=4) were infected with a low-dose inoculum of Mtb (Erdman strain) and 
serial PET-CT scans were performed at 4, 8, and 10 weeks post-infection with the final scan used as a map for lesion 
identification at necropsy. Individual granulomas were excised and homogenized. CFU and CEQ assays were 775 
performed on all granulomas (top right) and 26 individual granulomas across 4 animals were randomly selected at 
necropsy for Seq-Well assays (bottom right). (B) Distribution of CFU per granuloma sampled for Seq-Well assay for 
each animal. Each dot is an individual granuloma. (C) CFU log10 per granuloma (total live bacteria) organized by time 
of detection by PET-CT scan (Table S1): early granulomas (maroon), late granulomas (navy blue). Each symbol is a 
granuloma. Box plot showing median, IQR and range. Mann Whitney U for panels E-G. (D) CEQ log10 per granuloma 780 
(Chromosomal equivalents, CEQ, live + dead Mtb) organized by time of detection. (E) Ratio between CFU (viable 
bacteria) and CEQ (total bacterial burden) i.e., relative bacterial survival. Lower ratio (negative values) corresponds 
to increased killing and higher ratio corresponds to increased Mtb survival.  
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Figure 2 Analysis of single-cell sequencing of tuberculosis lung granulomas 785 

(A) UMAP plot of 109,584 cells from 26 granulomas colored by identities of 13 generic cell types. (B) Expression 
levels of cluster defining genes enriched across 13 generic cell types. Color intensity corresponds to the level of gene 
expression, while the size of dots represents the percent of cells with non-zero expression in each cluster. (C) 
Significant correlations between proportion of T/NK cells, mast cells, plasma cells and endothelial cells with bacterial 
burden of individual granulomas (Log10 CFU per granuloma) using non-parametric Spearman’s rho correlation test. 790 
(D) Difference in granuloma proportional composition of cell type clusters and CFU between early (maroon) and late 
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granulomas (navy blue). Statistics: Mann Whitney U. p values are presented in boxes. Box plot showing median, IQR 
and range; each dot represents a granuloma.  

 
Figure 3.Diversity in the unified T and NK cell cluster and relationship to granuloma-level bacterial burden. 795 

 (A) Subclustering 41,222 cells in the unified T/NK cell cluster, colored by subclusters. Subclusters are numbered 
based the expression patterns. (B) Frequency of expression of TCR genes TRAC, TRBC1 or TRBC2 (yellow) and 
TRDC (green) across 13 T/NK cell subclusters. (C) Expression levels of T/NK cell cluster-defining genes. Color 
intensity corresponds to the level of gene expression and the size of dots represents the percent of cells with non-
zero expression in each cluster. Y-axis identifies subclusters. (D) Difference in assigned proportion of T/NK cells 800 
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and subclusters (1-13) between early (maroon) and late granulomas (navy blue). Statistics: Mann Whitney U. p 
values are presented in boxes. Box plot showing median, IQR and range; each dot represents a granuloma.  
 

 
Figure 4 Phenotypic Diversity in T1-T17 cells. 805 
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 (A) T1-T17 subcluster overlaid on unified T/NK cell cluster (left) and colored by normalized expression values for 
T1-T17 subcluster-defining genes (bold outlined boxes) and non-enriched canonical Type1 and Type 17 genes 
(right). (B) Subclustering of 9,234 T1-T17 cells resulting in 4 phenotypic sub-populations. (C) Cluster defining 
genes for T1-T17 subpopulation 1, 2, 3 and 4. Color intensity corresponds to the level of gene expression and the 
size of dots represents the percent of cells with non-zero expression in each cluster. (D) Subclustering of T1-T17 810 
cells colored by normalized gene expression values for selected subcluster (top row) and sub-population defining 
genes. (E) Difference in T1-T17 sub-populations proportion between early (maroon) and late granulomas (navy 
blue). Statistics: Mann Whitney U.. Box plot showing median, IQR and range; each dot represents a granuloma.  

 
Figure 5 Cellular ecosystem in TB lung granulomas. 815 

 (A) Pairwise Pearson correlation values proportions of canonical cell types and T/NK and macrophage subclusters 
across 26 granulomas. Hierarchical clustering of correlation coefficients identified 5 groups (indicated by color and 
number) of cell types with correlated abundance in granulomas. (B) Relationship between the distribution of 
correlated cell-types and bacterial burden and timing of granuloma establishment (left), and across all 26 
granulomas ordered from lowest CFU (left) to highest CFU (right) and timing of granuloma detection in PET-CT. 820 
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Colored boxes which granulomas came from which animal by salmon boxes (3817), yellow boxes (3917), Navy 
blue boxes (4017) and 4217 boxes (light blue) and time of detection is indicated by dark blue boxes (10 weeks) and 
maroon boxes (4 weeks). (C) Circos plot showing receptor-ligand edge weights for interactions between various cell 
types in early granulomas. Group 2 cell types highlighted with red boxes.(D) Circos plot showing receptor-ligand 
edge weights for interactions between various cell types in late granulomas. Group 4 cell types are highlighted with 825 
blue boxes. 
 
 
Table 1. T/NK subclusters characteristics and annotation 
 830 

 

Subclusters CD4/CD8 and TCR Markers Inference 
Cytotoxic C1 CD8A, TCRA, 

TCRB, TCRD 
GNLY,  PRF1, GZMH, GZMA GZMB, 

KLRD1, KLRC1, KLRC2, NKG7 
innate CD8+ T cells (possibly NKT 
cells), gd T cells, and natural killer 

cells (NK)tri-cytotoxic potential 
Cytotoxic C2 CD8A, TCRA, 

TCRB, TCRD 
PRF1,KLRC1, KLRB1, KLRG1, CD69, 

NR4A1, EGR1, EGR2 and DUSP2. 
NFKBIA (IkB), NFKBIZ  and TNFAIP3, 

Gamma delta T cells, Peripheral 
tolerance, Activation, Inhibition of 

NFkB signaling 
Cytotoxic C3 CD8A, TCRA, 

TCRB, TCRD 
XCL1, EGR1, NR4A1 XCL-1+ NK cells 

Cytotoxic C4 CD8A, TCRA, 
TCRB, CD4 (low) 

PRF1, GZMH, GZMB, GZMM, CXCR1, 
TGFBR3, S100A10, AHNAK, KLF3, 

and ZEB2. 
KLRD1, KLRF1, KLRK1 and NKG 

CD8 T cells, Early differentiation, 
Regulation, Apoptosis, 

Tissue residency 

Cytotoxic C5 CD8A, TCRA, 
TCRB, 

GZMK, CRTAM, PIK3R1, GZMM, 
EOMES, KLRG1 

Granzyme K expressing CD8 T cells 

Cytotoxic C6 CD8A, TCRA, 
TCRB, 

GZMK, FTH1  

Stem-like CD4, CD8A/B PLK2, TCF7, CCR7, IL7R, TXNIP, 
CD69  and ITGB1 

Stem-like, early memory, self-
renewal 

T reg CD4, CD8A/B FOXP3, CTLA4, CGA, TIGIT, 
TNFRSF18, IL1RL1, IKZF4, GARTA3 

Regulatory T cells 

Interferon CD4, CD8A/B MX1, ISG15, IFIT3, IFI6, IFIT1, 
RSAD2, and MX2 

Interferon inducible T cells 

Metallothionin CD4, CD8A/B MT1 and MT2 Metallothionin+ T cells 

SRRM2 CD4, CD8A/B PNISR and SRRM2 SRRM2+ T cells 

Proliferation CD4, CD8A/B MKI67, STMN1, and TOP2A Proliferating T cells 

T1T17 CD4, CD8A/B, 
TCRA,TCRB, 

Transcription factors RORA, RORC, 
RBPJ, BHLEHE40, FURIN, COTL1, CCL20 
Surface receptors:CCR6, IL23R,CXCR3 
Cytokine: IFNG, TNF 

 

T1T17 hybrid 
tissue-resident effector and 

effector-memory T cells 
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