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Supporting Information 1 

Estimating [Ca2+]i from Collision Events 2 

Because of the quantized nature and low concentration of Ca2+ ions in the presynaptic space, calculating 3 

the instantaneous local calcium concentration just around the SNARE complex of a single docked vesicle 4 

is nontrivial in MCell. Instead, we use effector tiles, small virtual surfaces in the presynaptic space of the 5 

MCell environment, to estimate local concentration from the frequency of calcium ions passing through 6 

them. This section provides a derivation of average [Ca2+]i from the number of “hits”, 𝑁𝐻, of calcium ions 7 

through the effector tile surface. 8 

For a particle diffusing by Brownian motion in 𝑑 dimensions, the probability density function 𝜌 of the 9 

particle’s displacement 𝑟 from its initial position after a time Δ𝑡 is equal to 10 

 𝜌(𝑟, Δ𝑡) =
1

𝜋𝑑 2⁄ 𝜆𝑑
e−𝑟2 𝜆2⁄ , (28) 

where 𝜆 is a diffusion length parameter that depends on the diffusion constant and time step. Since we 11 

are dealing with calcium, we use 12 

 𝜆𝐶𝑎 = √4𝐷𝐶𝑎Δ𝑡, (29) 

where 𝐷𝐶𝑎 = 220 μm2/sec is the calcium diffusion constant [35]. More directly useful, though, is the 13 

average step length along any given axis, in particular, along the component perpendicular to the 14 

calcium-detecting surface: 15 

 𝑙⊥̅ =
𝜆𝐶𝑎

√𝜋
= √

4𝐷𝐶𝑎Δ𝑡

𝜋
. (30) 
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Thinking about the effective volume near the effector tile, the expected number of hits of particles 16 

through the surface from either side during the interval Δ𝑡 becomes 17 

 𝑁𝐻 = 𝑁𝐴𝑙⊥̅𝐴𝐸𝑇[Ca2+]𝑖 , (31) 

where 𝑁𝐴 is Avogadro’s number and 𝐴𝐸𝑇 is the area of the effector tile. Solving for concentration, 18 

 [Ca2+]𝑖 =
𝑁𝐻

𝑁𝐴𝑙⊥̅𝐴𝐸𝑇

. (32) 

Now, the average concentration from the start of the simulation until time 𝑡 becomes 19 

 𝑐(𝑡) =
𝑁𝐻(𝑡)

𝑁𝐴𝑙⊥̅𝐴𝐸𝑇

⋅
Δ𝑡

𝑡
, (33) 

where 𝑁𝐻(𝑡) is the running total number of hits. To find the average Ca2+ concentration over an 20 

arbitrary interval [𝑡𝑖, 𝑡𝑗]: 21 

 〈[Ca2+]𝑖([𝑡𝑖, 𝑡𝑗])〉 =
𝑡𝑗𝑐(𝑡𝑗) − 𝑡𝑖𝑐(𝑡𝑖)

𝑡𝑗 − 𝑡𝑖
. (34) 

For each spike train used as input to the simulation, we averaged the instantaneous local active zone 22 

calcium concentration over 2000 trials in time steps of 0.1 ms. 23 

Chemical Kinetics of Calcium Channels, Buffers, and Pumps 24 

The kinetic schemes and kinetic rate constants for the voltage-dependent calcium channel (VDCC), 25 

calbindin (CB), and plasma membrane Ca2+-ATPase (PMCA) pump models used for this paper, along with 26 

their associated references, are shown below in S1 Fig and S1 Table. 27 
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 28 
S1 Fig. State Diagrams for VDCC, Calbindin, and PMCA. 29 

All diagrams reproduced with permission from Nadkarni et al. [35]. A: VDCC state transition model 30 
adapted from Bischofberger et al.[68]. Transition rates αij and βji depend on membrane potential v. B: 31 
State transitions for calbindin (CB) at high-affinity (H) and medium-affinity (M) Ca2+-binding sites. On 32 
rates (kh+ and km+) are proportional to [Ca2+]i. C: PMCA pump state diagram with Ca2+ interactions 33 
depicted on the relative side of the membrane. Ca2+ leakage occurs only in state PMCA0. Association rate 34 
kpm1 is proportional to [Ca2+]i. 35 
 36 
 37 

  38 
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S1 Table. Parameter Values for VDCC, Calbindin, and PMCA. 39 

Table adapted from [35]. VDCC rates follow αi(v)=αi0exp(v⁄vi) and βi(v)=βi0exp(-v⁄vi). VDCC parameters 40 
values adapted from [68]. Calbindin parameter values adapted from [77]. PMCA parameter values 41 
adapted from [78]. 42 

Parameter Value 

VDCC - [68] 

𝛼10, 𝛼20, 𝛼30, 𝛼40 4.04, 6.70, 4.39, 17.33 ms−1 

𝛽10, 𝛽20, 𝛽30, 𝛽40 2.88, 6.30, 8.16, 1.84 ms−1 

𝑣1, 𝑣2, 𝑣3, 𝑣4 49.14, 42.08, 55.31, 26.55 mV 

Calbindin-D28k - [77] 

𝑘ℎ+ 5.5 × 106  M−1s−1 

𝑘ℎ− 2.6 s−1 

𝑘𝑚+ 4.35 × 107 M−1s−1 

𝑘𝑚− 35.8 s−1 

PMCA - [35, 78] 

𝑘𝑝𝑚1 1.5 × 108  M−1s−1 

𝑘𝑝𝑚2 20 s−1 

𝑘𝑝𝑚3 100 s−1 

𝑘𝑝𝑚4 1.0 × 105 s−1 

𝑘𝑝𝑚𝑙𝑒𝑎𝑘 12.264 s−1 

 43 
In response to an action potential stimulus, voltage-dependent Ca2+ channels (VDCCs) transition 44 

stochastically to an open state, through which Ca2+ ions may enter the axon down a sharp 45 

electrochemical gradient [68, 126]. Because this process does not depend on diffusion, a deterministic 46 

simulation of state probabilities can perfectly capture the shape of the histogram of Ca2+ influx rate 47 

averaged over infinite trials, as in S2 Fig. Notice that the rate of influx rises to a peak and returns 48 

completely to baseline within a span of about 2 ms, so any spike-evoked vesicle fusion after this initial 49 
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influx is due entirely to internal dynamics as Ca2+ diffuses, interacts with the buffer and Ca2+ sensors, and 50 

vacates through the pumps. 51 

 52 
S2 Fig. Action-Potential-Evoked Ca2+ Current. 53 

A: Action-potential-like waveform applied to axon. B: Probability of a single VDCC being in the open 54 
state in response to the action potential in panel A increases from about 10–5 to around 96% during the 55 
spike before quickly shutting off; computed from deterministic simulation of state probabilities. C: Rate 56 
of Ca2+ influx through a single, pathologically open channel (red) and through a typical channel (blue), 57 
whose probability of being open follows B. 58 
 59 
Of course, the existence of a nonzero [Ca2+]i0 implies that the Ca2+-sensors of the SNARE complex will 60 

induce vesicle fusion at some finite, if extremely slow, rate. At very low concentrations, this would 61 

require anywhere from many thousands to many trillions of trials to build up sufficiently informative 62 

release histograms. Instead, we reran the deterministic model at constant values of [Ca2+]i with no Ca2+ 63 

spike and measured the steady-state release rates after 10 seconds of simulated time (S3 Fig). Perhaps 64 

unsurprisingly, the spontaneous release rates grow in proportion to the 5th (2nd) power of [Ca2+]i0 for 65 

synchronous (asynchronous) release, according to the number of Ca2+ ions needed to bind before the 66 
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synaptotagmin can initiate fusion. At very high [Ca2+]i0, though, the release rates saturate to 𝛾𝑆  and 𝛾𝐴 67 

(see Table 1) as the probability of being in the releasable state approaches one. 68 

 69 
S3 Fig. Spontaneous Rates of Vesicle Fusion Increase with [Ca2+]i0. 70 

For small [Ca2+]i0, S0=kS⋅([Ca2+]i0)5 and A0=kA⋅([Ca2+]i0)2, where kS≈6×10–4 ms–1⋅μM–5 and kA≈2×10–3 ms–71 
1⋅μM–2. As [Ca2+]i0⟶∞, S0⟶γS and A0⟶γA. Values for S0 and A0 at [Ca2+]i0=100 nM, which is used 72 
throughout most of this paper, are pointed out for reference. 73 
 74 

Effects of Buffer and Spatial Modeling on Release Dynamics 75 

Running these simulations in MCell, rather than as a much simpler well-mixed model, was essential for 76 

capturing both distance-dependent effects and temporal features of the Ca2+ waveform. The well-mixed 77 

assumption, which ignores diffusion and treats all chemical processes as occurring at the same point in 78 

space, does not hold at the spatial and temporal scales of interest in the synapse [46, 47]. As seen in Fig 79 

2C, peak Ca2+ drops precipitously even over fractions of a micron away from the VDCC cluster, and the 80 

shape of the response changes dramatically over this same scale, transitioning from a predominantly 81 

synchronous to a predominantly asynchronous profile. These trends, elucidated by the spatial MCell 82 

simulation, are completely absent in the space-less well-mixed simulation (maroon curves, S4 Fig), even 83 

when all other aspects of the model remain the same, such as the number of VDCCs, calbindin buffer 84 
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molecules, and PMCA pumps and the set of all state transitions for each molecular species. Note also 85 

from S4 Fig A that the transition in time from the fast synchronous component to the extended 86 

asynchronous component is much sharper in the case without space. The extra Ca2+ decay component 87 

arises from local saturation effects. After the initial rapid influx, the calbindin buffer immediately around 88 

the VDCC cluster becomes saturated, causing the high free Ca2+ that remains to overwhelm the PMCA 89 

pumps’ ability to evacuate it from the area. The pumps remove it at a constant maximum rate, leading 90 

to a short linear decay only evident very near the VDCCs (yellow traces, S4 Fig A) or when all calbindin is 91 

removed from the simulation (S4 Fig B). Such local saturation effects do not appear in the well-mixed 92 

case because all buffer molecules and pumps are simultaneously available to all the free Ca2+ ions. Thus, 93 

in light of all these effects, the spatial MCell model is crucial for the task of properly characterizing the 94 

Ca2+ transient in the synapse. 95 

  96 
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 97 
S4 Fig. Spatial Modeling Important for Capturing Fine-Grain Features of Ca2+ Transients. 98 

Color scheme identical to that used in Fig 2: yellow to blue represent proximal to distal Ca2+ sensors. A: 99 
[Ca2+]i measured at increasing distance from VDCC source (yellow to blue), with well-mixed 100 
approximation overlaid for comparison (maroon). Inset focuses on shorter time scale. B: Profiles with 101 
calbindin removed from MCell (yellow to blue) and well-mixed model (maroon). Note that peak [Ca2+]i 102 
for the most proximal case extends up to 81 μM, but is cut off for clarity. 103 
 104 
Most neurotransmitter release occurs within a sharp window after an action potential stimulus [127-105 

130]. The presence of the Ca2+ buffer calbindin plays an instrumental role in this by rapidly removing 106 

most of the free Ca2+ and then slowly releasing it over an extended period at a rate that the active PMCA 107 

pumps can handle. This action significantly tightens the window for Syt-1-mediated synchronous release 108 

[40, 131] while also extending the time window for Syt-7-mediated asynchronous release. Without a 109 

buffer, however, the free [Ca2+]i does not drop off immediately but decays linearly toward baseline over 110 

a few tens of milliseconds, saturating the capacity of the PMCA pumps to remove the ions (S4 Fig B, S5 111 

Fig A,C). Thus, removing calbindin from the simulations both amplifies synchronous release in a time 112 
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window near the spike and suppresses asynchronous release long after the stimulus (S5 Fig B,D). This 113 

agrees with experimental evidence that endogenous Ca2+ buffers limit the rate of synchronous synaptic 114 

release [131]. 115 

 116 
S5 Fig. Effect of Calbindin Buffer on Spike-Evoked Ca2+ Profile and Release Rates. 117 

Action-potential-like stimulus delivered to model axon starting at 0 ms. Diffusion is assumed to be 118 
instantaneous, and molecular state probabilities are tracked deterministically over time. A: Free [Ca2+]i 119 
with no calbindin buffer decays linearly with time due to saturation of PMCA pumps. B: Syt-1/7-120 
mediated release rates are large but short-lived in response to unbuffered Ca2+. C: Free [Ca2+]i with 121 
calbindin added to the axon has much smaller magnitude and much narrower peak but has much longer 122 
tail. D: Vesicle release in response to buffered Ca2+ is much less pronounced. The calbindin buffer 123 
reduces the rate of synchronous transmission but extends the window for pronounced asynchronous 124 
transmission. 125 
 126 
After obtaining the distance-dependent Ca2+ traces, we could use them to see how the rate of release 127 

changes with distance. Using the above-measured Ca2+ traces as input to the deterministic Markov 128 

model of Syt-1/7, we once again calculated the instantaneous rates of spike-evoked release for single 129 

vesicles at increasing distances. As expected, the single-vesicle probability of release decays with 130 
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distance until it reaches a distance-independent baseline level (S6 Fig), although this occurs differently 131 

for the synchronous and asynchronous mechanisms.  132 

 133 
S6 Fig. Synchronous and Asynchronous Release Rates Decrease with Distance from the 134 

Ca2+ Source. 135 

Color scheme identical to that used in Fig 2 and S4 Fig: yellow to blue represent proximal to distal Ca2+ 136 
sensors. A: Synchronous release rate. B: Integrated probability of synchronous release falls off nearly 137 
exponentially with distance to a baseline level. C: Asynchronous release rates. D: Integrated probability 138 
of asynchronous release also decays with distance to some baseline, but not exponentially. 139 
 140 
To account for the change in release profiles mathematically, we ran a fitting algorithm on each profile, 141 

exploring the space of values both for the magnitude of each component of release (𝑃𝑐  in Eq (1) and (3)) 142 

and for the temporal filter parameters (𝑘𝑐, 𝜇𝑐, and 𝜎𝑐  in Eq (3) and (4)). We assumed that the time 143 

constants of release rate decay (𝜏𝑐) remained the same for the release histograms at all distances and 144 

that any changes in the size or shape in the histograms are due to depleted levels of [Ca2+]i and to 145 

increasing delays for Ca2+ ions to reach the sensors. Accordingly, we expected to see the 𝑃𝑐  values decay 146 
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with distance as Ca2+ is dissipated, sequestered, and removed; the 𝑘𝑐  values to slow down as the limiting 147 

delay grows with distance; and the values of 𝜇𝑐  and 𝜎𝑐  to increase somewhat due to greater numbers of 148 

potential interactions before the Ca2+ ions complete their traversal. The fitting algorithm produced sets 149 

of parameters at each location in the synapse that generally followed these trends (S7 Fig C,D), although 150 

the noise in the data and the very high dimensionality of the problem prevented smooth trends from 151 

being ascertained. 152 

 153 
S7 Fig. Parametric Fits to Release Histogram Profiles at Increasing Distance from the Ca 2+ 154 

Source. 155 

A, B: Fitted release profiles (black) imposed over the true histograms for synchronous (A, blue) and 156 
asynchronous (B, red). C: Parameter values as a function of distance for synchronous release. D: The 157 
same for asynchronous release. 158 
 159 

  160 
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Applying Release Start Time Filter to Release Rate Profiles 161 

The release-start-time filter introduced in Eq (3) and (4) follows an ex-Gaussian distribution, 162 

𝑎(𝑡; 𝑘𝑐 , 𝜇𝑐 , 𝜎𝑐), representing trial-to-trial variation in the start time for spike-evoked release due to the 163 

stochasticity of buffered diffusion. This can be treated as adding an exponentially distributed random 164 

delay with rate parameter 𝑘 and a normally distributed random delay with mean 𝜇 and standard 165 

deviation 𝜎 to the spike time at 𝑡 = 0, removing subscripts for simplicity. Applying this filter to a release 166 

profile component 𝑟(𝑡) = 𝑃 𝜏⁄ (e−𝑡 𝜏⁄ u(𝑡)) from Eq (1) and (3) requires performing a convolution 167 

operation as shown below: 168 

 

𝑟(𝑡) =
𝑃

𝜏
(e−𝑡 𝜏⁄ u(𝑡)) ∗ 𝑎(𝑡; 𝑘, 𝜇, 𝜎) 

          =
𝑃

𝜏
(e−𝑡 𝜏⁄ u(𝑡)) ∗ (𝑘e−𝑘𝑡u(𝑡)) ∗ (

1

𝜎√2𝜋
𝑒

−
(𝑡−𝜇)2

2𝜎2 ) 

          = (𝑃
𝑘

𝑘𝜏 − 1
(e−𝑡 𝜏⁄ − e−𝑘𝑡)u(𝑡)) ∗ (

1

𝜎√2𝜋
𝑒

−
(𝑡−𝜇)2

2𝜎2 ). 

(35) 

Stopping here and replacing the Gaussian component with a delta function by letting 𝜎 → 0 yields 169 

 𝑟(𝑡) = 𝑃
𝑘

𝑘𝜏 − 1
(e−(𝑡−𝜇) 𝜏⁄ − e−𝑘(𝑡−𝜇))u(𝑡 − 𝜇), (36) 

which includes both an initial phase where release rate ramps up after 𝑡 = 𝜇 and a decay phase where 170 

release rate falls off exponentially. Note that the area under the curve, and thus the probability of 171 

release, remains the same. For 𝜎 > 0, the final form of the release component looks like 172 
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𝑟(𝑡) = 𝑃
𝑘

𝑘𝜏 − 1
(e

−(𝑡−(𝜇+
𝜎2

2𝜏)) 𝜏⁄
Φ (

𝑡 − (𝜇 + 𝜎2 𝜏⁄ )

𝜎
)    

− e
−𝑘(𝑡−(𝜇+

𝜎2

2 𝑘))
Φ (

𝑡 − (𝜇 + 𝜎2𝑘)

𝜎
)), 

(37) 

which basically just adds a little extra rightward temporal shift and smooths out the corner in the profile 173 

shape, due to replacing the step function of Eq (36) with the CDFs of two normal distributions. Fig 8 A-C 174 

shows how this filter affects the shape of a release profile component. 175 

Facilitation Nonlinearities 176 

Release probability increases from the start of an action potential to its peak and from one spike to the 177 

next because of the accumulation of Ca2+ on the sensor in the SNARE complex. Even when not enough 178 

Ca2+ has accumulated to trigger vesicle fusion on the first spike, it can still increase the probability of 179 

reaching the releasable state after subsequent spikes. As can be seen in S8 Fig, Ca2+ entry from one spike 180 

can predispose the distribution of bound states of the sensor to trigger release with greater alacrity on 181 

subsequent spikes. 182 
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 183 
S8 Fig. Change in the Balance of Binding Kinetics and Internal State Distribution of Ca2+ 184 

Sensor with Spike History. 185 

State diagrams the same as shown in Fig 3. A: Synchronous state diagrams. At baseline [Ca2+]i (first red 186 
dot), unbinding kinetics (left arrows) overpower binding (right arrows), biasing Syt-1 toward unbound 187 
state (S0; top diagram), with almost no probability of having any Ca2+ ions bound before an action 188 
potential (left pie chart). During peak Ca2+ influx (second red dot), binding rates (thicker right arrows) 189 
overpower unbinding, biasing Syt-1 toward its fully-bound releasable state (S5; lower diagram), with 190 
much greater probability of having at least some Ca2+ bound (right pie chart). B: The same for 191 
asynchronous release with Syt-7, whose releasable state requires two Ca2+ ions bound (A2). Slower 192 
kinetics lead to only slight bias in favor of binding during an action potential (slightly thicker right arrows 193 
in lower diagram), leading to miniscule increase in probability of being in the releasable state on later 194 
spikes (right pie chart). Release becomes more probable on subsequent spikes because previous activity 195 
has pushed synaptotagmin into higher-bound states, making reaching the releasable state easier. 196 
 197 
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Simulations with the MCell model demonstrate how nonlinear binding cooperativity in the Ca2+ sensors 198 

induces facilitation in excess of what would be expected from cytoplasmic Ca2+ buildup alone. S9 Fig 199 

shows how the combined release rate from synchronous and asynchronous release mechanisms (dark 200 

green: spike ramp; light green: probe spikes of different trains) grows far more quickly than does spike-201 

evoked [Ca2+]i (black/gray). Thus, the magnitude of facilitation may be nonlinear due to the internal 202 

binding kinetics of the synaptotagmin.  203 

 204 
S9 Fig. Empirical Facilitation in Release Probability is a Nonlinear Function of Spike 205 

History and Ca2+ Buildup. 206 

A: [Ca2+]i and release rate in response to a 5-spike ramp stimulus with a 10-ms ISI (black and dark green), 207 
followed by a single probe spike at increasing delay from the end of the ramp (gray and light green; 208 
multiple cases overlaid on the same plot). Release rate grows much faster than Ca2+ buildup can account 209 
for. 210 
 211 
As described in Methods, we explored facilitation for 136 unique spike trains, each composed of a 212 

constant-frequency spike ramp followed by a single probe spike at increasing interspike intervals (ISI). As 213 

an example, S9 Fig overlays multiple spike trains, each with a spike ramp of 5 spikes with 10-ms ISI (dark 214 
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colors) and each with a separate probe spike at exponentially increasing ISI (light colors). To gain an 215 

intuition of how facilitation varies across different spike histories, we calculated the integrated release 216 

magnitude of the final spike of each train, according to 217 

 𝑃(𝑛) = ∫ (𝑟∗(𝑡 − 𝑡𝑠𝑛) − 𝑟0)𝑑𝑡
∞

𝑡𝑠𝑛

= ∑ 𝑃𝑐(𝑛)

𝑁

𝑐=1

, (38) 

where tsn is the time of spike n, 𝑟∗(⋅) is the empirical release rate function after this spike, given that no 218 

further activity occurs, and 𝑟0 is the spontaneous release rate. The empirical facilitation factor is simply 219 

the ratio of integrated release magnitude on spike 𝑛 to that on spike 0: 220 

 𝐹(𝑛) =
𝑃(𝑛)

𝑃(0)
, (39) 

Note that this empirical facilitation factor applies to the sum of all release components and does not 221 

correspond to any one component specifically. As can be seen in S10 Fig, empirical facilitation increases 222 

along a constant-frequency spike ramp and diminishes thereafter for increasing ISI of the following 223 

probe spike back toward baseline. However, the level of facilitation is not a simple function of the most 224 

recent activity but depends on the rate of stimulation prior to the last spike.  225 
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 226 
S10 Fig. Empirical Facilitation in Release Probability is a Nonlinear Function of Spike 227 

History. 228 

Integrated release fidelity (P(n)) relative to baseline (P(0)) for the various stimulus cases explored. Ramp 229 
# indicates the number of spikes in the ramp preceding the probe spike, and Δt represents the ISI 230 
between the last ramp spike and the probe spike. Spike history noticeably affects the growth of 231 
facilitation, as seen for ramps with 2-ms ISIs (A), 5-ms ISIs (B), 10-ms ISIs (C), and 20-ms ISIs (D). Different 232 
colors distinguish facilitation functions with different spike histories. Dark lines follow relative release 233 
fidelity for spikes along spike ramps, and dotted lines follow relative release fidelity for probe spikes. 234 
 235 

Intuitive Exploration of Facilitation Function Behavior 236 

The facilitation function introduced in this paper includes a nonlinear component that prevents the 237 

facilitation factor from exceeding some saturation limit. It does so by setting a limiting number of equal-238 

sized steps to saturation, 𝑁, and then decreasing each step size according to 239 
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𝑓(𝑛) = 𝑓(𝑛 − 1)e−Δ𝑡 𝜏⁄ + 1 − (

𝑓(𝑛 − 1)e−Δ𝑡 𝜏⁄

𝑁
)

𝑁

, 𝐹(𝑛) = 𝑓(𝑛)𝜉, 
(40) 

where 𝑓(𝑛) is the facilitation function after 𝑛 action potentials, Δ𝑡 is the time since the previous spike, 𝜏 240 

is the facilitation decay time constant, 𝜉 is the facilitation factor nonlinearity, and 𝐹(𝑛) is the facilitation 241 

factor to be multiplied by the release rate profile (see Eq (12)). Note that subscripts have been omitted 242 

to focus on the facilitation of a single release component. 243 

To gain a better intuition of this function, consider the limit as 𝑁 → ∞, 244 

 𝑓(𝑛) = 𝑓(𝑛 − 1)e−Δ𝑡 𝜏⁄ + 1, 𝐹(𝑛) = 𝑓(𝑛)𝜉. (41) 

As stimulus frequency becomes unphysiologically high (Δ𝑡 → 0), or as 𝜏 → ∞, the exponential decay 245 

does not remove any facilitation between spikes and 𝑓(𝑛) = 𝑓(𝑛 − 1) + 1. In other words, 246 

 𝑓(𝑛|𝑛 ≪ 𝑁) ≈ 𝑛   ⇒     𝐹(𝑛|𝑛 ≪ 𝑁) ≈ 𝑛𝜉  (42) 

for sufficiently large 𝑁 and small Δ𝑡/𝜏. Although 𝑓(𝑛) grows linearly for small 𝑛, the facilitation factor 247 

eventually approaches its steady-state limit at 248 

 𝑓(∞) ≈ 𝑁    ⇒     𝐹(∞) ≈ 𝑁𝜉 (43) 

due to the third term of Eq (16) and (40). For cases with a smaller, constant frequency of stimulation, 249 

the steady-state value for the facilitation component can be found by rearranging Eq (40) with 250 

𝑓(𝑛) = 𝑓(𝑛 − 1) = 𝑓(∞) and solving the polynomial 251 

 (𝑁−𝑁 exp (−
𝑁Δ𝑡

𝜏
)) 𝑓(∞)𝑁 + (1 − exp (−

Δt

𝜏
)) 𝑓(∞) − 1 = 0. (44) 

For very large 𝑁, the first term approaches 0, yielding 252 

 𝑓(∞) = (1 − exp (−
Δ𝑡

𝜏
))

−1

 ⟹   𝐹(∞) = (1 − exp (−
Δ𝑡

𝜏
))

−𝜉

. (45) 
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Thus, there is a finite, spike-frequency-dependent limit to facilitation even without the saturation 253 

parameter 𝑁. The function facilitates linearly for the first several spikes (for large enough 𝑁) and then 254 

plateaus to some maximum value. For large enough 𝑁 and 𝜉 = 1, this set of functions acts as a simple 255 

convolution of an exponential with the spike times, so long as the 𝜏 of facilitation decay (Eq (16), (40)) 256 

exactly matches the 𝜏 of release rate decay (Eq (1), (3)). This kind of linearity, however, is not observed 257 

in the release profiles studied in this paper. S11 Fig A shows how different values for 𝑁 cause the 258 

otherwise linear step sizes to saturate at different levels. Importantly, 𝑁 ≥ 1 ensures stable growth. S11 259 

Fig B shows how spike frequency also plays a role in determining the steady-state level of facilitation. 260 
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 261 
S11 Fig. Saturation of Facilitation Parameters. 262 

A: Facilitation parameter f(⋅) increases almost linearly from one spike (f(n-1)) to the next (f(n)), until it 263 
approaches some limit N≥1. B: Curves represent the unseen change in f(⋅) between spikes. Dots 264 
represent actual values observed at spike times, values determined by the Ca2+-triggered increment in 265 
release fidelity at each spike. Steady-state value for facilitation parameter limited by stimulus frequency 266 
and by value of N. No facilitation above baseline occurs for N=1. 267 
 268 
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Although we have considered facilitation always to be positive, this model provides the flexibility to 269 

allow negative facilitation. Whereas 𝐹(∞) > 1 for 𝜉 > 0, giving positive facilitation as normal, using 270 

𝜉 < 0 causes 𝐹(∞) < 1, producing depression in the parameter. For 𝜉 = 0, 𝐹(∞) = 1, and no change 271 

can occur in the release-rate parameter. Such negative facilitation, although not observed in the 272 

magnitude of release rate for the Syt-1/7 mechanisms studied here, could apply in other circumstances 273 

to other parameters like time constants or rates that decrease with activity. For instance, short-term 274 

depression induced by Ca2+-triggered inactivation of Ca2+ channels [62, 88-90] could be represented as 275 

second or third component of the facilitation function that has a negative value for 𝜉𝑐𝑖. However, this 276 

feature was not included in the MCell simulations, so it is beyond the scope of the current paper. 277 

Goodness of Fit of Facilitation Models 278 

S12 Fig shows the fraction of the variance of the fitting error unexplained by the facilitation model (FVU 279 

error) for the final spikes of all 136 unique spike trains. Note how the highest error occurs with 280 

synchronous facilitation for interspike intervals (ISI) of 5 ms. More extensive exploration of facilitation 281 

space (i.e., longer spike trains with more diversity of spiking patterns) could elucidate an improved 282 

facilitation model that can achieve lower FVU error across all cases. 283 
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 284 
S12 Fig. Release Rate Parameters and Facilitation Metaparameters Fitted to Empirical 285 

Histogram Profiles. 286 

Errors across all cases in linear and logarithmic space for the predictive model. 287 
 288 


