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Abstract 36 

Epigenetic clocks are widely used aging biomarkers calculated from DNA methylation 37 

data. Unfortunately, measurements for individual CpGs can be surprisingly unreliable 38 

due to technical noise, and this may limit the utility of epigenetic clocks. We report that 39 

noise produces deviations up to 3 to 9 years between technical replicates for six major 40 

epigenetic clocks. The elimination of low-reliability CpGs does not ameliorate this issue. 41 

Here, we present a novel computational multi-step solution to address this noise, 42 

involving performing principal component analysis on the CpG-level data followed by 43 

biological age prediction using principal components as input. This method extracts 44 

shared systematic variation in DNAm while minimizing random noise from individual 45 

CpGs. Our novel principal-component versions of six clocks show agreement between 46 

most technical replicates within 0 to 1.5 years, equivalent or improved prediction of 47 

outcomes, and more stable trajectories in longitudinal studies and cell culture. This 48 

method entails only one additional step compared to traditional clocks, does not require 49 

prior knowledge of CpG reliabilities, and can improve the reliability of any existing or 50 

future epigenetic biomarker. The high reliability of principal component-based epigenetic 51 

clocks will make them particularly useful for applications in personalized medicine and 52 

clinical trials evaluating novel aging interventions.  53 
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Introduction 54 

Biological age estimation has been pursued to study the aging process, predict 55 

individual risk of age-related disease, and evaluate the efficacy of aging interventions 56 

(Jylhävä et al. 2017). A variety of epigenetic clocks based on DNA methylation have 57 

been developed to predict biological age and are among the most studied biomarkers of 58 

aging (Bell et al. 2019; Jylhävä et al. 2017; Horvath & Raj 2018). In humans, these 59 

clocks primarily utilize methylation arrays, particularly Illumina Infinium BeadChips that 60 

measure hundreds of thousands of specific CpG methylation sites. Most existing clocks 61 

were trained by applying supervised machine learning techniques to select a subset of 62 

CpG sites (usually a few hundred) for a weighted linear prediction model of age or aging 63 

phenotypes such as mortality risk. Thus, the prediction value of epigenetic clocks 64 

depends on the aggregate prediction value of individual CpGs. 65 

Alas, previous studies have shown that the majority of individual CpGs are 66 

unreliable, yielding surprisingly variable methylation values when the same biological 67 

specimens are measured multiple times due to technical variance inherent to the array 68 

(Sugden et al. 2020; Logue et al. 2017; Bose et al. 2014). In many cases, technical 69 

variance exceeds the biological variance for the DNAm levels at individual CpGs, as 70 

quantified by the intraclass correlation coefficient (ICC) metric. Poor reliability has been 71 

found for consistent subsets of CpGs across multiple studies, suggesting DNAm 72 

unreliability is replicable and systematic. Technical variation can stem from sample 73 

preparation, the number of beads per CpG on each chip, probe hybridization issues 74 

(cross-reactivity, repetitive DNA, or genetic variation at probe binding sites), probe 75 
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chemistry (differences between Infinium type I and type II probes), batch effects, and 76 

platform differences (e.g., 450K vs. EPIC arrays) (Naeem et al. 2014; Bose et al. 2014; 77 

Pidsley et al. 2016; Logue et al. 2017). Various processing methods may reduce 78 

technical variance, including normalization, batch correction based on control probes, 79 

stringent detection thresholds to address background noise, or limiting the analysis to 80 

high-quality probes (Lehne et al. 2015; Morris & Beck 2015; Naeem et al. 2014). 81 

However, significant unreliability remains post-processing (Sugden et al. 2020; Lehne et 82 

al. 2015). 83 

Ultimately, there is a signal (biological variation) vs. noise (technical variation) 84 

problem for epigenetic clocks. CpGs with high biological variance tend to have higher 85 

reliability (Sugden et al. 2020; Bose et al. 2014). Sugden and colleagues showed 86 

technical variance is large enough relative to biological variance to cause wide-ranging 87 

consequences for epigenetics studies. In particular, they noted that the widely used 88 

Horvath, Hannum, and PhenoAge clocks contain many unreliable CpGs. However, it 89 

was difficult to determine the implications of these unreliable clock CpGs, given that the 90 

reported CpG reliability values were calculated from a cohort where all participants were 91 

18 years old, limiting the biological variance one could observe. Thus, it is unknown how 92 

age-related variance quantitatively compares to technical variance at clock CpGs, given 93 

that aging has widespread effects on DNA methylation (Horvath & Raj 2018; Liu et al. 94 

2020). The aggregate effects of the hundreds of CpGs (each weighted differently) that 95 

compose epigenetic clocks on overall clock reliability have also not been characterized. 96 

It is possible, for example, that the machine learning techniques used to train epigenetic 97 
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clocks penalize noisy CpGs or select CpGs that cancel out noise from one another. 98 

However, a study examining 12 samples indicated that the Horvath multi-tissue 99 

predictor can deviate between technical replicates by a median of 3 years and up to a 100 

maximum of 8 years, and these deviations remain high regardless of preprocessing 101 

method (McEwen et al. 2018).  102 

The threat of technical noise has major implications for utilizing epigenetic clocks 103 

in basic and translational research. For the vast majority of epigenetic aging studies in 104 

which epigenetic age is estimated cross-sectionally, noise could lead to mistaken 105 

measurements for a substantial number of individuals. There is also great interest in 106 

short-term longitudinal measurements of individuals’ biological ages, including for 107 

clinical trials and personalized medicine that aim to improve health by modifying 108 

biological age. Such studies may be particularly vulnerable to technical factors. For 109 

example, if a treatment is capable of causing a 2-year reduction in epigenetic age 110 

relative to placebo, technical variation of up to 8 years may obfuscate this effect. 111 

In the present manuscript, we describe how technical variation leads to 112 

significant deviations between replicates for many epigenetic clocks. To address this 113 

critical issue, we provide a novel computational solution that extracts the shared aging 114 

signal across many CpGs while minimizing noise from individual CpGs. 115 

  116 

  117 
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Results 118 

Poor-reliability CpGs reduce the reliability of epigenetic age prediction 119 

To investigate the impact of low-reliability CpGs on epigenetic clock predictions, 120 

we examined the publicly available dataset GSE55763 (Lehne et al. 2015) comprising 121 

36 whole blood samples with 2 technical replicates each and an age range of 37.3 to 122 

74.6. The data was processed to eliminate systematic technical bias between batches 123 

(see Materials and Methods). In an ideal scenario, the same sample measured twice 124 

using methylation arrays would yield the same age prediction. Deviations from this ideal 125 

can be quantified using the intraclass correlation coefficient (ICC), a descriptive statistic 126 

of the measurement agreement for multiple measurements of the same sample (within-127 

sample variation) relative to other samples (between-sample variation) (Koo and Li 128 

2016). Biological between-sample variance can correspond to age, sex, smoking, 129 

genetics, cell composition, and other factors. Technical within-sample variance can 130 

arise from sample preparation, hybridization to the methylation array, scanning, data 131 

processing, and stochastic factors. Using a dataset with a wide age range is critical to 132 

determine the relative degrees of age-related variance compared to technical variance. 133 

First, we calculated ICCs for 1,273 individual CpGs that are part of five existing 134 

clocks— the Horvath multi-tissue predictor (Horvath1), the Horvath skin-and-blood clock 135 

(Horvath2), the Hannum blood clock (Hannum), the Levine DNAmPhenoAge clock 136 

(PhenoAge), or the Lu telomere length predictor (DNAmTL) (Table S1) (Horvath 2013; 137 

Horvath et al. 2018; Hannum et al. 2013; Levine et al. 2018; Lu, Seeboth, et al. 2019). 138 

31.6% of clock CpGs have reliabilities characterized as poor (ICC <0.5), 21.5% as 139 
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moderate (0.5 <= ICC < 0.75), 29.9% as good (0.75 <= ICC < 0.9), and 17.0% as 140 

excellent (ICC >= 0.9) (Figures 1A, S1, Table S2). Low-reliability clock CpGs tend to 141 

have more extreme values (near 0 or 1) and lower variance (Figures 1B-C), consistent 142 

with prior genome-wide analyses (Sugden et al. 2020; Bose et al. 2014). CpGs with 143 

strong associations with mortality (hazard ratios after adjusting for age and sex) or with 144 

chronological age tended to have higher ICCs (Figure 1D). However, age and mortality 145 

associations are artificially depressed by high technical noise and thus low-ICC CpGs 146 

likely still contain useful information. CpGs within individual clocks largely showed the 147 

same patterns (Figures S2-S8). 148 

We then investigated the reliability of overall epigenetic clock scores and found 149 

all the clocks demonstrated substantial biological age discrepancies between technical 150 

replicates. The widely used Horvath1 multi-tissue clock (Horvath 2013) shows a median 151 

difference of 2.1 years between replicates, and a maximum deviation of 5.4 years 152 

(Figure 1E-F). For other clocks, median deviation ranges from 0.9 to 2.4 years and 153 

maximum difference ranges from 4.5 to 8.6 years, depending on the clock (Figure S9-154 

S10). Clock ICCs range from 0.917 to 0.979, with the Horvath1 multi-tissue clock 155 

exhibiting an ICC of 0.945 (Figure 1G; Table S3). Epigenetic age acceleration (i.e. after 156 

adjusting for chronological age) is commonly used in models of aging outcomes and is 157 

arguably the measure one would care about most for intervention studies. Age 158 

acceleration has lower ICCs because of reduced biological variance, with ICCs ranging 159 

from 0.755 to 0.948 (Horvath1 ICC = 0.817) (Table S4).  The discrepancies of different 160 

clocks are mostly uncorrelated with each other and with age and sex (Figure S11), 161 
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consistent with their origin in noise. There was little to no systematic batch effect (i.e. no 162 

bias in the direction of deviation) for any clock except for Horvath2, which showed a 163 

small effect (0.6 years mean difference between batches, p=0.0486) (Table S5). All 164 

samples showed substantial deviations in at least one clock (Table S5), demonstrating 165 

unreliability is not confined to specific samples.  166 

We also assessed the reliability of GrimAge (Lu, Quach, et al. 2019), a unique 167 

case because chronological age and sex are required for its calculation and CpG 168 

identities are not published. GrimAge showed better reliability than other clocks (median 169 

deviation between replicates = 0.9 years; maximum deviation = 2.4 years; GrimAge ICC 170 

= 0.989; GrimAgeAccel ICC = 0.960; Figure 1G; Tables S3-4). The ICC of GrimAge 171 

components was lower, ranging from 0.329 to 0.984. Since age and sex are the same 172 

for technical replicates but different between biological samples, we isolated the 173 

variation attributed to DNAm by re-calculating GrimAge after artificially setting age to 50 174 

and sex to female for all samples (GrimAge50F). The ICC decreased from 0.989 to 175 

0.963, below that of Horvath1, Horvath2, and Hannum. Thus, DNAm unreliability also 176 

affects GrimAge, when considering its values independent of age and sex. 177 

We further calculated ICCs for various epigenetic biomarkers (Figure 1G, Tables 178 

S3-4), including additional aging clocks, estimated cell proportions, and predictors of 179 

smoking, alcohol and BMI (Horvath 2013; Horvath et al. 2018; Hannum et al. 2013; 180 

Levine et al. 2018; Lu, Seeboth, et al. 2019; Lu, Quach, et al. 2019; Lin & Wagner 2015; 181 

Weidner et al. 2014; Vidal-Bralo et al. 2016; Garagnani et al. 2012; Bocklandt et al. 182 

2011; Teschendorff 2020; Youn & Wang 2018; Belsky et al. 2020; McCartney et al. 183 
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2018; Houseman et al. 2012; Zhang et al. 2017). Mitotic clocks and granulocytes had 184 

particularly high ICCs, but otherwise unreliability issues affect nearly all epigenetic 185 

biomarkers. 186 

To better understand how technical variation in individual CpGs contributes to the 187 

technical variation in each clock overall, we multiplied the CpG differences between 188 

technical replicates by the CpG clock weights. We plotted the resulting values for all 189 

CpGs and all samples in heatmaps (Figures 1H, S12). Globally, different sets of CpGs 190 

contribute to technical variation in different samples, consistent with noise. These 191 

effects can be quite large-- for each clock, some individual CpGs each contribute more 192 

than 1.5 years to the total discrepancy between specific pairs of replicates. The 193 

direction of effect for these CpGs is nonuniform, suggesting these are not batch effects 194 

that can be easily corrected for. Deviations are distributed throughout the age range and 195 

occur in both sexes. Even within samples that do not show overall clock deviations 196 

between replicates, there is significant noise from individual CpGs but their effects 197 

happen to cancel each other out. CpGs contributing a relatively large amount to total 198 

noise are distributed throughout the range of ICC values, suggesting this noise may be 199 

difficult to filter out. These results demonstrate that reliability issues are not limited to 200 

specific samples or a small subset of CpGs. Overall, these findings confirm that the 201 

poor reliability of individual CpGs is a significant problem for epigenetic age prediction.   202 

 203 

Filtering CpGs by ICC only modestly improves reliability 204 
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We turned our attention to a broader set of CpGs with the goal of developing 205 

clocks with superior reliability, without sacrificing validity. We selected 78,464 CpGs 206 

(Table S6) that were present in a wide range of DNAm datasets for training, testing, and 207 

validation obtained on either the EPIC or 450K Illumina arrays. These datasets were 208 

curated to represent many different tissues and include some with technical replicates 209 

or longitudinal follow-up (Table S7). This set of CpGs was small enough for repeated 210 

computations to systematically explore different methods to improve reliability, but still 211 

larger than the set of 27K CpGs used to train the original Horvath1 and PhenoAge 212 

clocks. The reliability distribution of this subset is similar to that of existing clocks and 213 

has fewer poor-reliability CpGs compared to the set of all 450K CpGs (Figure 1A, I, J; 214 

Table S6). We found a bimodal distribution of CpG reliabilities consistent with prior 215 

studies (Bose et al. 2014; Dugue et al. 2016), and our ICCs were well-correlated with 216 

previously published ICC values from 3 prior studies (Figure S13; Table S6) (Bose et al. 217 

2014; Logue et al. 2017; Sugden et al. 2020). Poor-reliability CpGs still show age and 218 

mortality correlations in independent datasets, albeit lower than high-reliability CpGs 219 

(Figure S14). We note this does not necessarily mean that poor-reliability CpGs have 220 

less information about aging; instead, technical noise may dilute the signal. 221 

The most intuitive solution to address DNAm reliability is to filter out unreliable 222 

CpGs based on ICC values, then re-train epigenetic clocks. Thus, we systematically 223 

tested the effects of various ICC cutoffs when considering which CpGs to include in 224 

supervised learning for phenotypic age prediction in the original DNAmPhenoAge 225 

training data (InCHIANTI). We chose to demonstrate this using DNAmPhenoAge given 226 
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its low ICC, yet high mortality prediction, with the goal of testing whether ICC could be 227 

improved without jeopardizing the latter. Reliability improved modestly when training 228 

clocks with a subset of CpGs with higher ICC cutoffs (Figure 1K, Figure S15, Table S8), 229 

whereas no improvement occurred when taking an equivalent number of random CpGs 230 

(Figure S16). Discarding all poor-reliability CpGs with ICC < 0.5 still results in maximum 231 

deviations of 6 years. An optimum cutoff occurs at an ICC cutoff of 0.9 (after discarding 232 

80% of CpGs), but maximum deviations continue to be 4 years, the third quartile 2 233 

years, and median 1 year.  Unfortunately, we also found that when one progressively 234 

drops CpGs using cutoffs above 0.9, mortality prediction decreases sharply and 235 

between-replicate deviations increase, possibly because there are now insufficient 236 

numbers of CpGs available for training (less than 15,000 CpGs) (Figure S15).  237 

We also experimented with other methods such as introducing a penalty factor 238 

for each CpG inversely proportional to ICC into elastic net regression, as well as training 239 

clocks using M-values or winsorized beta-values (Table S9). However, we did not find 240 

these substantially improved clock reliability. 241 

Thus, straightforward filtering approaches to poor-reliability CpGs only modestly 242 

improves clock reliability. Indeed, the existing Hannum clock is already mostly 243 

composed of CpGs with high age correlations and almost no poor-reliability CpGs 244 

(Figures S6-S8), but still shows deviations between technical replicates up to 5 years 245 

(Figure S10) with many individual CpGs contributing deviations of up to 1.5 years each 246 

(Figure S12). Filtering requires a priori knowledge of CpG reliabilities, which is often not 247 

known for a given tissue or sample population and thus this approach would not be 248 
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easily generalizable. Filtering out more than 80% of CpGs deemed as “unreliable” will 249 

likely eliminate relevant information about aging in non-blood tissues, adiposity, 250 

smoking, alcohol, and other age- and mortality-related phenotypes. Overall, we 251 

concluded that epigenetic clocks trained on individual CpGs come with inherent noise 252 

that is not easily discarded. 253 

  254 

Epigenetic clocks trained from principal components are highly reliable 255 

Many CpGs tend to change together with age in a multicollinear manner, 256 

including far more CpGs than those found in existing clocks (Liu et al. 2020; Higgins-257 

Chen et al. 2021; Horvath & Raj 2018). Elastic net regression, commonly used to build 258 

clocks, uses model penalties to select a limited number of CpGs to represent a set of 259 

collinear CpGs while avoiding overfitting. However, by virtue of incorporating 260 

methylation information from individual CpGs, these models retain much of the technical 261 

noise that exists in DNA methylation array technology (Figure 1). We hypothesized that 262 

principal component analysis (PCA) could extract the covariance between multicollinear 263 

CpGs, including age-related covariance. At the same time, since technical noise does 264 

not appear to be significantly correlated across CpGs after adequate preprocessing and 265 

batch correction (Figure 1H), the principal components may remain largely agnostic to 266 

technical noise.  267 

PCs were estimated from the 78,464 CpGs in the datasets used to train 268 

epigenetic clocks (Table S7). Since each clock was trained using different data, we 269 

calculated a separate set of PCs for each clock. For all instances, the ICCs of PCs were 270 
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much higher than those of individual CpGs, despite being derived from those same 271 

CpGs (Figure 2A). We then applied elastic net regression to retrain 6 epigenetic clocks 272 

from PCs (Figure 2B), and projected test datasets onto the training PCA space which 273 

allowed us to calculate and then validate the new clocks in independent data. We found 274 

it is possible to predict either the original outcome variable (e.g. age, phenotypic age), 275 

or the original CpG-based epigenetic clock score from PCs. This latter option is useful in 276 

cases where not all of the original training data is available (see Methods), in order to 277 

maintain consistency with existing studies utilizing CpG-based clocks. For example, the 278 

Horvath1 multi-tissue predictor was trained using both 27K and 450K data, but our set 279 

of 78,464 CpGs must be obtained on either 450K or EPIC, so we found replacement 280 

datasets for the 27K data. We ultimately chose to train PC clock proxies of the original 281 

CpG clock versions of Horvath1, Horvath2, Hannum, DNAmTL, and GrimAge. In 282 

contrast, PCPhenoAge was trained directly on phenotypic age based on clinical 283 

biomarkers rather than DNAm (Levine et al. 2018), but still correlates well with 284 

DNAmPhenoAge in test data (Figure 2F). These PC-based clocks showed high 285 

correlations with the original CpG versions within both training and test datasets 286 

(Figures 2C-H), with the elastic net cross-validation procedure selecting anywhere from 287 

120 to 651 PCs. 288 

Even though our models were trained naïve to any information about technical 289 

replicates or ICCs, the PC-based clocks showed greatly improved agreement between 290 

technical replicates (Figure 3A-F). Most replicates (90% or more) showed agreement 291 

within 1-1.5 years. The median deviation ranged from 0.3 to 0.8 years (improvement 292 
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from 0.9-2.4 years for CpG clocks). All ICCs improved substantially, with all PC clocks 293 

having ICC greater than 0.99 for raw clock score and 0.97 for age acceleration (Figure 294 

3G-H).   295 

The most dramatic improvement was in PhenoAge. CpG-trained PhenoAge has 296 

a median deviation of 2.4 years, 3rd quartile of 5 years, and maximum of 8.6 years. In 297 

contrast, PCPhenoAge has a median deviation of 0.6 years, 3rd quartile of 0.9 years, 298 

and maximum of 1.6 years. For this version of the clock, we added methylation and 299 

phenotypic age data from the Health and Retirement Study (HRS) (Crimmins et al. 300 

2021). However, the same improvement in reliability occurred regardless of training on 301 

only the original InCHIANTI dataset (Table S10), or on the combined InCHIANTI and 302 

HRS dataset (Figure 3D). Notably, this improvement was far superior to filtering out 303 

even 80% of the lowest ICC CpGs (Figure 1K). 304 

The age acceleration values were also highly correlated between PC clocks and 305 

their CpG counterparts (Figure 3I). Also, the correlations between different PC clocks 306 

was stronger than between CpG clocks. This may be partly due to the shared set of 307 

CpGs used to train PCs, or due to the reduction of noise that would have biased 308 

correlations towards the null. Correlations between PC clocks and CpG clocks tended to 309 

be stronger compared to correlations between CpG clocks and CpG clocks, consistent 310 

with a reduction of noise. 311 

We tested if incorporating reliability information into the training method for PC 312 

clocks further increased clock reliability (Table S11), given that modest improvement 313 

occurred with CpG filtering in Figure 2. However, filtering out poor-reliability CpGs prior 314 
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to PC training or pre-selecting PCs based on ICC or variance explained does not 315 

improve reliability. Re-introducing high-reliability CpGs to PCs immediately reduces 316 

clock reliability even when limiting to CpGs with ICCs greater than 0.99. 317 

In fact, when we examined the loadings for CpGs on the PCs, we found poor-318 

reliability CpGs contribute substantially to the overall PC clocks (Figure S17), consistent 319 

with the hypothesis that PCA can extract the denoised age signal from poor-reliability 320 

CpGs by leveraging the covariance between CpGs. This is further evidence that low-321 

reliability CpGs likely contain important information about aging and should not simply 322 

be discarded. 323 

 324 

PC clocks allow for correction of systematic offsets in epigenetic age between 325 

batches 326 

Batch correction is a standard preprocessing step during DNA methylation analysis 327 

(Morris & Beck 2015). However, there is a balance between adequate batch correction 328 

and over-correction that can lead to false positive and false negative results (Zindler et 329 

al. 2020). In many datasets there may be residual batch effects after correction that 330 

affect epigenetic clock predictions. We would not expect that the PC clock methodology, 331 

by itself, would resolve this issue because batch effects influence numerous CpGs 332 

simultaneously. However, because within-batch technical replicates show lower 333 

variance using PC clocks, we hypothesized that between-batch variation (such as 334 

systematic offsets in epigenetic age) should be easier to detect and correct for. To test 335 

this, we examined blood from each individual with age range 26-68 on the EPIC array 336 
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(Figure 4). For each individual, we collected 3 blood samples simultaneously, ran each 337 

sample in a separate batch with 3 technical replicates each, and scanned each batch 338 

twice, for a total of 18 replicates per individual (3*3*2). We detected systematic offsets 339 

in the clocks based on batch (e.g. Horvath1 was reduced by 3 years in batch 3 340 

compared to batch 1, while PCHorvath1 was reduced by 4 years) (Table S12). 341 

Correcting for batch in a linear model led to strong agreement between replicates 342 

regardless of batch for PC clocks, but not for CpG clocks.  343 

 344 

PC clocks are reliable in saliva and brain 345 

There is a paucity of technical replicate data in non-blood tissues. Many clocks 346 

are trained solely in blood (including Hannum, PhenoAge, DNAmTL, and GrimAge), 347 

though they often still correlate with age in other tissues (Liu et al. 2020; Horvath & Raj 348 

2018). We tested if PC clocks show enhanced reliability in non-blood tissues. First, we 349 

measured DNAm in saliva from the same 8 individuals that we had obtained blood from, 350 

with the same design of 3 consecutive samples, 3 technical replicates each, and 2 351 

scans. While there were again epigenetic age offsets between saliva batches similar to 352 

blood, these offsets were not consistent between samples, and therefore a linear batch 353 

correction was not possible (Figure 5A). The reason is not clear, but it is possible that 354 

saliva may change in cell composition with every consecutive sampling (e.g. changing 355 

proportions of epithelial cells vs. leukocytes), whereas blood is more consistent. 356 

Regardless, technical replicates for each sample still showed very strong agreement for 357 

PC clock age acceleration, with improved ICCs compared to the original clocks (Figure 358 
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5B). Note that PCHorvath1 and PCHorvath2 only improved marginally because they are 359 

tightly fit to chronological age, and therefore there is minimal biological variation in 360 

epigenetic age acceleration, especially for only 8 samples. 361 

We also examined publicly available replicate data from cerebellum (GSE43414), 362 

which is known to yield lower epigenetic age predictions compared to other tissues 363 

(Horvath et al. 2015). This cohort contains data from 34 individuals, with 2 scans each. 364 

Again, we found that the two cohorts in this study display a batch shift in the original 365 

clock scores, though the PC clock scores were far more resilient against this effect 366 

(Figure S18). Thus, to provide fair comparison between the original and PC clocks, we 367 

analyzed the distance between each clock’s batch-mean centered prediction values, 368 

demonstrating that all aging clocks have an absolute disagreement of less than 0.5 369 

years in brain tissue (Figure 5C). Although improved agreement in PCDNAmTL may be 370 

partially due to a narrower dynamic range compared to DNAmTL, there is minimal 371 

attrition of telomere length with age in the cerebellum due to high proportions of post-372 

mitotic neurons (Demanelis et al. 2020). Thus, PCDNAmTL may be better capturing the 373 

true biological variance. We also calculated age residuals using independent linear 374 

models in each batch. The ICC values of PC clock residuals show near-perfect 375 

agreement, whereas the CpG clocks remain significantly lower in all clocks (Figure 5D).  376 

Thus, the PC clocks are a highly reliable method for epigenetic age 377 

measurement in saliva and brain. It will be interesting to determine if future PC clocks 378 

trained in non-blood tissues show even higher reliability and greater ease of batch 379 

correction when tested in non-blood tissues.  380 
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 381 

PC clocks preserve relevant aging and mortality signals 382 

To test if any validity in epigenetic clocks was sacrificed in order to boost reliability, we 383 

examined associations between clocks and various sociodemographic, behavioral, and 384 

health characteristics using the Framingham Heart Study. Each of the original clocks 385 

have unique sets of associations with age-related traits and lifestyle factors, and may 386 

capture distinct aspects of aging (Levine et al. 2018; Lu, Quach, et al. 2019; Liu et al. 387 

2020; Horvath & Raj 2018). We found that the PC versions of the clocks maintained or 388 

even exhibited improved prediction of mortality (Figure 6A). Note that GrimAge shows 389 

particularly strong mortality prediction because it was trained to predict mortality in FHS 390 

and is therefore overfit. The PC clocks also maintained associations with a wide range 391 

of other factors in the FHS cohort (Figure 6B). Overall, these preserved aging and 392 

mortality signals demonstrate that the PC clocks could be fully substituted for the 393 

original clocks in ongoing or future studies. 394 

 395 

PC clocks show improved stability in long- and short-term longitudinal data 396 

Longitudinal studies are instrumental for studying aging as a continuous process 397 

and for assessing the utility for aging biomarkers in clinical trials and personalized 398 

medicine. Longitudinal fluctuations in epigenetic age acceleration have previously been 399 

observed (Li et al. 2020). However, if epigenetic clocks are strongly influenced by 400 

technical noise (Figure 1), this raises the concern that it may be difficult to disentangle 401 

biologically meaningful longitudinal changes (for example, those induced by lifestyle 402 
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changes or a new medication) from technical variation. We hypothesized that PC clocks 403 

would show increased stability in longitudinal studies by reducing technical noise. 404 

In longitudinal data from the Swedish Adoption Twin Study of Aging (SATSA) for 405 

294 individuals (baseline age range 48 to 91) spanning up to 20 years of follow-up and 406 

2 to 5 time points per person (Li et al. 2020), the original CpG clocks show age 407 

trajectories that fluctuate dramatically, deviating up to 20-30 years off the average 408 

trajectory (Figure 7A). However, the equivalent PC clocks show far less deviation. We 409 

calculated epigenetic clock slopes for every individual and found that longitudinal 410 

changes in CpG clocks were modestly correlated with those in their counterpart PC 411 

clocks. However, longitudinal changes in the original clocks are poorly correlated with 412 

each other, while changes in the PC clocks are far more tightly correlated (Figure 7B), 413 

consistent with a reduction in noise. For example, PhenoAge and GrimAge are both 414 

known predictors of mortality (Levine et al. 2018; Lu, Quach, et al. 2019), yet 415 

longitudinal change in PhenoAge is not correlated with change in GrimAge when 416 

considering the original CpG clocks. However, PCPhenoAge and PCGrimAge changes 417 

are correlated at r = 0.44. Likewise, the correlation between Horvath1 and Horvath2 418 

longitudinal changes increases from 0.25 to 0.87 when using the PC clocks. We also 419 

calculated ICC values where higher ICC values signify reduced within-person variance, 420 

which could be composed either of technical variance or relevant biological variance. 421 

Indeed, ICC values increased overall with PC clocks (Figure 7B) but not to the same 422 

extent as with technical replicates (Figures 3-4), reflecting the remaining within-person 423 

biological variance due to each person’s longitudinal aging process.  424 
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 We also examined short-term longitudinal data with 133 combat-exposed military 425 

personnel (baseline age range 18-54) from the Prospective Research in Stress-related 426 

Military Operations (PRISMO study) (van der Wal et al. 2020). DNAm measurements 427 

were performed at baseline pre-deployment and then at 1 or 2 additional time points 428 

post-deployment, up to 500 days follow-up after baseline. The original CpG clocks 429 

fluctuated dramatically, deviating up to 10-20 years off the average trajectory (Figure 430 

8A). The PC clocks improved upon this modestly, but there was still significant 431 

fluctuation (Figure S19). We hypothesized that this was related to changes in cell 432 

composition, which can change as a result of stress, diurnal rhythms, sleep, and other 433 

factors (Lasselin et al. 2015; Ackermann et al. 2012). Thus, cell composition could be 434 

affected either by combat exposure, or by day-to-day and time-of-day variation. Indeed, 435 

most PC clocks showed greatly improved stability after adjusting for cell counts, though 436 

this improvement was not seen for the CpG clocks (Figure 8A, Figure S19). Thus, this 437 

relevant biological variation only becomes apparent after removing technical noise. 438 

Again, longitudinal changes in PC clocks were far more correlated than with the CpG 439 

clocks (Figure S20). For example, correlation of longitudinal changes in PhenoAge and 440 

GrimAge increased from r = 0.1 to r = 0.85 using PC clocks, while correlation between 441 

Horvath1 and Horvath2 increased from r = 0.01 to r = 0.86. ICCs also tended to be 442 

higher for the PC clocks and after cell adjustment in most cases, with a few exceptions 443 

(Figure S21). Despite increased apparent stability in trajectories, DNAmTL and 444 

GrimAge ICCs decreased after cell count adjustment, suggesting some of their primary 445 

aging signal is driven by changes in cell counts. For GrimAge, the PC clock version 446 
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actually had a lower ICC in short-term longitudinal data. The reason is unclear, but it is 447 

possible that stress or other changes during the study period drove bona fide changes 448 

in PCGrimAge for some individuals.  449 

 We also replicated the increased stability of PC clock trajectories in short-term 450 

longitudinal data in a cohort of 13 schizophrenia patients treated with clozapine, 451 

measured at 2-3 time points over 1 year including just prior to clozapine initiation 452 

(Figure S22). DNAmTL increased during this period (p = 0.0226, 121 bp/year), but 453 

PCDNAmTL did not (p = 0.320, 22 bp/year) (Table S13). DNAmTL’s increase was likely 454 

due to a combination of noise and small sample size. Thus, the PC clocks may be 455 

useful in avoiding false positives in small pilot studies of interventions targeting 456 

epigenetic age. 457 

 458 

PC clocks show improved stability in an in vitro model of aging 459 

In vitro models of aging are useful for experimental investigation of cellular aging and 460 

senescence, and for screening novel pharmacological interventions (Itahana et al. 2004; 461 

Chen et al. 2013). Some patterns of epigenetic aging are shared by in vitro and in vivo 462 

contexts, suggesting epigenetic clocks can be readouts for aging in cell culture (Liu et 463 

al. 2020; Wagner 2019). We derived 3 lines of primary astrocytes from the cerebral 464 

cortex of the same fetal donor. These astrocytes were cultured for 10 passages under 465 

normoxic conditions (20% O2), and measured DNAm at each passage (Figure 8B). 466 

While the original CpG-based clocks detected some changes in epigenetic age, there 467 

was substantial deviation among replicates and fluctuations between time points. In 468 
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contrast, the PC clocks showed strong agreement between replicates and smooth 469 

increases in epigenetic age up to passage 6. Beyond passage 6, the rate of change 470 

slows down (even reversing for some clocks) and the replicates diverge, coinciding with 471 

a divergence in the rate of population doubling (Figure S23). This may be biologically 472 

significant, reflecting cell death with mortality selection, cellular senescence, or 473 

adaptation to the culture environment. Overall, the reliability of PC clocks makes them 474 

more useful than the original clocks as biomarkers for in vitro aging. 475 

 476 

Discussion 477 

Convenient technology, accessible data, and ease of calculating epigenetic 478 

clocks have led to a boom in studies investigating associations between epigenetic age 479 

and aging outcomes or risk factors (reviewed in Horvath & Raj 2018; Fransquet et al. 480 

2019; Ryan et al. 2020). More recently, some studies have also begun to apply 481 

epigenetic clocks to assess the effects of aging and longevity interventions (Chen et al. 482 

2019; Fahy et al. 2019). However, little attention has been paid to the reliability of these 483 

clocks until recently. Our data shows that unreliable probes contribute to significant 484 

technical variability of epigenetic clocks. Even if a pair of replicates agree on a given 485 

clock, this occurs only because noise from different CpGs cancels out by chance, and 486 

that same pair of replicates will usually deviate for other clocks. The magnitude of this 487 

unreliability is large, causing up to 3 to 9 years difference between some technical 488 

replicates (Figure 1). For comparison, the standard deviation of epigenetic age 489 

acceleration is 3 to 5 years depending on the clock. This acceleration value is what 490 
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predicts aging outcomes such as mortality above and beyond what chronological age 491 

can predict. Epigenetic age acceleration is contaminated by technical variation, 492 

hampering the utility of epigenetic clocks and potentially leading to both false positive 493 

and false negative results. 494 

We present a computational solution to reduce this technical variability, by 495 

training clocks using principal components instead of individual CpGs. PCA can extract 496 

the shared aging signal across many intercorrelated CpGs while ignoring noise. The 497 

resulting PC clocks are highly reliable even though they do not require a priori 498 

knowledge of CpG ICCs for their construction (Figures 4-5). This is particularly 499 

important because replicate data does not exist for many cohorts, tissues, and aging 500 

phenotypes. This method can even increase the reliability of clocks that already have 501 

high ICCs (e.g. GrimAge). At the same time, the PC clocks preserve the relevant aging 502 

signals unique to each of their CpG counterparts (Figure 6); therefore, they reduce 503 

technical variance but maintain relevant biological variance. PCA is a commonly used 504 

tool and does not require specialized knowledge, and thus this approach is accessible 505 

and readily adaptable to improving the reliability of any existing or future epigenetic 506 

biomarker.  507 

It is possible that future technology or processing methods may improve the 508 

reliability of individual CpGs, but the question remains what to do about epigenetic clock 509 

reliability now, given the massive amount of data collected on methylation arrays by 510 

current aging cohort studies. Using reliability information during training modestly 511 

improves reliability for CpG-based clocks (Figure 1K) but does not add anything to PC-512 
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based clocks (Table S11). This suggests that the PC-based clocks may be near the 513 

possible limit of reliability, at least using linear techniques. It will be interesting to see if 514 

more advanced non-linear machine learning methods can further improve reliability, 515 

though these would be less accessible and more complex to use. 516 

PC clock reliability will be critical for employing the epigenetic clocks for 517 

personalized medicine and clinical trials. For example, it would be highly misleading for 518 

a conventional CpG-based epigenetic clock to indicate that a person has aged 9 years 519 

over the course of 1 day, if the difference is solely attributable to technical variation. 520 

Measurement changes in biological age after starting a new treatment or lifestyle 521 

change would not be trustworthy. While the residual noise in PC clocks (1-1.5 years 522 

maximum) may still pose challenges for detecting small effect sizes, these may be 523 

overcome by studies of sufficient sample size or those with intervals longer than 1 year. 524 

Fluctuations in cell counts contribute to clock variation in short-term longitudinal 525 

studies, so these studies should account for any factors that affect cell composition, 526 

such as stress, sleep, or time of day. However, these efforts would be hindered if 527 

technical variation is not first addressed (Figure 8). 528 

 Our study has implications for aging biology in general. First, CpGs (or other 529 

biological variables) with low reliability show reduced associations with aging 530 

phenotypes, but this is a technical artifact where the signal is contaminated by noise. 531 

This presents a systematic bias in the aging literature where some CpGs may be 532 

ignored simply because they are harder to measure, even though they are biologically 533 

relevant. These can be thought of as false negative results. This issue may be mitigated 534 
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by focusing on concerted changes across many CpGs, rather than studying one at a 535 

time. PC clocks utilize CpGs across the ICC spectrum (Figure S17), suggesting that 536 

PCA can extract relevant information from low-ICC CpGs while ignoring noise. Second, 537 

the specific identities of CpG sites (and associated genes) included the epigenetic clock 538 

may be less important than previously supposed. After all, elastic net regression selects 539 

only a small subset of CpGs for traditional clocks from a larger group of multicollinear 540 

CpGs. Instead, it may be better to conceptualize the epigenetic clock as measuring 541 

global processes affecting many CpGs and genes in concert, reflected in the covariance 542 

captured by PCA. Aging involves numerous intercorrelated changes in many bodily 543 

systems over time that leads to dysfunction, and therefore focusing on a small set of 544 

specific variables may miss the forest for the trees. 545 

 Overall, we were able to drastically improve the technical reliability of epigenetic 546 

clocks, while simultaneously maintaining or even increasing their validity. Moving 547 

forward, these measures may provide critical tools for assessing aging interventions, 548 

tracking longitudinal aging trajectories, and gleaning biological insights from global shifts 549 

in DNAm patterns over the lifespan. 550 

 551 

Methods 552 

Reliability analyses and datasets 553 

We calculated ICC using the icc function in the irr R package version 0.84.1, using a 554 

single-rater, absolute-agreement, two-way random effects model, after consulting 555 

guidelines from Koo and Li (Koo & Li 2016). Two-way was chosen because all subjects 556 
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were measured by the same raters (e.g. two batches of replicates). The random effects 557 

model allows reliability results to generalize to other DNAm batches. Absolute 558 

agreement was used because we aim not only for methylation age to correlate between 559 

batches but also for their values to agree. Single rater was used because usually 560 

methylation age is based on a single sample rather than the mean of multiple 561 

samples. ICCs less than 0 were sometimes re-coded as 0, either for figure presentation 562 

purposes or to compare the ICCs to previous datasets where this re-coding was done. 563 

 564 

To assess CpG and clock reliability, we used the publicly available dataset GSE55763 565 

from Lehne and colleagues (Lehne et al. 2015), consisting of 36 whole blood samples 566 

measured in duplicate from the London Life Sciences Prospective Population 567 

(LOLIPOP) study. We selected this sample because it had the widest age range (37.3 568 

to 74.6 years) of available replicate datasets, which is important for assessing 569 

epigenetic clock performance. The sample size was sufficient, as Sugden et al. found 570 

that running just 25 pairs of replicates was sufficient to identify 80% of reliable probes 571 

(Sugden et al. 2020), and our individual CpG ICCs were broadly in agreement with a 572 

larger sample of 130 sets of replicates with a narrower age range (Bose et al. 2014). 573 

The replicates in GSE55763 were done in separate batches to maximize the impact of 574 

technical factors. The dataset had been processed using quantile normalization which 575 

Lehne et al. found showed the best agreement between technical replicates out of 10 576 

normalization methods. It was also adjusted using control probes to remove systematic 577 
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technical bias (e.g. from batches and plates). Note that none of the 78,464 CpGs we 578 

analyzed in-depth had any missing values in GSE55763. 579 

Epigenetic Biomarkers 580 

Epigenetic biomarkers were calculated either according to published methods, or using 581 

the online calculator (https://dnamage.genetics.ucla.edu/new) to obtain GrimAge and 582 

cell proportions. For nomenclature, we referred to clocks that predict chronological age 583 

by the last name of the first author of the publication that first reported them. For those 584 

that predicted other phenotypes, we used the descriptive name provided by the original 585 

publication. For Figure 7, we adjusted for cell composition using a linear model 586 

regressing epigenetic age on chronological age, plasmablasts, CD4+ T cells, exhausted 587 

CD8+ T cells, naïve CD8+ T cells, natural killer cells, granulocytes, and monocytes, as 588 

previously described (Horvath & Levine 2015). 589 

Analyses 590 

Analyses were performed in R 4.0.2 and RStudio 1.3.1093. Figures were made using R 591 

packages ggplot2 v3.3.3, forestplot v1.10.1, ggcorrplot v0.1.3, pheatmap v1.0.12, or 592 

WGCNA v1.70-3. Correlations were calculated using biweight midcorrelation from the 593 

WGCNA package, unless otherwise stated. Mortality in FHS was calculated using the 594 

survival v3.2-7 package. 595 

Training proxy PC clocks 596 
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We trained principal components (PCs) in different datasets for each clock (Table S7). 597 

Each dataset (beta matrices) was filtered down to 78,464 CpGs that were (1) on the 598 

450K array, EPIC array, and a custom array (Elysium), and (2) shared by our datasets 599 

used for PCA training, PC clock training datasets, and reliability analysis. We then 600 

performed mean imputation for missing values, as imputation method did not 601 

appreciably affect PCs due to the large number of CpGs they incorporate. PCA was 602 

done using the prcomp function in R with centering but without scaling beta values. 603 

Elastic net regression to predict age or CpG clock value from the PC scores were done 604 

using the glmnet v4.1-1 package. Alpha value was 0.5, as alpha did not appreciably 605 

affect reliability or prediction accuracy. The lambda value with minimum mean-squared 606 

error was selected using 10-fold cross-validation. The final PC reported by prcomp was 607 

excluded from elastic net regression because it is not meaningful when number of 608 

variables is greater than number of samples. Test data were then projected onto the 609 

PCs, using the centering from the original training data, allowing for prediction of the 610 

outcome variable. 611 

We found we could predict either the original outcome variable (e.g. 612 

chronological age) or the original CpG clock value. We decided to create PC clock 613 

proxies for Horvath1, Horvath2, Hannum, DNAmTL, and GrimAge. This was particularly 614 

important in the case of Horvath1 and Horvath2, where we substituted some datasets 615 

(Table S7) as not all of the original data was available. For example, some of the 616 

original Horvath1 data was obtained on the 27K array, while our PCs utilized 450K or 617 
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EPIC data. A few samples were eliminated that showed dramatic discordance between 618 

the original Horvath1 and Horvath2 value and annotated age.  619 

While the predicted ages and age acceleration values for PC clocks and their 620 

corresponding CpG clocks always correlated strongly, we found the intercept was 621 

sometimes different, leading to a systematic offset in some datasets. However, the CpG 622 

clocks themselves often have highly variable intercepts between datasets, which seem 623 

to reflect batch effects (McEwen et al. 2018; Liu et al. 2020). Since intercepts are not as 624 

interesting for aging studies, compared to slope and age acceleration values, it is not a 625 

problem that they do not agree. In fact, the PC clocks often reported more reasonable 626 

intercepts than the original CpG clocks (i.e. closer to actual chronological age). 627 

To calculate the contribution of each CpG to the final PC clocks, we multiplied 628 

the CpG loadings for each PC by the PC weight in the clock, calculated the sum for 629 

each CpG, and divided by CpG standard deviation from the PC clock training data. 630 
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Figure Legends 836 

Figure 1. Poor-reliability CpGs reduce the reliability of epigenetic age prediction. 837 

A) Intraclass correlation coefficients (ICCs) for 1,273 CpGs in the Horvath1, Horvath2, 838 

Hannum, PhenoAge, or DNAmTL clocks, analyzed in 36 pairs of technical replicates in 839 

blood (GSE55763). B) Clock CpG ICCs versus beta values for all samples. Each point 840 

corresponds to one pair of replicates for one CpG. C-D) Comparisons of clock CpG 841 

ICCs to CpG mean beta value, standard deviation, age correlation (in GSE40279), and 842 

mortality hazard ratio (in the Framingham Heart Study, after adjusting for age and sex). 843 

Each point corresponds to one CpG. E-F) Deviations between replicates in Horvath1. 844 

Each point corresponds to one sample. G) ICCs for epigenetic biomarkers (raw score 845 

not adjusted for age). H) Contribution of each CpG to the total age deviation between 846 

replicates for Horvath1. I) ICCs for all 450K CpGs. J) ICCs for selected 78,464 CpGs 847 

present on 450K and EPIC arrays as well as training, test, and validation data sets. This 848 

number was small enough for repeated experimentation with methods to improve 849 

reliability. K) Filtering CpGs by ICC cutoffs prior to training a predictor of PhenoAge only 850 

modestly improves reliability. 851 

 852 

Figure 2. Epigenetic clocks trained from principal components. A) ICC distributions 853 

for PCs in test data compared to CpGs. B) Strategy for training PC clocks compared to 854 

traditional epigenetic clocks. Image created with Biorender.com. C-H) Correlations 855 

between the original clocks and their PC clock proxies in both training and test data. 856 
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Test data shown is the Framingham Heart Study methylation data for all clocks, using 857 

samples that were not used to train PCDNAmTL or PCGrimAge. 858 

 859 

Figure 3. Epigenetic clocks trained from principal components are highly reliable. 860 

A-F) Agreement between technical replicates in blood test data (GSE55763). G-H) ICCs 861 

for (G) epigenetic clock scores without residualization and (H) epigenetic age 862 

acceleration in GSE55763. I) Correlation between age acceleration values for original 863 

and PC clocks in FHS blood test data.  864 

 865 

Figure 4. PC clocks allow for correction of systematic offsets in epigenetic age 866 

between batches. The original clocks and corresponding PC clocks were calculated for 867 

8 blood samples with 18 technical replicates each (3 batches, 3 replicates per batch, 2 868 

scans per batch). Batch correction was performed using a linear model using batch as a 869 

categorical variable. 870 

 871 

Figure 5. PC clocks are reliable in saliva and brain. (A) The original clocks and 872 

corresponding PC clocks were calculated for 8 saliva samples with 18 technical 873 

replicates each (3 batches, 3 replicates per batch, 2 scans per batch). (B) ICC for 874 

technical replicates in saliva, treating each batch and scan separately. (C) Agreement 875 

between technical replicates in cerebellum test data (GSE43414). Because of a 876 

systematic shift in epigenetic age between replicates, mean-centered epigenetic age 877 
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values were used for both the original clocks and PC clocks. (D) ICC for technical 878 

replicates in cerebellum.  879 

 880 

Figure 6. PC clocks preserve relevant aging and mortality signals. (A) Mortality 881 

hazard ratios were calculated in the Framingham Heart Study (FHS) after adjusting for 882 

chronological age and sex. (B) Correlations with various traits were calculated in FHS 883 

after adjusting for chronological age and sex. Note that GrimAge is overfit to this dataset 884 

and therefore associations are elevated compared to other clocks. 885 

 886 

Figure 7. PC clocks show increased stability in long-term longitudinal blood 887 

DNAm data. (A) Each line shows the trajectory of an individual’s epigenetic age relative 888 

to their baseline during the follow-up period. Colors are included primarily to distinguish 889 

between different individuals. (B) Slopes were calculated for every individual for each 890 

clock to obtain correlations in short-term longitudinal changes in the clocks. (C) ICC 891 

values reflect within-individual variance relative to total variance for each clock. 892 

 893 

Figure 8. PC clocks show increased stability in short-term DNAm data. (A) Short-894 

term longitudinal blood DNAm data was measured with up to 500 days follow-up. Each 895 

line shows the trajectory of an individual’s epigenetic age relative to their baseline 896 

during the follow-up period. Cell-adjusted trajectories were adjusted based on 897 

proportions of 7 cell types imputed from DNAm data (see methods). (B) DNAm from 898 

astrocytes was measured at every passage in cell culture for 3 replicates. Each curve 899 
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shows the trajectory of one replicate over time from baseline. The baseline is the mean 900 

between the replicates at the first DNAm measurement. 901 
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