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Abstract 25 

Noncoding genomic variants constitute the majority of trait-associated genome 26 

variations; however, identification of functional noncoding variants is still a challenge 27 

in human genetics, and a method systematically assessing the impact of regulatory 28 

variants on gene expression and linking them to potential target genes is still lacking. 29 

Here we introduce a deep neural network (DNN)-based computational framework, 30 

RegVar, that can accurately predict the tissue-specific impact of noncoding regulatory 31 

variants on target genes. We show that, by robustly learning the genomic 32 

characteristics of massive variant-gene expression associations in a variety of human 33 

tissues, RegVar vastly surpasses all current noncoding variants prioritization methods 34 

in predicting regulatory variants under different circumstances. The unique features of 35 

RegVar make it an excellent framework for assessing the regulatory impact of any 36 

variant on its putative target genes in a variety of tissues. RegVar is available as a 37 

webserver at http://regvar.cbportal.org/. 38 
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Introduction 42 

Trait-associated genetic variants usually lie in noncoding genomic regions [1, 2], and 43 

interpretation of functional noncoding variants is crucial for revealing the underlying 44 

genetic architecture and molecular mechanism of complex traits and diseases. Several 45 

methods have been developed to discriminate pathogenic variants from 46 

non-pathogenic ones using genomic sequences, functional annotations and 47 

evolutionary features, such as CADD [3], GWAVA [4], DeepSEA [5], LINSIGHT [6], 48 

etc. A common feature of these methods is that they focus on identifying rare 49 

pathogenic variants, which were thought to have stronger impact on human traits and 50 

diseases than common variants [7]. However, emerging evidences suggest that the 51 

majority of heritability for complex traits is likely to be explained by a substantial 52 

number of common regulatory variants with small additive effect sizes, in 53 

combination with a relatively smaller contribution from rare variants of moderate 54 

effect sizes [8-10]. Thus, a model that can distinguish both common and rare 55 

regulatory variants will provide new perspectives on the regulatory basis of complex 56 

traits. 57 

Current pathogenic variant prioritization models are not suitable for identifying 58 

regulatory variants. A recent survey of existing methods for prioritizing noncoding 59 

variants showed that, although they achieved high precision in identifying pathogenic 60 

variants under certain circumstances, their performance in identifying regulatory 61 

variants was very poor [11]. This is because prioritization of regulatory variants is an 62 

even greater challenge than that of pathogenic ones. First, regulatory variants 63 

generally have weaker impact on gene expression compared to pathogenic ones, so it 64 

is more difficult to discriminate them from background, especially from adjacent 65 

non-functional variants sharing similar epigenetic marks. Second, it is challenging to 66 

link regulatory variants to their target genes, which can be located far away from its 67 

regulator. Third, it is a challenge to establish tissue or cell type-specific models that 68 

can predict the regulatory impact of variants under different biological conditions. A 69 
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number of methods have been proposed to predict the effects of regulatory variants in 70 

recent years [12-14], which, however, have their limitations in their application. For 71 

example, ExPecto relies on epigenetic marks at gene promoters to monitor the 72 

regulatory impact of variants on gene expression and thus could only assess 73 

promoter-proximal variants [12]; TIVAN connects various genomic features to 74 

expression quantitative trait loci (eQTLs) to estimate a variant’s regulatory probability, 75 

but it was trained with promoter-proximal variants, which may introduce potential 76 

biases when applied to genome-wide variants prioritization [13]. Considering the vast 77 

majority of regulatory variants located far from the transcription start sites (TSSs) of 78 

target genes [15], a method that can robustly predict genome-wide regulatory variants 79 

as well as their potential target genes remains an urgent need. 80 

Here we introduce a deep neural network (DNN)-based approach, RegVar, for the 81 

genome-wide assessment of the regulatory impact of noncoding variants on gene 82 

expression. RegVar has several key features: (i) it can predict both common and rare 83 

regulatory variants by learning their genomic characteristics from massive 84 

variant-gene associations in an unbiased manner; (ii) it predicts not only regulatory 85 

variants but their target genes by jointly learning the genomic patterns of both variants 86 

and genes and the chromatin interactions between them; (iii) it predicts the 87 

tissue-specific effects of variants by training models in multiple tissues with 88 

respective genomic patterns; and (iv) it can achieve excellent prediction accuracy by 89 

utilizing large training sets and deep learning algorithm. We show that RegVar 90 

outperforms existing prioritization methods in identifying regulatory variants and 91 

noncoding pathogenic variants from different backgrounds in various tissues. RegVar 92 

is available as a webserver at http://regvar.cbportal.org/. 93 

 94 

Materials and methods 95 

Datasets 96 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 19, 2021. ; https://doi.org/10.1101/2021.04.17.440295doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.17.440295
http://creativecommons.org/licenses/by-nc-nd/4.0/


To construct the positive datasets, significant eVariant-eGene associations in 17 97 

human tissues, which were also incorporated in the Roadmap Epigenomics projects 98 

[2], were obtained from GTEx V7 release [16] (Figure 1 and Table S1). 99 

Single-nucleotide variants (SNVs)-gene associations were selected and further filtered 100 

by removing eVariants not marked by DNase I hypersensitive sites (DHSs) 101 

annotations, which was demonstrated to be a key epigenetic marker of causal variants 102 

[16]. Associations in sex chromosomes were also removed. For tissues of which the 103 

numbers of significant associations exceed 100,000 (esophagus mucosa, lung, skeletal 104 

muscle, and whole blood), we randomly selected 100,000 associations, as we found a 105 

larger size cannot improve model performance (Figure S1). The final number of 106 

positive associations for each tissue was shown in Table S1. For negative datasets, 107 

four datasets were constructed, including: (i) random-variant set of shuffled 108 

SNV-gene pairs where eVariants were replaced by random SNVs located <=1 Mb 109 

from the eGene TSS; (ii) mirrored-variant set of shuffled pairs where eVariants were 110 

replaced by random SNVs located at similar distance (error <= 1kb) but the opposite 111 

side of the eGene TSS; (iii) neighboring-variant set of shuffled pairs where eVariants 112 

were replaced by random SNVs located adjacent (<= 1 kb) to the positive ones; (iv) 113 

random-gene set of shuffled SNV-gene pairs where eGenes were replaced by gene 114 

TSSs located <= 1 Mb of the eVariants. We selected a maximum distance at 1 Mb 115 

between SNV and TSS in the datasets (i) and (iv), for it was observed that all positive 116 

SNV-TSS pairs had a distance less than 1 Mb (Figure S2). To determine the ratio 117 

between positive and negative datasets, we assessed different ratios, including 1:1, 1:2, 118 

1:3, 1:5, and 1:10, and found there was no significant difference of performances 119 

among five models (Figure S3). Thus, we selected a ratio of 1:1 between the positive 120 

and negative datasets to efficiently train the models. Variants in negative datasets 121 

were selected from the dbSNP build 146 data after removing the shared variants 122 

between GTEx and dbSNP datasets. Since eQTL variants are biased toward high 123 

frequency variants (Figure S4), to ensure that our results were not influenced by the 124 
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differences in minor allele frequency (MAF) between the positive variants and 125 

negative controls, we defined additional sets of MAF-matched negative controls for 126 

GTEx liver dataset, by the same strategy as the first three control datasets (i-iii) 127 

described above. 128 

 129 

Annotation profiles 130 

We used three major categories of genomic profiles, including sequential, epigenetic 131 

and evolutionary profiles (Table S2), to annotate our datasets using a customized 132 

pipeline. 133 

 134 

Sequential profiles 135 

Sequential profiles consisted of 2-mer prefix and postfix and local 5-mer GC content 136 

of SNV and TSS, SNV-caused transcription factor binding site (TFBS) affinity 137 

changes, genomic distance between SNV and TSS and the orientations of SNV and 138 

TSS.  139 

To calculate TFBS affinity changes caused by variants, we obtained the position 140 

frequency matrices of 602 TFs from the TRANSFAC [17] (523 TFs) and JASPAR 141 

[18] (79 TFs) databases. TFMscan [19] was used to locate putative TFBS motifs by 142 

scanning genomic DNA both forward and backward using these position frequency 143 

matrices. A stringent threshold of P-value < 4.5E-5 was used to determine significant 144 

motifs. Variants located within these motifs were determined using BEDTools [20]. 145 

The TFBS affinity were calculated as described [21]. Specifically, the corrected 146 

probabilities of observing a given nucleotide in a specific locus were calculated as 147 

follows: 148 
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Where b represents one specific base among A, T, C, and G, i is the index of the site, 150 

fb,i is the counts of base b in site i, N is the sum of counts of four bases, and s(b) is the 151 

pseudocount function. Here we assumed s(b) to be 1/4 for each of the four bases, then 152 

                                                    (2) 153 

Hence, the corresponding PWM can be constructed as: 154 

                                                   (3) 155 

where p(b) is the background probability of base b (assumed to be 1/4 for four bases). 156 

The TFBS affinity is calculated with 157 

                                                  (4) 158 

where w is the width of a PWM. We then calculated the average affinity change 159 

between reference and alteration alleles as follows: 160 

                                        (5) 161 

where AffinityR and AffinityA are evaluated binding affinity with the reference and 162 

alteration alleles, respectively. Variants located within two or more TFBS motifs were 163 

assigned with the ΔAffinity score with the maximum absolute value among all 164 

ΔAffinity scores of the affected motifs and variants not located at any TFBS motif 165 

were assigned a ΔAffinity score of 0. 166 

 167 

Epigenetic profiles 168 

Epigenetic profiles consisted of 31 histone modifications from the Roadmap 169 

Epigenomics project [2], 25 chromatin states produced by ChromHMM [22], and 170 

frequently interacted regions (FIREs) annotations from Hi-C study [23]. 171 

 172 

Evolutionary profiles  173 

Evolutionary profiles consisted of vertebrate, placental mammal and primate phyloP 174 

[24] and phastCons [25] scores based on the 46-way whole-genome alignment, and 175 
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vertebrate phyloP and phastCons scores based on the 100-way whole-genome 176 

alignment. 177 

All annotations were expressed in genomic coordinates for the GRCh37/hg19 178 

assembly of the human genome. Boolean variables were used to indicate if SNV or 179 

TSS overlapped with chromatin marks (1) or not (0). For categorical annotations, all 180 

n-level categorical values were first encoded to binary values and then converted to 181 

several individual Boolean flags. For continuous annotations, feature values were 182 

scaled to the range of [0, 1]. More exactly, distance to TSS was scaled by 183 

                                (6) 184 

phyloP scores scaled by 185 

                                       (7) 186 

and ΔAffinity scores scaled by 187 

                                       (8) 188 

 189 

Model design and training 190 

We built a DNN-based classifier to model our dataset. The basic model in RegVar is a 191 

fully connected neural network, in which each neuron in a layer receives inputs from 192 

all outputs of the previous layer, except that the first layer receives inputs from the 193 

original data matrix. Each layer in the network executes a linear transformation of the 194 

corresponding inputs to integrate information from the previous layer, followed by a 195 

non-linear transformation (namely the activation function) to rectify the linear result. 196 

Here we employed three fully connected layers with 500, 200, and 60 units 197 

respectively, and the most used rectified linear unit function (ReLU) as the activation 198 

function. Exactly, one fully connected layer computes 199 

                                              (9) 200 

where X is the input, W is the weight matrix, b is the bias, and ReLU represents 201 

rectified linear function 202 

                                                (10) 203 
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The layer following the third fully connected layer is the final output layer to make 204 

predictions about being a regulatory or non-regulatory variant on the specific gene, 205 

with scaled probability ranging from 0 to 1 using 206 

                                                 (11) 207 

To train the model, we selected the cross entropy loss function as the objective 208 

function, which is defined as follows:  209 

                 (12) 210 

where N is the number of samples in the training set, and i is the index of each sample. 211 

Yi and Xi represent the 0/1 label and the input features for sample i, respectively; and 212 

f(Xi) represents the predicted probability output from the DNN model. 213 

We conducted optimal search of hyper-parameters including the learning rate and 214 

dropout proportion. Learning rates were set at 0.001, 0.005, and 0.01; dropout 215 

proportions were set at 0, 0.3, and 0.5. We selected the combinations of learning rates 216 

and dropout proportions that achieved the highest prediction AUC in each of the four 217 

models (Table S3-S6). 218 

All training programs were written in Python language, using a deep neural 219 

network implementation from the TensorFlow library. 220 

 221 

Model comparison 222 

We used the average receiver operating characteristic (ROC) curves computed from 223 

10-fold cross-validation to evaluate model performances. Specifically, each dataset 224 

comprising of the positive set and its negative counterpart was randomly split into a 225 

training set and a testing set in a 9:1 ratio; the RegVar model was trained on the 226 

training set and evaluated on the testing set. This process was repeated 10 times for 227 

each dataset, with independent sample split procedure each time. 228 

Predictions of CADD (v1.3) [3], GWAVA (v1.0) [4], DeepSEA [5], LINSIGHT 229 

[6], ExPecto [12], and TIVAN [13], together with two ensemble methods, IW-scoring 230 
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[26] and regBase [27] were used for model performance comparison in liver, 231 

hippocampus and whole blood datasets. The random-variant, mirrored-variant and 232 

neighboring-variant datasets were used for the evaluation, and random-gene dataset 233 

was excluded as the existing methods didn’t give prediction on potentially affected 234 

genes. In addition, ExPecto was excluded from the random-variant and random-gene 235 

models evaluation, because it focused on promoter-proximal variants thus resulted in 236 

too few samples for the evaluation. For CADD, DeepSEA, and IW-scoring, we ran 237 

the analysis using the corresponding online web services; for GWAVA, LINSIGHT, 238 

ExPecto, TIVAN, and regBase, we downloaded the precomputed scores from the 239 

corresponding source websites. 240 

 241 

Model external evaluation 242 

We downloaded liver eQTLs from the exSNP website [28], hippocampus eQTLs from 243 

Schulz [29] and Ramasamy [30] eQTLs studies, and blood eQTLs from Westra [31] 244 

eQTLs meta-analysis to evaluate performances of trained models. We identified all 245 

SNV-TSS pairs and removed those overlapping with liver, hippocampus and whole 246 

blood eQTLs in GTEx dataset. For negative controls, all SNVs in the external positive 247 

datasets were removed from dbSNP build 146 and then four negative datasets were 248 

constructed, as described above in model training, for each of the three independent 249 

positive datasets. Also, the negative samples overlapping with the control sets used in 250 

model training were further removed to avoid any valid set contamination. Then we 251 

annotated each sample set with classifiers trained on GTEx eQTLs in the 252 

corresponding tissue and compared classification results with ROC curves for the first 253 

three sets with existing methods mentioned above. 254 

Besides, we evaluated prediction capabilities of different methods on the liver and 255 

blood eQTLs data from Brown eQTLs analysis [32], which have been used to test the 256 

performance of TIVAN and regBase. We downloaded the compiled positive and 257 

negative sets for Brown eQTLs data from the regBase website and compared 258 
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performance of different methods on datasets in liver and blood (all testing datasets 259 

are summarized in Table S7 and see Supplementary Methods for more details about 260 

data processing). 261 

 262 

RegVar score distribution 263 

For each tissue, we trained an integrated RegVar model by pooling four negative 264 

datasets to take all conditions together. 17 integrated RegVar models were applied to 265 

annotate all possible SNV-gene pairs in chromosome 22. For each SNV in 266 

chromosome 22, we obtained TSSs of all genes located within 1 Mb of the variant 267 

locus and combined the variant with each of these TSSs as a possible eQTL pair. 268 

After mapped with all kinds of features, 65,844,726 sample pairs of 1,039,985 269 

different SNVs were left and annotated with integrated RegVar models in 17 tissue 270 

types. For each variant, the maximum annotated score of all its possible eQTL pairs 271 

was set as the final RegVar score of the variant in each tissue. We next explored 272 

distribution patterns of RegVar scores of all these variants. 273 

 274 

Tissue-shared/tissue-specific regulatory variants 275 

Stratified random sampling was performed to select 100,000 SNVs from 22 276 

autosomes, and TSSs located within 1 Mb of each variant locus were identified and 277 

combined with the variant as a possible eQTL pair. After mapped with corresponding 278 

features, 3,703,900 sample pairs were left. RegVar scores were obtained in 17 tissue 279 

types and then converted to percentiles based on the corresponding merged training 280 

sets to make results comparable across different tissues. For a particular variant, the 281 

sample pair with the maximum percentile among all its possible eQTL pairs and 282 

across 17 integrated models was set to be the final sample pair. We obtained 17 283 

tissue-specific percentiles of all final sample pairs to form a percentile matrix. Then 284 

K-means clustering, implemented by kmeans function in R language, was applied on 285 

the matrix to get tissue-specific and tissue-shared regulatory variant clusters. Four 286 
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tissue-specific epigenetic features, namely DHS, H3K4me1, H3K4me3, and H3K27ac, 287 

were used to annotate these tissue-specific and tissue-shared regulatory variants. 288 

 289 

Results  290 

Prioritization of regulatory variants in 17 human tissues 291 

To explore the influence of DHS filter on RegVar’s prediction capability , we first 292 

compared performance of models built from positive datasets without any filter, with 293 

the DHS filter, with the ATAC-seq filter, and both positive and negative datasets with 294 

the DHS filter in the liver dataset (Supplementary Methods), and found that models 295 

built from the positive dataset with the DHS filter showed the most robust 296 

performance in discriminating regulatory variants form different backgrounds (Figure 297 

S5). We then utilized the DHS-filter-based RegVar to predict the tissue-specific 298 

effects of genomic variants on gene expression in 17 human tissues. The averaged 299 

ROC curves across 17 tissues showed that RegVar predicted regulatory variants and 300 

their target genes with averaged AUCs of 0.965, 0.917, 0.693, and 0.929 for the four 301 

training datasets, respectively (Figure 2 and Table S1). This result demonstrated 302 

RegVar could reliably discriminate positive regulatory variants from different 303 

negative backgrounds. We then evaluated the performances of existing methods 304 

CADD [3], GWAVA [4], DeepSEA [5], LINSIGHT [6], ExPecto [12], TIVAN [13], 305 

IW-scoring [26], and regBase [27] on the same tasks. For CADD, we used C-scores. 306 

For GWAVA, we used pathogenic scores with the corresponding control standards 307 

(namely, unmatched, TSS, and region). For DeepSEA, we used eQTL-probability 308 

scores. For IW-scoring, we used integrative scores without fitCons. For regBase, we 309 

used regBase_Common prediction scores. For the three tested tissues: liver, 310 

hippocampus, and whole blood, we found that only GWAVA, LINSIGHT, and 311 

IW-scoring could make valid predictions with AUCs of 0.668-0.764 for 312 

random-variant and 0.573-0.677 for mirrored-variant datasets, yet still much lower 313 

than that of RegVar (0.957-0.969 for random-variant and 0.884-0.945 for 314 
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mirrored-variant sets), while other five methods failed to show significant power in 315 

distinguishing regulatory variants (Figure 3, Figure S6 and S7). For the 316 

neighboring-variant set, which is more challenging, none of the existing methods 317 

made valid predictions, compared to an AUC of 0.694-0.700 for RegVar. We 318 

additionally evaluate the prediction results of different methods by precision-recall 319 

curves (PRC), and still RegVar showed the superior performance against other 320 

methods (Figure S8, S9, and S10). After controlled for MAF, RegVar showed 321 

comparable prediction capabilities in discriminating eQTLs from MAF-matched 322 

benign variants, as demonstrated in liver samples (Figure S11), although with a slight 323 

decrease in the neighboring-variant set, and the other eight methods still showed low 324 

prediction capabilities as before. 325 

To further confirm the results, we curated another three publicly available eQTL 326 

datasets of liver, hippocampus, and whole blood, from the exSNP website [28], 327 

Schulz [29] and Ramasamy [30] eQTL studies, and Westra [31] eQTL meta-analysis, 328 

respectively, as independent testing sets. We found RegVar models trained with 329 

GTEx datasets achieved almost equally accurate predictions in the three independent 330 

testing sets, while all other methods still didn’t show any obvious predictive powers in 331 

the independent datasets (Figure 3, Figure S6-S10). To assess the robustness of 332 

RegVar on imbalanced datasets, we then constructed independent validation sets for 333 

liver eQTLs form the exSNP database with the sample ratio at 1:1, 1:2, 1:3, 1:5, and 334 

1:10. We found that RegVar trained on GTEx datatsets at the 1:1 ratio showed robust 335 

performance on both balanced and imbalanced datasets (Figure S12). In addition, we 336 

also evaluated performance of different methods on the Brown eQTL data in liver and 337 

blood, which have been used as testing data for regBase and TIVAN. Results showed 338 

that in both tissues, RegVar trained on GTEx datasets showed comparable 339 

performance (AUC = 0.858 and 0.901 for liver and blood sets, respectively) with 340 

regBase (AUC = 0.883 and 0.89 for liver and blood sets, respectively, equal to the 341 

AUCs reported in the regBase paper. We also showed that RegVar models trained on 342 
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the Brown eQTL data achieved even higher AUCs on both datasets (AUC = 0.952 343 

and 0.945 for liver and blood sets, respectively) compared with other methods (Figure 344 

S13 and S14). 345 

To investigate the robustness of RegVar on different settings of negative data 346 

sampling in external evaluation, we constructed negative datasets for the exSNP 347 

testing set by randomly selecting variants at wider genome regions, including: (i) 348 

random-variant set comprising of random SNVs located <= 2 and 5 Mb from the 349 

eGene TSS; (ii) mirrored-variant set comprising of random SNVs with a distance 350 

error <= 2 and 5 kb; (iii) neighboring-variant set comprising of random SNVs located 351 

<= 2 and 5 kb to the positive ones; (iv) random-gene set comprising of random gene 352 

TSSs located <= 2 and 5 Mb of the eVariants. RegVar models trained before 353 

exhibited equal, or even slightly increased, prediction power in these independent 354 

negative controls selected from wider genome regions, whereas other methods again 355 

showed vary limited prediction performances (Figure S15). Altogether, these results 356 

demonstrated the outstanding performance of RegVar on predicting regulatory impact 357 

of noncoding variants. 358 

We examined the feature importance of the four different models with Gini 359 

impurity in liver (Supplementary Methods). For random-variant and mirrored-variant 360 

models, the epigenetic patterns of variants were the most important feature sets, while 361 

for the random-gene model, the epigenetic and sequential profiles of TSS were the 362 

most important feature sets besides the distance between variant and TSS. Notably, 363 

for the neighboring-variant model, evolutionary and sequential profiles of variants 364 

became the most important feature sets (Figure S16). This is expected, as these 365 

features could provide information of single-base resolution, which is crucial for 366 

distinguishing regulatory variants from adjacent non-functional ones. 367 

 368 

RegVar score distribution 369 
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We further compared performances of different models trained on the GTEx liver 370 

eQTLs on each of negative datasets constructed for the independent exSNP testing set. 371 

Results showed that AUCs of models from other types of negative data decreased by 372 

0.031-0.133, 0.041-0.091, 0.062-0.105 for random-variant, mirrored-variant, and 373 

neighboring-variant datasets, respectively, and that the integrated model obtained 374 

superior capability in all testing datasets besides the models trained on the same type 375 

of negative data (Figure S17). We then applied the integrated model to all SNVs in 376 

chromosome 22 (n = 1,039,985) in 17 types of tissues and measured their regulatory 377 

potentials with the corresponding RegVar scores. We calculated the optimal cutoff of 378 

RegVar scores by maximizing the sum of specificity and sensitivity. We found that a 379 

major proportion (84.5-94.0%) of the DHS-supported eVariants were correctly 380 

classified and a significant subset (24.6-39.1%) of background variants were assigned 381 

with RegVar scores above the cutoffs (Figure 4A and Figure S18). This result 382 

suggests that a considerable portion of variants in human genome can function as 383 

regulatory variants. 384 

To further investigate the distribution of RegVar scores across different functional 385 

genome regions, we mapped all annotated variants across 15 chromatin states 386 

produced by ChromHMM [22] in liver and showed that variants at active/bivalent 387 

promoters and enhancers usually have higher RegVar scores, while variants at 388 

repressed and heterochromatin regions usually have lower scores (Figure 4C). This is 389 

expected since most variants exert their effects through alteration of key regulatory 390 

DNA elements [33]. Also, we observed a clear correlation between RegVar scores 391 

and SNV-caused loss-of-function (ΔAffinity <= 0, ANOVA F = 422.6, P = 0) or 392 

gain-of-function (ΔAffinity >= 0, ANOVA F = 23.62, P = 5.52E-11) of TFBSs 393 

(Figure 4B), which means the extents of TFBS affinity alteration are positively 394 

correlated with the probabilities of the causing variants to be functional. 395 

 396 

Tissue specificity of RegVar scores 397 
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To evaluate the tissue specificity of the predicted regulatory variants, we applied the 398 

integrated models in all 17 tissue types to randomly selected SNVs (n = 100,000) 399 

across the human genome. K-means clustering of the RegVar score percentiles of 400 

these SNVs identified 22 variant clusters, and one cluster was considered to be 401 

enriched in a specific tissue if it was endowed with a K-means center percentile larger 402 

than the percentile of the cutoff score in the corresponding tissue. We then identified 403 

8, 11, and 3 clusters of non-functional, tissue-specific regulatory, and tissue-shared 404 

regulatory variants, from clusters which were enriched in 0, 1-3, and >=12 tissues 405 

(there was no cluster enriched in 4-11 tissues), respectively (Figure 5A and Figure 406 

S19). Using four epigenetic marks (DHS, H3K4me1, H3K27ac and H3K4me3) as 407 

hallmarks of chromatin states, we showed that two clusters of tissue-shared variants 408 

assigned with high RegVar scores (C6, C14) presented active promoter marks (DHS, 409 

H3K4me1, H3K27ac, and H3K4me3) across all tissues, indicating they were enriched 410 

at tissue-shared promoters. In contrast, the tissue-shared cluster assigned with 411 

moderate RegVar scores (C2) presented active enhancer marks (DHS, H3K4me1, and 412 

H3K27ac) across all tissues, indicating their enrichment at tissue-shared enhancers. 413 

We also found that most of the tissue-specific clusters presented active enhancer 414 

marks specifically in the corresponding tissues, indicating their enrichment at 415 

tissue-specific enhancers (Figure 5B). These results demonstrate the power of 416 

RegVar in measuring the tissue-specific impact of regulatory variants. 417 

 418 

Prioritization of noncoding pathogenic variants in HGMD 419 

We further extended the framework of RegVar to prioritize noncoding pathogenic 420 

variants. We used a simplified pathogenic RegVar model to learn the features of 421 

noncoding pathogenic variants collected from the Human Gene Mutation database 422 

(HGMD) [34]. We extracted disease-associated variants from the December 2016 423 

release of HGMD public dataset. Small indels and variants overlapping any coding 424 

sequence (as annotated in RefSeq genes from the UCSC Genome Browser) or 425 
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essential splice sites (as annotated in GWAVA [4]) were filtered out. After mapping 426 

remaining variants to all genomic annotations (Supplementary Methods), a final set of 427 

2078 disease-associated variants were used as the positive set of pathogenic 428 

noncoding variants. For negative datasets, three datasets were constructed, including 429 

(i) random-variant set of random SNVs sampled from the whole genome; (ii) 430 

distance-control-variant set of random SNVs sampled from variants matched to the 431 

pathogenic ones by the exact distance-to-nearest TSS (not necessarily near the same 432 

TSSs as the pathogenic variants); (iii) neighboring-variant set of random SNVs 433 

located <= 1 kb from the pathogenic ones. We selected a sample ratio at 1:10 due to 434 

the small sample size of pathogenic variants, and negative variants overlapping any 435 

coding sequence or essential splice sites were further filtered out. We then constructed 436 

the pathogenic RegVar model on those different negative datasets. We found that 437 

RegVar obtained superior capability in the random-variant and neighboring-variant 438 

sets. The performances of regBase (AUC = 0.879), GWAVA (AUC = 0.874), 439 

IW-scoring (AUC = 0.871) were comparable to RegVar’s (AUC = 0.885) in the 440 

random-variant set, and regBase (AUC = 0.704) was comparable to RegVar (AUC = 441 

0.707) in the neighboring-variant set. In the distance-control-variant set, regBase 442 

exhibited slight outperformance (AUC = 0.845), followed by RegVar (AUC = 0.816) 443 

and IW-scoring (AUC = 0.805) (Figure 6). These results demonstrated the 444 

competence of the RegVar framework in discriminating between pathogenic and 445 

benign variants.  446 

We then explored the feature importance of the above three models 447 

(Supplementary Methods). We found that sequential profiles were the most important 448 

feature set in all three models, illustrating their prominent role in discriminating 449 

noncoding pathogenic variants from different backgrounds; epigenetic and 450 

evolutionary profiles were ranked second in the random-variant and 451 

neighboring-variant models, respectively (Figure S20), which demonstrated their 452 
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specific facility in separating noncoding pathogenic variants from a global and local 453 

genome regions, respectively. 454 

 455 

Discussion 456 

Noncoding variants play a prominent role in many diseases and complex traits 457 

through various intricate mechanisms [35, 36]. Nevertheless, variants would exert 458 

their effects by affecting the expression of specific genes. It is a great challenge to 459 

link regulatory variants, especially in long distance, to their target genes. Here we 460 

show that through jointly learning the genomic patterns of variants and genes, RegVar 461 

provides helpful information for mapping regulatory variants to their target genes. We 462 

expect RegVar can contribute to current limited understanding of genetic architecture 463 

of human genome and help to uncover novel molecular mechanisms underlying 464 

complex traits and diseases. 465 

A number of methods have been developed for measuring the consequence and 466 

importance of noncoding variants. Though differing from each other in the underlying 467 

intuitions and specific algorithm frameworks, they mainly focused on predicting the 468 

pathogenic effect of variants. Therefore a vast number of noncoding variants with 469 

smaller regulatory effects would be neglected. Here we demonstrated the unique 470 

ability of RegVar to prioritize regulatory variants against different backgrounds. We 471 

found that in the random-variant, mirrored-variant, and random-gene datasets, 472 

RegVar obtained accurate and robust prediction capability; in the neighboring-variant 473 

dataset, RegVar exhibited relatively weak prediction power, but still superior to 474 

existing methods. These results demonstrate RegVar as an integrated model to 475 

identify genome-wide regulatory variants, and it may be not suitable for fine-mapping 476 

studies in limited regions. Applying RegVar to all SNVs in chromosome 22, we show 477 

that there is a considerable portion of variants across the wide genome showing large 478 

probabilities with which to regulate the expression of certain target genes. The reason 479 
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they have not been reported may be that their effects are too subtle to be detected, 480 

coupled with limited sample sizes and low statistical power. 481 

482 
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Code availability  483 

The RegVar online server is freely available at http://regvar.cbportal.org/. 484 

Downloadable datasets and source code to run RegVar on local personal computers 485 

and scripts to generate figures in the manuscript are also provided at the RegVar 486 

website. 487 

 488 

CRediT author statement  489 

Hao Lu: Methodology, Investigation, Software, Visualization, Writing - Original 490 

Draft, Writing - Review & Editing. Luyu Ma: Methodology, Investigation, 491 

Visualization. Cheng Quan: Investigation, Software. Lei Li: Methodology, 492 

Investigation, Visualization. Yiming Lu: Conceptualization, Methodology, 493 

Investigation, Visualization, Writing - Original Draft, Writing - Review & Editing. 494 

Gangqiao Zhou: Conceptualization, Supervision. Chenggang Zhang: 495 

Conceptualization, Supervision. All authors read and approved the final manuscript.  496 

 497 

 498 

Competing interests 499 

The authors have declared no competing interests.  500 

 501 

Acknowledgements 502 

This work was supported by the General Program of the National Natural Science 503 

Foundation of China (Grant No. 31771397) and the Beijing Nova Program (Grant No. 504 

20180059). 505 

 506 

Authors’ ORCID IDs 507 

0000-0002-8157-4158 (Hao Lu) 508 

0000-0003-2907-8410 (Luyu Ma) 509 

0000-0003-1859-9683 (Cheng Quan) 510 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 19, 2021. ; https://doi.org/10.1101/2021.04.17.440295doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.17.440295
http://creativecommons.org/licenses/by-nc-nd/4.0/


0000-0002-5100-2124 (Lei Li)  511 

0000-0001-8005-2705 (Yiming Lu) 512 

0000-0002-4895-5063 (Gangqiao Zhou) 513 

0000-0002-4521-3304 (Chenggang Zhang) 514 

 515 

516 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 19, 2021. ; https://doi.org/10.1101/2021.04.17.440295doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.17.440295
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 517 
[1] Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. 518 
Systematic localization of common disease-associated variation in regulatory DNA. 519 
Science 2012;337:1190-5. 520 
[2] Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, et al. 521 
Integrative analysis of 111 reference human epigenomes. Nature 2015;518:317-30. 522 
[3] Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general 523 
framework for estimating the relative pathogenicity of human genetic variants. Nat 524 
Genet 2014;46:310-5. 525 
[4] Ritchie GR, Dunham I, Zeggini E, Flicek P. Functional annotation of noncoding 526 
sequence variants. Nat Methods 2014;11:294-6. 527 
[5] Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep 528 
learning–based sequence model. Nat Methods 2015;12:931-4. 529 
[6] Huang Y-F, Gulko B, Siepel A. Fast, scalable prediction of deleterious noncoding 530 
variants from functional and population genomic data. Nat Genet 2017;49:618-24. 531 
[7] Zeng Y, Wang G, Yang E, Ji G, Brinkmeyer-Langford CL, Cai JJ. Aberrant gene 532 
expression in humans. PLoS Genet 2015;11:e1004942. 533 
[8] Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of 534 
polygenic risk scores. Nat Rev Genet 2018;19:581-90. 535 
[9] Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 536 
years of GWAS discovery: biology, function, and translation. Am J Hum Genet 537 
2017;101:5-22. 538 
[10] Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton KJ, 539 
et al. The genetic architecture of type 2 diabetes. Nature 2016;536:41-7. 540 
[11] Liu L, Sanderford MD, Patel R, Chandrashekar P, Gibson G, Kumar S. 541 
Biological relevance of computationally predicted pathogenicity of noncoding 542 
variants. Nat Commun 2019;10:330. 543 
[12] Zhou J, Theesfeld CL, Yao K, Chen KM, Wong AK, Troyanskaya OG. Deep 544 
learning sequence-based ab initio prediction of variant effects on expression and 545 
disease risk. Nat Genet 2018;50:1171-9. 546 
[13] Chen L, Wang Y, Yao B, Mitra A, Wang X, Qin X. TIVAN: tissue-specific 547 
cis-eQTL single nucleotide variant annotation and prediction. Bioinformatics 548 
2019;35:1573-5. 549 
[14] Li MJ, Li M, Liu Z, Yan B, Pan Z, Huang D, et al. cepip: context-dependent 550 
epigenomic weighting for prioritization of regulatory variants and disease-associated 551 
genes. Genome Biol 2017;18:52. 552 
[15] Tewhey R, Kotliar D, Park DS, Liu B, Winnicki S, Reilly SK, et al. Direct 553 
identification of hundreds of expression-modulating variants using a multiplexed 554 
reporter assay. Cell 2016;165:1519-29. 555 
[16] Consortium G. Genetic effects on gene expression across human tissues. Nature 556 
2017;550:204-13. 557 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 19, 2021. ; https://doi.org/10.1101/2021.04.17.440295doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.17.440295
http://creativecommons.org/licenses/by-nc-nd/4.0/


[17] Matys V, Fricke E, Geffers R, Gössling E, Haubrock M, Hehl R, et al. 558 
TRANSFAC®: transcriptional regulation, from patterns to profiles. Nucleic Acids 559 
Res 2003;31:374-8. 560 
[18] Mathelier A, Fornes O, Arenillas DJ, Chen C-y, Denay G, Lee J, et al. JASPAR 561 
2016: a major expansion and update of the open-access database of transcription 562 
factor binding profiles. Nucleic Acids Res 2015;44:D110-D5. 563 
[19] Liefooghe A, Touzet H, Varré J-S. Large scale matching for position weight 564 
matrices. Annual Symposium on Combinatorial Pattern Matching 2006:401-12. 565 
[20] Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing 566 
genomic features. Bioinformatics 2010;26:841-2. 567 
[21] Wasserman WW, Sandelin A. Applied bioinformatics for the identification of 568 
regulatory elements. Nat Rev Genet 2004;5:276-87. 569 
[22] Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and 570 
characterization. Nat Methods 2012;9:215-6. 571 
[23] Schmitt AD, Hu M, Jung I, Xu Z, Qiu Y, Tan CL, et al. A compendium of 572 
chromatin contact maps reveals spatially active regions in the human genome. Cell 573 
Rep 2016;17:2042-59. 574 
[24] Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral 575 
substitution rates on mammalian phylogenies. Genome Res 2010;20:110-21. 576 
[25] Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, et al. 577 
Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. 578 
Genome Res 2005;15:1034-50. 579 
[26] Wang J, Dayem Ullah AZ, Chelala C. IW-Scoring: an Integrative Weighted 580 
Scoring framework for annotating and prioritizing genetic variations in the noncoding 581 
genome. Nucleic Acids Res 2018;46:e47. 582 
[27] Zhang S, He Y, Liu H, Zhai H, Huang D, Yi X, et al. regBase: whole genome 583 
base-wise aggregation and functional prediction for human non-coding regulatory 584 
variants. Nucleic Acids Res 2019;47:e134. 585 
[28] Yu C-H, Pal LR, Moult J. Consensus genome-wide expression quantitative trait 586 
loci and their relationship with human complex trait disease. OMICS 2016;20:400-14. 587 
[29] Schulz H, Ruppert A-K, Herms S, Wolf C, Mirza-Schreiber N, Stegle O, et al. 588 
Genome-wide mapping of genetic determinants influencing DNA methylation and 589 
gene expression in human hippocampus. Nat Commun 2017;8:1511. 590 
[30] Ramasamy A, Trabzuni D, Guelfi S, Varghese V, Smith C, Walker R, et al. 591 
Genetic variability in the regulation of gene expression in ten regions of the human 592 
brain. Nat Neurosci 2014;17:1418-28. 593 
[31] Westra H-J, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, et al. 594 
Systematic identification of trans eQTLs as putative drivers of known disease 595 
associations. Nat Genet 2013;45:1238-43. 596 
[32] Brown CD, Mangravite LM, Engelhardt BE. Integrative modeling of eQTLs and 597 
cis-regulatory elements suggests mechanisms underlying cell type specificity of 598 
eQTLs. PLoS Genet 2013;9:e1003649. 599 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 19, 2021. ; https://doi.org/10.1101/2021.04.17.440295doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.17.440295
http://creativecommons.org/licenses/by-nc-nd/4.0/


[33] Lee PH, Lee C, Li X, Wee B, Dwivedi T, Daly M. Principles and methods of 600 
in-silico prioritization of non-coding regulatory variants. Hum Genet 2018;137:15-30. 601 
[34] Stenson PD, Mort M, Ball EV, Evans K, Hayden M, Heywood S, et al. The 602 
Human Gene Mutation Database: towards a comprehensive repository of inherited 603 
mutation data for medical research, genetic diagnosis and next-generation sequencing 604 
studies. Hum Genet 2017;136:665-77. 605 
[35] Albert FW, Kruglyak L. The role of regulatory variation in complex traits and 606 
disease. Nat Rev Genet 2015;16:197-212. 607 
[36] Khurana E, Fu Y, Chakravarty D, Demichelis F, Rubin MA, Gerstein M. Role of 608 
non-coding sequence variants in cancer. Nat Rev Genet 2016;17:93-108. 609 

 610 

611 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 19, 2021. ; https://doi.org/10.1101/2021.04.17.440295doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.17.440295
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure legends 612 

Figure 1 A flowchart showing the workflow of RegVar 613 

 614 

Figure 2 Average ROC curves for 10-fold cross-validation experiments of 615 

RegVar 616 

For each of the four training sets, the ROC curves are averaged across 17 human 617 

tissues. Error bars represent the standard deviation averaged over tissues. 618 

 619 

Figure 3 ROC curves of nine computational methods distinguishing regulatory 620 

variants from different backgrounds in liver 621 

Results are shown for ROC curves from 10-fold cross-validation experiments in the 622 

GTEx liver eQTL dataset (top) and from external evaluation experiments in the 623 

exSNP liver eQTL dataset (bottom). Negative datasets were from either random 624 

selected variants (random-variant sets) (left), matched variants by distance but at the 625 

opposite side of the eGene TSS (mirrored-variant sets) (middle), or neighboring 626 

variants located adjacent (<= 1 kb) to the positive ones (neighboring-variant sets) 627 

(right). Negative datasets from random selected TSSs (random-gene sets) are not 628 

shown since other existing methods didn’t give prediction on potentially affected 629 

genes. Any overlap between the exSNP liver eQTLs and GTEx eQTLs and overlap 630 

between their corresponding negative sets were removed. ExPecto results are not 631 

shown for random-variant sets because it resulted in too few samples for ROC curve 632 

analysis. 633 

 634 

Figure 4 RegVar scores across all variants in chromosome 22 annotated in the 635 

integrated liver RegVar model 636 

A. Histogram showing the RegVar scores distribution across all SNVs in chromosome 637 

22 (N = 1,039,985) (lightblue) and SNVs in GTEx liver eQTLs (orange). Dashed line 638 

indicates the optimal cutoff score in liver training set. Numbers of variants blow or 639 
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above the cutoff score are embedded. B. Spine plot showing the correlation between 640 

RegVar scores and SNV-caused TFBS affinity changes. C. Violin plots showing the 641 

RegVar score distributions across 15 chromatin states (BivFlnk, flanking bivalent 642 

TSS/enhancers; Enh, enhancers; EnhBiv, bivalent enhancers; EnhG, genic enhancers; 643 

Het, heterochromatin; ReprPC, repressed PolyComb; ReprPCWk, weak repressed 644 

PolyComb; Quies, quiescent/low; TssA, active TSS; TssAFlnk, flanking active TSS; 645 

TssBiv, bivalent/poised TSS; Tx, strong transcription; TxFlnk, transcription at gene 5' 646 

and 3'; TxWk, weak transcription; ZNF/Rpts, ZNF genes & repeats). Embedded 647 

boxplots indicate medians (center bars), and the first and third quartiles (lower and 648 

upper hinges). 649 

 650 

Figure 5 Tissue-shared and tissue-specific regulatory variants and 651 

non-functional variants identified in K-means clustering  652 

A. RegVar score percentiles for different clusters of variants (N = 100,000) annotated 653 

with the integrated RegVar models in 17 tissues (ACC, anterior cingulate cortex; AG, 654 

adrenal gland; AO, aorta; EM, esophagus mucosa; HI, hippocampus; LI, liver; LU, 655 

lung; LV, left ventricle; OV, ovary; PA, pancreas; SC, sigmoid colon; SI, small 656 

intestine; SM, skeletal muscle; SN, substantia nigra; SP, spleen; ST, stomach; WB, 657 

whole blood). B. Enrichment proportion of different clusters of variants in genome 658 

regions with four epigenomic annotations (DHS, H3K4me1, H3K4me3, and H3K27ac) 659 

in 10 selected tissues. 660 

 661 

Figure 6 ROC curves of seven computational methods distinguishing noncoding 662 

pathogenic variants from different backgrounds  663 

Positive samples were from the of HGMD noncoding pathogenic variants (N = 2078). 664 

Negative samples were from either random selected variants (random-variant set) 665 

(left), matched variants by the exact distance-to-nearest TSS (not necessarily near the 666 

same TSS as each pathogenic variant) (distance-control-variant set) (middle), or 667 
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neighboring variants located adjacent (<= 1 kb) to the positive ones 668 

(neighboring-variant set) (right). Because GWAVA was trained on the HGMD 669 

noncoding mutations, we filtered out GWAVA training positive-variants in evaluating 670 

its performance. TIVAN and ExPecto results are not shown because they only 671 

provides tissue-specific regulatory variants prioritization scores. 672 

 673 

Supplementary material 674 

Figure S1 AUCs of RegVar models with different sample sizes 675 

Positive samples were from the GTEx skeletal muscle eQTLs. Sample sizes were set 676 

from 20,000 to 180,000, step by 20,000, and the full sample size (N = 204,124). 677 

 678 

Figure S2 Histogram showing the distance between variant loci and TSS 679 

Results are shown for samples from the GTEx eQTLs from 17 tissues (A-Q). 680 

 681 

Figure S3 ROC curves for 10-fold cross-validation experiments at different 682 

ample ratios between positive and negative datasets 683 

Positive samples were from the GTEx liver eQTLs. Negative samples were selected at 684 

the ratio of 1:1, 1:2, 1:3, 1:5, and 1:10 between positive (P) and negative (N) datasets. 685 

 686 

Figure S4 MAF distribution (A) and common and rare variant proportion (B) in 687 

dbSNP variants and GTEx eQTLs 688 

 689 

Figure S5 ROC curves of RegVar models trained on samples with different 690 

filters 691 

Results are shown for models trained on the original GTEx liver eQTLs (N = 268,673) 692 

with all feature sets as predictors and with DHS peaks alone as a predictor, RegVar 693 

models trained on the GTEx liver eQTLs filtered by DHS peaks (N = 41,636) and 694 
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filtered by ATAC profiles (N = 3731), and RegVar models trained on both the GTEx 695 

liver eQTLs and controls filtered by DHS peaks. 696 

 697 

Figure S6 ROC curves of nine computational methods distinguishing regulatory 698 

variants from different backgrounds in hippocampus 699 

Results are shown for ROC curves from 10-fold cross-validation experiments in the 700 

GTEx hippocampus eQTL dataset (top) and from external evaluation experiments in 701 

Schulz and Ramasamy hippocampus eQTL dataset (bottom). Plots are similar to 702 

Figure 3. 703 

 704 

Figure S7 ROC curves of nine computational methods distinguishing regulatory 705 

variants from different backgrounds in whole blood 706 

Results are shown for ROC curves from 10-fold cross-validation experiments in the 707 

GTEx whole blood eQTL dataset (top) and from external evaluation experiments in 708 

Westra whole blood eQTL dataset (bottom). Plots are similar to Figure 3. 709 

 710 

Figure S8 PRC curves of nine computational methods distinguishing regulatory 711 

variants from different backgrounds in liver 712 

Results are shown for PRC curves for the same result as Figure 3. 713 

 714 

Figure S9 PRC curves of nine computational methods distinguishing regulatory 715 

variants from different backgrounds in hippocampus 716 

Results are shown for PRC curves for the same result as Supplementary Figure S6 717 

 718 

Figure S10 PRC curves of nine computational methods distinguishing regulatory 719 

variants from different backgrounds in whole blood 720 

Results are shown for PRC curves for the same result as Supplementary Figure S7 721 

 722 
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Figure S11 ROC curves of nine computational methods distinguishing regulatory 723 

variants in liver from MAF-matched variants  724 

Positive samples were from the GTEx liver eQTLs (N = 41,636). Negative samples in 725 

three control datasets were randomly selected from MAF-matched variants to the 726 

positive ones. Plots are similar to Figure 3. 727 

 728 

Figure S12 ROC curves of RegVar distinguishing regulatory variants from 729 

different backgrounds in liver at different sample ratio 730 

Positive samples were from the exSNP liver eQTL dataset. Negative samples were 731 

selected at the ratio of 1:1, 1:2, 1:3, 1:5, and 1:10 between positive (P) and negative 732 

(N) datasets. 733 

 734 

Figure S13 ROC curves of nine computational methods distinguishing regulatory 735 

variants in Brown liver eQTLs 736 

Positive and negative samples were from the Brown liver eQTLs complied by 737 

regBase. 738 

 739 

Figure S14 ROC curves of nine computational methods distinguishing regulatory 740 

variants in Brown blood eQTLs 741 

Positive and negative samples were from the Brown blood eQTLs complied by 742 

regBase. 743 

 744 

Figure S15 ROC curves of nine computational methods distinguishing regulatory 745 

variants in the exSNP liver eQTLs from different backgrounds 746 

Positive samples were from the exSNP liver eQTL dataset (N = 4307). Negative 747 

samples in three control datasets were randomly selected from wider genome regions: 748 

(i) random-variant set comprising of random SNVs located <= 2 (Top) and 5 (bottom) 749 

Mb from the eGene TSS; (ii) mirrored-variant set comprising of random SNVs with a 750 
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distance error <= 2 (Top) and 5 (bottom) kb; (iii) neighboring-variant set comprising 751 

of random SNVs located <= 2 (Top) and 5 (bottom) kb to the positive ones. Result for 752 

random-gene set comprising of random gene TSSs located <= 2 and 5 Mb of the 753 

eVariants was not shown since other existing methods didn’t give prediction on 754 

potentially affected genes. 755 

 756 

Figure S16 Barplots showing the relative Gini importance for different models 757 

Results are shown for models trained on random-variant (A), mirrored-variant (B), 758 

neighboring-variant (C), and random-gene (D) datasets of the GTEx liver eQTLs (N 759 

= 41,636). All features were divided into seven groups: distance between variant and 760 

TSS (Distance), sequential profiles of variant (VarSeq) and TSS (TSSSeq), epigenetic 761 

profiles of variant (VarEpi) and TSS (TSSEpi), evolutionary profiles of variant 762 

(VarEvo) and TSS (TSSEvo). Error bars represents the standard error averaged over 763 

10 times. 764 

 765 

Figure S17 ROC curves of different RegVar models distinguishing regulatory 766 

variants in the exSNP liver eQTLs from each of the negative datasets 767 

Positive samples were from the exSNP liver eQTLs (N = 4307). Models based on the 768 

random-gene dataset was not evaluated in this analysis, because it aimed to identify 769 

potential eGenes for each eVariant and wasn’t suitable for prioritization of positive 770 

variants. 771 

 772 

Figure S18 Histogram showing the RegVar scores distribution 773 

Results are shown for all SNVs in chromosome 22 (lightblue) and SNVs in the GTEx 774 

eQTLs (orange). Variants were annotated in integrated RegVar models in 16 tissues 775 

(A-P). Dashed line indicates the optimal cutoff scores in the corresponding training 776 

set. Numbers of variants blow or above the cutoff scores are embedded. 777 

 778 
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Figure S19 Identification of tissue-shared/tissue-specific cluster of variants 779 

An orange cell indicate the cluster was endowed with an K-means center percentile 780 

larger than the percentile of the RegVar cutoff score in the corresponding tissue, and 781 

an skyblue cell if not. ACC, anterior cingulate cortex; AG, adrenal gland; AO, aorta; 782 

EM, esophagus mucosa; HI, hippocampus; LI, liver; LU, lung; LV, left ventricle; OV, 783 

ovary; PA, pancreas; SC, sigmoid colon; SI, small intestine; SM, skeletal muscle; SN, 784 

substantia nigra; SP, spleen; ST, stomach; WB, whole blood. 785 

 786 

Figure S20 Barplots showing the relative Gini importance for different 787 

pathogenic RegVar models  788 

Results are shown for models trained on random-variant (A), distance-control-variant 789 

(B), and neighboring-variant (C) datasets of HGMD noncoding pathogenic variants 790 

(N = 2,078). All features were divided into four groups: distance to the nearest TSS 791 

(Distance), and sequential (Seq), epigenetic (Epi), and evolutionary (Evo) profiles of 792 

the variant. Error bars represents the standard error averaged over 10 times. 793 

 794 

Table S1 Sample sizes and AUCs of the 4 training sets in 17 tissues 795 

 796 

Table S2 Summary of genomic features used by RegVar  797 

 798 

Table S3 AUCs under different learning rates and dropout proportions in the 799 

liver random-variant set  800 

 801 

Table S4 AUCs under different learning rates and dropout proportions in the 802 

liver mirrored-variant set  803 

 804 

Table S5 AUCs under different learning rates and dropout proportions in the 805 

liver neighboring-variant set  806 
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 807 

Table S6 AUCs under different learning rates and dropout proportions in the 808 

liver random-gene set  809 

 810 

Table S7 Testing sets used for evaluation of RegVar and other methods 811 

 812 

File S1 Supplementary methods 813 

 814 
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