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ABSTRACT 

Reproducibility is essential to open science, as there is limited relevance for findings that can 

not be reproduced by independent research groups, regardless of its validity. It is therefore 

crucial for scientists to describe their experiments in sufficient detail so they can be reproduced, 

scrutinized, challenged, and built upon. However, the intrinsic complexity and continuous growth 

of biomedical data makes it increasingly difficult to process, analyze, and share with the 

community in a FAIR (findable, accessible, interoperable, and reusable) manner. To overcome 

these issues, we created a cloud-based platform called ORCESTRA (orcestra.ca), which 

provides a flexible framework for the reproducible processing of multimodal biomedical data. It 

enables processing of clinical, genomic and perturbation profiles of cancer samples through 

automated processing pipelines that are user-customizable. ORCESTRA creates integrated and 

fully documented data objects with persistent identifiers (DOI) and manages multiple dataset 

versions, which can be shared for future studies.  
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INTRODUCTION 

The demand for large volumes of multimodal biomedical data has grown drastically, partially due 

to active research in personalized medicine, and further understanding diseases 1–3. This shift has 

made reproducing research findings much more challenging because of the need to ensure the 

use of adequate data handling methods, resulting in the validity and relevance of studies to be 

questioned 4,5. Even though sharing of data immensely helps in reproducing study results 6, 

current sharing practices are inadequate with respect to the size of data and corresponding 

infrastructure requirements for transfer and storage 2,7. As computational processing required to 

process biomedical data is becoming increasingly complex 3, expertise is now needed for building 

the tools and workflows for this large-scale handling 1,2.  There have been multiple community 

efforts in creating standardized workflow languages, such as the Common Workflow Language 

(CWL) and the Workflow Definition Language (WDL), along with associated workflow 

management systems such as Snakemake 8 and Nextflow 9, in order to promote reproducibility 

10,11. However, a steep learning curve is encountered for these programming-heavy solutions, in 

comparison to user-friendly data processing platforms like Galaxy, which provide both storage 

and compute resources, but have limited features and scalability 12–14. Therefore, there is a dire 

need for reproducible and transparent solutions for processing and analyzing large multimodal 

data that are scalable, while providing full data provenance.   

 Biomedical data can expand into a plethora of data types such as in vitro and in vivo 

pharmacogenomics, toxicogenomics, radiogenomics and clinical genomics. These data are a 

prime example of multimodal biomedical data with a long history of sharing in the field of 

biomarker discovery. Preclinical pharmacogenomics involves the use of a genome-wide 

association approach to identify correlations between compound/treatment response and 

molecular profiling, such as gene expression 15–17. In addition, omics technologies have also been 

utilized in toxicological profiling for identifying the effect of compound toxicity on humans 18,  and 
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in radiogenomics data to uncover genomic correlates of radiation response 19. These rich 

preclinical data are often combined with clinical genomics data generated over the past decades 

20 with the aim to test whether preclinical biomarkers can be translated in clinical settings to 

ultimately improve patient care. Given the diversity of human diseases and therapies, researchers 

can hardly rely on a single dataset and benefit from collecting as much data as possible from all 

possible sources, calling for better sharing of data that are highly standardized and processed in 

a transparent and reproducible way.  

The generation of large volumes of data has led to a sharing paradigm in the research 

community, where data is more accessible and open for public use. For studies to be reproduced 

and investigated for integrity and generalization by other researchers, the sharing of raw and 

processed data is crucial. However, providing access to data is not enough to achieve full 

reproducibility, as the shared data must be findable, accessible, interoperable and reusable, as 

outlined in the FAIR data principles 21. These foundational principles include providing rich 

metadata that is detail-oriented, including a persistent unique-identifier (Findability), accessing 

(meta)data with authentication and the unique-identifier using a communications protocol 

(Accessibility), assigning (meta)data with a commonly understood format/language 

(Interoperability), and achieving data provenance with an accessible usage-license (Reusability). 

The Massive Analysis and Quality Control (MAQC) Society 22 has been established to promote 

the use of a community-agreed standard for sharing multimodal biomedical data in order to 

achieve reproducibility in the field, such as through the FAIR principles. Therefore, when 

translated into practice, these principles would promote the reproducible and transparent handling 

and sharing of data and code, which would allow researchers to utilize and build from each other's 

work and accelerate new discoveries. 

In order to address these issues, we developed ORCESTRA (orcestra.ca), a cloud-based 

platform that provides a transparent, reproducible, and flexible computational framework for 

processing and sharing large multimodal biomedical data. The ORCESTRA platform orchestrates 
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data processing pipelines in order to curate customized, versioned and fully documented data 

objects, which can be extended to a multitude of data types. This includes 11 pharmacogenomics 

(in vitro), 3 toxicogenomics, 1 xenographic pharmacogenomics (in vivo), 1 clinical genomics, and 

1 radiogenomics data objects that can be explored for a wide range of analyses. ORCESTRA is 

publicly accessible via orcestra.ca. 

  

RESULTS 

The increasing utilization and demand for big data have resulted in the need for effective data 

orchestration 23, which is a process that involves organizing, gathering, and coordinating the 

distribution of data from multiple locations across compute resources with specific processing 

requirements. An ideal orchestration platform for handling large-scale heterogeneous data would 

consist of the following: (1) a defined workflow; (2) a programming model/framework 23, and (3) 

broad availability of a compute infrastructure. At the workflow level, data from different 

sources/lineages, including data that are not static, must be effectively managed through the 

definition of workflow components (tasks) that interact and rely on one another 23. Moreover, a 

programming model should be utilized for the workflow components responsible for handling the 

respective data (static and dynamic), such as a batch processing model (e.g., MapReduce) 23. 

Lastly, the utilization of a scalable compute environment, such as academic and commercial cloud 

computing platforms, would allow for the management and processing of big data, providing the 

necessary compute and storage resources, ability to transfer data, and monitoring of executed 

workflows and respective components/tasks, further enabling tracking data provenance. There 

exist multiple orchestration tools that are currently being used for the storage, processing, and 

sharing of genomic data, namely Pachyderm, DNAnexus, Databricks, and Lifebit (Table 1). We 

opted for Pachyderm, an open-source orchestration tool for multi-stage language-agnostic data 

processing pipelines, maintaining complete reproducibility and provenance through the use of  
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Kubernetes, as it provides the following functionalities: 
 

 

Programming language. Pachyderm supports creating and deploying language-agnostic 

pipelines across on-premise or cloud infrastructures, a feature also supported by DNAnexus, 

Databricks, and Lifebit. 

 

Large dataset support. Users can upload and process large datasets through the use of the 

Pachyderm file system (PFS), where the data is exposed in its respective container for utilization 

in pipelines, while being placed in an object storage (e.g., Azure Blob, AWS bucket).  

 

Automatic pipeline triggering. Reproducibility and provenance are guaranteed via automatic 

pipeline triggering when existing data are modified or newly added, which results in the generation 

of new versions of an output data object. However, because automatic triggering requires the 

state of each pod within the Kubernetes cluster to be saved, there is a permanent allocation of 

CPU/RAM for each pod (and therefore each pipeline), which requires a user to create a cluster 

with potentially costly resources. The other platforms do not require permanent allocation of 

resources, as for example Lifebit allows users to spin up instances on demand to meet the 

computational requirements for a given pipeline.  

 

Reprocessing. A feature that is found in Pachyderm, DNANexus, and Lifebit is the prevention of 

recomputation for each pipeline trigger, which comes in handy when a pipeline contains 

processed raw data that does not need to be reprocessed if there is a change in metadata such 

as an annotation file. 
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Docker utilization. Each pipeline can be equipped with a Docker image connected to Docker 

Hub for running various toolkits, which allows for simplistic pipeline updating when there are 

future updates to any component of the Docker image. Docker usage is also translated across 

the other platforms as well. 

Versioning of data and pipelines with unique identifiers. Each commit, an operation for submitting 

and tracking changes to a data source, is supplied with a unique identifier, which is updated with 

each new commit (parent-child system). This allows users to track different versions of a pipeline 

and dataset with ease. However, with Databricks and Lifebit, this feature is partially supported, 

as not every pipeline and respective input/output file(s) are provided with a unique identifier, even 

when data is updated through commits. 

 

Parallelism support. A pipeline can be parallelized via a constant or coefficient strategy in 

Pachyderm using workers, which is useful for workloads with large computational requirements. 

When a constant is set Pachyderm will create the exact number of workers specified (e.g., 

constant: 5; 5 workers), that will parallelize across nodes in the cluster. Coefficient will result in 

Pachyderm creating a number of workers based on the number of nodes available (multiple of 

nodes), which will also specify the number of workers per node (e.g., coefficient: 2.0; 20 nodes; 

40 workers; 2.0 workers per node). The other platforms also support parallelization, including 

automatic parallelization of samples across instances. 

 

Data versioning system.  Pachyderm provides direct GitHub integration for data versioning, which 

enables users to track changes at the file-level and submit updates to Pachyderm through 

commits triggered through webhooks on GitHub. In addition, this also provides users with the 

ability to publicly view, track, and share all updates made to a pipeline or file connected to 

Pachyderm with ease.  

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2021. ; https://doi.org/10.1101/2020.09.18.303842doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.18.303842
http://creativecommons.org/licenses/by/4.0/


 7 

Open access. Pachyderm provides a free and open-source version of the tool that contains all 

the functionalities required to develop a platform ensuring transparent and reproducible 

processing of multimodal data.  

 

 Despite these advantages, the choice of Pachyderm is not without compromises. We list 

below the functionalities that Pachyderm is lacking but would have been beneficial to develop our 

platform: 

 

Direct mounting of data. The current version of Pachyderm does not allow for direct mounting of 

data from a cloud storage system (e.g., bucket) to a Pachyderm repository. Data must be 

transferred to the tools own file system, resulting in essentially an additional copy of the data 

within a cloud environment. Databricks and Lifebit enable decreasing computation time and cost 

by not copying data into a file system for it to be used by the platform. This is important when 

large data sizes will be used in an analysis, which allows a user to simply store their data in a 

bucket/blob storage account, and mount it to the platform of interest, giving the user the ability to 

also use the data with other platforms or cloud services without having to repeatedly copy it in an 

inefficient manner.  

 

Cost efficiency. Pachyderm utilizes VM’s through a Kubernetes cluster if deployment on a cloud 

environment, which are costly to keep running indefinitely. Therefore, utilizing Pachyderm on a 

cloud infrastructure impacts cost efficiency, in comparison to an on-premise high-performance 

computing (HPC) infrastructure. A notable feature that is supported by Lifebit, is cost-efficiency 

through low-priority instance utilization on a cloud provider, allowing for users to execute large-

scale analyses at a reduced cost.  
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Resource allocation. Pachyderm requires persistent RAM/CPU allocation for each pipeline within 

the Kubernetes cluster, even after a pipeline is successfully executed, which permits automatic 

pipeline triggering. Thus, an increased amount of compute resources (VM’s scaled up/out) may 

be required for specific pipelines, which also impacts cost efficiency.  

 

The ORCESTRA platform 

Building on the strengths of the Pachyderm orchestration tool, we have developed ORCESTRA, 

a cloud-based platform for data sharing and processing of biomedical data based on automation, 

reproducibility, and transparency. ORCESTRA allows users to create a custom data object that 

stores molecular profiles, perturbation (chemical and radiation) profiles, and experimental 

metadata for the respective samples and patients, allowing for integrative analysis of the 

molecular and perturbation and clinical  data (Figure 1). The platform utilizes datasets from the 

largest biomedical consortia, including 17 curated data objects containing genomics, 

pharmacological, toxicological, radiation and clinical data (Supplementary Table 1). The data 

objects can accommodate all types of molecular profile data, however, ORCESTRA currently 

integrate gene expression (RNA-sequencing, microarray), copy number variation, mutation, and 

fusion molecular data. For RNA-seq data, users can select a reference genome of interest, a 

combination of quantification tools and their respective versions, along with reference 

transcriptomes from two genome databases (Ensembl, Gencode) to generate custom RNA-seq 

expression profiles for all of the cell lines in the dataset. Therefore, each data object will be 

generated through a custom orchestrated Pachyderm pipeline path, where each piece of input 

data, pipeline, and output data option is tracked and given a unique identifier to ensure the entire 

process is completely transparent and reproducible. To ensure data object generation is fully 

transparent and that provenance is completely defined, each data object is automatically 

uploaded to Zenodo and given a public DOI, where the DOI is shared via a persistent webpage 

that possesses a detailed overview about the data that each DOI-associated data object contains 
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and how it was generated. This includes publication sources, treatment sensitivity information and 

source, raw data source, exact pipelines parameters used for the processing tools of choice, and 

URLs to reference genomes and transcriptomes used by the tool(s). In addition, release notes 

are also provided where the number of samples, treatments, sensitivity experiments, and 

molecular profile data are tracked between versions of a dataset, allowing users to identify 

changes between each new data update that were released from the respective consortium and 

pushed to the platform. This metadata page gets automatically sent to each user via email, 

providing users with one custom page that hosts all of the information required to understand how 

the data object was generated. Therefore, all of the data used in the data object is shared in a 

transparent manner, where researchers can identify the true origins of all data used with 

confidence and effectively reproduce results.  

 

Data object generation 

ORCESTRA comes with a web application interface allowing users to interact with the data-

processing and data-sharing layers. Users can search existing data objects in the 

“Search/Request'' view by filtering existing data objects with the “data object Parameters'' panel. 

Users can filter existing data objects by selecting datasets with associated drug sensitivity 

releases, genome references, RNA-seq transcriptomes, RNA-seq processing tools with 

respective versions, which associates with other respective DNA data types (mutation or CNV) 

and RNA data types (microarray or RNA-seq). Changes in the parameter selections trigger the 

web app to submit a query request to a MongoDB database which returns a filtered list of data 

objects (Figure 2). The data object table is then re-rendered with an updated list of data objects. 

This allows users to search through existing data objects to determine if a data object that satisfies 

users’ parameter selections already exists, preventing recomputation. Information about the 

datasets and tools used to generate a data object can be viewed by clicking on a data object 

name and navigating to its data object meta-data webpage. Users can obtain information such as 
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associated publications, links to the raw drug-sensitivity and molecular profile data as well as a 

Zenodo DOI. In addition, the individual data object view provides users with the option to 

download the data object of choice directly from the view.  

Users can request a customized data object in the “Search/Request'' view by turning the 

“Request data object'' toggle on. This action reconfigures the dropdown options in the “data object 

Parameters'' panel to be in request mode, and displays, on the “Summary” panel, two text input 

fields for entering a custom name for the data object and a user’s email to receive a notification 

upon data object pipeline completion, with the accompanied Zenodo DOI and custom 

ORCESTRA meta-data page link. Pachyderm continuously scans for a new request from the web-

app, which will automatically trigger the respective pipelines to build the custom data object, while 

storing a unique ORCESTRA ID, Pachyderm pipeline commit ID, and Zenodo DOI into the 

MongoDB database, which increases the level of data provenance and reproducibility, as each 

data object can be identified through three unique-identifiers after creation (Figure 2). The data 

object filtering process as described above continues to function as users select the request 

parameters, which displays existing data object(s) that satisfy users’ parameter selections. Upon 

selecting all the required parameters, the “Submit Request” button becomes active for users to 

submit the pipeline request.  

 

Data object metrics 

The platform provides several usage metrics for users. These metrics can be accessed through 

“Home”, “Statistics'' and “Request Status” views. The “Home” view provides an overview of 

currently available datasets, tools and references to generate data objects, most downloaded 

data objects, and a number of pending or in-process data object requests. The “Statistics'' view 

provides a visualized data object popularity ranking, along with a plot of the number of cell lines, 

drugs, and genes for the canonical data objects, including intersection, which can be accessed 

by clicking the “View Statistics'' button in the “Home” view. The “Request Status” view displays a 
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tabulated list of data object requests that are either “pending” (the request has been submitted 

and saved, but has not been processed in Pachyderm), or “in-process” (the request has been 

submitted and is processed in Pachyderm).  

 

User accounts for data object tracking 

The platform offers users the option to register for an account with a valid email address. 

Registered users are able to select existing data objects in the “Search/Request'' view and save 

them as their “favorites'' which can be accessed in the “User Profile” view. However, the web 

application keeps track of data object requests submitted by users based on their email addresses 

even without registration. These data objects are automatically added to a user’s favorite data 

objects and can be viewed in the “User Profile” view.  

 

DISCUSSION 

The high-dimensionality, complexity, and scale of multimodal data present unprecedented 

challenges for researchers in the biomedical field, in regard to their ability to effectively manage, 

track, and process the data. The nature of heterogeneous and complex data negatively impacts 

data provenance, through incomplete or no accompaniment of metadata for a dataset, resulting 

in the uncertainty of a data lineage 24–26. Because the granularity of metadata is a determinant of 

the value of a dataset 27, it should provide a rich description of dataset content, following the FAIR 

data principles, which includes information about dataset origin, how it was generated, if there 

were any modifications that were made to it from precedent versions, and what these 

modifications were  21,28,29. When the FAIR data principles are not met, issues with reproducibility 

in the biomedical sciences follow, where data are either not shared or results/estimates and 

claims cannot be checked for correctness. However, datasets published online, including ones 

that reside in repositories and from journals are often not accompanied with sufficient metadata 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2021. ; https://doi.org/10.1101/2020.09.18.303842doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.18.303842
http://creativecommons.org/licenses/by/4.0/


 12 

30. In the field of genomics, issues with metadata often include mislabelling or misannotation of 

data (e.g., incorrect identification numbers), improper data characterization (e.g., mapping files to 

respective samples and protocols), and inconsistency in the way metadata are presented (non-

uniform structure used across consortia) 31. Provenance also extends to the computational 

workflows that are developed to process datasets  2, as sharing relevant source code is often not 

provided 32  along with relevant documentation about the workflow, such as in graphical user 

interface (GUI) based systems like Galaxy, affecting the ability to reproduce results 2. In addition, 

data maintainers and consortia, such as the Cancer Cell Line Encyclopedia (CCLE) 33  and the 

Genomics of Drug Sensitivity in Cancer (GDSC), often only process the dataset using one pipeline 

that they believe is the most suitable, without documenting supporting evidence as to why the 

chosen processing pipeline was selected over other competing ones in the field  34,35. This issue 

is also present in other data types such as xenographic or metagenomics data, where the 

molecular data are processed and normalized using only one pipeline  20,36. Therefore, only a 

single version of the dataset is released, which makes it difficult for other researchers to perform 

a diverse set of analyses that require the use of different processing pipelines on the dataset. A 

lack of provenance and utilization of a dataset in a single form affects transparency, expressing 

a need for sharing biomedical data in a reproducible manner. Lastly, it is important to note that 

datasets evolve and are therefore not static, as new data are added and respectively depreciated, 

which further highlights the need for transparent data sharing practices, especially at the file-level 

where updates can be easily identified.  

There are multiple data portals created for accessing and sharing biomedical data, but 

with limitations in regard to reproducibility (Supplementary Table 2). Below, are sharing practices 

that are adopted across various data types, such as pharmacogenomics, toxicogenomics, 

radiogenomics, xenographic pharmacogenomics, and clinical genomics data:  

Pharmacogenomics: The Genomic Data Commons Data Portal (NIH/NCI GDC) hosts raw data 

for the Cancer Cell Lines Encyclopedia (CCLE) from the Broad Institute, including RNA, whole 
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exome and whole genome sequencing data, allowing users to select and download the data 

type(s) of interest. Obtaining the data can be done through direct download or their GDC Data 

Transfer Tool by providing a manifest file that possesses the unique identifiers (UUID) of each 

file, which also allow users to locate the files again through the portal, along with their 

corresponding run, analysis, and experimental metadata. This is advantageous, as all the raw 

data (public and controlled access), for both datasets are located within one portal and can be 

accessed in an efficient manner. However, no release notes are provided for any data that are 

newly uploaded or modified to GDC, which makes it challenging for researchers to keep track of 

different versions of the dataset and ensure their analyses are reproducible. Moreover, the recent 

addition of new CCLE data (e.g., additional RNA-seq cell lines)  34, is found on the European 

Nucleotide Archive (ENA), but not on GDC, resulting in data source inconsistency that becomes 

difficult to manage and follow for users. Current and previous versions of other CCLE data (i.e., 

annotation, drug response) are hosted on a Broad Institute portal, with no release notes or 

documentation present with each version, forcing researchers to manually identify changes within 

each file after every release. GRAY, a dataset generated by Dr. Joe Gray’s lab at the Oregon 

Health and Science University, has had three updates with raw data hosted on NCBI, with drug 

response and annotation data hosted on SYNAPSE, DRYAD, and/or the papers supplementary 

section  37–39. In addition, drug response data can also be found on the LINCS data portal. 

Because each version of the dataset is associated with a different respective paper, the data are 

scattered among various repositories, which makes it challenging to keep track of each source, 

and for each source to ensure that the data remain readily available, as one failed link would 

make it difficult for a researcher to reproduce any results. However, for the GRAY dataset, NCBI 

provides detailed information about the methodology used for the experiments, SYNAPSE 

provides a wiki and contact source for the dataset and a provenance tracker for each file that is 

uploaded, and DRYAD stores each publications data as a package organized with subsequent 

descriptions to keep data organized. A prominent example in effective data sharing practices is 
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DepMap (depmap.org) 40, which provides a portal to download molecular and pharmacological 

data from a variety of consortia, with an interface that allows users to dive into the multiple data 

releases for a given dataset, which is accompanied by descriptive metadata such as associated 

publications and file-level descriptions. This provides users with the ability to download a dataset 

directly from a source, or combine them together to form a custom dataset, all while being able to 

compare different updates/versions in an interactive manner. However, the portal does not allow 

users to select different processing pipelines and lacks details regarding the pipelines used for 

some of the processed data hosted, such as molecular data (e.g., genomic tools used), which 

highlights a need for increased granularity in the portal.  

Toxicogenomics: The Life Science Database (LSDB) Archive is a database that hosts datasets 

by Japanese researchers (https://dbarchive.biosciencedbc.jp/), such as the TG-GATE 

toxicogenomics dataset 41. The database provides rich metadata for users such as a DOI and 

clickable sections that provide granular details about each file in the dataset, which includes a 

description of the file contents and file attributes (e.g., data columns and respective descriptions 

for each column). In addition, the database allowed for TG-GATE to provide a timeline of updates 

to the dataset, where data corrections are posted with accompanying corrected files and a 

description of the update, which allows maintainers to be transparent with users about the dataset 

lineage. However, even though the maintainers for TG-GATE have indicated that the dataset was 

updated, detailed file-level changes are not provided, along with the processing pipelines and/or 

information regarding how the data was generated/processed into their resulting formats. 

Xenographic and Radiogenomics: The largest datasets for patient-derived tumor xenograft and 

radiogenomics studies are available through supplementary materials attached to their scientific 

publications 19,36. These supplementary data provide users with information about the methods 

used to generate the data, however access is dependent on the journal itself, which raises issues 

regarding the potential of broken data links. In addition, the amount of data that can added to a 

publication via a supplementary section may be limited due to journal restrictions, which increases 
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the likelihood of files being distributed across other data sharing platforms (e.g., SYNAPSE), 

increasing the difficulty in locating and keeping track of dataset updates, or resulting in a reliance 

of contacting authors to obtain a complete dataset that cannot be otherwise shared via the 

journals web interface.  

Clinical Genomics: Over the years, clinical genomics data has been stored and shared across a 

wide range of consortia such as NCBI (GEO/EGA) and/or as supplementary material to a 

publication. However, this inconsistency has led to the development of several data compendias 

to consolidate the data for transparent mining/managing, sharing, and analysis, such as 

Oncomine 42, MultiAssayExperiments R package for multiple experimental assays  43, and 

curatedData R packages for molecular profile analysis 44. In addition, the MetaGx R packages 

were developed to allow users to retrieve a compendium of transcriptomic data and standardized 

metadata from a wide array of studies and cancer types (pancreas, breast, ovarian), allowing for 

integrative analysis of the data for biomarker discovery 20.  

 

In conclusion, the ORCESTRA platform provides a new paradigm for sharing ready-to-

analyze multimodal data while ensuring full transparency and reproducibility of the curation, 

processing and annotation processes. ORCESTRA provides the data provenance and versioning 

tools necessary to maximize reusability of data, a cornerstone of Open Science.  

 

METHODS 

In order for the platform to be as transparent as possible, it harnesses an architecture with three 

distinct layers that not only works independently to process and interpret precedent data, but also 

have the capacity to scale (Figure 3).  
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Web-app layer 

The first layer contains the web application which was developed using a Node.js API and React 

front-end with MongoDB as a database. The layer provides the user with an interaction point to 

the ORCESTRA platform, allowing users to first select the data type they wish to explore, either 

Pharmacogenomics; Toxicogenomics; Xenographic pharmacogenomics; Radiogenomics; or 

Clinical genomics. They can then search for existing data objects, request a new data object by 

entering pipeline parameters, view data object request status, and register a personal account to 

save existing data objects of choice.  

 

Data-processing layer 

The second data-processing layer encompasses a Kubernetes cluster on Microsoft Azure that 

hosts Pachyderm, which utilizes Docker images for running R-packages. All of the RNA-seq raw 

data have been pre-processed with Kallisto and Salmon Snakemake pipelines using an HPC 

environment, and subsequently pushed to assigned data repositories on Pachyderm, allowing for 

specified selection from the web-app (transcriptome and tool version). Microarray, cnv, mutation, 

and fusion data are either processed directly with Pachyderm due to low compute requirements 

or aggregated into the data objects from public sources. The Pachyderm pipelines aggregate 

repositories that host data generated on an HPC environment or on GitHub into a Docker image 

that builds a data object based on user specifications (e.g. RNA-seq data processed by Kallisto 

v.0.46.1, inclusion of only CNV data) (Figure 4). The GitHub hosted files can be viewed at the file-

level for changes and edited which automatically triggers the Pachyderm pipeline with the new 

modifications to produce a new data object. A unique feature of Pachyderm is the prevention of 

re-processing computed data, such as where an update of RNA-seq annotations will not trigger 

the re-processing of thousands of drug response data, which reduces computation time.  
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Data sharing layer 

Each generated data object enters the third data-sharing layer where the data object gets 

automatically uploaded to an online data-sharing repository known as Zenodo, with a DOI so that 

the data object can be given a persistent location on the internet to be uniquely identified. The 

generated DOI is then associated with a custom meta-data web page that is generated based on 

the contents of the data object.  

 

Code availability 

All of the code is publicly available on GitHub via the Apache 2.0 license: 

https://github.com/BHKLAB-Pachyderm 

 

Data availability 

All of the data are publicly available on ORCESTRA (orcestra.ca) via dedicated documented 

webpages, which include respective Zenodo links for each data object generated. 
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Figure 1. Summary of samples, treatments, and molecular profiles utilized for data object 
generation in ORCESTRA.  
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Figure 2. ORCESTRA web-application connectivity with data processing layer through commit 
ID scanning for user selected pipeline requests, and subsequent data object DOI tracking with 
MongoDB queries.  
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Figure 3. ORCESTRA framework layers for pipeline selection, data object generation, 
and DOI sharing with a custom metadata webpage. 
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Figure 4. Cloud-based deployment of ORCESTRA data processing layer with automatically 
versioned data using Pachyderm and sharing of generated data objects through Zenodo via a 
persistent identifier (DOI). 
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Table 1. Data processing platforms and their respective features for handling multimodal 
data. 

 
 
 
 
 

Features
ORCESTRA DNAnexus Databricks Lifebit
(Pachyderm)

Create language agnostic
pipelines in the cloud X X X X

Large dataset support
(TB in size)

X X X X

Automatic pipeline triggering
with updated data
(out-of-the-box)

X 5 5 5

Prevents recomputation of
entire dataset with each new

pipeline trigger
X X 5 X

Docker utilization X X X X

Every pipeline run and data
sources are versioned with

unique identifier
X X * *

Parallelism support X X X X

Versioning system (e.g. GitHub)
for pipelines, input data, and pipelines

X X X X

Open access (free) X 5 5 5

Direct mounting of data
(no copying into file system)

5 5 X X

Automatic cost e�ciency
implementation for instances

(low-priority)
5 5 5 X

No permanent resource allocation
for a pipeline (memory/CPU)

5 X X X

* indicates partial support of feature
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