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Supplementary Tables

Dataset # cells # steps Avg. nbhd. size

RA 27216 3 336.43
Sepsis 102814 4 1503.33
TB 500089 7 12183.74

Supplementary Table 1: Neighborhood characteristics for each dataset analyzed. For each of
the three datasets analyzed in this paper, we show the number of random walk steps selected by CNA as
well as the average across neighborhoods of the number of cells required to capture 70% of the mass of each
neighborhood, estimated by sampling 500 random neighborhoods.

Phenotype Reyes et al. CNA

Cases Controls MS1 FDR Global P # NAM-PCs
# nbhds with
FDR< 10%

Int-URO, URO,
Bac-SEP, ICU-SEP

Control, Leuk-UTI,
ICU-NoSEP

NA 7.0 × 10−5 2 50, 696

URO, Int-URO Control, Leuk-UTI < 10−3 2.8 × 10−4 2 25, 875
Bac-SEP, ICU-SEP Control < 10−3 5.0 × 10−4 2 0

URO, Int-URO
Bac-SEP, ICU-SEP

ICU-NoSEP 0.27 0.86 3 0

Leuk-UTI Control 6.0 × 10−2 0.21 4 0
Int-URO Control < 10−3 5.9 × 10−4 2 0

URO Control < 10−3 1.5 × 10−2 4 0
Bac-SEP Control 3.0 × 10−3 0.12 2 0
ICU-SEP Control < 10−3 2.6 × 10−3 2 0

ICU-NoSEP Control < 10−3 1.6 × 10−2 2 0

Supplementary Table 2: Sub-cohort assessments for sepsis dataset. The original authors did not
perform an aggregated sepsis versus non-sepsis association test. Rather, they compared every patient group
to healthy controls (6 tests), in addition to the following tests: Int-URO and URO vs. Control or Leuk-UTI,
Bac-SEP and ICU-SEP vs. Control, Int-URO, URO, Bac-EP and ICU-SEP vs. ICU-NoSEP. We performed
association tests for these same 9 patient groupings using CNA as well as an aggregated sepsis vs. no
sepsis phenotype (Int-URO, URO, Bac-SEP, and ICU-SEP vs. Leuk-UTI and Controls). The aggregated
phenotype analysis (sepsis vs. no sepsis) was used for downstream analysis.
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Pathway Enrichment P, Adjusted NAM PC1 corr NAM PC2 corr

RAC1 0.71 0.0003 0.42 0.47
PDGFRB 0.52 0.0017 0.52 0.39
ERBB1 DOWNSTREAM 0.54 0.0023 0.50 0.38
TOLL ENDOGENOUS 0.74 0.0024 0.17 0.61
CDC42 0.61 0.0029 0.44 0.40
TXA 0.64 0.0037 0.38 0.39
IL6 7 0.58 0.0160 0.34 0.43
IL8 CXCR2 0.62 0.0170 0.34 0.37
AMB2 NEUTROPHILS 0.65 0.0212 0.43 0.32
LYSOPHOSPHOLIPID 0.60 0.0257 0.32 0.45
CASPASE 0.56 0.0298 0.51 0.11
P38 ALPHA BETA 0.63 0.0305 0.26 0.41
THROMBIN PAR1 0.59 0.0340 0.37 0.33
EPO 0.60 0.0409 0.32 0.29
ECADHERIN NASCENT AJ 0.58 0.0489 0.33 0.33

Supplementary Table 3: Gene sets enriched among transcriptional regions with higher abun-
dance among sepsis patients. Gene-set enrichment analysis was performed where the input rank list of
genes was computed based on the correlation across cells of gene expression per anchor cell and the cor-
responding neighborhood’s estimated abundance correlation to the sepsis phenotype. Many of these gene
sets have established links to sepsis: PDGFRB knockout attenuates brain inflammation in sepsis,1 ERBB1
(EGFR) inhibition in vivo blocks septic shock,2 TLR signaling contributes to cytokine storms in sepsis,3 and
CDC42 is beneficially upregulated in sepsis to restore endothelial barrier function and decrease edema.4

Name Type Correlation P.value
CD62L Protein 0.15 <1e-10
SELL Gene 0.24 <1e-10
NKG7 Gene -0.81 <1e-10
GZMH Gene -0.76 <1e-10
CCL5 Gene -0.70 <1e-10
GZMA Gene -0.67 <1e-10
GNLY Gene -0.67 <1e-10

Supplementary Table 4: Gene expression correlations to neighborhood loading on NAM-PC1
reflect a spectrum of “innateness”. Correlations were computed between per-cell gene expression and the
cell’s anchored neighborhood’s loading on NAM-PC1 from the joint CCA representation of this dataset. Cells
with higher transcriptional ‘innateness’ signature tended to have lower loadings on NAM-PC1. Consistent
with this pattern, CD62L/SELL expression is positively correlated with neighborhood loading on NAM-PC1
and expression levels of effector molecules are negatively correlated with neighborhood loading on NAM-PC1.
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Name Type Correlation P.value
XIST Gene -0.41 <1e-10
RPS4Y1 Gene 0.58 <1e-10
DDX3Y Gene 0.35 <1e-10
UTY Gene 0.30 <1e-10
TTTY15 Gene 0.26 <1e-10
KDM5D Gene 0.18 <1e-10
USP9Y Gene 0.16 <1e-10

Supplementary Table 5: Sex chromosome genes are the most correlated in expression with
NAM-PC4. Correlations between per-cell gene expression and cell loading on NAM-PC4 were computed.
The genes whose expression was most correlated or most anti-correlated with cell loading, shown here, were
located on sex chromosomes. For each of these genes, a simple linear model was used to evaluate significance
for the association between expression level and cell loading on NAM-PC4.

Name Type Correlation P.value
CD4 Protein -0.27 <1e-10
CD8 Protein 0.33 <1e-10

Supplementary Table 6: Differential expression of surface proteins on NAM-PC2 reflect cell
population changes associated with sex chromosome differences. Differential expression analysis
was performed where the input rank list of genes was computed based on the correlation across cells between
gene expression and cell loadings along NAM-PC2 of the mRNA profiling, without upstream batch correction
from the original publication.

Name Type Correlation P.value
CD26 Protein -0.39 <1e-10
CD196/CCR6 Protein -0.41 <1e-10
CD127/IL-7R Protein -0.28 <1e-10
CD244/2B4 Protein 0.44 <1e-10
CD279/PD-1 Protein 0.20 <1e-10
CD29 Protein 0.14 <1e-10
LTB Gene -0.47 <1e-10
AQP3 Gene -0.26 <1e-10
IL7R Gene -0.25 <1e-10
KLRB1 Gene -0.23 <1e-10
CD27 Gene -0.21 <1e-10
MAL Gene -0.20 <1e-10
GZMH Gene 0.58 <1e-10
NKG7 Gene 0.55 <1e-10
FGFBP2 Gene 0.53 <1e-10
GNLY Gene 0.49 <1e-10
ZEB2 Gene 0.43 <1e-10
CCL4 Gene 0.39 <1e-10

Supplementary Table 7: Genes and proteins associated with CNA populations for TB pro-
gression. Correlations between intensity (resp. expression level) of selected proteins (resp. genes) and the
per-cell neighborhood coefficient computed by CNA for TB progressor status. Simple linear models between
expression levels and neighborhood correlation values per-cell were used to determine naive p-values for each
of these associations.
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Attribute tested Covariates

Age
Weight, # scars, Winter blood draw

TB progression

Height
Weight, % European ancestry, Male sex

Edu. below high school, Winter blood draw, TB progression

Weight
Age, Height, % European ancestry

Edu. below high school, TB progression

% European ancestry
Height, Weight, Edu. below high school

Winter blood draw, TB progression

# scars
Age, BCG scar, Male sex

TB progression

BCG scar # scars, Male sex, Winter blood draw

BCG vaccine -

Male sex
Height, # scars, BCG scar

TB progression

Edu. below high school Height, Weight, % European ancestry

High SES -

Low SES -

Medium SES -

Smoking status -

Alcohol use -

Underweight -

Spring blood draw Winter blood draw, TB progression

Winter blood draw
Age, Height, % European ancestry

BCG scar, Spring blood draw

Supplementary Table 8: Covariate control for TB phenotypes tested. For each sample attribute
analyzed using CNA and MASC, we list the sample attributes included as covariates in the analysis.
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Phenotype CNA P Var. Exp. Clusters+ Clusters- CNA+ CNA- % Replic. % Novel

Age < 1.0e-06 47% 67882 41228 51032 118976 68 44
Winter < 1.0e-06 26% 0 90946 30826 49112 44 50
Sex 2.0e-06 28% 17085 77483 28507 147172 65 35
Ancestry 3.9e-04 16% NA NA 6114 37230 NA 100

Supplementary Table 9: Survey of associations in TB dataset. Four per-sample outcome variables
from the TB dataset were found to have global associations using CNA, of which one did not have a global
association by cluster-based association testing using MASC. Global P values from CNA were subjected to
Bonferroni correction for the number of sample attributes in the survey. Global associations for each tested
outcome by CNA are tabulated, along with the percent of outcome variance explained by CNA. The total
number of cells in all expanded clusters identified by MASC is also shown, where each cluster is considered
significant only after Bonferroni correction for the number of clusters in the analysis. Likewise, the total
cells in all depleted clusters is shown. The number of cells whose neighborhoods were found to be positively
correlated in abundance with the outcome by CNA at an FDR 5% threshold are shown, as well as the number
of cells whose neighborhoods were found to be negatively correlated with the outcome by CNA at an FDR
5% threshold. Finally, to illustrate the scope of recapitulated and novel associations, for the phenotypes
for which local association were found by both methods we show the fraction of all cells found to belong to
expanded or depleted clusters that were also assigned to associated populations by CNA (“% Replicated”)
and the fraction of all cells assigned to associated populations by CNA that did not belong to expanded or
depleted clusters (“% Novel”).

Name Type Correlation P.value
CD8a Protein 0.25 <1e-10
CD4.1 Protein -0.09 <1e-10
CD27.1 Protein -0.35 <1e-10
CD28.1 Protein -0.40 <1e-10
GZMH Gene 0.55 <1e-10
NKG7 Gene 0.51 <1e-10
FGFBP2 Gene 0.48 <1e-10
GNLY Gene 0.46 <1e-10
CST7 Gene 0.39 <1e-10
GZMA Gene 0.39 <1e-10
CCL5 Gene 0.37 <1e-10
CCL4 Gene 0.34 <1e-10
KLRB1 Gene -0.43 <1e-10
LTB Gene -0.42 <1e-10
LDHB Gene -0.19 <1e-10
TCF7 Gene -0.19 <1e-10
CCR6 Gene -0.17 <1e-10
CD27 Gene -0.15 <1e-10

Supplementary Table 10: Genes and proteins associated with CNA populations for age. Corre-
lations between intensity (resp. expression level) of selected proteins (resp. genes) and the per-cell neighbor-
hood coefficient computed by CNA for age. Simple linear models between expression levels and neighborhood
correlation values per-cell were used to determine naive p-values for each of these associations.
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Name Type Correlation P.value
CD183/CXCR3 Protein -0.11 <1e-10
CD194/CCR4 Protein 0.28 <1e-10
GATA3 Gene 0.28 <1e-10
KRT1 Gene 0.26 <1e-10
ANXA1 Gene 0.26 <1e-10
IL7R Gene 0.25 <1e-10
STAT1 Gene -0.04 <1e-10
IFNG Gene -0.08 <1e-10
LIMS1 Gene -0.27 <1e-10
TIGIT Gene -0.27 <1e-10
CD27 Gene -0.24 <1e-10
TBC1D4 Gene -0.19 <1e-10
CTLA4 Gene -0.17 <1e-10

Supplementary Table 11: Genes and proteins associated with CNA populations for winter
blood draw. Correlations between intensity (resp. expression level) of selected proteins (resp. genes) and
the per-cell neighborhood coefficient computed by CNA for winter blood draw. Simple linear models between
expression levels and neighborhood correlation values per-cell were used to determine naive p-values for each
of these associations.

Name Type Correlation P.value
CD8 Protein 0.04 <1e-10
CD194/CCR4 Protein 0.47 <1e-10
CD62L Protein 0.24 <1e-10
CD244/2B4 Protein -0.52 <1e-10
CD29 Protein -0.21 <1e-10
CD4 Protein -0.11 <1e-10
LTB Gene 0.46 <1e-10
LDHB Gene 0.27 <1e-10
SELL Gene 0.25 <1e-10
NKG7 Gene -0.72 <1e-10
CCL5 Gene -0.70 <1e-10
GZMH Gene -0.70 <1e-10
GZMA Gene -0.70 <1e-10
GNLY Gene -0.61 <1e-10

Supplementary Table 12: Genes and proteins associated with CNA populations for European
ancestry. Correlations between intensity (resp. expression level) of selected proteins (resp. genes) and the
per-cell neighborhood coefficient computed by CNA for European ancestry. Simple linear models between
expression levels and neighborhood correlation values per-cell were used to determine naive p-values for each
of these associations.
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Supplementary Figures

RA Sepsis TB

Supplementary Figure 1: Example neighborhoods in three real datasets. Each column shows five
example neighborhoods from the indicated dataset among the three datasets analyzed in the paper. Cells
are colored according to their degree of belonging to the neighborhood. In each case, only the “bulk” of
each neighborhood is shown: that is, only cells with belonging above a certain threshold are shown, with the
threshold set such that 70% of the mass of the neighborhood is included.
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Supplementary Figure 2: Accuracy, illustrated. Consider a simulated signal of the cluster abundance
type, where true values per cell are assigned to be 1 for all cells in the selected cluster and 0 elsewhere (Left).
Our resulting per-sample values are the fraction of that sample’s cells from the selected cluster. A model
estimate of this causal population with high accuracy closely approximates the true direction and degree of
abundance association to the simulated per-sample values across transcriptional space (Center). A model
estimate with lower accuracy does not accurately identify the true causal population (Right).
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Supplementary Figure 3: Calibration of CNA. P values from 1,000 trials when CNA is conducted
with simulated per-sample outcomes of: patient age values permuted randomly across the dataset (Left), or
patient age values permuted within batch, to test calibration under moderate batch effects (Middle). We
then tested calibration under extreme batch effects (Right) simulating outcomes with a value of 1 for all
samples in a given batch and 0 otherwise, across 1,000 randomly chosen batches.
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Supplementary Figure 4: Power and accuracy shown separately by clustering resolution. Three
signal types – causal clusters, global gene expression programs, and cluster-specific gene expression programs
– were simulated, corresponding to the left, middle and right columns, respectively. For each signal type, we
show (top) the relative power of CNA versus a cluster-based approach across a range of signal:noise ratios,
and (bottom) the relative accuracy of CNA versus a cluster-based approach across a range of noise levels.
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Supplementary Figure 5: Within-cluster heterogeneity in sepsis dataset. Histograms of neighbor-
hood coefficients for the sepsis versus no-sepsis phenotype, within each published cluster for this dataset.
The abundance correlation thresholds beyond which the anchor cell for each neighborhood was assigned to
an expanded-in-sepsis population (right) or a depleted-in-sepsis population (left) are marked with purple ver-
tical lines. Clusters containing sub-populations with distinct abundance associations to the sepsis phenotype
are starred.

11



Sepsis MELD Scores

0.4 0.0 0.4
CNA Neighborhood Coefficient

0.01

0.03

M
EL

D 
Sc

or
e r = 0.60

0.001 0.01 0.05 0.1 0.15 0.2
FDR Threshold

0

10

20

30

40

50

60

# 
Si

g.
 C

el
ls 

(T
ho

us
an

ds
)

CNA
MELD

CNA p = 0.08 CNA p = 0.64 CNA p = 0.83

MELD Scores on Randomly-Shuffled Per-Sample Values

CNA p = 0.47 CNA p = 0.83

Supplementary Figure 6: Sepsis dataset analysis with MELD. We first applied the MELD algorithm
to the sepsis dataset using the true sepsis vs non-sepsis sample attribute values. Per-cell scores from MELD
are shown in tSNE space (Top Left). MELD scores were correlated with the neighborhood coefficients
from CNA (Pearson R=0.60, Top Middle). MELD does not report a global significance metric, so we
sought to determine whether the MELD score pattern from the sepsis attribute was more striking than
MELD score patterns from null comparator attributes. We randomly permuted the sample sepsis vs non-
sepsis attribute values five times and examined the resulting MELD scores, which appear to have nontrivial
structure across transcriptional space (Bottom Row). For reference, we also ran CNA on these null
attributes and all CNA global p-values were sub-significant. To evaluate the local significance of MELD
scores per-cell from the true sepsis attribute, we applied a permutation-based approach identical to the one
used by CNA to assess significance per-neighborhood. None of the individual per-cell MELD scores were
significant at FDR¡0.05 (Top Right). More specifically, we generated 500 null distributions of MELD scores
each resulting from a random permutation of the sample sepsis case-control labels. We then used these null
instantiations to estimate the false discovery rate for MELD scores. We plot the number of cells (for MELD)
and neighborhoods (for CNA) that pass an increasing FDR threshold.
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Supplementary Figure 7: Contrasting cell populations implicated by CNA compared to cluster-
based analysis. (Top) Cell populations implicated by CNA as depleted (blue) or expanded (red) in
association with each sample attribute, arrayed left to right. (Bottom) Cell populations implicated by
cluster-based analysis as depleted (blue) or expanded (orange) in association with each sample attribute.
We note that although our cluster-based analysis did not recover significant local associations for ancestry,
the cluster-based analysis in the original study did; this difference is primarily due to the two analyses
using different ways of choosing which covariates to include as well as the more aggressive multiple-testing
correction across phenotypes employed in our analysis.
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