Supplementary Figure 1, related to Figure 1: A novel task for assessment of single individual forelimb movements. A) Number of lever presses/minute. B) Number of performed sequences/minute. C) Fano Factor of the number of presses/sequence D) Fano Factor of the average velocity of lever press. Details on Supplementary table 2.

## Supplementary Figure 2, related to Figure 1: A novel task for assessment of single

 individual forelimb movements. A) Frames corresponding to the moment of lever press were identified for 5 specific session of the training schedule (Training days - T6, T8, T13 and T18 and Performance session - P23). Sixteen (16) randomly selected frames corresponding to 16 lever presses were subsampled and visually inspected to assess the use of the correct forelimb. Data from one example animal is provided. B) Data from the 8 mice is summarized. In the last sessions near all presses $(97.66 \%+-$ 2.34) were performed by the correct forelimb.Supplementary Figure 3, related to Figure 2, 3 and 4: Mice perform the task using either the ipsi and contralateral forelimbs. Behavioral results from a group of 6 mice. Data from sessions included in analysis in Figure 2 and Figure 3. Statistical details on Supplementary Table 2. A) Total number of presses/session, B) \% of sequences composed by more than one lever press - Inset \% non isolated lever presses C) Number of Presses/Sequence. D) Histogram of the distribution of number of presses/sequence for ipsi and contralateral movements for one example animal (left) and for all animals across one day (right). E) Number of Rewards/Session F) \% of rewarded Sequences. G) InterPress Intervals. H) Histogram of the distribution of IPIs for ipsi and contralateral movements for one example animal (left) and for all animals across one day (right) I) Fano Factor of InterPress Intervals J) Number of sequences performed/minute K) Number of rewards obtained/minute.

Supplementary Figure 4, related to Figure 2: Neurons are more commonly modulated by only one event (movement or reward) than the two events (Left: 51,47 +- 5.83 vs. $4.86+-2.34, \mathrm{t}=7.7248, \mathrm{df}=5, \mathrm{p}<0.001$; Right: $62,84+-12,50$ vs $5.22+-1.86, \mathrm{t}=4.2413$, $\mathrm{df}=5, \mathrm{p}=0.0082$ )


#### Abstract

Supplementary Figure 5, related to Figure 2: Activity before movement onset is more common that during execution A) Number of neurons whose modulation started before movement sequence initiation (compare with Figure 2) and during sequence execution. Two-way repeated-measures ANOVA; main effect before/after $F(1,5)=20.25$, $\mathrm{p}=0.0064$; main effect side $\mathrm{F}(1,5)=0.9812, \mathrm{p}=0.3674$; interaction effect $\mathrm{F}(1,5)=0.003$, $\mathrm{P}=0.9598 \mathrm{~B}$ ) Example of matched ROIs aligned to first lever press when action is performed by contralateral and ipsilateral forelimb.


Supplementary Figure 6, related to Figure 4: Overlap between reward-modulated neurons and movement initiation neurons is minimal and lower than expected by random allocation. Monte Carlo simulations ( 10,000 samples) were used to generate a distribution of the number of overlapping neurons for first press and reward, assuming random assignment. Red line denote the lower margin of the one-sided $95 \%$ confidence interval of this simulation (upper limit is $+\infty$ ). Dashed line represents the number of overlapping neurons found in our experiments.

Supplementary Figure 7, related to Figure 5: Mice still solve the task using the forelimb contralateral to 6-OHDA lesion. A) Still images from randomly selected lever presses of an example 6-OHDA treated mouse. Sixteen (16) randomly selected lever lever presses are used as an example in the 4 conditions (ipsi/contralateral forelimb and before/after 6-OHDA lesion). The mouse used the experiment-intended forelimb in all situations. B) For each condition and each animal 16 stills from randomly selected lever presses were visually inspected to assess the use of the correct. Two mice performed
$1 / 16(6.25 \%)$ of the inspected lever presses/condition with the incorrect forelimb (one 6OHDA treated mouse in the contralateral forelimb after lesion and one saline treated mouse in the ipsilateral forelimb before). Percent of usage of the correct forelimb did not significantly changed after 6-OHDA lesion (Contra: $100 \%+-0 \%$ to $99.21 \%+-0.78$; Ipsi: $100 \%+-0$ to $100 \%+-0$ ) or saline injection (Contra: $100 \%+-0 \%$ to $100 \%+-0$; Ipsi: $98.96 \%+-0.90$ to $100 \%+-0)$. C) The two situations with incorrect forelimb used are represented on the right images. An example of the same mouse using the correct forelimb is provided for comparison (left).


Supplementary Figure 1, related to Figure 1

A

use of single correct forelimb


T13
11/16


P23


B


Supplementary Figure 2, related to Figure 1


Supplementary Figure 3, related to Figure 2, 3 and 4


Supplementary Figure 4, related to Figure 2


Supplementary Figure 5, related to Figure 2


Supplementary Figure 6, related to Figure 4


Supplementary Figure 7, related to Figure 5

Supplementary Movie 1, related to Figure 1. Mice learn to perform sequences of Lever Pressing with only one forepaw. Simultaneous display of the top and side camera on real time. The animal develops a stereotyped behavior going from the magazine to the lever, pressing a few times and then returning to consume the reinforce.

Supplementary Movie 2, related to Figure 1. Mice learn to perform sequences of Lever Pressing with only one forepaw. Low-speed video (x0.2) of press sequences present in Supplementary Movie 1.

Supplementary Table 1: Detailed statistical analysis

| Fig | Sample size ( n ) | Statistical tests | Value |
| :---: | :---: | :---: | :---: |
| 1B | Wild-type ( $\mathrm{n}=8$ ) | One-way repeated measures ANOVA | $\begin{gathered} \text { Learning: ** } F(3,563,24,94)=4,514 \\ p=0.0086 \end{gathered}$ |
|  |  |  | Performance: $F(4,955,34,68)=1,174$ $\mathrm{p}=0.3415$ |
| 1C | Wild-type ( $\mathrm{n}=8$ ) | Mixed Effects | Learning: **** $F(19,102)=8,643, p<0.0001$ Learning Inset: **** $F(19,102)=9,299$, p<0.0001 |
|  |  |  | Learning: $F(29,191)=1,077, p=0.3686$ Learning Inset: $\mathrm{F}(29,191)=1,172$, $\mathrm{p}=0.2610$ |
| 1D | Wild-type ( $\mathrm{n}=8$ ) | Mixed Effect | $F(49,297)=4,038, p<0.0001$ |
| 1E | Wild-type ( $\mathrm{n}=8$ ) | Mixed Effect | L: **** $\mathrm{F}(19,109)=3,269 \mathrm{p}<0.0001$ |
|  |  |  | $P: F(29,195)=1,151, p=0.2817$ |
|  |  | One sample t-test (vs. 4) | $\mathrm{t} 7=0.8947, \mathrm{p}=0.4007$ |
| 11 | Wild-type ( $\mathrm{n}=8$ ) | Mixed Effect | $L$ L: ** $F(19,106)=2,148, \mathrm{p}=0.0075$ |
|  |  |  | $\mathrm{P}: \mathrm{F}(29,193)=0.9681, \mathrm{p}=0.5179$ |
|  |  | One sample t-test (vs. 1/3) | $\mathrm{t} 7=0.1401, \mathrm{p}=0.8926$ |
| 1J | Wild-type ( $\mathrm{n}=8$ ) | Mixed Effect | $L: F(19,107)=0.7995, p=0.7031$ |
|  |  |  | $F(29,194)=0.9138, p=0.5971$ |
| 1K | Wild-type ( $\mathrm{n}=8$ ) | Mixed Effect | L: **** $\mathrm{F}(19,107)=3,520 . \mathrm{p}<0.0001$ |
|  |  |  | $P: F(29,194)=0.8456, \mathrm{p}=0.8456$ |
| 2 J | \% of Positively modulated neurons ( $\mathrm{n}=6$ ) | Paired t-test | $\mathrm{t}=0.928, \mathrm{df}=5, \mathrm{p}=0.8021$ |
| 2 K | Positively | Unpaired t-test | $t=3,808, d f=68,{ }^{* * * *} \mathrm{p}<0.0001$ |


|  | modulated neurons: <br> Contra: $\mathrm{n}=37$ <br> Ipsi: $\mathrm{n}=33$ |  |  |
| :---: | :---: | :---: | :---: |
| 3A | Positively modulated neurons. <br> Contra: $\mathrm{n}=37$ : Ipsi: $\mathrm{n}=33$ | Paired t-test | Contra: **** $t=4,4930 . \mathrm{df}=36, \mathrm{p}<0.0001$ Ipsi: $t=0.7195, \mathrm{df}=32, \mathrm{p}=0.4771$ |
| 3B | ROIs correlation $n=114$ | Paired t-test | ${ }^{* * * *} \mathrm{t}=14,66, \mathrm{df}=113, \mathrm{p}<0.0001$ |
| 3C1 | Low Vigor trials, n=19 <br> High Vigor trials, $\mathrm{n}=42$ | Unpaired t-test | * $\mathrm{t}=2.411, \mathrm{df}=59, \mathrm{p}=0.0190$ |
| 3C2 | Low Vigor trials, n=18 <br> High Vigor trials, $n=36$ | Unpaired t-test | * t=2.572, df=52, p=0.0130 |
| 3C3 | Low Vigor trials, $n=21$ <br> High Vigor trials, $n=26$ | Unpaired t-test | ${ }^{* *} \mathrm{t}=2.990 . \mathrm{df}=45, \mathrm{p}=0.0045$ |
| 3C4 | Low Vigor trials, $\mathrm{n}=72$ <br> High Vigor trials, $n=90$ | Unpaired t-test | ${ }^{* * *} \mathrm{t}=3.250 . \mathrm{df}=160 . \mathrm{p}=0.0014$ |
| 3D | Vigor modulated neurons. | Fisher Exact test | Contra: $n=8 / 37$ : Ipsi: $n=3 / 33 ; p=0.1960$ Positive: Contra: $n=5 / 37$ : Ipsi: $n=2 / 33$; $\mathrm{p}=0.4342$ <br> Negative: Contra: $n=3 / 37$ : Ipsi: $n=1 / 33$; $\mathrm{p}=0.6165$ |
| 3E | Positively modulated neurons. <br> Contra: $\mathrm{n}=37$ : Ipsi: $\mathrm{n}=33$ | Paired t-test | * Contra: $\mathrm{t}=2.3095$, df=36, $\mathrm{p}=0.02680$ Ipsi: $\mathrm{t}=1.1997, \mathrm{df}=32, \mathrm{p}=0.2390$ |
| 4C | \% of Positively modulated neurons ( $\mathrm{n}=6$ ) | Paired t-test | $t=0.2668, d f=5, p=0.8003$ |
| 4F Left | \% of Positively modulated neurons ( $\mathrm{n}=6$ ) | Paired t-test | $t=0.1010 . d f=5, p=0.9235$ |
| 4F | Positively | Unpaired t-test | $\mathrm{t}=0.7189, \mathrm{df}=44, \mathrm{p}=0.4760$ |


| Right | modulated neurons Contra: n=27 Ipsi: $\mathrm{n}=19$ |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { 4G } \\ & \text { Left } \end{aligned}$ | \% of Positively modulated neurons ( $\mathrm{n}=6$ ) | Paired t-test | $\mathrm{t}=0.2251, \mathrm{df}=5, \mathrm{p}=0.8308$ |
| 4G Right | Positively modulated neurons Contra: $\mathrm{n}=12$ lpsi: $\mathrm{n}=22$ | Unpaired t-test | ** $\mathrm{t}=3,3153, \mathrm{df}=32, \mathrm{p}=0.0035$ |
| 5C left | Presses/sequen ce ( $\mathrm{n}=8$ ) | Repeated measures two-way ANOVA | **** Time: $\mathrm{F}(1,7)=68.90 \mathrm{P}<0.0001$ <br> Forelimb: $F(1,7)=4.704 p=0.0667$ <br> * Time $\times$ Forelimb: $F(1,7)=11,11 p=0.0125$ <br> Sidak's multiple comparison test <br> *** Contralateral $\mathrm{p}=0.0005$ <br> Ipsilateral $p=0.1380$ |
| 5C right | Normalized presses/sequen ce ( $\mathrm{n}=8$ ) | Paired t-test | ** $\mathrm{t}=3,759, \mathrm{df}=7 \mathrm{p}=0.0071$ |
|  |  | One sample t-test | **** Contralateral: $t=11.07, \mathrm{df}=7 \mathrm{p}<0.0001$ <br> Ipsilateral: $\mathrm{t}=2.281, \mathrm{df}=7 \mathrm{p}=0.0565$ |
| 5D left | Presses/sequen ce ( $\mathrm{n}=6$ ) | Repeated measures two-way ANOVA | * Time: $F(1,5)=7.704 \mathrm{p}=0.0391$ <br> Forelimb: $F(1,5)=2.007 p=0.2157$ <br> Time $\times$ Forelimb: $F(1,5)=0.01041$ $\mathrm{p}=0.9227$ |
| 5D right | Normalized presses/sequen ce ( $\mathrm{n}=6$ ) | Paired t-test | $\mathrm{t}=0.4441, \mathrm{df}=5, \mathrm{p}=0.6755$ |
| 5 E left | \% of Long sequences ( $\mathrm{n}=8$ ) | Repeated measures two-way ANOVA | Time: $F(1,7)=30.12 p=0.0009$ <br> Forelimb: $F(1,7)=2.087 p=0.1918$ <br> *** Time x Forelimb: $F(1,7)=32.45$ $\mathrm{p}=0.0007$ <br> Sidak's multiple comparison test <br> *** Contralateral $\mathrm{p}=0.0003$ <br> Ipsilateral $\mathrm{p}=0.9725$ |
| 5E <br> right | Change in long sequences ( $\mathrm{n}=8$ ) | Paired t-test | ${ }^{* *} \mathrm{t}=4,126, \mathrm{df}=7 \mathrm{p}=0.0044$ |
|  |  | One sample t-test | **** Contralateral: $t=15,46, \mathrm{df}=7 \mathrm{p}<0.0001$ <br> Ipsilateral: $\mathrm{t}=0.2100$. $\mathrm{df}=7 \mathrm{p}=0.8397$ |
| 5F left | \% of Long sequences ( $\mathrm{n}=6$ ) | Repeated measures two-way ANOVA | Time: $F(1,5)=4.911 \mathrm{p}=0.0775$ <br> Forelimb: $F(1,5)=0.8281 p=0.4046$ <br> Time $\times$ Forelimb: $F(1,5)=0.003268$ $\mathrm{p}=0.9566$ |
| 5F | Change in long | Paired t-test | $\mathrm{t}=0.5099, \mathrm{df}=5 \mathrm{p}=0.6319$ |

right sequences ( $n=6$ )

Supplementary Table 2: Related to Supplementary Figure 1

| Fig | Sample size ( $n$ ) | Statistical <br> tests | Value |
| :--- | :--- | :--- | :--- |
| A | Wild-type ( $n=8$ ) | Repeated <br> Measures <br> ANOVA | *L: $F(2,443,17,10)=4.001, p=0.0311$ <br> $P: F(3,999,27,99)=2.042, P=0.1156$ |
| B | Wild-type ( $n=8)$ | Repeated <br> Measures <br> ANOVA | L: $F(3,302,23,11)=2.349, P=0.0939$ <br> P: $F(3,561,24,93)=1.984 P=0.1340$ |
| C | Wild-type ( $n=8)$ | Mixed Effect | *L: $F(19,115)=1.882, p=0.0219$ <br> P: $F(29,194)=1.333, p=0.1308$ |
| D | Wild-type ( $n=8)$ | Mixed Effect | *L: $F(19,115)=1.733, p=0.0402$ <br> $P: F(29,194)=1.044, p=0.4116$ |

Supplementary Table 3, Related to Supplementary Figure 2: Repeatedmeasures, 2 way ANOVA. Groups are composed of 6 mice, performing on 2 sides across 3 sessions.

|  | Session | Side | Session $x$ Side |
| :--- | :--- | :--- | :--- |
| A: Number of <br> Presses | $F(2,10)=1.330$ <br> $p=0.3075$ | $F(1,5)=0.2092$ <br> $p=0.6666$ | $F(2,10)=1.290$ <br> $p=0.3175$ |
| B: \% of non-isolated <br> Presses | $F(2,10)=1.032$ <br> $p=0.3914$ | $F(1,5)=0.03333$ <br> $p=0.8623$ | $F(2,10)=1.094$ <br> $p=0.3719$ |
| B: \% of Seq $>1$ <br> (inset) | $F(2,10)=1.219$ <br> $p=0.3358$ | $F(1,5)=0.3852$ <br> $p=0.5620$ | $F(2,10)=0.8604$ <br> $p=0.4521$ |
| C: Number of <br> Rewards | $F(2,10)=6.091$ <br> $p=0.0186$ | $F(1,5)=0.05358$ <br> $p=0.8261$ | $F(2,10)=0.2880$ <br> $p=0.7558$ |
| D: \% of Rewarded <br> Sequences | $F(2,10)=2.179$ <br> $p=0.1640$ | $F(1,5)=0.3660$ <br> $p=0.5716$ | $F(2,10)=0.07044$ <br> $p=0.9324$ |
| E: Presses/Sequence | $F(2,10)=1.985$ <br> $p=0.1880$ | $F(1,5)=2.919$ <br> $p=0.1483$ | $F(2,10)=0.4165$ <br> $p=0.6703$ |
| G: IPI | $F(2,10)=2.009$ <br> $p=0.1847$ | $F(1,5)=0.3257$ <br> $p=0.5929$ | $F(2,10)=0.4805$ <br> $p=0.6320$ |
| I: IPI fano factor | $F(2,10)=1.513$ <br> $p=0.2667$ | $F(1,5)=0.004525$ <br> $p=0.9490$ | $F(2,10)=0.9085$ <br> $p=0.4340$ |
| J: Number of <br> Sequences/minute | $F(2,10)=3.992$ <br> $p=0.0532$ | $F(1,5)=0.08217$ <br> $p=0.7859$ | $F(2,10)=0.1292$ <br> $p=0.8803$ |
| K: Number of <br> Rewards/minute | $F(2,10)=3.912$ <br> $p=0.0556$ | $F(1,5)=0.2349$ <br> $p=0.6484$ | $F(2,10)=0.001934$ <br> $p=0.9981$ |
| L: Maximum Press <br> Speed | $F(2,10)=4.075$ <br> $p=0.0508$ | $F(1,5)=0.03228$ <br> $p=0.8645$ | $F(2,10)=0.6672$ <br> $p=0.5346$ |

