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Abstract 19 

Variation in obesity-related traits has a genetic basis with heritabilities between 40 and 70%. While the 20 

global obesity pandemic is usually associated with environmental changes related to lifestyle and 21 

socioeconomic changes, most genetic studies do not include all relevant environmental covariates, so 22 

genetic contribution to variation in obesity-related traits cannot be accurately assessed. Some studies 23 

have described interactions between a few individual genes linked to obesity and environmental 24 

variables but there is no agreement on their total contribution to differences between individuals. Here 25 

we compared self-reported smoking data and a methylation-based proxy to explore the effect of 26 

smoking and genome-by-smoking interactions on obesity related traits from a genome-wide 27 

perspective to estimate the amount of variance they explain . Our results indicate that exploiting omic 28 

measures can improve models for complex traits such as obesity and can be used as a substitute for, or 29 

jointly with, environmental records to better understand causes of disease.  30 
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Introduction 31 

Variation in obesity-related traits such as body mass index (BMI) has a complex basis with heritabilities 32 

ranging from 40 to 70%, with the genetic variants detected to date explaining up to 5% of BMI variation1. 33 

In addition to genetics, studies suggest that the increase in obesity prevalence in recent decades is 34 

linked to environmental causes, such as dietary changes  and a more sedentary lifestyle2,3,4,5. The fact 35 

that all relevant environmental effects have not been accounted for in genetic studies has potentially 36 

reduced GWAS power to detect susceptibility variants. On top of this, several studies suggest that gene-37 

by-environment interactions also play an important role in obesity and other complex traits 2,6,7,8,9,10 and 38 

many researchers are focusing on finding interactions between specific genes and certain 39 

environments. Genotype-by-age interactions and genotype-by-sex interactions have also been detected 40 

for several health-related traits10,11,12. Recently, when performing GWAS on traits like BMI, lipids, and 41 

blood pressure, several studies have stratified their samples on the basis of smoking status or have 42 

explicitly modelled interactions leading to identification of new genetic variants associated with those 43 

traits 13,14,15. Some studies have attempted to quantify the overall contribution of genetic interactions 44 

with smoking. Robinson, et al.12 estimated them to explain around 4% of BMI variation in a subset of 45 

unrelated UK Biobank samples. In contrast, also in UK Biobank, using a new approach that only requires 46 

summary statistics, Shin & Lee17 estimated the contributions of the interactions to be much smaller: 47 

0.6% of BMI variation.  48 

In this study, we aim to estimate the contribution of smoking and its interaction with genetic variation 49 

to obesity variation , using self-reported measures of smoking and a methylomic proxy of smoking 50 

exposure. We hypothesised that use of a proxy, rather than self-reported smoking, and fitting gene by 51 

smoking interactions would lead to more a more accurate model. DNA methylation is an epigenetic 52 

mark that can be affected by genetics and environmental exposures18,19,20,21,22,23. Variation in 53 

methylation is correlated with gene expression, plays a crucial role in development, in maintaining 54 

genomic stability24,25,26, and has been associated with disease27,28,29,30,31 and aging32,33. Epigenome-wide 55 
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association analyses (EWAS) have identified multiple associations between DNA methylation levels at 56 

specific genomic locations and smoking19,34,35,36. These so-called signatures of smoking in the epigenome 57 

can help discriminate the smoking status of the individuals in a cohort20, and, if sufficiently accurate, 58 

could be an improvement on self-reported measures, by adding information not captured (accurately) 59 

in the self-reported measure, such as passive smoking or real quantity of tobacco smoked. 60 

Here, we aim to estimate the contribution to obesity variation of smoking and its interaction with 61 

genetic variation in two different cohorts, using self-reported measures of smoking and a methylomic 62 

proxy for smoking. Thus, we measured the contribution of smoking-associated methylation signatures 63 

and genome-by-methylation interactions to trait variation. We performed analyses in both sexes jointly 64 

and independently and also including genome-by-smoking-by-sex interactions, and we showed that 65 

omics data can be exploited as proxies for environmental exposures to improve our understanding of 66 

complex trait architecture. We observed that using an appropriate set of CpG sites, methylation can be 67 

used to model trait variation associated with smoking, and genome-by-smoking interactions suggesting 68 

potential applications for better prediction and prognosis of complex disease and expanding these 69 

modelling approaches to other environments and traits.  70 

Results 71 

The aim of this work was to explore the influence of smoking and genome-by-smoking interactions on 72 

trait variation, modelling them from self-reported information and using DNA methylation in both sexes 73 

jointly and separately. We used a variance component approach to fit a linear mixed model including a 74 

set of covariance matrices representing: two genetic effects (G: common SNP-associated genetic effects 75 

and K: pedigree-associated genetic effects not captured by the genotyped markers at a population level; 76 

the inclusion of matrix K in the analyses allows to use the related individuals in the sample), 77 

environmental effects reflecting impact of smoking (modelled as fixed or random effects), and genome-78 

by-smoking effects (GxSmk) representing sharing of both genetics (G) and environment (smoking, Smk), 79 

and we estimated the proportion of variation that each component explained for seven obesity-related 80 
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measures: weight, body mass index (BMI), waist circumference (waist), hip circumference (hips), waist-81 

to-hip ratio (WHR), fat percentage (fat%), and HDL cholesterol (HDL) as well as height, to serve as a 82 

negative control. We defined the environment using either self-reported questionnaire data or its 83 

associated methylation signature as a proxy. A summary of the experimental design used in this study 84 

is shown in Figure 1. For more detailed information, see Methods. 85 

 86 
Figure 1. Summary of the experimental design of the study. The panels (above) represent the genetic and 87 
environmental components contributing to trait variation and used in the models (table below). Each cell shows 88 
the included random effects in each combination of model (row) and fixed effects (columns). G: Genomic, 89 
K: Kinship, GxSmk: Genome-by-Smoking, M: Methylation, GxM: Genome-by-Methylation, GxSmkxSex: Genome-90 
by-Smoking-by-Sex, GxMxSex: Genome-by-Methylation-by-Sex. Models applied to different data sets varied 91 
depending on data availability.  92 
 93 

Self-reported smoking status. 94 

Generation Scotland 95 

Figure 2 shows the estimates of the proportion of BMI, fat percentage, and HDL variance explained by 96 

different sources included in the linear mixed models in ~18K individuals in Generation Scotland 97 
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(GS18K). Results for other traits are displayed in Table 1, Supplementary Figure 1, and full details of the 98 

analyses for all traits including estimates, standard errors, and log-likelihood ratio tests (LRT) are shown 99 

in Supplementary Table 1.  100 

 101 
Figure 2. Proportion of trait variation explained by genetic and interaction sources in GS18K. Proportion of BMI, 102 
fat percentage, and HDL variance (y-axis) explained by each of the genetic and interaction sources in the 103 
corresponding models (x-axis). G: Genomic, K: Kinship, GxSmk: Genome-by-Smoking. 104 

The heritability estimates of all analysed traits (i.e., proportion of the variance captured by G and K 105 

matrices together) are consistent with previous estimates in the same cohort37. The estimated 106 

contributions of smoking status (and the other covariates) to trait variation ranged between 0.35% (for 107 

height, assessed as a negative control, as we do not expect to find the same type of effects as with 108 

obesity-related measures) and 1.2% (for HDL cholesterol) and are shown in Supplementary Table 2. 109 

When included as random effect, smoking explained between 0.1% (for height) and 2.5% (for HDL 110 

cholesterol) of trait variation (Supplementary Table 1). Our models identified significant genome-by-111 
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smoking interactions for weight, BMI, fat percentage and HDL cholesterol (with log-likelihood ratio tests 112 

showing that the models including the interaction were significantly better), explaining between 4 and 113 

8% of trait variation (Table 1), similar to the values of Robinson et al.12 for BMI. When the interactions 114 

included sex (genome-by-smoking-by-sex interactions) the component was significant for all traits, and 115 

explained variance ranging between 2-9% (Supplementary Table 2). 116 

Trait Source 
GS18K UKB Meta Analysis 

Var SE LRT P Var SE P 
Height G 0.483 0.022  0.629 0.009  
Height K 0.429 0.024  0.328 0.006  
Height GxSmk 0.012 0.014 0.2041  0.001 0.003 0.7640 
Weight G 0.270 0.024   0.355 0.007   
Weight K 0.302 0.027   0.242 0.018   
Weight GxSmk 0.049 0.021 0.0098 0.022 0.008 0.0050 
BMI G 0.258 0.024   0.318 0.008   
BMI K 0.286 0.028   0.236 0.021   
BMI GxSmk 0.039 0.021 0.0336 0.025 0.007 0.0009 
Waist G 0.181 0.024   0.261 0.004   
Waist K 0.313 0.028   0.214 0.021   
Waist GxSmk 0.023 0.022 0.1534 0.017 0.007 0.0119 
Hips G 0.212 0.024   0.296 0.009   
Hips K 0.271 0.028   0.179 0.028   
Hips GxSmk 0.027 0.023 0.1185 0.020 0.007 0.0048 
WHR G 0.130 0.023   0.217 0.005   
WHR K 0.198 0.027   0.151 0.013   
WHR GxSmk 0.019 0.023 0.2011 0.012 0.006 0.0437 
Fat% G 0.236 0.025   0.301 0.006   
Fat% K 0.241 0.028   0.224 0.013   
Fat% GxSmk 0.059 0.023 0.0036 0.021 0.005 0.0000 
HDL G 0.250 0.024   NA  
HDL K 0.265 0.027   NA  
HDL GxSmk 0.076 0.022 0.0002  NA  

Table 1. Summary of interaction results for all cohorts. Results of GKGxSmk model for all traits in GS18K and meta-117 
analysis of the recruitment centre-based sub-cohorts in UK Biobank. The table shows, for each trait, the proportion 118 
of the phenotypic variance explained (Var), its standard error (SE), the log-likelihood ratio test P value (LRT P, only 119 
for the interaction), the meta-analysis P value (P), for each of the components in the model: Genetic (G), Kinship 120 
(K) and genome-by-smoking interaction (GxSmk). Highlighted P values indicate nominally significant results for the 121 
GxSmk component. 122 

 123 

 124 
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 125 

UK Biobank 126 

We sought to replicate the results observed in Generation Scotland with data from the UK Biobank 127 

cohort (UKB). Analyses were run in four sub-cohorts for computational reasons (G1, G2, G3 and G4, 128 

grouping individuals in geographically close recruitment centres; for more information see Methods and 129 

Supplementary Table 3), with the two sexes considered jointly and separately in three different analyses 130 

(the sample size of these groups permitted estimates to be obtained with the two sexes separately). 131 

Individual sub-cohort analyses were meta-analysed.  132 

The estimated contributions of self-reported smoking status (and other covariates) to trait variation in 133 

UK Biobank are shown in Supplementary Table 2. These were similar to the ones observed in Generation 134 

Scotland, varying between 0.2% (for height) and 1.4% (for waist-to-hip ratio). 135 

Figure 3 shows the proportion of BMI variance explained by the genome-by-smoking interactions in 136 

each of the cohorts and sub-cohorts (Generation Scotland, four UK Biobank groups and the UK Biobank 137 

meta-analysis). Results for other traits are displayed in Supplementary Figure 2 and full details of the 138 

analyses for all traits including estimates, standard errors and log-likelihood ratio tests are shown in 139 

Supplementary Tables 4, 5 and 6. Results for the genome-by-smoking-by-sex interactions are shown in 140 

Supplementary Figure 3 and Supplementary Table 7. 141 
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 142 
Figure 3. Proportion of BMI variation explained by Genome-by-Smoking interactions across all cohorts and sub-143 
cohorts. The plot shows the proportion of BMI variance (the bars represent standard errors) explained by the 144 
genome-by-smoking interaction (x-axis) in the mixed model analyses across cohorts (y-axis). Panels from top to 145 
bottom represent cohorts: Generation Scotland (GS), UK Biobank (UKB), UK Biobank females (UKB_F) and UK 146 
Biobank males (UKB_M). Blue coloured data points show sub-cohort results, green coloured data points show 147 
meta-analyses of the corresponding panel sub-cohorts. 148 

 149 

Meta-analyses of the sub-cohorts showed significant genome-by-smoking interactions in all traits 150 

except for height when analysing both sexes together and males separately, whereas in females, only 151 

fat percentage showed a significant effect of the interaction. Similarly, the genome-by-smoking-by-sex 152 

interactions were significant for all traits but height. Genome-by-smoking-by-sex interaction effects 153 

explained between 2 and 6% of the observed variation. 154 

Smoking-associated methylation 155 

To explore the value of DNA methylation data as a proxy for environmental variation, we modelled 156 

similarity between individuals based on their DNA methylation levels at a subset of 62 CpG sites 157 

previously associated with smoking19,34 and which had heritabilities lower than 40%, aiming to target 158 
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methylation variation that is predominantly capturing environmental variation (for details see 159 

Methods). To show that our models can provide accurate estimates we performed a series of 160 

simulations. Details and results for those are shown in Supplementary Text 1. 161 

Figure 4 shows the estimates of the proportion of BMI variance explained by different sources included 162 

in the mixed linear models in ~9K individuals in Generation Scotland (GS9K - right panel) including 163 

models with methylation and genome-by-methylation interactions for models with self-reported 164 

smoking status fitted as a fixed effect. Results for other traits are displayed in Supplementary Figure 1 165 

and full details of the analyses for all traits including estimates, standard errors and log-likelihood ratio 166 

tests, and results for smoking status fitted as a random effect are shown in Supplementary Table 8. 167 

Inclusion of the methylation covariance matrix improved the models for all traits and explained 0.7% of 168 

the variance for height and between 3-5% of the variance for obesity-related traits. After including 169 

smoking-associated methylation variation, the variation explained by self-reported smoking status 170 

dropped to zero for all traits (Supplementary Table 8, Model=GKEM). When exploring the interactions 171 

with self-reported smoking status, the estimates in the subset of individuals with methylation data 172 

available (N ~ 9K) are substantially larger than in the whole cohort. For example, for BMI, the size of the 173 

genome-by-smoking component increased from 4% (GxSmk) to 13% (GxM), however, due to the large 174 

standard errors, these two estimates are not significantly different from each other. Inclusion of the 175 

genome-by-methylation interaction component nominally improved the model fit for weight, BMI, and 176 

waist circumference, with estimates of the interaction component of over 20% of the estimates are 177 

large. When fitting jointly the two interaction components (genome-by-smoking and genome-by-178 

methylation) the estimates were not significant for either interaction component (or just nominally 179 

significant in the case of genome-by-methylation for BMI). The genome-by-methylation component was 180 

also not significant for any trait. 181 
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 182 
Figure 4. Proportion of BMI variation explained by genetic, environmental and methylation sources in GS9K. 183 
Proportion of BMI variance (y-axis) explained by each of the genetic, environmental and interaction sources in the 184 
corresponding models (x-axis). G: Genomic, K: Kinship, GxSmk: Genome-by-Smoking, M: Smoking associated 185 
methylation, GxM: Genome-by-Methylation, GxSmkxSex: Genome-by-Smoking-by-Sex, GxMxSex: Genome-by-186 
Methylation-by-Sex. 187 

 188 

 189 

Discussion 190 

Most complex diseases have moderate heritabilities, with various environmental sources of variation, 191 

for example, lifestyle and socioeconomic differences between individuals, also contributing to disease 192 

risk5. These diseases, particularly obesity, pose major challenges for public health and are associated 193 

with heavy economic burdens3,4,38. To prevent the problems resulting from complex diseases, effective 194 

personalised approaches that help individuals to reach and maintain a healthy lifestyle are required. To 195 

achieve that aim, knowledge of environmental effects and gene-by environment interactions (GxE, i.e., 196 

understanding the differential effects of an environmental exposure on a trait in individuals with 197 

different genotypes39) is required. This is a challenge, particularly for environmental factors that are not 198 
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easy to measure, or that are measured with a lot of error. It has previously been assumed that GxE 199 

effects contribute to variation in obesity-related traits6,8, but the total contribution to trait variation was 200 

not known. Previous analyses exploring GxE in obesity, as well as other traits, took advantage of 201 

particular individual genetic variants with known effects, or constructed polygenic scores, combining 202 

several genetic variants which reflect genetic risks for the individuals40,41. Here we analysed 203 

contributions of interactions between the genome (as a whole) with smoking, both using self-reported 204 

measures of smoking and methylation data as a proxy for smoking. 205 

Our estimates of the effects of genome-by-smoking interactions in obesity-related traits are larger than 206 

those estimated in Shin and Lee 17 but in line with Robinson et al. 12 for BMI. However, our analyses 207 

indicate that the magnitude is substantially different in the two sexes, with interactions playing a bigger 208 

role in males for most traits studied (weight, waist, hips, fat%). Joint Analysis of males and females 209 

provides less accurate estimates, suggesting that splitting the sexes or modelling the interactions with 210 

sex is a more sensible way of analysing the data. The estimates of the variance explained by the 211 

interaction components obtained from the genome-by-methylation analyses were large, with also large 212 

standard errors. These results, despite not being significant after multiple correction testing, are 213 

potentially interesting and should be investigated further. Some studies have suggested that there is 214 

potential confounding between interaction and covariance effects in linear mixed models. The CpG sites 215 

used to model the methylation similarity between individuals were previously corrected for genomic 216 

effects (see methods) removing potential covariance between the genetic and methylation effects 42,43. 217 

We estimated that the impact of genome-by-smoking interaction ranges from between 5 to 10% of 218 

variation in the studied traits with the exception of height, which we used as a negative control. Our 219 

results suggest a larger interaction component in traits associated with weight (BMI, weight, waist, hips) 220 

than in those more related to adiposity (waist-to-hip ratio, fat percentage). Biological interpretation of 221 

these interactions implies that some genes contributing to obesity differences between individuals have 222 

different effects depending on smoking status. This could be mediated in several ways, for example, via 223 
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genetic variants that affect both obesity and smoking. Some metabolic factors associated with food 224 

intake, such as leptin, are suspected to play a role in smoking behaviours, and rewarding effects of food 225 

and nicotine are partly mediated by common neurobiological pathways44. For example, if these common 226 

genetic architectures balance the two behaviours (i.e., more tobacco consumption leading to eating 227 

less44) the genetic effects of obesity-related traits will be different depending on the smoking status. 228 

The interactions could also be driven by gene-by-gene interactions (GxG), i.e., genetic variants affecting 229 

obesity modulated by smoking associated genetic variants. Under this scenario smoking status would 230 

be capturing smoking associated variants, and the genome-by-smoking interaction would represent 231 

GxG instead of GxE. However, given the relatively small heritability of tobacco smoking (SNP heritability 232 

~18%45), it is unlikely that all the variation we detected is driven by GxG.  233 

One of the sub-groups of UK Biobank (G3) showed consistently non-significant estimates of the 234 

interactions for all traits. The different behaviour for this cohort is not driven by characteristics like the 235 

proportion of smokers (Supplementary table 3), or by its genetic stratification. Without any other 236 

evidence we cannot attribute these systematic lower estimates to anything but chance. 237 

When we estimated the effect of smoking using the methylomic proxy (62 CpG sites associated with 238 

smoking from two independent studies19,34), the smoking associated variance increased substantially for 239 

all traits (from 2% to 6% for BMI). The methylation component captured the same variance as the self-240 

reported component and some extra variation (Supplementary table 8b). This increase in variation 241 

captured could be due to a better ability to separate differences between different levels of smoking 242 

(e.g., the self-reported status does not include amount of tobacco smoked, while the methylation might 243 

be able to capture this information better). These smoking associated CpG sites could also be picking 244 

up variation from other environmental sources that are not exclusively driven by smoking, but 245 

correlated with it, such as alcohol intake. When checking in the literature for other possible associations 246 

between the 62 CpG sites and other environmental measures (Supplementary Table 9), 20 of these 247 

CpGs have previously been associated with age, 15 with alcohol intake or alcohol dependence, 11 with 248 
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educational attainment, 10 with different types of cancer; and a few with other diseases46,47. Unlike for 249 

smoking, for most of these associations with other traits, it is unclear if they are casual, or if they could 250 

as well be driven by smoking (e.g., alcohol consumption is associated with smoking and picking up a 251 

smoking signal). 252 

The fact that variation in obesity can be explained by CpG sites associated with smoking does not imply 253 

a causal effect of smoking or methylation on obesity. Methylation is affected by both genetic and 254 

environmental effects. Here we selected a subset of CpG sites with moderate to small heritability (lower 255 

than 40%, Supplementary Table 9) and we modelled them jointly with a genomic similarity matrix, 256 

making it unlikely that the variance picked up by the methylation matrix is genetic in nature. While most 257 

changes in methylation at these CpG sites are thought to be causally driven by smoking19, associations 258 

between methylation and other complex traits, such as BMI, are less well characterised and mostly likely 259 

to be reversely caused48 (i.e., BMI affecting methylation), however, since our aim was to use methylation 260 

as a proxy for the environment, causality does not impact the conclusion of the study. It is, however, 261 

important to notice the variable nature of the methylation data, which will change during the life course 262 

of individuals unlike the genetics of the individuals, making the inclusion of methylation, measured far 263 

back in time, less relevant in a prediction framework49. Although this approach should be useful in other 264 

populations, a relevant set of CpG sites should be selected reflecting demographic and ethnic relevant 265 

associations50. 266 

To conclude, we showed that methylation data can be used as a proxy to assess smoking contributions 267 

to complex trait variation. We used DNA methylation levels at CpG sites associated with smoking as a 268 

proxy for smoking status to assess the contribution of smoking to variation in obesity-related traits. This 269 

principle could be extended to take advantage of the wealth of uncovered associations between various 270 

omics and environmental exposures of interest, particularly for those that are difficult to measure. In 271 

humans, relevant interactions could be investigated by exploiting the links between methylation and 272 

alcohol intake, metabolomics and diets, the gut microbiome, and diets, etc., and expanding to other 273 
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species, between the gut microbiome and greenhouse emissions in cattle. This could help expanding 274 

our knowledge on their contribution to complex phenotypes, and potentially, help understand the 275 

underlying biology and to improve prediction and prognosis.  276 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 21, 2021. ; https://doi.org/10.1101/2020.10.08.329672doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.08.329672
http://creativecommons.org/licenses/by/4.0/


 

16 

Methods 277 

Data. 278 

Generation Scotland. We used data from Generation Scotland: Scottish Family Health Study (GS)51,52. 279 

Ethical approval for the study was given by the NHS Tayside committee on research ethics (ref: 280 

05/s1401/89). Governance of the study, including public engagement, protocol development and 281 

access arrangements, was overseen by an independent advisory board, established by the Scottish 282 

government. Research participants gave consent to allow both academic and commercial research. 283 

Individuals were genotyped with the Illumina HumanOmniExpressExome-8 v1.0 or v1.2. We used PLINK 284 

version 1.9b2c53 to exclude SNPs that had a missingness > 2% and a Hardy-Weinberg Equilibrium test 285 

P < 10−6. Markers with a minor allele frequency (MAF) smaller than 0.05 were discarded. Duplicate 286 

samples, individuals with gender discrepancies and those with more than 2% missing genotypes were 287 

also removed. The resulting data set was merged with the 1092 individuals of the 1000 Genomes 288 

population54 and a principal component analysis was performed using GCTA55. Individuals more than 6 289 

standard deviations away from the mean of principal component 1 and principal component 2 were 290 

removed as potentially having African/Asian ancestry as shown in Amador et al.56. After quality control, 291 

individuals had genotypes for 519,819 common SNP spread over the 22 autosomes. Of the ~24,000 292 

individuals in GS, the number of individuals with complete information for smoking and other covariates 293 

was 18,522 so we used this core set of samples for the analyses in order to allow comparisons between 294 

the models, we refer to this set of samples as GS18K. 295 

UK Biobank. Data access to UK Biobank was granted under MAF 19655. The UK Biobank database include 296 

502,664 participants, aged 40–69, recruited from the general UK population across 22 centres between 297 

2006 and 201057. They underwent extensive phenotyping by questionnaire and clinic measures and 298 

provided a blood sample. All participants gave written informed consent, and the study was approved 299 

by the North West Multicentre Research Ethics Committee. Phenotypes and genotypes were 300 

downloaded direct from UK Biobank. UK Biobank participants were genotyped on two slightly different 301 
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arrays and quality control was performed by UK Biobank. The two are Affymetrix arrays with 96% of 302 

SNPs overlap between both. Further information about the quality control can be found in the UK 303 

Biobank website (https://www.ukbiobank.ac.uk/register-apply/). Only genetically white British 304 

individuals were used in the analyses. The total number of individuals with complete information for 305 

measures of interest was 374,453. Genotypes were available for 534,427 common markers spread over 306 

the 22 autosomes. 307 

For computational reasons, UKB individuals were split in four sub-cohorts to be analysed separately. 308 

The grouping was based in latitudinal differences between the assessment centres the individuals 309 

attended. Number of individuals and assessment centres are shown in Supplementary Table 3.  310 

Phenotypes. 311 

Generation Scotland. We used measured phenotypes for eight traits: height, weight, body mass index 312 

(BMI, computed as weight/height2), waist circumference (waist), hip circumference (hips), waist-to-hip 313 

ratio (WHR, computed as waist/hips), bio-impedance analysis fat (fat%), and HDL cholesterol. 314 

Phenotypes with values greater or smaller than the mean ± 4 standard deviations (after transformation 315 

and adjusting for sex, age and age2) were set to missing. The traits were pre-adjusted for the effects of 316 

sex, age, age2, clinic where the measures were taken, and a rank-based inverse normal transformation 317 

was performed on the residuals. These values were used in all the analyses.  318 

UK Biobank. We used measured phenotypes for anthropometric traits: height, weight, body mass index 319 

(BMI, computed as weight/height2),waist circumference (waist), hip circumference (hips), waist-to-hip 320 

ratio (WHR, computed as waist/hips), body fat percentage (fat%)Phenotypes with values greater or 321 

smaller than the mean ± 4 standard deviations (after transformation and adjusting for sex, age and age2) 322 

were set to missing. The traits were pre-adjusted for the effects of sex, age, age2, clinic where the 323 

measures were taken, and a rank-based inverse normal transformation was performed on the residuals. 324 

These values were used in all the analyses. 325 
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Smoking status.  326 

We used self-reported smoking status on both cohorts. Individuals were classified with respect of 327 

smoking as “never smoked”, “ex-smoker” and “current smoker” for Generation Scotland, and as “never 328 

smoked”, “ex-smoker”, “current smoker”, and “occasional smoker” for UK Biobank. The number of 329 

individuals in each category are shown in Supplementary Table 3. 330 

DNA Methylation data. 331 

DNA methylation data is available for a subset of 9,537 participants from the GS cohort, as part of the 332 

Stratifying Resilience and Depression Longitudinally (STRADL) project58. From those, we used N = 8,821 333 

individuals that had complete information for all the same set of covariates as used in the smoking status 334 

analysis. We refer to this subset of individuals as GS9K. DNA methylation was measured at 866,836 CpGs 335 

from whole blood genomic DNA, using the Illumina Infinium MethylationEPIC array. Quality control was 336 

performed using R (version 3.6.0)59 , and packages shinyMethyl60 and meffil61. We removed outliers 337 

based on overall array signal intensity and control probe performance and samples showing a mismatch 338 

between recorded and predicted sex. We removed samples with more than 0.5% of sites with a 339 

detection p-value of > 0.01; and probes with more than 5% samples with a bead count smaller than 3. 340 

Normalization was performed using the R package minfi62, that produced methylation M-values that 341 

were used in downstream analyses. For each methylation site, two linear mixed model were used to 342 

remove effects of technical and biological factors correcting for technical variation, i.e., Sentrix id, 343 

Sentrix position, batch, clinic, appointment date, year and weekday of the blood extraction, and 20 344 

principal components of the control probes; and biological variation, i.e., sex, age, estimated cell 345 

proportions (CD8T, CD4T, NK, B Cell, Mono, and Gran cells proportions based on Houseman, et al. 63), 346 

and two genetic (Genetic and Kinship) and three common environment (Family, Couples, Siblings) 347 

effects. For more information see Xia et al37 and Zeng et al18. The residual values of those corrections 348 

were used for subsequent analyses. 349 
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Smoking associated CpG sites. We selected a subset of CpG sites identified in two epigenome-wide 350 

association studies of tobacco consumption19,34. We selected CpG sites with a p-value lower than 10-7 in 351 

both Ambatipudi et al.19 (associations between CpG sites and differences between groups: smokers v 352 

non-smokers, smokers v ex-smokers, ex-smokers v non-smokers) and in Joehanes et al.34 (associations 353 

between CpG sites and dosage of tobacco smoked) to obtain a subset of CpG sites confidently associated 354 

with smoking (i.e., from two sources). We identified those CpG sites with heritabilities lower than 40% 355 

in Generation Scotland (as measured in the last step of the quality control of the data, see below) that 356 

are available in Generation Scotland. The list of 62 CpG sites is available in Supplementary Table 9. 357 

Covariance Matrices. 358 

To model the different sources of variance we used a set of covariance matrices representing similarity 359 

between individuals based on genetic components, environmental components, or both.  360 

Genetic matrices: G is a genomic relationship matrix (GRM) reflecting the genetic similarity between 361 

individuals16,64. K is a matrix representing pedigree relationships as in Zaitlen et al.65. It is a modification 362 

of G obtained by setting those entries in G lower than 0.025 to 0.  363 

Smoking matrices: SMK is a matrix representing common environmental effects shared between 364 

individuals with same smoking status i.e., SMK contains a value of 1 between individuals in the same 365 

smoking category and a 0 between individuals in different categories.  366 

Gene-Environment interaction matrices: GxSmk is a matrix representing genome-by-smoking 367 

interactions. It was computed as the cell-by-cell product (Hadamard or Schur product) of the 368 

corresponding G and SMK matrices. For an element of the GxSmk matrix, if the corresponding G or the 369 

SMK elements are close to zero, the GxSmk term will be zero or close to zero as well. Therefore, 370 

similarity between individuals due to the interactions represented in the GxSmk matrices requires 371 

similarity at both genetic and environmental level. This method resembles a reaction norm modelling 372 

approach66. 373 
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Methylation-derived matrices: M is a matrix representing similarity between individuals based on DNA 374 

methylation levels at 62 smoking associated CpG sites (see Smoking associated CpG sites above). A 375 

similarity matrix was created using OSCA v 0.4567 using algorithm 3 (i.e., iteratively standardizing probes 376 

and individuals). GxM is a genome-by-smoking interaction matrix computed as a Hadamard product of 377 

G and M.  378 

Analyses 379 

We performed several variance component analyses using GCTA55, based in the following linear mixed 380 

models: 381 

(1) y = Xβ + gg + gkin + ε 382 

(2) y = Xβ + gg + gkin + wL + ε 383 

(3) y = Xβ + gg + gkin + wL + gw + ε 384 

(4) y = Xβ + gg + gkin + gw + ε 385 

where y is an n × 1 vector of observed phenotypes with n being the number of individuals, β is a vector 386 

of fixed effects and X is its design matrix, gg is an n × 1 vector of the total additive genetic effects of the 387 

individuals captured by genotyped SNPs with gg ~ N(0, Gσ2
g); gkin is an n × 1 vector of the extra genetic 388 

effects associated with the pedigree for relatives with gkin ~ N(0, Kσ2
k). w is a n × 1 vector representing 389 

the common environmental effects of smoking, with w ~ N(0, SMKσ2
w). gw is a n × 1 vector representing 390 

interactions between markers and environments with gw ~ N(0, GxSmkσ2
gw). ε is an n × 1 vector for the 391 

residuals. The four basic models shown above were expanded to include all combinations of random 392 

and fixed effects showed in Figure 1.  393 

The estimates for variance explained by the genome-by-smoking components in the four sub-cohorts 394 

of UK Biobank were meta-analysed using the R59 package metafor68. 395 

 396 
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Data availability  397 

Generation Scotland data are available from the MRC IGC Institutional Data Access / Ethics Committee 398 

for researchers who meet the criteria for access to confidential data. Generation Scotland data are 399 

available to researchers on application to the Generation Scotland Access Committee 400 

(access@generationscotland.org). The managed access process ensures that approval is granted only 401 

to research which comes under the terms of participant consent which does not allow making 402 

participant information publicly available. UK Biobank data are available from: 403 

https://www.ukbiobank.ac.uk/register-apply/ 404 

  405 
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Figure and Table captions. 568 

Figure 1. Summary of the experimental design of the study. The panels (above) represent the genetic 569 

and environmental components used in the models (table below). Each cell shows the included random 570 

effects in each combination of model (row) and fixed effects (columns). G: Genomic, K: Kinship, GxSmk: 571 

Genome-by-Smoking, M: Methylation, GxM: Genome-by-Methylation, GxSmkxSex: Genome-by-572 

Smoking-by-Sex, GxMxSex: Genome-by-Methylation-by-Sex. 573 

Proportion of trait variation explained by genetic and environmental the different sources in Generation 574 

Scotland (GS18K). Proportion of BMI, fat percentage, and HDL variance (y-axis) explained by each of the 575 

genetic, environmental and interaction sources in the corresponding models (x-axis). GS data (Nind≈576 

18K) with complete environmental information. G: Genomic, K: Kinship, GxSmk: Genome-by-Smoking, 577 

M: Smoking associated methylation, GxM: Genome-by-Methylation, GxSmkxSex: Genome-by-Smoking-578 

by-Sex, GxMxSex: Genome-by-Methylation-by-Sex. 579 

Figure 3. Proportion of BMI variation explained by Genome-by-Smoking interactions across all cohorts 580 

and sub-cohorts. The plot shows the proportion of BMI variance (the bars represent standard errors) 581 

explained by the genome-by-smoking interaction (x-axis) in the mixed model analyses across cohorts (y-582 

axis). Panels from top to bottom represent cohorts: Generation Scotland (GS), UK Biobank (UKB), UK 583 

Biobank females (UKB_F) and UK Biobank males (UKB_M). Blue coloured data points show sub-cohort 584 

results (GS18K and UKB subgroups G1-G4), green coloured data points show meta-analyses of the 585 

corresponding panel sub-cohorts. 586 

Figure 4. Proportion of BMI variation explained by genetic, environmental and methylation sources in 587 

GS9K. Proportion of BMI variance (y-axis) explained by each of the genetic, environmental and 588 

interaction sources in the corresponding models (x-axis). G: Genomic, K: Kinship, GxSmk: Genome-by-589 

Smoking, M: Smoking associated methylation, GxM: Genome-by-Methylation, GxSmkxSex: Genome-by-590 

Smoking-by-Sex, GxMxSex: Genome-by-Methylation-by-Sex. 591 

Table 1. Summary of interaction results for all cohorts. Results of GKGxSmk model for a selected group 592 

of tested traits in GS18K, GS9K and metanalysis of the four cohorts in UK Biobank. The table shows, for 593 

each trait, proportion of the phenotypic variance explained (Var), standard error (SE), Significance of 594 

the t-statistic (Sig, P), P value for the log-likelihood ratio test (LRT P, only for the interaction) by each of 595 

the components in the model: Genetic (G), Kinship (K) and genome-by-smoking interaction (GxSmk). 596 

Highlighted P values indicate nominally significant results for the GxSmk component.  597 
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Supplementary Figure and Table captions. 598 

Supplementary Figure 1. Proportion of trait variation explained by the different sources in Generation 599 

Scotland (GS) in each of the eight traits studied. Proportion of trait variance (y-axis) explained by each 600 

of the genetic, environmental and interaction sources in the corresponding models (x-axis). Left panel: 601 

GS data (Nind≈18K) with complete environmental information. Right panel: GS data with methylation 602 

information (Nind≈9K). G: Genomic, K: Kinship, GxSmk: Genome-by-Smoking, M: Smoking associated 603 

methylation, GxM: Genome-by-Methylation, GxSmkxSex: Genome-by-Smoking-by-Sex, GxMxSex: 604 

Genome-by-Methylation-by-Sex. 605 

Supplementary Figure 2. Proportion of trait variation explained by Genome-by-Smoking interactions 606 

across all cohorts and sub-cohorts in each of the eight traits studied. The plot shows the proportion of 607 

trait variance (the bars represent standard errors) explained by the genome-by-smoking interaction (x-608 

axis) in the mixed model analyses across cohorts (y-axis). Panels from top to bottom represent cohorts: 609 

Generation Scotland (GS), UK Biobank (UKB), UK Biobank females (UKB_F) and UK Biobank males 610 

(UKB_M). Blue coloured data points show sub-cohort results (GS18K and UKB subgroups G1-G4), green 611 

coloured data points show meta-analyses of the corresponding panel sub-cohorts. 612 

Supplementary Figure 3. Proportion of trait variation explained by Genome-by-Smoking-by-Sex 613 

interactions across all cohorts and sub-cohorts in each of the eight traits studied. The plot shows the 614 

proportion of BMI variance (the bars represent standard errors) explained by the genome-by-smoking-615 

by-sex  interaction (x-axis) in the mixed model analyses across cohorts (y-axis). Panels from top to 616 

bottom represent cohorts: Generation Scotland (GS), UK Biobank (UKB), UK Biobank females (UKB_F) 617 

and UK Biobank males (UKB_M). Blue coloured data points show sub-cohort results (GS18K and UKB 618 

subgroups G1-G4), green coloured data points show meta-analyses of the corresponding panel sub-619 

cohorts. 620 

Supplementary Table 1. Results for all models for GS18K cohort. A. Models with smoking fitted as a 621 

random effect. B. Models with smoking fitted as a random effect. The tables show, for each trait, 622 

proportion of the phenotypic variance explained (Var), standard error (SE), Significance of the t-statistic 623 

(Sig, P), P value for the log-likelihood ratio test (LRT P, only for the interactions) by each of the 624 

components in the model: Genetic (G), Kinship (K), Smoking (when fitted as a random effect, Smk), 625 

genome-by-smoking interaction (GxSmk), genome-by-smoking-by-sex interaction (GxSmkxSex), kinship-626 

by-smoking interaction (KxSmk). Highlighted P values indicate nominally significant results for the 627 

interaction components. 628 
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Supplementary Table 2. Variance explained by fixed effects. Percentage of the phenotypic variance 629 

explained by the fixed effects included in the models for each trait and cohort. 630 

Supplementary Table 3. Cohorts summaries. Summary statistics (number of individuals in each category 631 

or mean values) for the covariates included in the models for each of the analysed cohorts. 632 

Supplementary Table 4. Results for all models for the four UKB cohorts (joint sexes). The tables show, 633 

for each trait, proportion of the phenotypic variance explained (Var), standard error (SE), Significance 634 

of the t-statistic (Sig, P), P value for the log-likelihood ratio test (LRT P, only for the interactions) by each 635 

of the components in the model: Genetic (G), Kinship (K), genome-by-smoking interaction (GxSmk). 636 

Highlighted P values indicate nominally significant results for the interaction components in each of the 637 

four sub-cohorts of UK Biobank (G1, G2, G3, G4) and their Meta-Analyses. 638 

Supplementary Table 5. Results for all models for the four UKB cohorts (males). The tables show, for 639 

each trait, proportion of the phenotypic variance explained (Var), standard error (SE), Significance of 640 

the t-statistic (Sig, P), P value for the log-likelihood ratio test (LRT P, only for the interactions) by each of 641 

the components in the model: Genetic (G), Kinship (K), genome-by-smoking interaction (GxSmk). 642 

Highlighted P values indicate nominally significant results for the interaction components in males from 643 

each of the four sub-cohorts of UK Biobank (G1_M, G2_M, G3_M, G4_M) and their Meta-Analyses. 644 

Supplementary Table 6. Results for all models for the four UKB cohorts (females). The tables show, for 645 

each trait, proportion of the phenotypic variance explained (Var), standard error (SE), Significance of 646 

the t-statistic (Sig, P), P value for the log-likelihood ratio test (LRT P, only for the interactions) by each of 647 

the components in the model: Genetic (G), Kinship (K), genome-by-smoking interaction (GxSmk). 648 

Highlighted P values indicate nominally significant results for the interaction components in females 649 

from each of the four sub-cohorts of UK Biobank (G1_F, G2_F, G3_F, G4_F) and their Meta-Analyses. 650 

Supplementary Table 7. Results for all models for the four UKB cohorts (joint GxSmkxSex interactions). 651 

The tables show, for each trait, proportion of the phenotypic variance explained (Var), standard error 652 

(SE), Significance of the t-statistic (Sig, P), P value for the log-likelihood ratio test (LRT P, only for the 653 

interactions) by each of the components in the model: Genetic (G), Kinship (K), genome-by-smoking-by-654 

sex interaction (GxSmkxSex). Highlighted P values indicate nominally significant results for the 655 

interaction components in each of the four sub-cohorts of UK Biobank (G1, G2, G3, G4) and their Meta-656 

Analyses. 657 

Supplementary Table 8. Results for all models for GS9K cohort. A. Models with smoking fitted as a 658 

random effect. B. Models with smoking fitted as a random effect. The tables show, for each trait, 659 

proportion of the phenotypic variance explained (Var), standard error (SE), Significance of the t-statistic 660 
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(Sig, P), P value for the log-likelihood ratio test (LRT P, only for the interactions) by each of the 661 

components in the model: Genetic (G), Kinship (K), Smoking (when fitted as a random effect, Smk), 662 

genome-by-smoking interaction (GxSmk), genome-by-smoking-by-sex interaction (GxSmkxSex), kinship-663 

by-smoking interaction (KxSmk). Highlighted P values indicate nominally significant results for the 664 

interaction components. 665 

Supplementary Table 9. Smoking associated CpG sites information. Name, chromosome, location, 666 

heritability, and trait associations  of the 62 CpG sites associated with smoking. Trait associations were 667 

extracted from the EWAS Atlas database. 668 
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