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Abstract 9 

Brain-machine interfaces (BMIs) have the potential to augment human functions and restore 10 

independence in people with disabilities, yet a compromise between non-invasiveness and 11 

performance limits their relevance. Here, we demonstrate a BMI controlled by individual motor 12 

units non-invasively recorded from the biceps brachii. Through real-time auditory and visual 13 

neurofeedback of motor unit activity, 8 participants learned to skillfully and independently control 14 

three motor units in order to complete a two-dimensional center-out task, with marked 15 

improvements in control over 6 days of training. Concomitantly, dimensionality of the motor unit 16 

population increased significantly relative to naturalistic behaviors, largely violating recruitment 17 

orders displayed during stereotyped, isometric muscle contractions. Finally, participants 18 

demonstrated the potential of a motor unit BMI to power general applications by navigating a 19 

virtual keyboard in a spelling task, achieving performances comparable to spelling-tailored non-20 

invasive BMIs that leverage less flexible control strategies to improve performance. These results 21 

highlight a largely unexplored level of flexibility of the sensorimotor system and show that this can 22 

be exploited to create a versatile, skillfully-controllable non-invasive BMI that has great potential 23 

to both provide translational benefit and augment motor functions.  24 
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Introduction 25 

 26 

Brain-machine interfaces (BMIs) aim to create an artificial link between intentions and actions. By 27 

detecting user intent from neural activity, BMIs can enable symbiotic human-machine interactions 28 

that are independent of the motor system and thus have great potential to augment human 29 

functions. Proof-of-concept clinical studies have tapped into this potential to restore independence 30 

in people with severe paralysis, demonstrating systems that allowed tetraplegic people to control 31 

robotic arms and exoskeletons1,2, navigate computers3, and even regain control of their own 32 

paralyzed limbs through electrical stimulation4. However, despite decades of advances, the reach 33 

of brain-machine interfaces remains relatively limited, largely caused by the current trade-off 34 

between BMI invasiveness and performance5,6. Intracortical BMIs demonstrate outstanding 35 

performances but present significant associated risks1–4,7; non-invasive BMIs, such as those 36 

based on electroencephalography (EEG), have a low barrier-to-entry, but their poor spatial 37 

resolution and vulnerability to noise artifacts have so far limited them to specialized use-cases 38 

and to information transfer rates too slow to control complex devices5. 39 

Alternatively, user intent can also be accessed at the level of the muscles. For example, 40 

using non-invasive surface electrodes, descending motor commands can be detected from 41 

residual hand muscles and used to control a robotic prosthesis in hand amputees8,9. However, in 42 

trying to detect natural motor commands, current technologies are bound to the limits of the 43 

musculoskeletal system and thus can control at best as many actions as the number of functions 44 

naturally controlled by the targeted muscles. Therefore, although useful in some applications, 45 

such technologies are unsuitable for people with paralysis or with large amputations, where only 46 

a limited number of muscles — such as those innervated by cranial nerves in people with 47 

tetraplegia — remains as potential sources of control. In addition, while a recent study showed 48 

partial decoupling between muscle features used for intention detection and movement10, muscle 49 

activity generated during natural motor functions remains tightly linked to the activity used to drive 50 

current myoelectric devices, thus preventing effective augmentation of human motor functions. 51 

The biological limit of current myoelectric interfaces is tied to the long-standing theory of 52 

orderly motor unit recruitment. Orderly recruitment and Henneman’s size principle11,12 state that 53 

individual motor units within a muscle are consistently recruited at specific intensities of a common 54 

descending neural drive, and as such firing rates for motor units within a single muscle should lie 55 

along a single-dimensional manifold13,14. Prior studies largely support the principle of orderly 56 

recruitment during isometric, slow-ramping contractions within controlled laboratory 57 

conditions11,12,15–17. However, the recruitment order of motor units within a muscle are known to 58 

vary depending on situational factors, such as the contraction speed, contraction isotonicity, and 59 

muscle fatigue, and some muscles deemed as “multifunctional” display variability based on 60 

movement direction18–27. In addition, pioneering studies in neurofeedback reported that people 61 

can learn to volitionally control individual motor units belonging to the same muscle when provided 62 

with visual and/or auditory feedback linked to the units’ activity28–31. For example, Harrison and 63 

Mortensen reported a subject that was able to learn, within an hour of training, to individually 64 

control the firing rate of 4 motor units of the tibialis anterior muscle28. These violations of strict 65 

motor unit recruitment order suggest some level of underlying flexibility in the sensorimotor 66 

system and, in particular, that orderly recruitment might not be an immutable constraint on the 67 

volitional control of individual motor units enabled by neurofeedback. 68 
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We thus hypothesized that a neurofeedback paradigm coupled with an operant learning 69 

task could enable the emergence of skilled, independent control of individual motor units, 70 

expanding beyond the natural motor repertoire. This independent control could then feed into a 71 

BMI as multidimensional input, potentially allowing for high-fidelity, non-invasive BMI control. 72 

Critically, as opposed to other myoelectric interfaces, such a BMI could enable multidimensional 73 

control through only a single muscle, thereby augmenting the natural capabilities of the 74 

sensorimotor system and allowing for applications even in people with severe paralysis or where 75 

only a few muscles can be used as a source of control. 76 

To test this hypothesis, here we devised a BMI that provides visual and auditory feedback 77 

of biceps brachii motor units in real-time using neuromuscular signals recorded from a high-78 

density grid of surface electromyography (EMG) electrodes. We trained 8 participants over 6 79 

consecutive days using this system on a center-out task requiring both individual and 80 

simultaneous control of three motor units. We showed that participants demonstrated 81 

improvements in performance both within and across days. Through comparisons to isometric, 82 

ramp-and-hold contractions, we provide evidence that neurofeedback enabled participants to 83 

expand their ability to control individual motor units outside of naturalistic movement dimensions. 84 

We then demonstrated an application of the motor unit BMI through a speller task, in which 85 

participants navigated a virtual keyboard to spell sentences. Speller performances were 86 

comparable to existing non-invasive BMIs specifically tailored towards spelling, despite this BMI 87 

utilizing a more generally applicable control schema. These results highlight a largely unexplored 88 

level of flexibility in the sensorimotor system and demonstrate a non-invasive BMI that exploits 89 

this flexibility to achieve skilled control, with great potential for clinical translation and to augment 90 

human capabilities. 91 

 92 

Results 93 

We devised a BMI capable of providing real-time visual and auditory neurofeedback of biceps 94 

brachii motor unit action potentials (Figure 1A). This BMI measured neuromuscular signals using 95 

a high-density grid of surface EMG (HD sEMG) electrodes and used previously validated blind 96 

source separation and classification techniques to decompose these signals into individual motor 97 

unit action potentials in real-time32,33. After a brief initialization period for the decomposition model, 98 

we first instructed participants to use the BMI’s neurofeedback to explore covert strategies to 99 

control individual motor units independently from one another. The goal of participants during this 100 

exploration procedure was to find and sort in order of controllability the three motor units they felt 101 

had the highest potential for independent control (Figure 1B). A motor unit selection algorithm 102 

highlighted motor units with potential for independent control and guided participants in this task. 103 

After this exploration period, participants’ ability to control their selected motor units was tested in 104 

a center-out task (Figure 1C, D; Supplementary Video 1). A population-coding strategy was 105 

used to map motor unit activity into the 2D position of a computer cursor, and participants had to 106 

operate this cursor to achieve the displayed targets. 12 peripheral targets were used to evaluate 107 

whether participants could recruit the selected motor units exclusively of one another (T1, T2, and 108 

T3 targets) and simultaneously in combinations of two (T4 targets) and could regulate the firing 109 

rate of the recruited units (close and far targets, Figure 1C). T1, T2, and T3 targets were ordered 110 

such that T1 corresponded to exclusive recruitment of the subjectively easiest motor unit to 111 

activate independently and T3 the subjectively hardest. A center target requiring participants to 112 
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coactivate all the selected units at a similar intensity (T5 target) was also used. These targets 113 

were grouped into 3 difficulty levels, with targets of increasing difficulties becoming available 114 

depending on participants’ performance on that day (Figure 1D). We used this paradigm to train 115 

8 participants over 6 consecutive days. Participants’ arms were constrained to fixed elbow and 116 

wrist angles via a sensorized orthosis for the entirety of each session. Additionally, while we did 117 

not explicitly track motor units across days, we used markings on skin to ensure consistent 118 

electrode positioning.  119 

120 
Figure 1 | Experimental setup. A, Schematic of the brain-machine interface (BMI) used to enable individual motor unit control of the 121 
biceps brachii. Participants are seated on a chair wearing a sensorized orthosis constraining the elbow joint at 100 degrees and the 122 
wrist at its neutral position. Load sensors are used to measure the isometric elbow-flexion and forearm-supination forces. IMU sensors 123 
are used to track arm movements. The BMI control loop is divided in 4 steps. First, biceps brachii neuromuscular signals are measured 124 
using a high-density grid of 64 surface EMG electrodes. Second, an online decomposition model is used to detect motor unit action 125 
potentials from the measured signals. Third, a decoder transforms the detected motor unit activity into task-dependent neurofeedback 126 
signals. Last, auditory and visual neurofeedback signals are delivered to the participants via headphones and a computer monitor. B, 127 
Schematic of the user interface and neurofeedback signals used during the exploration procedure. Multi-channel waveforms of the 128 
detected motor unit activity are displayed and updated at 60Hz. Neurofeedback of the detected motor unit activity is also provided by 129 
LED-like indicators flashing when an action potential is detected. Both waveforms and unit indicators are color coded. Colored signals 130 
indicate the activity of a subset of selected individual motor units. Black signals indicate the activity of unselected motor units. Finally, 131 
light-grey signals indicate detected events that have not been categorized as motor unit activity, i.e. unsorted activity. Auditory 132 
neurofeedback signals followed the same categorization between selected, unselected, and unsorted units and consisted of 150 ms 133 
pitch-coded stimuli. C, Center-out task neurofeedback, decoder, and targets. The activity of three selected motor units is transformed 134 
into cursor position using a population coding schema. The cursor position is indicated by a grey arrow originating at the center of the 135 
screen and represents the population vector. The same unit-specific visual indicators and auditory stimuli employed in the exploration 136 
period are used here. A total of 12 peripheral targets (T1, T2, T3, and T4), 1 center target (T5), and 1 rest target were included. D, 137 
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Center-out task protocol. The task is divided into trials. To start a trial participants need to hold the cursor within the rest target for a 138 
minimum of 2 seconds. A target is then selected from a performance-dependent pool of available targets. At first, only T1, T2, and T5 139 
targets are available. T3 targets and T4 are progressively added depending on participants’ performance within that day. The trial’s 140 
target is displayed and the participant has 60 seconds to achieve it before the trial is declared unsuccessful. 141 
 142 

 143 

 144 

Independent control of individual motor units on day 1 145 

We found that participants displayed independent control over selected motor units already at day 146 

one (Figure 2). In particular, participants successfully completed an average of 95.6% and 79.2% 147 

of the presented T1 and T2 targets on day one, demonstrating independent control of motor unit 148 

#1 and #2, respectively (Figure 2A-C, p<0.001 when testing for % successful trials > 0). All but 149 

one participant surpassed the threshold in performance required to enable T3 targets, and half of 150 

the participants subsequently reached sufficient proficiency to also enable T4 targets (Figure 2C). 151 

Participants encountered no difficulty in performing T5 targets, succeeding in all the 152 

corresponding trials. We also found no statistically significant difference in the percentage of 153 

correct trials between targets with different distances (p>0.05 for each target category, Figure 154 

2D). These results demonstrate that participants, without any prior training, can gain independent 155 

control of 2 or 3 motor units within a single session, suggesting some level of latent flexibility in 156 

the sensorimotor system.  157 
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 158 
Figure 2 | Independent control of individual motor units during the first day of training. A, Representative traces of center-out 159 
task signals for one participant during the first training day. First row, smoothed, normalized firing rate of the selected motor units used 160 
to control the cursor position. Second row, bipolar surface EMG signals from the three channels that best discriminate the activity of 161 
the selected motor units and relative raster plot of the detected motor unit firings. Third row, cursor position (r and θ, black traces) and 162 
targets (colored boxes) displayed in polar coordinates. Bottom, arm position and angular velocity about the two axes of largest variation 163 
(PC #1 and #2). Grey-shaded areas crossing the different plots indicate ongoing trials and the relative target; empty spaces between 164 
these areas indicate rest targets. B, Median (lines) and 95th confidence interval (shaded areas) of the selected motor unit waveforms 165 
measured from the EMG channels in A. C, Summary statistics of the first training day. Left, box-plots representing the percentage of 166 
correct trials for each of the performed targets and participants. * indicate a significant difference from 0, p<0.0001. Middle, box-plots 167 
representing the number of trials performed for each of the performed targets and participants. Right, medians (black lines) and 95th 168 
confidence intervals (shaded areas) of the number of participants that successfully performed at least one trial for each target category. 169 
D, Effect of target distance on percentage of correct trials. Colored point plots indicate the medians and 95th confidence intervals of 170 
the percentage of correct trials for close and far targets, for each color-coded, target category. Light-grey scatter plot and box-plots 171 
report the raw data points and their distribution, respectively. No significant difference was found between targets of the same category 172 
but different distance (p>0.5, n for each target category is indicated in C). 173 
 174 

 175 
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Learning over time 176 

We next evaluated how participants’ performance evolved over time. For this, a trial performance 177 

metric was first computed, which embedded information regarding the average distance of the 178 

cursor from the target, trial duration, and participants’ ability to selectively recruit target-specific 179 

motor units (Figure 3A and B). A linear mixed-effect model was used to predict trial performance 180 

as a function of a time, while controlling for possible variations between participants, days, and 181 

targets. Participants’ performance increased both within (p<0.001) and across days (p<0.006), 182 

with fixed effects equivalent to an increase in performance of 1.4 standard deviations over 100 183 

trials and of 0.4 standard deviations over the 6 days, respectively (Figure 3C and D). The fixed-184 

effect for the interaction between the within- and the across-day time variables was non-significant 185 

(p=0.094). The model intercept corresponded to an average successful trial rate of roughly 95% 186 

(standardized performance of -0.44, Figure 3A), confirming the previous analyses indicating 187 

successful task performances already at day 1.  188 

Target-specific models were then built to better evaluate the effect of training on 189 

participants’ ability to control the three selected motor units exclusive of one another (T1, T2, T3 190 

targets). Results showed significant across-day learning for all 3 targets, but only significant 191 

within-day learning for the first two motor units, highlighting the importance of multi-day training 192 

to enable the emergence of skilled control of multiple individual motor units (Figure 3E). The 193 

interaction between learning within and across days was significant for T1 targets (p=0.028) but 194 

not for T2 and T3 targets (p=0.2 and p=0.67, respectively). 195 

 We finally analyzed how participants’ performances on the simultaneous targets (T4) 196 

evolved over time. Since every participant did not reach these targets every day, only across-day 197 

learning was analyzed. Specifically, a generalized linear mixed-effect model was used to evaluate 198 

how the rate of successful trials evolved across days (Figure 3E). The fixed effect was significant, 199 

indicating an overall increase in the success rate across all participants (p=0.016).  200 

These analyses demonstrate that by the end of the 6 days of training all participants 201 

gained skilled independent control of the selected motor units (Figure 3C-E). The increase in 202 

performance across days also shows that learning is robust to changes in recording setups, 203 

suggesting a strong potential for a BMI that would exploit this strategy to extract volitional control 204 

signals.  205 
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 206 
Figure 3 | Learning to control individual motor units independently over time. A, pair-plots showing the relationship between the 207 
holistic performance metric used to evaluate participants’ proficiency in the center-out task and 4 metrics measuring specific behavioral 208 
characteristics: trial duration, mean and sum of the normalized cursor distance from target center, and mean specificity. White dots 209 
indicate 5 examples where the trial duration metric fails to discriminate differences in trial performance. Grey lines show the average 210 
performance for each metric; shaded areas indicate the 95th confidence interval. B, Scatter plots representing the temporal distribution 211 
of cursor position during the 5 trials depicted in A. Color alpha and square dimensions are proportional to the time spent in a given 212 
position. Trial #1 and #2 are both examples of unsuccessful trials. While the trial duration is the same for both (60 seconds), the holistic 213 
metric indicate better performance for trial #2, properly capturing differences in cursor trajectories between these two trials. Similarly, 214 
trials #3 and #4 are similar in duration but different in performance. Trial #5 reports an example of a high performance trial. C, 215 
Regression lines of the linear mixed-effect model used to evaluate overall learning within- and across-day (n samples = 5249). Thick 216 
black lines represent the regression lines of the within- and across-day fixed-effects, i.e., the effects that are generalized across 217 
participants, sessions, and targets; shaded grey areas indicate the 95th confidence intervals. Thinner, colored lines represent the 218 
fitted regression lines for each participant and target category. D, Fixed and random effects for key model parameters. The intercept 219 
indicates the performance at day #1. The interaction is between the within- and the across-day time variables. E, Fixed and random 220 
effects for key parameters of the models used to evaluate unit-specific learning behaviors (n samples = 1311, 1230, 1050, for the T1, 221 
T2, and T3 models, respectively). F, Success rate of T4 targets across days fitted using a Poisson generalized linear mixed-effect 222 
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model (n samples = 48, fixed effect p=0.013). The thick line indicates the fixed-effect regression line; the thinner lines indicate the 223 
regression lines for each participant; dots indicate the raw values. Stars indicate a statistically significant difference from 0: * indicates 224 
a p<0.05, ** indicates a p<0.01. 225 
 226 

Exploration and acquisition of independent motor unit control  227 

We then evaluated the role of the exploration period, occurring immediately before the center-out 228 

task (Figure 1B), in the acquisition of independent motor unit control. Due to the unstructured 229 

nature of the exploration period, motor unit firing rates were first decomposed into separate 230 

components via non-negative matrix factorization (NMF) to identify groups of units that were often 231 

mutually active. The number of components was fixed to 3, aligning with the instructions given to 232 

the participant to ultimately select 3 representative motor units. Then, the cumulative independent 233 

firing time (CIFT) was computed for each component as the fraction of time a component was 234 

independently active relative to the overall time in which it was active (Figure 4A and B). The 235 

three components were then ordered in descending order by the CIFT value 2 minutes into the 236 

exploration period, and CIFTs were compared between this initial point and their final values 237 

(Figure 4B). 238 

The CIFT increased significantly over the course of the exploration period (Figure 4B and 239 

C). The overall mean CIFT across the three components increased from 0.40 after the second 240 

minute of exploration to 0.51 at the end (p<0.0001, Figure 4C). The first component (C1) was 241 

activated nearly completely independently at the beginning of the exploration period, emphasizing 242 

the level of ease in attaining independent control in one set of motor units. However, C1 then 243 

began to co-activate more throughout the exploration period as the participant explored strategies 244 

for activating other sets of units, as indicated by a decreasing CIFT (p<10-5; Figure 4C). On the 245 

other hand, the other two components (C2 and C3) increased in independent activation over time 246 

(p<0.05; Figure 4C), illustrating a progressive learning process.  247 

We next asked whether participants’ motor unit control in the exploration period improved 248 

across days. There was a significant increase in the mean CIFT for exploration periods across a 249 

participant’s 6 days of training (p=0.017; Figure 4D). Participants thus demonstrated across-day 250 

improvements in independent motor unit control in both the center-out task and the exploration 251 

period. Finally, the mean CIFT displayed during the exploration period was found to have a strong 252 

positive correlation with the center-out task performance of the same day (fixed-effect slope: 1.61; 253 

p<10-6; Figure 4E). These results thus characterize the within-day and across-day processes by 254 

which participants acquired independent control of motor units. 255 

 256 
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 257 
Figure 4 | Exploration and acquisition of independent motor unit control. A, Representative, 8-second example for the extraction 258 
of components via non-negative matrix factorization (NMF) and the computation of CIFT. Three components are extracted from firing 259 
rates (center, grayscale heatmaps; white = 0, black = max) via NMF, yielding component-wise weights for each motor unit (left) and 260 
their corresponding projected activities (top). Then, CIFT is computed for each of the 3 components as the fraction of time spent 261 
independently active versus time spent active (displayed in the 3 bottom rows). In this example, C2 (red) has periods where it increases 262 
in CIFT (red shaded blocks) since it was independently active and where it decreases when C1 or C3 are also active. B, Data from 263 
the full, 20-minute exploration period from which data from A originated. For comparison of time courses for CIFT, we take values at 264 
an initial point (dotted line, left; 2 minutes into period) and at the period’s final point. Black trace represents the mean CIFT across the 265 
three components. C, Changes in CIFT between initial and final points for the mean CIFT, C1, C2, and C3 (left to right). Faded black 266 
dots and lines are individual exploration periods, Stars indicate: * p<0.05, **** p<0.0001 from a paired t-test, n=48. D, Mean CIFT at 267 
the end of the exploration period compared across 6 days of training and relevant regression lines from a linear mixed model fit on 268 
this data. Thin gray lines indicate participant-specific regression lines, while the thick black line represents the regression line for the 269 
fixed effect (linear mixed model, p=0.017, n=48). E, Relationships between the mean center-out task performance and the mean CIFT 270 
at the end of the preceding exploration period. Definitions of dots and lines are the same as in D. Fixed-effect slope of 1.61, p<10-6, 271 
n=48.  272 
 273 

Muscle activity dimensionality 274 

Participants’ success in the center-out task required independent motor unit control, indicating 275 

that the activity of the selected motor units lay along a multi-dimensional manifold. To evaluate 276 

how this differed from natural motor behaviors, each day participants performed isometric 277 

contractions in a “force-control” task, while using the same experimental setup as in the rest of 278 

the session. Here, participants were instructed to match displayed force profiles by performing 279 

isometric, ramp-and-hold contractions in the two primary movement directions of the biceps, 280 

elbow flexion and forearm supination34 (Figure 5A). Participants accurately reproduced the target 281 

forces (mean normalized r > 0.95, Figure 5B).  282 

 To analyze the dimensionality of motor unit activity between tasks, the participation ratio 283 

of motor unit firing rates was computed (Figure 5C). We found that motor unit firing rates had a 284 

higher average participation ratio during the center-out task than during the force-control task 285 

(p<0.0001; Figure 5D-E). Similar across-task increases in the participation ratio of the integrated 286 
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EMG (iEMG) — a commonly used feature for EMG decoding — occurred, though participation 287 

ratio increased more for firing rates than for iEMG (p<0.01; Figure 5E-F). 288 

We then analyzed how firing rate dimensionality changed both for the units selected for 289 

center-out and for the unselected units. A significant increase in participation ratio between tasks 290 

appeared whether considering solely the 3 selected motor units or the remaining unselected 291 

motor units, signifying an increase in dimensionality across the entire population of motor units 292 

(p<0.0001; Figure 5G). In addition, selected units’ firing rates could predict the concurrent firing 293 

rates of the unselected motor units fairly well (mean R2 > 0.56 for both tasks) through a linear 294 

transform, indicating strong correlations between activities of the two groups (p<10-10 different 295 

than zero; Figure 5H-I). However, for the same population of units, the R2 metric was lower in the 296 

center-out task, indicating a decoupling between selected and unselected units (Figure 5I; mean 297 

R2 different across tasks with p<10-10). 298 

Taken together, these results reveal the center-out task enabled both a significant, 299 

population-level increase in dimensionality relative to during stereotyped, isometric contractions 300 

and an increased decoupling between unselected and selected motor unit populations. 301 

 302 

 303 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2021. ; https://doi.org/10.1101/2021.03.22.436518doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.22.436518
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 5 | EMG dimensionality increases relative to stereotyped isometric contractions. A, Overview of force-control task. 304 
Participants matched trapezoidal force profiles shown to them on-screen in varying amplitudes and in various combinations of elbow 305 
flexion and wrist supination. B, Example set of 8 control task trials (gray highlights) in one representative session. Participants 306 
performed various trial types (top row) and matched target forces fairly accurately (second row; blue flexion and orange supination). 307 
Two features were extracted: iEMG (third row) and motor unit activity (fourth row; each tick is a detected firing of its row’s motor unit). 308 
C, Representative joint distributions of firing rates of 3 motor units during the force-control task (top) and center-out task (bottom) and 309 
their corresponding participation ratios. 3 units are shown here for illustration purposes; all computation was performed with the 310 
indicated number of units. Dotted lines: principal component vectors, with percentages of explained variance as annotated. Gradient 311 
of color indicates distance from origin for visualization purposes. D, Participation ratios (PR) for each session’s force-control (x axis) 312 
and center-out (y axis) tasks. Different colors represent different participants; faded dots represent actual sessions while highlighted 313 
dots represent medians within participants. Circles represent participation ratios of firing rates; triangles for iEMG. Dotted line 314 
represents line of equal PR between the two tasks, i.e. y=x. E, Participation ratios for firing rates (left) and for iEMG (right) across the 315 
force-control (FC) task and center-out (CO) task. Faded dots represent individual sessions. Both features show significant increases 316 
(p<0.0001; paired t-test, n=48) across tasks. F, Changes in participation ratio between force-control and center-out tasks for iEMG 317 
(left) and firing rates (right). PR for iEMG also increased (p=0.004 different than zero, n=48) but this increase in PR was less than the 318 
across-task increase in PR for firing rates (p=0.003, paired t-test, n=48). G, Changes in participation ratio for firing rates of motor units 319 
selected for the center-out task (left) and unselected motor units (right). Differences across tasks for both populations were significant 320 
(p<0.0001; paired t-test, n=48). H, Two 10-second representative examples of simultaneous firing rates for the 3 selected motor units 321 
(top) and 2 unselected motor units (middle and bottom rows). Dotted lines indicate the predicted firing rates of the unselected motor 322 
units from the selected units’ firing rates. I, Coefficients of determination (R2) between optimal linear transformation of selected motor 323 
units’ firing rates and unselected motor units’ firing rates. Force-control’s R2 had a mean of 0.815, while the center-out’s mean was 324 
0.567 (p< 10-10 different than zero for both, n=48). The center-out task had a lower mean than the force-control task (p<10-10, n=48). 325 
 326 

Motor unit recruitment order 327 

Our results suggest that recruitment order of biceps brachii motor units might be more flexible 328 

than previously thought and that neurofeedback can enable motor unit recruitments that expand 329 

beyond those observed in natural motor behaviors. To evaluate this divergence from motor 330 

behaviors, the stability of motor unit recruitment order was compared across tasks. 331 

We first assessed recruitment thresholds of selected and unselected motor units during 332 

the force-control task. Flexion and supination recruitment thresholds for all units spanned a wide 333 

range, distributed in agreement with the common model of motor unit frequency distribution 334 

skewing towards more lower-threshold units within a muscle13 (Figure 6A). 97% of motor units 335 

selected for the center-out task were also detectable during isometric muscle contractions; the 336 

remaining 3% were not recruited during flexion or supination contractions possibly due to small 337 

changes in postures that often occurred between tasks, and were excluded from the following 338 

analysis. 12% of selected motor units were recruited exclusively during either flexion or supination 339 

contractions, and 33% had categorically different recruitment thresholds between flexion and 340 

supination contractions. This varied recruitment order is in support of existing studies reporting 341 

biceps motor units can be recruited selectively for flexion or supination16,25,27 (Figure 6A). 342 

We then compared the pairwise activities of the selected motor units during isometric 343 

contractions and during the center out task to assess their adherence to relative recruitment 344 

orders. Taking each possible pair within the 3 selected motor units in a given day, we determined 345 

which of the 2 motor units fired less independently during the force-control task, i.e. the motor unit 346 

with the lower CIFT metric. The CIFT for this motor unit was then compared between the force-347 

control task and center-out trials requiring exclusive motor unit control (T1, T2, T3 targets; Figure 348 

6B). In this manner, the CIFT represents the fraction of time one motor unit violates its recruitment 349 

order relative to another motor unit. Pairs of motor units generally obeyed the assumed 350 

recruitment order during the force-control task, as indicated by a low mean CIFT of 0.05 (Figure 351 

6C). However, the pairwise CIFT metric significantly increased across tasks (mean center-out 352 

CIFT of 0.65, p<10-10; Figure 6C), suggesting a substantial amount of unordered recruitment 353 
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during the center-out task. Despite prior studies reporting variability in recruitment order as 354 

negatively correlated with differences in recruitment thresholds18, we found no relationship 355 

between the absolute difference in recruitment threshold between two units and their center-out 356 

CIFT: even pairs of units with large threshold differences achieved highly independent activity 357 

during the center-out (p>0.05; Figure 6D). 358 

Taken together, these results imply the recruitment order for motor units during a 359 

stereotyped, isometric contraction may no longer hold during a neurofeedback task such as our 360 

center-out task, even in instances where differences in recruitment threshold are large. 361 

 362 

 363 

 364 
Figure 6 | Motor units display significant violations of recruitment order during neurofeedback tasks. A, Top: motor unit 365 
recruitment thresholds for both elbow flexion (x-axis) and forearm supination (y-axis) for all recorded motor units across all sessions 366 
and participants. Dots displayed in grayed areas below y=0 represent units that were only activated during flexion; dots left of x=0 367 
represent units only activated during supination. Blue dots represent motor units that were selected for the center-out task; gray dots 368 
otherwise. Bottom: table showing the distribution of selected motor units in particular recruitment threshold categories: NR: “not 369 
recruited”; LO: motor units with thresholds less than 0.1; HI: remaining motor units with valid thresholds. Motor units selected for the 370 
center-out task had a lower average recruitment threshold for both flexion (0.23 for selected units vs 0.33 for unselected units, p<10-371 
5) and supination (0.18 for selected units vs 0.26 for unselected units, p<0.001) than unselected motor units. B, Representative data 372 
demonstrating the use of pairwise CIFT to quantify recruitment order violations. Smoothed firing rates for two selected motor units are 373 
shown in the top row, both during a flexion trial in the force-control task (left) and during two center-out trials (right). The bottom row 374 
shows the joint distributions of those two same units during the entirety of the two tasks, where the particular firing rates shown in the 375 
top row contribute to the regions outlined in black. The CIFT metric is then computed for that pair of motor units such that the CIFT is 376 
minimized during the force-control task, i.e. for unit #1 in this example. Regions outlined in yellow annotate the instances in which unit 377 
#1 is independently active and thus contributes to an increase in CIFT. In this example, there is substantial density present within the 378 
yellow region during the center-out task, leading to a high CIFT score of 0.93. C, CIFT increases dramatically between force-control 379 
(FC) and center-out (CO) tasks for all pairs of selected units with valid recruitment thresholds (p<10-10, n=136). D, Correlations between 380 
absolute differences in recruitment thresholds between the pair of units and the center-out’s pairwise CIFT. If both units had flexion 381 
and supination thresholds, we used the minimum difference of the two. No linear model could be found that significantly correlated 382 
difference with the center-out CIFT (p>0.05). 383 
 384 
Confound analyses  385 

While participants' elbow and wrist joints were constrained by the orthosis, gross movements at 386 

the level of the shoulder or the spine could have affected motor unit detection quality. To control 387 

for this potential confound, in addition to instructing participants to only use covert strategies to 388 
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control motor unit activity, we recorded arm kinematics and analyzed arm movements throughout 389 

the center-out task. The rotational axis of the kinematic sensors was first aligned to the axis of 390 

largest variation, with  87% of movement occurring around a single rotational axis (Figure 7A). 391 

Data along this axis were then used to evaluate whether participants used gross movement 392 

strategies to independently control the selected units within the experiments. In particular, the 393 

mean absolute velocity (MAV) during trial and inter-trial periods was used to measure the overall 394 

movement observed across the different task conditions. For each target, we then computed the 395 

within-day median and used this statistic to evaluate possible movement strategies. Results 396 

highlight minimal movements across all conditions, with a grand median value of approximately 397 

0.48 deg/s (Figure 7A). When comparing the statistics of active targets to the rest targets (i.e. 398 

the inter-trial periods), we found a statistically significant increase in median MAV during T5 399 

targets (p<0.001, Figure 7A), highlighting how the nonspecific motor unit recruitment required by 400 

these targets pushed participants to perform vigorous muscle contractions to obtain the target as 401 

quickly as possible. We also found a significant movement reduction between T1/T2 trials and 402 

the rest targets (p<0.001 and p<0.01, respectively). These results provide compelling evidence 403 

that the independent control of single motor units observed throughout the center-out task was 404 

not based on gross motor strategies.  405 

Another confound that could have facilitated independent motor unit control is the 406 

presence of crosstalk from neighboring muscles in the recorded neuromuscular signals. Aside 407 

from the biceps brachii, the brachialis is the next most likely muscle to be recorded by our 408 

electrodes due to its proximity; however, while the biceps brachii is known to participate in both 409 

flexion and supination, the brachialis participates only in elbow flexion20,35. In order to assess 410 

recordings for brachialis contamination, we computed the correlation of each channel’s iEMG to 411 

flexion and supination forces during periods in the isometric contraction task where these task-412 

oriented contractions were tested separately (Figure 7B). Correlations for flexion and supination 413 

were averaged within the three groups of channels most vulnerable to brachialis contamination: 414 

the column located most externally (i.e. nearer to the long head of the biceps), the column located 415 

most internally, and the distal row of channels. Mean correlations for all channel groups remained 416 

relatively high (> 0.7) across both flexion and supination. While spatial differences in correlations 417 

are expected even within the biceps brachii, channels primarily recording from the brachialis 418 

should display a marked drop in supination correlation during supinating contractions35. The high 419 

correlations for both flexion and supination suggest brachialis contamination in our recordings 420 

was minimal and that the recording grid was primarily placed over the biceps brachii. Taken 421 

together, these results suggest that movement artifacts and crosstalk contaminations are unlikely 422 

to have significantly affected the validity of our results. 423 

 424 
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 425 
Figure 7 | Confound analyses. A, Arm kinematic during the center-out task. Left, fraction of variance explained by the first three 426 
principal components of the recorded kinematic data. Right, scatter-plot representing the median values of the trials mean absolute 427 
value (MAV) velocity for each participant, session, and target. Box-plots represent these statistics’ distribution for each target. *** and 428 
** indicate a significant difference between a given target category and the rest target (p<0.01 and p<0.001, respectively, bootstrapping 429 
with n=10000 iterations, n samples = 48, 48, 47, 39, 48 for T1, T2, T3, T4, and T5 targets, respectively). Lines indicate data for a 430 
single participant in a given day. B, Left: representative correlations between iEMG for each of the 56 channels to elbow flexion (blue) 431 
or forearm supination (orange) forces during one session. Channels are arranged according to physical position: the cells marked with 432 
“x” represent the most external (i.e. closest to the long head of the biceps brachii) and proximal channels recorded on the bicep. Right: 433 
The mean correlations to flexion (blue) or supination (orange) forces within 3 different channel groupings most vulnerable to 434 
contamination from the brachialis. Each dot is a session’s correlation. All correlations exceed 0.7. 435 

 436 

 437 

Speller task 438 

We finally evaluated the translational potential of the proposed motor unit BMI as an alternative 439 

to current BMI technologies. To demonstrate a clinically relevant application, participants were 440 

tested on a commonly used copy-typing speller task7,36,37 (Supplementary Video 2). This speller 441 

task utilized the same selected motor units from the center-out task but, as opposed to the center-442 

out’s position decoding, instead translated the normalized motor unit firing rates into the velocity 443 

of an on-screen cursor (Figure 8A). Navigating this cursor on a virtual OPTI-II keyboard displayed 444 

on the computer monitor, participants copied sentences by controlling motor units independently 445 

for both cursor movement and cursor clicking7,38 (Figure 8A). The keyboard featured wraparound 446 

borders, which in combination with the cursor’s velocity control allowed for full 2D navigation even 447 

with a single motor unit. We reasoned this more permissive control strategy to be better suited for 448 

translational applications compared with the control strategy used in the center-out task. Cursor 449 

clicking was triggered by simultaneously recruiting all the selected motor units, similar to achieving 450 

the center-out T5 target. Participants performed the speller task after at least 30 minutes of center-451 

out task execution on the last 3 days of training, plus on any prior days in which they felt confident 452 

with their performance and completed a minimum of 60 minutes of recording. 453 

 Information throughput was assessed with the achieved bitrate, a conservative estimate 454 

of the true throughput of an assistive device36. Average and peak bitrates on the speller task were 455 

promising: the mean average bitrate on the last day was 0.43 bits/s — corresponding to 5.41 456 

correct characters per minute at a 92.2% accuracy — with a mean peak bitrate of 0.55 bits/s 457 

(Figure 8C). Participants significantly increased their average speller bitrates over days of 458 

training, echoing similar across-day learning as seen in the center-out tasks and exploration 459 

periods (p=0.005; Figure 8D).  460 
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Dimensionality as measured by the participation ratio significantly increased (p<0.0001) 461 

during the speller task relative to the isometric contraction task and was not significantly different 462 

than that of the center-out task (p>0.05), indicating participants used a strategy based on 463 

multidimensional independent motor unit control (Figure 8E). Participants’ strategies for moving 464 

the cursor leaned more towards recruiting the 3 individual motor units exclusively of one another 465 

than simultaneously in combinations of two (mean CIFT speller > mean CIFT center-out, 466 

p<0.0001), agreeing with the increased difficulty observed during T4 targets in the center-out task 467 

requiring simultaneous unit activation (Figure 8F). Taken together, these results demonstrate the 468 

strong translational potential of this motor unit BMI system. 469 

 470 

 471 
Figure 8 | Performance of a motor unit BMI on a speller task. A, Overview of the speller. Left: the user interface displayed on a 472 
computer monitor. Participants navigated their cursor (black dot) via the activities of the same 3 selected motor units from the center-473 
out task. The sentence to be typed was displayed at the top, with untyped letters grayed out. Any mistakenly typed characters had to 474 
be deleted with the “<” key before participants could proceed. Right: motor unit activities were translated into changes in velocity of 475 
the cursor, allowing the user to smoothly move the cursor across the screen. Keys were selected by co-contracting all three motor 476 
units in the same manner as the “T5” target from the center-out task; instances of this key selection highlighted and labelled in gray 477 
bars at top and gray circles on the keyboard. B, Smoothed bitrates for one participant’s 3 days of speller task. Dotted lines indicate 478 
average bitrate across that day’s speller task. C, Bitrates on the last day of training for all participants (dots). D, Participants increased 479 
their performances in the speller task over days of training. Each line represents a participant-specific regression line, while the bold 480 
black line indicates the fixed-effect slope from the linear mixed model for this data (p=0.005, n=24). E, The participation ratio of firing 481 
rates during the speller task significantly increased relative to that day’s force-control task (paired t-test; p<0.0001, n=24) but was not 482 
statistically different than that of the center-out task (paired t-test; p>0.05, n=24). F, Mean CIFT metric computed within the 3 selected 483 
motor units for each speller task period increased relative to the mean CIFT during the center-out task (paired t-test; p<0.0001, n=24), 484 
suggesting participants preferred utilizing their motor units more independently than as required in the center-out task. 485 
 486 

 487 

  488 
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Discussion 489 

We have developed a non-invasive BMI that uses neurofeedback to enable volitional control of 490 

individual motor units within the biceps brachii. Using this BMI over 6 days of training, participants 491 

steadily improved performance in a center-out task requiring both exclusive and simultaneous 492 

control of three motor units. We found that the dimensionality of motor unit activity during this task 493 

exceeded that measured during stereotyped, isometric muscle contractions and provided 494 

compelling evidence that this increase in dimensionality was associated with changes in motor 495 

unit recruitment order. Finally, demonstrating an application of this BMI, we showed that 496 

participants could use this acquired motor unit control to performantly operate a speller. Here we 497 

discuss the significance of these results for motor control theories and translational applications. 498 

 499 

Skilled independent control of individual motor units 500 

Volitional control of individual motor units was first reported in pioneering neurofeedback studies 501 

in the 1960s and 1970s28–31. In these studies, the raw electrical signals measured from 502 

intramuscular electrodes were used to provide participants with visual and/or auditory 503 

neurofeedback signals on the underlying motor unit activity. Using this neurofeedback system in 504 

unstructured tasks similar to our exploration procedure, authors reported that participants were 505 

able to selectively activate individual motor units in the abductor pollicis brevis29, extensor 506 

digitorum30, and the tibialis anterior muscles28. Despite this initial interest, research on this topic 507 

has been surprisingly limited in the last 50 years and the extent to which individual motor units 508 

can be volitionally controlled independently remained largely unclear. Here, we found that 509 

individual motor units can be controlled independently from one another and that control 510 

proficiency can be improved with training. In particular, we showed that over 6 days of training in 511 

a center-out task, participants progressively acquired skilled independent control of three motor 512 

units of the biceps brachii. This skilled control was evidenced by participants’ ability to control 513 

each of the selected units’ firing rate both exclusive of (T1, T2, and T3 targets) and in combination 514 

with other units (T4 targets) to achieve targets at different distances from the center of the screen. 515 

These results demonstrate an unprecedented level of control over individual motor units 516 

belonging to the same muscle and greatly expand on the observations of selective motor unit 517 

activation documented in previous studies.  518 

 519 

Mechanisms of independent motor unit control 520 

Independent control of individual motor units can appear at odds with the long-standing model of 521 

orderly recruitment of spinal motoneurons first described by Henneman’s size principle11. Indeed, 522 

a strict interpretation of this model would imply that the activity of motor units belonging to the 523 

same muscle should reside in a one-dimensional manifold. However, an increasing number of 524 

studies supports a more permissive view, in which orderly recruitment applies not to anatomically 525 

defined motoneuron pools but to function-specific motoneuron populations that can innervate 526 

multiple muscles and/or compartments within a single muscle18–27. In particular, the biceps brachii, 527 

used in this study, is known to have multiple anatomical neuromuscular compartments, with 528 

separate subdivisions even within the gross anatomical divide of the short and long head39. Biceps 529 

brachii motor unit recruitment has been shown to vary depending on the contraction levels in the 530 

flexion and/or supination directions, with motor units distributed across the biceps with no clear 531 

spatial distribution relevant to function16,25,27,40. Other muscles have been shown to have similar 532 
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task-dependent recruitment order differences, such as in the first dorsal interosseus muscle when 533 

performing flexion versus abduction of the index finger and in a variety of non-multifunctional arm 534 

muscles20,41. In agreement with this existing body of literature, we found that biceps motor unit 535 

recruitment significantly differed between elbow-flexion and forearm-supination isometric 536 

contractions. 537 

Participants’ success in the center-out task suggests that the biceps motor pool is divided 538 

into a minimum of 3 compartments that receive partially independent neural drives. Following the 539 

prevailing task-specific orderly recruitment model, these neural drives should be associated with 540 

established motor primitives, such as elbow flexion and forearm supination for the biceps27. 541 

Therefore, learning to exclusively recruit individual motor units should be equivalent to finding the 542 

appropriate motor tasks to perform, and any increases in center-out task performance should be 543 

attributed to learning the association between these particular tasks and the computer cursor. 544 

Radhakrishnan et al.42 studied this type of learning in a center-out task similar to that of our study, 545 

in which participants learned to control a computer cursor through various arbitrary, non-intuitive 546 

combinations of upper-limb motor tasks, e.g., through simultaneous elbow flexion and index finger 547 

abduction. These participants learned the task and achieved a high-level performance plateau 548 

within 30 minutes. In stark contrast to Radhakrishnan et al.'s study, participants' performance in 549 

this study increased throughout several days of training with no significant decrease in overall 550 

learning rate over time, suggesting a different mechanism for independent motor unit control than 551 

recalling established motor primitives. Moreover, dimensionality of the the selected units' firing 552 

rates in the center-out task was both significantly larger than in the force-control task on the first 553 

day and increased throughout the 6 days of experiments (Supplementary Figure 1), similarly 554 

signifying an activation strategy requiring refinement over time and thus not clearly related to 555 

executing stereotyped tasks. Finally, participants often reported relying on subtle combinations of 556 

flexing and supinating biceps contractions and sometimes even on more abstract strategies that 557 

they were not able to precisely describe. Taken together, these observations suggest that the 558 

boundaries between neuromuscular compartments may not be as strictly defined by established 559 

motor primitives as previously thought. 560 

  Our results suggest the presence of some latent flexibility in motor unit recruitment order 561 

that allows for the formation of novel motor patterns. Indeed, even for motor units with strict 562 

adherence to orderly recruitment during forearm-supination and elbow-flexion isometric 563 

contractions, neurofeedback enabled participants to discover novel, independently controllable 564 

groupings of motor units within the biceps brachii. Such flexibility could rely on selective pathways 565 

that bias motor unit recruitment in neuromuscular compartments otherwise controlled by a single 566 

descending neural drive. Selective recruitment mechanisms have been previously hypothesized 567 

to account for de-ordered motoneuron recruitment under certain conditions, as for example during 568 

ballistic43 or lengthening44 muscle contractions or following cutaneous stimulation45. This selective 569 

motor unit activation has been hypothesized to arise from heterogeneously distributed excitatory 570 

input to the spinal motoneuron pool and/or through excitatory or inhibitory synaptic currents that 571 

bias pools of motor units46. While there is a lack of empirical evidence suggesting that these 572 

pathways are involved during established motor behavior47, we suggest that such mechanisms, 573 

enabled by neurofeedback, might underlie this study’s observed flexibility in motor unit recruitment 574 

order. However, the presence of selective recruitment mechanisms should not be interpreted as 575 

a lack of orderly recruitment. On the contrary, the population-level increases in firing rate 576 
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dimensionality during the center-out task emphasize the existence of constraints between motor 577 

units that could restrict which motor units are able to be selectively recruited, as the ability to 578 

selectively recruit every individual motor unit in the nervous system would be computationally 579 

infeasible12. We, therefore, propose that both these mechanisms can influence neurofeedback-580 

enabled motor unit recruitment and that the orderly recruitment of subgroups of motor units 581 

observed during isometric contractions may not be an immutable constraint of unit activation but 582 

rather be an emergent property of motor control. 583 

While orderly recruitment of motor units maximizes the computational efficiency of the 584 

central nervous system during the production of a known output12, additional flexibility in motor 585 

unit recruitment can enable the neuromuscular system to cope with the wide range of movement 586 

conditions needed for everyday life46. Our study sheds additional light on the ongoing debate on 587 

the generalization of orderly recruitment principles and the ultimate flexibility of the sensorimotor 588 

system47. 589 

 590 

Translational implications of a motor unit BMI 591 

Similar to abstract BMIs48–59, our system creates an arbitrary mapping between the recorded 592 

neural activity and the action to be controlled, with no strict relation to the natural function of the 593 

selected motor units. Despite being initially less intuitive, abstract BMIs are not limited by the 594 

function of the targeted neural populations50,56,57 and have been shown to achieve a similar level 595 

of performance and intuitiveness as more biomimetic BMIs42,55,58. In particular, an increasing 596 

amount of evidence suggests that BMI learning exploits the same neural circuitry involved in 597 

motor skill learning and that long-term training enables the emergence of readily recallable, robust 598 

cortical maps underlying skilled BMI control57–61. Our results suggest similar learning behaviors 599 

occur when learning to control individual motor units. As suggested by significant across-day 600 

learning in the center-out task, participants were able to acquire and retain strategies to 601 

independently control individual motor units. Since our setup did not explicitly track motor units 602 

across days, this suggests that the acquired strategies were likely robust to the particular set of 603 

selected units. The across-day increases in CIFT during the exploration period echo similar 604 

evidence of a broader strategy for independent motor unit control. These considerations suggest 605 

that a motor unit BMI has great potential to feel intuitive and to exploit the mechanisms for motor 606 

skill learning. 607 

While some myoelectric interfaces also utilize an abstract decoder42,62,63, the proposed 608 

system is conceptually closer to existing BMIs than to current myoelectric technologies. In 609 

particular, by providing feedback on individual motor unit activity, the proposed BMI enables the 610 

emergence of activity that expands beyond the established motor repertoire, whereas current 611 

myoelectric technologies use neuromuscular signals to decode motor commands but make no 612 

attempt at expanding muscles’ dimensionalities. Even when targeted muscle reinnervation is used 613 

to detect motor commands directed towards lost muscles64, the performance and bandwidth of 614 

these myoelectric technologies are restricted by the number of existing functions controlled by 615 

the targeted motoneuron pools. Thus, when only a few muscles can be used as a source of 616 

control, as in the case of severe paralysis, these technologies can only provide limited benefits. 617 

In contrast, a motor unit BMI could enable multidimensional control even through a single muscle; 618 

in the case of complete cervical spinal cord injury, functionally-paralyzed muscles with residual 619 

volitional motor unit control65 or muscles innervated by cranial nerves could be used. This flexibility 620 
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in muscle choice can thus enable transformative applications similar to those of existing abstract 621 

BMIs. Finally, an abstract paradigm can lend itself to human augmentation applications without 622 

the expense of limiting existing motor functions, such as concomitant control of supernumerary 623 

and natural limbs10,66. 624 

With this perspective, we demonstrated a translational application of our study’s motor 625 

unit BMI through the speller task, a commonly used task for measuring the capacity of a device 626 

to restore digital communication for patients with sensorimotor disabilities7,36,37. This study 627 

achieves a mean average bitrate across participants of 0.43 bits/s on the last day of training, with 628 

across-day increases in speller task performances suggesting bitrates could further improve with 629 

more training. This bitrate surpasses many but not all EEG-based BMI spellers (Supplementary 630 

Table 1). In this study, participants performed the speller task through a continuous control 631 

scheme, in which motor unit activity translated to any velocity within a 2D space. Such a control 632 

strategy — also adopted by some electrocorticographic2,67 (ECoG) and intracortical7,37,68 BMIs — 633 

can enable not only typing but also more general applications accepting multidimensional 634 

continuous input, such as point-and-click navigation of a computer69 or control of multi-DoF robotic 635 

effectors1,2. However, because of the difficulty in decoding continuous control signals from non-636 

invasive interfaces70, only a limited number of studies attempted to develop non-invasive BMIs 637 

for continuous control of DoFs71–75, with no such implementations tested in speller tasks. Most 638 

EEG-based BMI spellers instead utilize a discrete control strategy, which constrains their 639 

applications to specific tasks70. The vast majority also rely on detection of event-related potentials 640 

generated by exogenous stimulation that require sustained concentration by the user, which 641 

increases their cognitive demand and makes them less suitable for extended use36. In particular, 642 

while they have achieved best-in-class bitrates of over 3 bits/s in very short (< 5 minutes) 643 

sessions76,77, steady-state visually evoked potential (SSVEP) BMIs have not demonstrated 644 

sustained levels of high performance and, due to requiring both mental and visual concentration, 645 

can be vulnerable to real-world environmental inconsistencies, such as user fatigue78 and non-646 

task-related cognitive load79. At-home, all-day use of a P300 speller over 2.5 years was 647 

demonstrated by Sellers et. al80 and achieved a more modest bitrate excluding inter-letter pauses 648 

of 0.31 bits/s, slightly lower than those achieved here. Therefore, compared to most EEG-based 649 

spellers, the generalizable control strategy and self-paced nature of this motor unit BMI, coupled 650 

with throughputs comparable to relevant non-invasive speller implementations, positions it well 651 

for use in clinical and real-world applications typically outside of reach for most non-invasive BMIs.  652 

Additionally, while intracortical7,37 and most ECoG2,67 BMIs use a continuous control 653 

scheme and perform superiorly on speller tasks (Supplementary Table 2), recent surveys 654 

indicated 40% of surveyed patients with tetraplegia or paraplegia would not undergo implantation 655 

even if the implant restored daily function6,81. Promisingly, the best performing participant in this 656 

study achieved an average bitrate of 0.95 bits/s after only 3 days of training with no decrease in 657 

learning rate over time, suggesting that with prolonged training performance could reach the 658 

average bitrate of 2.4 bits/s achieved in a recent intracortical study in participants with an average 659 

of 1 year of prior BMI experience7. Although there is extensive ongoing research to minimize 660 

surgical risk and footprint of implanted devices, our study suggests that a motor-unit BMI may 661 

provide throughput sufficient for some level of functional restoration for patients that do not want 662 

implantation. Such a device thus represents a promising step towards creating generally-663 

applicable non-invasive BMIs that remain comparable to their invasive alternatives. 664 
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 665 

Limitations and future directions 666 

Stable, online detection of motor unit activity using non-invasive recording technologies remains 667 

challenging in ecological settings. The waveform of recorded motor unit action potentials and 668 

consequently their detection in surface EMG recordings are known to be sensitive to movement 669 

artifacts and to relative positioning of skin to muscle, which can be especially deleterious in 670 

anisometric conditions82. In our study, we overcame these limitations through physical constraints 671 

imposed by the orthosis and by instructing participants to avoid performing overt movements 672 

when trying to control the selected motor units. We confirmed these relative static recording 673 

conditions through kinematics recordings. In more dynamic settings, improved algorithms for 674 

motor unit detection may be required to increase reliability. Notably, while global EMG features 675 

are often used as a proxy for motor unit activity in non-invasive recordings, their lower information 676 

content is likely to hinder BMI performance83,84, as also suggested by our results showing 677 

dimensionality increases that are greater in motor unit firing rates than in iEMG. Alternatively, 678 

minimally-invasive intramuscular electrodes could enable individual motor unit recordings during 679 

anisometric contractions85. 680 

The population-level dynamics across motor units observed in neurofeedback tasks 681 

suggest each dimension of the system can be driven by sets of motor units, as opposed to a 682 

single motor unit. This can increase robustness to experimental instabilities and can facilitate a 683 

finer-grained measurement of a dimension’s amplitude by incorporating multiple units’ firing rates. 684 

Similarly, the decoder can periodically be tuned to optimize for performance or for similarity to 685 

previously learned decoders, leveraging the fact that neural activity resides in a persistent, low-686 

dimensional manifold86. 687 

Additionally, this current study did not explicitly identify nor target selection of motor units 688 

that had been selected in previous days of training. The presence of within-day learning in our 689 

study and the intracortical BMI literature58,87 both suggest that retaining similar sets of motor units 690 

over days may increase overall performance. This can be addressed by longitudinally tracking 691 

individual motor units over training and prioritizing selection of those units88. Alternatively, 692 

chronically implanted intramuscular electrodes could enable recordings that stably identify motor 693 

units across days, though such a system has yet to be shown. 694 

Finally, this study solely tested participants with no history of motor impairments, and so 695 

future studies motivated by clinical translation should be performed to determine the efficacy of a 696 

motor-unit BMI in people with sensorimotor disabilities. Promisingly, however, recent studies in 697 

people with cervical spinal cord injury demonstrated that residual activity in functionally-paralyzed 698 

muscles65 and impaired movements89 can be successfully harnessed for powering peripheral 699 

human-machine interfaces. Additionally, the non-invasive nature, demonstrated information 700 

throughput, and continuous control schema of this BMI may allow for applications beyond the 701 

medical domain, where motor augmentation can be used to facilitate human-machine 702 

interactions. Further studies should thus assess the reliability of using individual motor units as a 703 

source of control in settings where the user might be moving or simultaneously performing other 704 

tasks. 705 

 706 

Conclusion 707 
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In conclusion, we have demonstrated a novel motor-unit BMI that leveraged the flexibility of the 708 

sensorimotor system to enable skilled independent control of individual motor units belonging to 709 

the same muscle. We showed that such a BMI can achieve performances comparable to those 710 

of more tailored non-invasive BMIs, despite using a more generalizable control schema. 711 

Concurrently, we shed light on long-standing questions surrounding the applicability of 712 

recruitment order often measured in stereotyped movements to volitional control of individual 713 

motor units. Advances in both motor control theory and BMI technology are critical to push the 714 

field towards more widely-applicable devices. Our study provides advances in both, potentially 715 

leading to improved therapeutics for people with sensorimotor disabilities and to a new class of 716 

neuroprosthetics for human augmentation. 717 
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Methods 943 

 944 

Experimental Procedures 945 

All experiments were approved by the Committee for Protection of Human Subjects (CPHS) of 946 

University California, Berkeley, and were performed in compliance with local COVID-19 947 

regulations. The recruited participants were healthy individuals — with no history of cognitive or 948 

sensorimotor impairments — between 22 and 30 years old, of which 3 were female and 5 male. 949 

Experiments were carried out on 6 consecutive days, with each session lasting a maximum of 950 

approximately 1 hour and 50 minutes. 951 

 952 

Setup and initial calibration | At the beginning of each session, participants were seated on a 953 

chair and fitted with a sensorized orthosis that constrained the elbow joint at 100 degrees and the 954 

wrist at its natural position (Figure 1A). After cleaning the skin with a mildly abrasive paste and 955 

isopropyl alcohol, a high-density 64-channel grid of surface EMG electrodes (GR10MM0808, OT-956 

Bioelettronica, Torino, Italy) was placed over the short and long heads of the biceps brachii, with 957 

the proximal/distal edges of the grid positioned at approximately 60%/80% of the distance 958 

between the acromion and the distal insertion of the biceps brachii tendon90. Velcro straps were 959 

used to ensure a tight fit of the orthosis around each participant’s arm. Markings on the skin were 960 

used to ensure stable grid positioning across days. 961 

We next calibrated the decomposition model used to extract individual motor unit activity 962 

from the measured neuromuscular signals. This initial calibration was performed offline on a 963 

recording of 60 seconds, during which the participants were instructed to perform subtle biceps 964 

contractions that would activate only a few motor units. To help participants in this task, we 965 

educated participants in recognizing individual motor unit action potentials from displayed raw 966 

neuromuscular signals, and encouraged them to use this simple form of neurofeedback to gauge 967 

their muscle activity. Participants were then introduced to the exploration procedure. 968 

 969 

Exploration procedure | A computer screen and headphones were used to provide participants 970 

with real-time auditory and visual neurofeedback of the detected motor unit activity (Figure 1B). 971 

Visual neurofeedback consisted of color-coded LED-like indicators that flashed when an action 972 

potential was detected and plots of the corresponding multi-channel waveforms. Auditory 973 

neurofeedback mapped detected action potentials into pitch-coded 150-ms-long stimuli. 974 

Neurofeedback signals were updated at 60 Hz. Detected activity and corresponding 975 

neurofeedback signals were divided into three categories: selected units, unselected units, and 976 

unsorted activity. Selected and unselected units represented motor unit activity successfully 977 

classified by the decomposition model, while unsorted activity represented residual threshold-978 

crossing events that were not matched with previously recognized motor units. Selected units 979 

were assigned to unit-specific neurofeedback features (i.e., colors and pitches), while those for 980 

unselected units and unsorted activity had categorical features. 981 

Participants were instructed to use the provided neurofeedback signals to explore covert 982 

strategies to selectively recruit different motor units — mimicking pioneering studies on individual 983 

motor unit control28–31 — and had approximately 30 minutes to select and sort in order of 984 

controllability the 3 motor units to use in the center-out task. To guide participants in their motor 985 

unit selection, we designed an algorithm that monitored motor unit activity in real-time and 986 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2021. ; https://doi.org/10.1101/2021.03.22.436518doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.22.436518
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

suggested units showing substantial evidence of independent control. Participants could rely on 987 

this algorithm to automatically define which units to be included in the selected units category but 988 

could also include, exclude, and reorder units at will. 989 

Throughout the exploration period, the decomposition model was periodically updated 990 

until a maximum of 25 different motor units were detected. Participants could thus use the 991 

unsorted-activity neurofeedback to steadily recruit unsorted units of interest and assist the update 992 

algorithm in detecting these units. 993 

 994 

Center-out task | Participants controlled a computer cursor using the 3 motor units selected 995 

during the exploration procedure to achieve targets displayed on a screen. The activity of the 996 

selected motor units was mapped into the 2D position of a computer cursor using a population-997 

coding strategy (Figure 1C). Each motor unit was assigned to a unique direction by dividing the 998 

2D space into three equal subspaces (i.e., with a 120 degrees angle between each other) and 999 

provided a vectorial contribution to the cursor position along this direction and proportional to its 1000 

normalized firing rate. To provide intuitive feedback on this control strategy, the cursor position 1001 

was indicated by an arrow — representing the population vector — originating at the center of the 1002 

screen. Motor unit firing rates were computed over a rolling window of 50 bins of 16 ms (800 ms 1003 

in total) using a half-Hamming window profile that gave larger weight to the most recent bins. This 1004 

firing rate was then normalized between 0 and the 90th percentile of the firing rate displayed 1005 

during the exploration procedure. In some cases, this normalization value was manually adjusted 1006 

between 10 to 20 Hz. 1007 

A total of 13 active targets and 1 rest target were designed. Active targets included 12 1008 

peripheral targets and 1 center target. Peripheral targets were defined by polar rectangular 1009 

regions with a Δθ of 45° and Δr of 0.39 population-vector magnitude and were divided into 1010 

exclusive targets (T1, T2, and T3) and simultaneous targets (T4), depending on their center angle: 1011 

exclusive targets were centered on the assigned motor unit directions and thus required exclusive 1012 

recruitment of an individual motor unit; simultaneous targets laid between the assigned directions 1013 

and thus required simultaneous recruitment of two units. Peripheral targets were also divided by 1014 

distance: close targets were centered at 0.395, while far targets were centered at 0.785 1015 

magnitude. To achieve peripheral targets participants had to hold the cursor position within the 1016 

target for a minimum of 0.5 seconds. The center target (T5) was defined by a circular region 1017 

located at the center of the screen and had a radius of 0.2 magnitude. To achieve this target, 1018 

participants were required to recruit all selected motor units at a minimum normalized firing rate 1019 

of 0.33, while also keeping the cursor within the target boundaries. In contrast to active targets, 1020 

the rest target required participants to avoid motor unit recruitment by holding the cursor within a 1021 

distance of 0.1 from the screen center for 2 seconds. 1022 

The task was divided into trials and inter-trial periods. At the beginning of each trial, an 1023 

active target was randomly selected from a pool of available targets and participants had 60 1024 

seconds to achieve it (Figure 1D). The rest target was then displayed and participants could 1025 

initiate the next trial by completing it. To promote learning, active targets were grouped into 3 1026 

difficulty levels, which were progressively made available depending on participants’ 1027 

performance. At the beginning of each session, only the center target (T5) and the motor unit #1 1028 

and #2 exclusive targets (T1 and T2) were available. An algorithm monitored the average trial 1029 

success rate over a window of 5 min and if this surpassed a threshold of 3 trials per minute, 1030 
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targets belonging to the next difficulty level were made available: T3 targets were added first, T4 1031 

targets last. 1032 

To promote engagement and incentivize learning, task and trial performance metrics were 1033 

displayed on the task monitor. Finally, in addition to the arrow indicating the cursor position, 1034 

participants received neurofeedback of the selected unit action potentials via the same LED-like 1035 

indicators and audio stimuli utilized in the exploration procedure. Participants trained on this task 1036 

for approximately 60 minutes per day during the first 3 days, and for a minimum of 30 minutes per 1037 

day on the last 3 days of experiments. 1038 

 1039 

Force-control task | Participants were instructed to perform isometric elbow flexion and forearm 1040 

supination contractions to match target force profiles displayed on a computer screen. The forces 1041 

measured by the sensorized orthosis were displayed in real-time by a bar indicator (Figure 5A). 1042 

Target forces followed a trapezoidal profile — with onset, hold, and offset durations of 1 second — 1043 

and were displayed adjacently to the measured forces. To prepare participants for a change in 1044 

force profile, the target force expected 1-second ahead was also displayed. 1045 

Three isometric contraction types were tested: elbow flexion, forearm supination, and 1046 

simultaneous elbow flexion and forearm supination. Each contraction type was tested 5 times at 1047 

3 different loads, for a total of 45 trials. Loads of 500, 1000, and 1500 grams were default but in 1048 

some cases decreased to avoid fatigue (lowest maximum load of 1000 g). Trials were separated 1049 

by 2 seconds of rest period. Trials of different types were ordered randomly. 1050 

 1051 

Speller task | The same 3 motor units from the center-out task were used to operate a cursor to 1052 

navigate a virtual keyboard in a copy-typing speller task. The keyboard layout (OPTI-II) and target 1053 

sentences mimicked those of previous BMI studies7,38. The keyboard divided the screen in 30 1054 

square keys (6x5) and included all the alphabet letters, 2 space keys, and 2 delete keys; 1055 

misselection of a character required participants to select the delete key. 1056 

To facilitate navigation, the keyboard featured wraparound borders and the cursor was 1057 

controlled in velocity. In particular, the population vector used in the center-out task to compute 1058 

the cursor position was here used to control the cursor velocity. These design features allowed 1059 

full 2D space navigation even with control of a single motor unit, though this would result in 1060 

extremely low performances. Letter selection was triggered by simultaneously recruiting the 3 1061 

selected motor units above a threshold normalized firing rate and for a threshold amount of time 1062 

— similar to how center-out T5 targets were achieved. Firing rate and time thresholds were default 1063 

to 0.5 Hz and 0.5 seconds, and sometimes slightly adjusted according to participants’ preference. 1064 

Participants were tested in this task for a minimum of approximately 30 minutes in the last 1065 

3 days of experiments, after training for a minimum of 30 minutes in the center-out task and 1066 

reaching sufficient proficiency. 4 participants also tested this task prior to the 3rd day, but only 1067 

after completing a minimum of 60 minutes of center-out task. 1 participant only completed 1 day 1068 

of the speller task. 1069 

 1070 

 1071 

 1072 

 1073 

 1074 
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 1075 

Motor unit BMI  1076 

 1077 

EMG recordings | Biceps brachii EMG signals were acquired using a PZ5M neurodigitizer 1078 

amplifier and an RZ2 bioamp processor from Tracker-Davis Technologies (TDT) at 12.2 kHz. The 1079 

64-channels grid of electrodes was connected via 32-channels ZIF-clip TDT headstages and 1080 

Omnetics connectors. Signals were band-pass filtered between 10 and 900 Hz using a 6th order 1081 

Butterworth filter. Notch filters at 60, 120, 180, and 240 Hz were also used to remove the powerline 1082 

noise. Filtered signals were then used to extract 56 bipolar derivations parallel to the muscle 1083 

fibers. A multichannel threshold crossing algorithm was then used to detect possible motor unit 1084 

activity; thresholds were set to 6 times the signal’s standard deviation and were calibrated at the 1085 

beginning of each session using 10-second recordings during which participants were instructed 1086 

to avoid biceps contractions and not move. A threshold crossing event at any of the bipolar 1087 

channels triggered a dead-time of 20 ms that limited overall detection rate. Threshold crossing 1088 

events and filtered bipolar signals were downsampled to 2 kHz and streamed to the BMI 1089 

decomposition model. All these processing steps were performed using custom software written 1090 

for the RZ2 bioprocessor, which ensured a maximum of 0.5 ms delay between acquisition and 1091 

streaming. 1092 

 1093 

Decomposition model | Bipolar EMG signals were decomposed into motor unit activity using a 1094 

convolutive blind source separation model. This model included a previously validated offline 1095 

EMG decomposition model32 and shared similar logic to recent techniques for online EMG 1096 

decomposition33. 1097 

The offline decomposition model used convolutive blind source separation to define the 1098 

motor units underlying the measured EMG signals32. Briefly, the filtered bipolar EMG signals were 1099 

extended and whitened. An extension factor of 16 was used32. Next, a 2-step iterative algorithm 1100 

was used to find sparse components that best reconstructed the whitened data. First, a fixed-1101 

point iteration algorithm was used to estimate the next component using the logarithm of the 1102 

hyperbolic cosine as a contrast function to optimize sparseness and an orthogonal constraint to 1103 

promote estimates of unique sources. The logarithm of the hyperbolic cosine was used because 1104 

of its superior robustness to outliers compared with simpler contrast functions32. Second, an 1105 

iterative algorithm was used to minimize the variability of the inter-spike intervals of detected 1106 

spike-trains. After projecting the data onto the candidate component, K-means++ (k=2) was used 1107 

to estimate a threshold on the peaks in the squared projected data. The estimated component 1108 

was then refined according to those peaks. This process repeated until the inter-spike interval 1109 

converged. Since the coefficient of variation for spike-trains generated by multiple motor units are 1110 

intrinsically more variable than those generated by a single motor unit, this second step was 1111 

shown to ameliorate source estimation by exploiting the regularity of motor unit firings32. The 1112 

resulting component was then added to the matrix of estimated components if the signal to noise 1113 

ratio (SNR) of the spikes detected along this component was greater than a fixed threshold; SNR 1114 

was measured using the Silhoutte coefficient and a threshold of 0.85 was used32. This iterative 1115 

algorithm, which is described in greater detail in Negro et al., 201632, was repeated until a 1116 

maximum of 25 sources were detected. A post-processing step was then introduced to further de-1117 

duplicate the number of components underlying the same motor units. Indeed, despite the 1118 
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orthogonal constraint used in the fixed-point algorithm to increase the number of unique estimated 1119 

sources, this approach can lead to components capturing delayed versions of the same motor 1120 

unit action potentials32,84. Spike-trains were thus extracted from each estimated component and 1121 

only components with less than 30% of coincident spikes — as measured by the rate-of-1122 

agreement32 across spike timings — were kept. Note that while a minor inconvenience in offline 1123 

analyses, an excessive number of duplicated components would largely impact computational 1124 

load required by our BMI. 1125 

The offline model was initialized on the 60-second dataset acquired at the beginning of 1126 

each session. This calibration was used to compute the whitening matrix and to initialize the 1127 

decomposition matrix with the first set of estimated sources. This whitening matrix was then fixed 1128 

for the remainder of the session. A batch update algorithm was then used throughout the 1129 

exploration procedure to periodically update the decomposition matrix with potential new 1130 

components. To optimize computational efficiency and allow for quick model updates (update 1131 

time < 30s), instead of using the full EMG stream this algorithm only ran on the windows of EMG 1132 

signals surrounding the detected threshold crossing events (10 ms before the peak multichannel 1133 

amplitude and 20 ms after). The update algorithm was triggered every 750 threshold crossing 1134 

events with no extracted motor units and ran until a maximum of 25 total motor units were detected 1135 

or until the end of the exploration procedure. 1136 

Individual motor unit activity was continuously estimated in real-time through this 1137 

decomposition model from the 30ms threshold-crossing events detected from the streamed EMG 1138 

signals. For each threshold crossing, data windows were whitened, extended, and projected to 1139 

the source space by multiplying each extended multichannel sample with the most current 1140 

decomposition matrix. A motor unit was then considered detected if the squared projected data 1141 

exceeded the decomposition model’s threshold for a given source, determined with k-means 1142 

during the offline decompositions. Using this algorithm, multiple units could be detected from one 1143 

threshold crossing event. If the projected activity did not surpass any component’s threshold, the 1144 

event was then classified as unsorted activity. 1145 

Online and offline decomposition models were implemented through custom-written GPU-1146 

accelerated Python programs. All data was streamed between multiple computers with minimal 1147 

latency and high bandwidth through River91, an open-source C++ library based on Redis. Overall 1148 

latency from data acquisition to motor unit activity detection was generally under 70ms. 1149 

 1150 

Motor unit selection algorithm | This algorithm monitored the dimensionality of motor unit 1151 

activity throughout the exploration procedure and suggested motor units with potential for 1152 

independent control. A circular buffer (size of 216 samples) was used to collect sorted motor unit 1153 

activity. The firing rate of each motor unit was then computed over overlapping windows of 1 s 1154 

with 500 ms overlap. Non-negative Matrix Factorization (NMF) was then used to detect motor 1155 

units explaining most firing rates variance. First, components required to explain a minimum of 1156 

90% of the total firing rates variance were selected. Second, the motor unit with the largest weight 1157 

for each of the selected components was chosen and used to update the subset of suggested 1158 

motor units. Suggested motor units were updated every 20 seconds. 1159 

 1160 

Force and kinematic recordings | The sensorized orthosis was custom-designed and 3D printed 1161 

using a Form 2 (Formlabs, Somerville, MA) printer with standard resin. The orthosis embedded 2 1162 
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load cell sensors (a CB6 from DACELL, Korea and a TAL220 from HT Sensor, China) to measure 1163 

elbow-flexion and forearm-supination forces, respectively, and inertial measurement units 1164 

(BNO055, Bosch Sensortec, Germany) to capture movements. Load and IMU signals were 1165 

sampled at 50 Hz using a Raspberry Pi 4. A HX711 analog-to-digital converter (Avia 1166 

Semiconductor, China) was used to acquire the load data. Data was streamed online to other BMI 1167 

modules using River. 1168 

 1169 

Behavioral Analysis 1170 

 1171 

Center out task day 1 | Center out performance at day 1 was evaluated using the percentage of 1172 

successful trials for each target category (T1, T2, T3, T4, and T5). A trial was considered failed if 1173 

the presented target was not achieved within the 60s of trial and successful otherwise. 1174 

Participants that did not reach the second and third difficulty levels were excluded when analysing 1175 

the corresponding target categories (T3 and T4 respectively). Hypothesis testing was performed 1176 

using bootstrapping (n=10000 iterations) and Bonferroni correction for multiple comparisons 1177 

(Figure 2C-D). 1178 

 1179 

Trial performance metric | While the percentage of successful trials allows to evaluate whether 1180 

independent motor unit control is possible, this metric fails to capture the quality of this control. A 1181 

more holistic performance metric was thus computed to assess motor unit control quality and 1182 

evaluate learning over time. This metric combined together 3 independent metrics using Principal 1183 

Component Analysis (PCA). The normalized distance between the cursor position with respect to 1184 

the presented target center was calculated for every time point within each recorded trial; 1185 

normalization was performed with respect to the maximum target distance. The average and 1186 

integral of this distance for each trial were then linearized using a log transform. These metrics 1187 

were used to capture the cursor error and trial duration and were the first 2 independent metrics. 1188 

The third metric was used to reward motor unit specificity. A specificity score was first computed 1189 

for each trial’s time point as a value between -1 and 1, where -1 corresponds to selective 1190 

recruitment of motor units that are not required for achieving the considered target and 1 to 1191 

selective recruitment of the target motor units. The mean specificity was then calculated for each 1192 

trial and linearized using the logistic transform. A PCA model was then fit on all the collected trials 1193 

to combine these 3 metrics; the single holistic metric was then the first component of this PCA 1194 

model, standard scaled to improve interpretability of the results. Figure 2A and B show how this 1195 

holistic metric relate to the 3 underlying metrics prior linearization, as well as to the trial duration 1196 

— a feature commonly used for evaluating performances in trial-based tasks. Feature 1197 

linearization was performed to conform with the assumptions of the statistical techniques used to 1198 

analyze learning over time. These analyses excluded T5 targets. 1199 

 1200 

Learning analyses | Collected center-out data are characterized by hierarchical and crossed 1201 

dependencies: trials (at the first hierarchical level) are grouped in days (at the second level) and 1202 

in participants (at the third level), while target categories are crossed at all hierarchical levels. To 1203 

account for these dependencies, learning analyses were performed using linear mixed-effects 1204 

models (LMMs) — an extension of linear regression models that allow to separate the overall 1205 
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effects of a model term (i.e. the fixed effects) from the variability in the data generated by different 1206 

sources of stochastic variations (i.e., the random effects)92. 1207 

When analyzing the overall within- and across-day learning (Figure 3C-D), trial 1208 

performance was modeled by the following equations representing our general LMM: 1209 
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where j, t, i, θ, and r refer to the participant, day, trial, target angle, and target distance indexes, 1221 

respectively; 𝛾;refers to the fixed effect estimated for the 𝑛4<independent variable; 𝜇=>?;@  refers to 1222 

the 𝑙4< random effect for the 𝑛4<independent variable caused by the random factor 𝑥𝑦𝑧; 𝛽=>?; refers 1223 

to the combined random and fixed effects; and 𝜀34596refers to the model residuals. This model 1224 

describes trial performance 𝑦34596as a function of within- (𝑤𝑖𝑡ℎ𝑖𝑛3459ABA) and between-day (𝑎𝑐𝑟𝑜𝑠𝑠349CBA) 1225 

time variables, an interaction term between these 2 variables (𝑤𝑖𝑡ℎ𝑖𝑛3459ABA𝑎𝑐𝑟𝑜𝑠𝑠349
CBA), and two 1226 

additional variables used to control for potential across-day effects caused by differences in 1227 

number of performed trials (𝑤𝑖𝑡ℎ𝑖𝑛349D7C;and 𝑤𝑖𝑡ℎ𝑖𝑛349D7C;𝑎𝑐𝑟𝑜𝑠𝑠349CBA). The within-day time variable 1228 

𝑤𝑖𝑡ℎ𝑖𝑛3459
ABA was calculated as the centered, normalized trial index	𝑖. For each day t, subject j, and 1229 

target direction θ, trials were centered with respect to half of the performed trials. Such centering 1230 

within-cluster (CWC) was used to segregate within-day effects from higher order effects. A 1231 

normalization factor of 100 trials was used. The subtracted means from 𝑤𝑖𝑡ℎ𝑖𝑛3459ABA were in turn 1232 

CWC centered and included in the model through the 𝑤𝑖𝑡ℎ𝑖𝑛349D7C; term, which was used to 1233 

account for possible changes in performances caused by the different number of performed trials 1234 

for each recording. The across-day variable 𝑎𝑐𝑟𝑜𝑠𝑠349CBA consisted of the aligned and normalized 1235 

day index t. Alignment was performed within-cluster (AWC) with respect to the first day 𝑡 for which 1236 

participant 𝑗 performed 𝜃 targets. While for targets belonging to the first difficulty level (i.e., T1 1237 
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and T2 targets) AWC had no effect, this alignment strategy allowed to take into account 1238 

participants’ across-day heterogeneity in reaching T3 and T4 targets, effectively comparing 1239 

across-day performances with respect to the number of days of practice instead of those of 1240 

experiment. This variable was normalized with respect to 6 days. Maximal random effects were 1241 

used to minimize Type I errors during hypothesis testing93. Random effects included: random 1242 

intercepts for each participant (𝜇3&&), target direction (𝜇9&,), combination of participant and target 1243 

direction (𝜇39&*), combination of participant, target direction, and day (𝜇349&' ), and combination of 1244 

target direction and distance (𝜇96&-); and random slopes for both the within- and across-day time 1245 

variables (𝜇349'&  and 𝜇39*&, respectively). Random effects were modeled as 0-centered Normal 1246 

distributions with estimated standard deviations σ and optional correlation parameter ⍴. The 1247 

centering and alignment choices used for 𝑤𝑖𝑡ℎ𝑖𝑛3459ABA and 𝑎𝑐𝑟𝑜𝑠𝑠349CBA made the fixed-effect of the 1248 

model intercept 𝛾&to capture the overall performance of a general participant on the center-out 1249 

task at day 1. The modeled fixed effects for the within- and across-day time variables represented 1250 

the overall improvement in performance a general participant would obtain in the center-out task 1251 

by training over 100 trials and 6 days, respectively. 1252 

Learning analyses performed for each of the selected motor units separately (Figure 3E) 1253 

were carried out using a similar LMM, which included the same fixed-effect terms but reduced 1254 

random-effects: 1255 

𝑦3456   = 𝛽346& + 𝛽346' 𝑤𝑖𝑡ℎ𝑖𝑛3456ABA + 𝛽36* 𝑎𝑐𝑟𝑜𝑠𝑠346CBA   + 𝛾,𝑤𝑖𝑡ℎ𝑖𝑛3456ABA𝑎𝑐𝑟𝑜𝑠𝑠346CBA + 𝛾-𝑤𝑖𝑡ℎ𝑖𝑛346D7C;1257 

+ 𝛾1𝑤𝑖𝑡ℎ𝑖𝑛346D7C;𝑎𝑐𝑟𝑜𝑠𝑠346CBA + 𝜖3456 ,	1258 

𝛽346& = 𝛾& + 𝜇3&& + 𝜇346&' + 𝜇36&*,	1259 

𝛽346' = 𝛾' + 𝜇346'& ,	1260 

𝛽36* = 𝛾* + 𝜇36*&,	1261 

𝜖3456 ∼ 𝒩(0, 𝜎7*),	1262 

𝜇3&& ∼ 𝒩 <0, 𝜎:!""
* = ,	1263 

B
𝜇346&'

𝜇346'&
C ∼ 𝒩D0, E

𝜎:"(
* 𝜌&𝜎:"(𝜎:("

𝜌&𝜎:"(𝜎:(" 𝜎:("
* HI ,	1264 

B
𝜇36&*

𝜇36*&
C ∼ 𝒩D0, E

𝜎:")
* 𝜌'𝜎:")𝜎:)"

𝜌'𝜎:")𝜎:)" 𝜎:)"
* HI,  1256 

where terms follow the same conventions as in the previous model. In particular, since different 1265 

models were used to evaluate learning over T1, T2, and T3 targets, random effects that were 1266 

used to account for variations caused by different target directions were removed. Random slopes 1267 

for the within-day term were computed for each combination of participant, day, and target 1268 

distance, while random slopes for the across-day term were computed for each combination of 1269 

participant and target distance. 1270 
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Analyses of participants’ performance on the T4 targets were conducted using a 1271 

generalized linear mixed-effects model (GLMM) with a Poisson link function. Specifically, the rate 1272 

of successful T4 trials over time was modelled as: 1273 

𝑙𝑜𝑔 B
successful_trials!"
task_duration!"

C = 𝛽3& + 𝛽3'𝑑𝑎𝑦34 + 𝜖34 ,	1274 

𝛽3& = 𝛾& + 𝜇3&&,	1275 

𝛽3' = 𝛾' + 𝜇3'&,	1276 

𝜖34 ∼ 𝒩(0, 𝜎7*),	1277 

B
𝜇3&&

𝜇3'&
C ∼ 𝒩D0, E

𝜎:""
* 𝜌&𝜎:""𝜎:("

𝜌&𝜎:""𝜎:(" 𝜎:("
* HI, 1278 

where terms follow the same convention as above, 𝑡𝑎𝑠𝑘_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛34indicates the duration in hour 1279 

of the center-out task performed by participant j at day t, and 𝑑𝑎𝑦34 indicates the tth experiment 1280 

day of participant j. 1281 

All models above parameters were fitted using the restricted maximum likelihood (REML) 1282 

approach. Confidence intervals used for hypothesis testing were computed using the profile 1283 

method. Model assumptions were tested using the White’s Lagrange Multiplier test, for testing 1284 

heteroskedasticity of the residuals, and the D’Agostino and Pearson’s test, for testing residuals 1285 

Normality. All models (general, T1, T2, T3, and T4 models) displayed homoscedastic residuals 1286 

(p=0.08, p=0.9, p=0.3, p=0.9, and p=0.07, respectively), but only the residuals for the GLMM 1287 

resulted normally distributed (p=0.65 for the T4 model, p<0.001 for the others). However, LMMs 1288 

have been shown to be highly robust to violations of distributional assumptions and the kurtosis 1289 

([1.2, 0.77, 0.5, 2.5]) and skewness ([0.23, -0.19, 0.15, 0.7]) of our models with non-normal 1290 

residuals’ fell largely within acceptable ranges, shown to have minimal impact on the validity of 1291 

LMMs estimates94. 1292 

 1293 

Kinematic analyses | Measured IMU Euler angles were preprocessed using an artifact removal 1294 

algorithm and a 6th order Butterworth low-pass filter at 6 Hz. Artefact removal was used to ignore 1295 

samples with prominence superior to 10°, which accounted for less than 0.1% of all samples. 1296 

Principal Component Analysis (PCA) was then used to align the rotational axis of the IMU sensor 1297 

to the axis of largest variation. Kinematic analyses during the center-out task (Figure 6A) used 1298 

the 1st principal component to compute the mean absolute velocity (MAV) for trial and inter-trial 1299 

periods. The median MAV was then computed for each day, each participant, and trial category 1300 

and used to evaluate target-specific movement strategies. Statistics of active targets were 1301 

compared with respect to those of rest targets; hypothesis testing was performed by bootstrapping 1302 

(n = 10000 iterations) the distribution of the paired differences for each recording and using 1303 

Bonferroni correction of the estimated confidence intervals for multiple comparisons. 1304 

 1305 

Speller | A common metric for assessing information throughput in self-paced BMIs is the 1306 

achieved bitrate, which combines the number of possible symbols to select (i.e. the number of 1307 

characters on a keyboard) with the net number of correct symbols selected per second36. This 1308 
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metric is typically considered an underestimate of the true information throughput of a device, as 1309 

it penalizes errors relatively harshly compared to other information throughput metrics36. It is 1310 

defined as: 1311 

𝐵 =
𝑙𝑜𝑔*(𝑁)𝑚𝑎𝑥(𝑆A − 𝑆5 , 0)

𝑡
, 1312 

where Sc is the number of correct symbols transmitted, Si the number of incorrect symbols 1313 

transmitted, and N the number of symbols. In our case, N = 27, due to the 26 letters and the 1314 

“space” character on the keyboard (excluding the delete key). Smoothed bitrates (Figure 8B) 1315 

were computed from 5-minute sliding windows taken every 30 seconds; peak bitrate was the 1316 

maximum smoothed bitrate value during a given session. Average bitrate was the achieved bitrate 1317 

B computed over the entire spelling session. Correct characters per minute were computed 1318 

similarly as the net number (correct symbols minus incorrect symbols) of correct characters 1319 

spelled. Changes in average bitrate over days of training (Figure 8D) were modelled with a linear 1320 

mixed-effects model where the number of days of training were centered within-subject to account 1321 

for differences in amount of training between subjects. This model fit a fixed-effect slope and 1322 

intercept for days of training and was fit using the restricted maximum likelihood (REML) 1323 

approach. Model assumptions were tested as described in the above learning analyses. 1324 

 1325 

Motor unit activity analysis 1326 

Pooled motor unit decomposition | A separate offline motor unit decomposition was run for the 1327 

EMG collected during the force-control task with the same parameters as the decompositions run 1328 

online. Then, for each day, the motor units identified across both the online and offline 1329 

decompositions were pooled together, and all of the EMG data for that day was then re-1330 

decomposed with these motor units, yielding a superset of motor unit action potential timings 1331 

relative to those detected online. Motor units exhibiting more than 30% of coincident spikes, 1332 

according to the rate-of-agreement between action potential timings, were considered duplicates, 1333 

and only one of the duplicate units was retained. No duplicates were found within selected motor 1334 

units in any session. All analysis that used firing rates (Figures 4-6, 8) uses these pooled motor 1335 

units. This methodology allowed for motor units to be identified for analysis purposes even when 1336 

they had not been identified during the online sessions. 1337 

 1338 

Integrated EMG and motor unit firing rates | The integrated EMG (iEMG, Figure 5B) for 1339 

channel i at time t was computed as the sliding window sum of rectified EMG: 1340 

𝑖𝐸𝑀𝐺5(𝑡) = q |EMG#(j)|
"

!E"FG

, 1341 

where N was fixed as the number of samples corresponding to a 200 millisecond window. The 1342 

data was then downsampled by a factor of 25 to approximately 81 Hz. Smoothed motor unit firing 1343 

rates were computed from the pooled motor unit firings and were computed in the same manner 1344 

as computed online for the center-out task. 1345 

 For analysis based on firing rates during the center-out task (Figures 5-6), any time bins 1346 

occurring during T5 or rest trials were excluded. For analysis during the speller task (Figure 8), 1347 

time bins used for letter selection were explicitly excluded as well. When necessary, both firing 1348 
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rate and iEMG were linearly interpolated in time in order to align with other streams of data (e.g. 1349 

aligning with load sensor data). 1350 

 1351 

Exploration Period Analysis | In order to identify groups of units that were often mutually active 1352 

during the exploration period, motor unit activity was decomposed into 3 separate components 1353 

via non-negative matrix factorization (NMF). NMF aims to find two low-rank matrices, W and H, 1354 

from a non-negative data matrix X such that 1355 

'
*
w|𝑋 −𝑊𝐻|w*

*  1356 

is minimized and such that W, H are also nonnegative. NMF was performed via a coordinate 1357 

descent solver with NNDSVD initialization. Since the relative scales of the projections (W) and its 1358 

components (H) are typically arbitrary, we resolved ambiguity by scaling each component to unit 1359 

L2-norm and scaling its corresponding transformation by the appropriate reciprocal factor. We 1360 

then computed the CIFT for each of the 3 components relative to one another, as described in 1361 

the following section. 1362 

 1363 

CIFT metric | For analysis in all tasks in this study, a simple time-based metric, the cumulative 1364 

independent firing time (CIFT), was devised (Figure 4). CIFT is defined as the fraction of total 1365 

time a motor unit was independently active relative to the total time the motor unit was active, and 1366 

thus takes values between zero and one. A motor unit was considered “active” if its smoothed 1367 

firing rate exceeded 5 Hz, and was considered “independently active” if both it was active and no 1368 

other motor units had firing rates simultaneously exceeding 5 Hz. This 5 Hz threshold corresponds 1369 

to the approximate physiological minimum motor unit firing rate95. Throughout this analysis, we 1370 

utilize the CIFT as a general measure of relative independence of motor units and use it across 1371 

various contexts (Figures 4, 6, 8). Note that our use of CIFT in the exploration period extends its 1372 

use from comparing motor units to comparing NMF components. 1373 

 1374 

Dimensionality Computation | The participation ratio (PR) was computed to quantify the 1375 

dimensionality of the iEMG and firing rate data96–98. The PR is a metric computed on the 1376 

covariance matrix of a feature and represents the approximate dimensionality of the manifold 1377 

spanned by that feature; a higher participation ratio means more principal components are 1378 

needed to explain a given proportion of the feature’s variance. Participation ratio is defined as:  1379 

PR =
(∑ λH(i)# )*

∑ (λH(i)*)#
, 1380 

where  λ𝐶(𝑖) is the i-th eigenvalue of the covariance matrix C of the corresponding feature (iEMG 1381 

or firing rates). Participation ratio was computed across the periods spanning the force-control 1382 

tasks, center-out tasks, and speller tasks (Figures 5, 8). In our data, the participation ratio 1383 

approximately corresponded to the number of principal components needed to explain 80-85% of 1384 

the total feature variance. 1385 

 The relationship between selected and unselected motor units during the force-control 1386 

and center-out tasks was characterized using linear regression (Figure 5G-I). Linear regression 1387 

was used to predict the unselected motor units’ activity from the activity of the selected ones. The 1388 

quality of this prediction was characterized by the coefficient of determination (R2). 1389 
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 1390 

Recruitment Thresholds | Recruitment thresholds for each motor unit were computed for both 1391 

elbow flexion and wrist supination from force-control task data (Figure 6). First, force data from 1392 

load sensors was smoothed with a median filter and normalized within each session to values 1393 

between zero and one. Then, for force-control task trials in which elbow flexion (forearm 1394 

supination) was the sole movement indicated, the recruitment threshold for a particular motor unit 1395 

for elbow flexion (forearm supination) was identified as the average across trials of the measured 1396 

load at the beginning of the first occurrence of 3 consecutive firings with inter-spike interval (ISI) 1397 

less than 200ms. 1398 

 1399 

Statistics 1400 

Statistical tests, their significance values, and the relevant number of samples are reported in the 1401 

appropriate figure legends and/or relevant method section. Error bars used in point-plots 1402 

represent 95% confidence intervals. No data were excluded from the analyses, unless specifically 1403 

reported. 1404 

  1405 
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Supplementary Material 1447 

 1448 

 1449 

 1450 
Supplementary Figure 1 | Dimensionality of center-out firing rates for 3 selected motor units increases over 1451 
time. A, Even on the first day, participation ratio within the 3 selected motor units increases significantly between 1452 
force-control and center out tasks (paired t-test, p=0.002). B, Participation ratio within the 3 selected units during the 1453 
center-out task increases over days of training (p=0.01 for fixed-effect slope, n=48). Thin lines and gray dots 1454 
represent different participants’ participation ratios for each session, while thick black line indicates regression line for 1455 
the fixed-effect change in PR over days. 1456 
 1457 

 1458 
Supplementary Video 1 | Center-out task demonstration. Video demonstrating one participant performing 7 trials 1459 
of the center-out task that spanned all possible target categories (T1-5, close/far, and rest targets). All videos and data 1460 
seen within this video are synced in time. Left: top-down video of the participant performing the task; the sensorized 1461 

orthosis on her right arm is visible, as well as the EMG grid on her biceps underneath it. Right: the user interface that 1462 

the participant saw when performing the center-out task. Motor unit action potential indicators (blue, red, yellow) are 1463 

visible at the top of the interface, in addition to the indicators for unselected units (“∞”) and unidentified threshold 1464 

crossings (“-1”). Each of the three selected units have a corresponding auditory pitch that is audible when an action 1465 

potential is detected. The middle displays the center-out task, where the tip of the black arrow corresponds to the 1466 

cursor’s position according to a population-coding scheme and where trial targets are highlighted in blue. Bottom: real-1467 

time EMG and motor unit data, not visible to the participant. A representation of the 56-channel bipolar derivations of 1468 
the surface EMG is presented in the bottom left, where hues represent the smoothed, total energy in a particular 1469 
channel in recently detected action potentials. The top row of the 2D grid represents the row of channels most proximal 1470 
on the biceps, while the left column represents the most lateral, most external (i.e. towards the biceps long head) 1471 
column of channels. Three bipolar EMG channels are selected for representation in the middle (faded gray, with rows 1472 
highlighted with the appropriate motor unit colors). Overlaid on the raw EMG voltages in this middle plot are the timings 1473 
of detected motor unit action potentials for the three selected units for the center-out task, with these units’ normalized 1474 
firing rates displayed in the bottom right. These normalized firing rates are summed up along their three vectorial axes 1475 
to yield the black arrow’s position in the center-out task. 1476 
 1477 

 1478 
Supplementary Video 2 | Speller task demonstration. Video demonstrating one participant performing the speller 1479 
task, correctly typing 9 characters in 1 minute. All videos and data seen within this video are synced in time. Left: same 1480 
as in Supplementary Video 1. Right: the user interface that the participant saw when performing the speller task. Motor 1481 
unit indicators are the same as in the center-out task, described in Supplementary Video 1. The OPTI-II keyboard is 1482 
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visible in the middle of the interface, with the target sentence and pending letters (gray or blinking letters) visible above 1483 
the keyboard. The black dot is the cursor whose velocity is controlled by the normalized firing rates of the 3 selected 1484 
motor units. Cursor clicks are performed similar to the center-out’s T5 target, through simultaneous co-activation of all 1485 
three motor units. Bottom: same as the bottom pane of Supplementary Video 1.  1486 
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 1487 

 
Study 

 
Subjects 

 
Recording 
modality 

 
Task 

 
Operation 
modality 

 
# 
DoF 

 
# 
classes 

 
# 
training 
sessions 

Metric details Accuracy Throughput / 
correct selection 
rate (CSR) 

Throughput 
multiplier 
relative to 
this study 

 

This 
study 

8 healthy Surface 
EMG 

Speller Self-
paced 

2 2 
(click) 

3 Average on 
last session 

PC: 92.2% BR: 0.43 bits/s  
ITR: 0.43 bits/s 
CSR: 11.1 
s/character 

1 

 

Sellers et. 
al, 201080 

1 ALS EEG Speller Fixed-pace 
(P300) 

N.A. 2 (click) 2.5 years 
of at-
home use 

Average ITR / 
median PC 
across 
recent/stable 
performances 
excluding 9-
second pause 
between 
characters 

PC: 83% 
 

ITR: 0.31 bits/s 1.39 

Townsend 
et. al, 
201099 

18 healthy EEG Speller Fixed-pace 
(P300) 

N.A. 2 (click) 2 Grand average 
for 
checkerboard 
keyboard 

PC: 91.52% BR: 0.39 bits/s 1.10 

Kaufmann 
and 
Kübler, 
2014100 

8 healthy EEG Speller Fixed-pace 
(P300) 

N.A. 2 (click) N.A. Average for 
best-
performing 
paradigm 

PC: 81.25% BR: ~1.33 bits/s 0.32 

Chen et 
al., 201576 

18 healthy EEG Speller Fixed-pace 
(SSVEP) 

N.A. 40 
(visual 
stimuli) 

N.A. Average during 
the free-
spelling copy-
typing task  

PC: 99.0% ITR: 4.50 bits/s 0.10 

Nakanishi 
et al., 
201877 

20 healthy EEG Speller Fixed-pace 
(SSVEP) 

N.A. 40 
(visual 
stimuli) 

N.A. Average during 
the free-
spelling copy-
typing task 

PC: 89.6% ITR: 3.31 bits/s 0.13 

Wolpaw et 
al., 200471 

2 healthy 
2 SCI 

EEG Center-out  
(8 targets; 
10 s trials; 
No hold) 

Self-paced 
(ERD) 

2 N.A. 22-68 Range of mean 
movement time 
/ hit rate over 
last 3 sessions 

HR: 70-92% BR*: 0.44-1.44 bits/s 
CSR: 1.9-3.9 s/trial 

0.30-0.98 

Allison et 
al., 201273 

10 healthy EEG Center-out  
(8 targets; 
15 s trials; 
No hold) 

Self-paced 
(ERD/SSV
EP) 

2 N.A. N.A. Average 
(extracted from 
Fig. 3) 

HR: 60% BR*: 0.037 bits/s 
CSR: 28 s/trial 

8.03 
 

Perdikis et 
al., 
2014101 

6 healthy 
10 with 
sensorimo
tor 
disabilities 

EEG and 
EMG 

Speller Self-paced 
(ERD/EMG
) 

N.A. 2 At most 9 
training 
1-2 
evaluatio
n 

Average within 
best 
performing 
condition 

PC: 100% BR*: 0.13 bits/s 
CSR: 35.71 
s/character 
 

3.26 

Bhagat et 
al., 
2016102 

4 stroke EEG Exoskeleto
n reaching 
task 

Self-paced 
(MRCP) 

N.A. 2 3 
calibratio
n 
2 online 
control 

Grand average 
over last 2 
days  

TPR: 
64.86% 
FPR: 
27.62% 

N.A. N.A. 

Cao et al., 
2017103 

3 healthy EEG Speller Self-paced 
(ERD) 

N.A. 3 3 Average on 
last session 

PC: 98.3% ITR: 1.15 bits/s 0.37 

Edelman 
et al., 
201972 

11 healthy EEG Center-out 
(4 targets; 
no hold; 6 
s trials) 

Self-paced 
(ERD) 

2 N.A. 8 (+ 1 
baseline 
and 1 

Average on 
evaluation 
session 
(extracted from 

PC: 50% N.A. N.A. 
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evaluatio
n) 

manuscript’s 
Fig. 4) 

Tonin et 
al., 202075 

13 healthy  EEG 1D robotic 
navigation 

Self-paced 
(ERD) 

1 N.A. 3 Grand average 
(dynamical 
systems 
control) 

PC: 86.1% N.A. N.A. 

2.5-class 
classifier 
(“BMI 
task”) 

N.A. 2.5 
(classifi
er 
outputs 
class 1, 
class 2, 
or 
neither) 

Grand average 
(traditional 
control) 

PC: 93.1% BR*: 0.28 bits/s 
CSR: 4.30 s/trial 

1.51 

 

Nasser et 
al., 
2014104 

14 healthy NIRS 2-class 
classifier 
(20 s 
trials) 

Self-paced N.A. 2 N.A. Average PC: 82.1% BR*: 0.032 bits/s 
CSR: 24.36 s/trial 

13.40 

Supplementary Table 1 | Comparison of non-invasive BMI performances. A non-exhaustive compilation of relevant 1488 
non-invasive BMIs, enumerating each study’s task and corresponding performance metrics. Studies were selected to 1489 
cover a range of non-invasive recording modalities and are intended to highlight top performances of a class and/or 1490 
particular pioneering studies in their domain. When a study included multiple tasks/groups, the most performant and 1491 
relevant task/group was selected. “# DoF” refers to the number of continuously controllable, task-relevant degrees of 1492 
freedom in the output of the BMI, if any. “# classes” refers to the number of discrete classes in a classifier used by the 1493 
BMI, if used. “Operation modality” can either be “self-paced” or “fixed-pace” dependent on whether the outputs from 1494 
the BMI are paced by the user (i.e. endogenously controlled) or by the system (i.e., controlled by exogenous 1495 
stimulation), respectively. Studies are ordered chronologically within recording and operation modalities. When reported 1496 
for center-out tasks, correct selection rate (CSR) refers to the number of successful trials achieved per second. * 1497 
denotes a bitrate not reported in the original study and instead computed for this table using the displayed correct 1498 
selection rate and accuracy. “Throughput multiplier” is the average bitrate reported in this study (0.43 bits/s) divided by 1499 
the reported (or computed) bitrate or information transfer rate, with values <= 1 indicating equal or higher throughputs 1500 
than this study. Glossary: ALS: amyotrophic lateral sclerosis; BR: achieved bitrate as used in this study and in 1501 
Nuyujukian et. al 2015; CSR: correct selection rate (when used for a study’s speller task, this metric refers to the correct 1502 
characters per second, as described in the Methods and thus incorporating errors and use of “delete” keys); ECoG: 1503 
electrocorticography; ERD: event-related desynchronization; HR: hit rate; ITR: information transfer rate, as described 1504 
in McFarland et. al, 2003105 (note that this is a distinct measure than “bitrate” as primarily used in this study and 1505 
described in the Methods; ITR does not penalize errors as heavily as bitrate and is thus a less conservative metric than 1506 
bitrate36); MRCP: movement-related cortical potentials; NIRS: near-infrared spectroscopy; PC: percent correct; SCI: 1507 
spinal cord injury; SSVEP: steady-state visually evoked potentials; TPR/FPR: true/false positive rate.  1508 
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 1509 

 
Study 

 
Subjects 

 
Recordin
g 
modality 

 
Task 

 
Operatio
n 
modality 

 
# 
DoF 

 
# 
classes 

 
# 
training 
session
s 

Metric 
details 

Accuracy Throughput / 
correct 
selection rate 
(CSR) 

Throughput 
multiplier 

relative to this 
study 

 

This study 8 healthy Surface 
EMG 

Speller Self-
paced 

2 2 (click) 3 Average on 
last session 

PC: 92.2% BR: 0.43 bits/s  
ITR: 0.43 bits/s 
CSR: 11.1 
s/character 

1 

 

Brunner et 
al., 2011106 

1 epileptic ECoG, 
subdural 

Speller Fixed-
pace 
(P300) 

N.A. 2 (click) N.A. Sustained 
ITR/accuracy 

86.4% ITR: 1.15 bits/s 0.37 

Wang et al., 
201367 

1 SCI ECoG, 
subdural 

3D center-
out (8 
targets; 
no hold) 

Self-
paced 

3 0 27 Last session PC: 80% BR*: 0.77 bits/s 
CSR: 2.94 s/trial 

0.56 

Benabid et 
al., 20192 

1 SCI ECoG, 
epidural 

3D center-
out (16 
targets; 
no hold) 

Self-
paced 

8 0 20 
months 

Average 
during the 3-
D two-
handed 
reaching 
tasks (last 5 
experiments 
of training) 

PC: 70.9% N.A. N.A. 

 

Collinger et 
al.,  20131 

1 SCI Intra- 
cortical 

7D 
(translatio
n + 
orientation 
+ grasp) 
reaching 
task 

Self-
paced 

7 0 34 Average over 
the last 2 
weeks of 
training 

PC: 91.6% N.A. N.A. 

Jarosiewicz 
et al., 201537 

2 ALS 
2 
brainstem 
stroke 

Intra- 
cortical 

Speller Self-
paced 

2 2 (click) 1-5 days 
(average 
prior 
experien
ce of 2 
years) 

Grand 
average 

N.A. BR: 0.59 bits/s 0.73 

Gilja et al., 
2015107 

2 ALS Intra- 
cortical 

Center-
out-and-
back (8 
targets, 
500ms 
hold time) 

Self-
paced 

2 0 4-9 days Grand 
average for 
center-out-
and-back 
task 

HR: 97.5% BR: 0.93 bits/s 0.46 

Pandarinath 
et al., 20177 

2 ALS 
1 SCI 

Intra- 
cortical 

Speller Self-
paced 

2 2 (click) 2-5 days 
(average 
prior 
experien
ce of 1 
year) 

Grand 
average  

N.A. BR: 2.4 bits/s 0.18 

Nuyujukian et 
al.,  201869 

2 ALS 
1 SCI 

Intra- 
cortical 

Speller 
(free 
typing in 
email/chat
) 

Self-
paced 

2 2 (click) 3 (2 
participa
nts had 
prior 
experien
ce) 

Grand 
average 

88.93% CSR: 4.64 
s/character 

N.A. 

Supplementary Table 2 | Comparison of invasive BMI performances to this study. A non-exhaustive compilation 1510 
of relevant invasive BMIs. Table description is the same as in Supplementary Table 1. 1511 
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