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Abstract 1 
Wide-scale SARS-CoV-2 genome sequencing is critical to tracking viral evolution during the 2 

ongoing pandemic. Variants first detected in the United Kingdom, South Africa, and Brazil have 3 

spread to multiple countries. We developed the software tool, Variant Database (VDB), for 4 

quickly examining the changing landscape of spike mutations. Using VDB, we detected an 5 

emerging lineage of SARS-CoV-2 in the New York region that shares mutations with previously 6 

reported variants. The most common sets of spike mutations in this lineage (now designated as 7 

B.1.526) are L5F, T95I, D253G, E484K or S477N, D614G, and A701V. This lineage was first 8 

sequenced in late November 2020 when it represented <1% of sequenced coronavirus genomes 9 

that were collected in New York City (NYC). By February 2021, genomes from this lineage 10 

accounted for ~32% of 3288 sequenced genomes from NYC specimens. Phylodynamic inference 11 

confirmed the rapid growth of the B.1.526 lineage in NYC, notably the sub-clade defined by the 12 

spike mutation E484K, which has outpaced the growth of other variants in NYC. Pseudovirus 13 

neutralization experiments demonstrated that B.1.526 spike mutations adversely affect the 14 

neutralization titer of convalescent and vaccinee plasma, indicating the public health 15 

importance of this lineage. 16 

  17 
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 3 

Introduction 18 
After the early months of the SARS-CoV-2 pandemic in 2020, the vast majority of sequenced 19 

genomes contained the spike mutation D614G (along with 3 separate nucleotide changes)1. 20 

Following a period of gradual change, the fourth quarter of 2020 witnessed the emergence of 21 

several variants containing multiple mutations, many within the spike gene2–5. Multiple lines of 22 

evidence support escape from antibody selective pressure as a driving force for the 23 

development of these variants6–9. 24 

 25 

Genomic surveillance of SARS-CoV-2 is now focused on monitoring the emergence of these 26 

variants and the functional impact that their mutations may have on the effectiveness of 27 

passive antibody therapies and the efficacy of vaccines to prevent mild or moderate COVID-19. 28 

While an increasing number of specimens are being sequenced, analysis of these genomes 29 

remains a challenge10. Here, we developed a simple and fast utility that permits rapid 30 

inspection of the mutational landscape revealed by genomic surveillance of SARS-CoV-2: 31 

Variant Database (vdb). With this tool, we uncovered several groups of recently sequenced 32 

genomes with mutations at critical antibody epitopes. Among this group is a new lineage 33 

emerging in NYC that has increased in frequency to now account for ~32% of sequenced 34 

genomes as of February 2021. We confirm the rapid spread of B.1.526 in NYC during early 2021 35 

through phylodynamic inference. Furthermore, we evaluated the impact of the B.1.526 spike 36 

mutations on the neutralization titer of convalescent and vaccinee plasma. 37 
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 4 

Results 38 
vdb 39 
Phylogenetic analysis is critical to understand the relationships of viral genomes. However, 40 

other perspectives can be useful for detecting patterns in large numbers of sequences. We 41 

developed vdb as a utility to query the sets of spike mutations observed during genomic 42 

surveillance. Using the vdb tool to analyze SARS-CoV-2 sequences in the Global Initiative on 43 

Sharing Avian Influenza Data (GISAID) dataset11,12, we detected several clusters of sequences 44 

distinct from variants B.1.1.7, B.1.351, B.1.1.248, and B.1.4292–5 with spike mutations at sites 45 

known to be associated with resistance to antibodies against SARS-CoV-28,13 (Table 1). The vdb 46 

program can find clusters of virus sharing identical sets of spike mutations, and then these 47 

patterns can be used to find potentially related sequences. 48 

Defining mutations of B.1.526 49 
One notable cluster of genome sequences was collected from the New York region and 50 

represents a distinct lineage, now designated as B.1.526 (Figure 1, Supplementary Figure 1). 51 

This variant is found within the 20.C clade and is distinguished by 3 defining spike mutations: 52 

L5F, T95I, and D253G. Within B.1.526, the largest sub-clade is defined by E484K and two distinct 53 

sub-clades are each defined by S477N; both of these mutations located within the receptor-54 

binding domain (RBD) of spike (Figure 2 and Supplementary Table 1). We note that the 55 

evolutionary history at spike position 701 varies depending on whether the tree is rooted using 56 

a molecular clock (Figure 1) versus its sister clade (characterized by an L452R mutation; 57 

Supplementary Figure 2), the latter of which posits a substitution A701V followed by a 58 

reversion V701A. Among the nucleotide mutations in lineage B.1.526, the most characteristic 59 

include A16500C (NSP13 Q88H), A22320G (spike D253G), and T9867C (NSP4_L438P). Another 60 
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 5 

notable feature of the B.1.526 lineage is the deletion of nucleotides 11288-11296 (NSP6 106-61 

108), which also occurs in variants B.1.1.7, B.1.351, P.1, and B.1.52514. 62 

 63 

Regarding four of the spike mutations prevalent in this lineage: (1) E484K is known to attenuate 64 

neutralization of multiple anti-SARS-CoV-2 antibodies, particularly those found in class 2 anti-65 

RBD neutralizing antibodies13,15, and is also present in variants B.1.3514 and P.1/B.1.1.2482, (2) 66 

D253G has been reported as an escape mutation from antibodies against the N-terminal 67 

domain16, (3) S477N has been identified in several earlier lineages17, is near the epitopes of 68 

multiple antibodies18, and has been implicated to increase viral infectivity through enhanced 69 

interactions with ACE219,20, and (4) A701V sits adjacent to the S2’ cleavage site of the 70 

neighboring protomer and is shared with variant B.1.3514. The overall pattern of mutations in 71 

lineage B.1.526 (Figure 2) suggests that it arose in part in response to selective pressure from 72 

antibodies. Based on the dates of collection of these viruses, it appears that the frequency of 73 

this lineage has increased rapidly in New York (Table 2). 74 

Trends in B.1.526 surveillance 75 
As part of public health surveillance conducted by the New York City Public Health Laboratory 76 

(NYC PHL) and the Pandemic Response Lab (PRL) in New York, approximately 4.5 thousand 77 

SARS-CoV-2 genomes have been sequenced by NYC PHL and PRL from December 1, 2020 to 78 

February 28th, 2021. Of these genomes, approximately 25% are from lineage B.1.526. We 79 

separately analyzed these genomes, because viral genomic surveillance by PHL and PRL 80 

provides a less biased picture of viral diversity in NYC than genomes uploaded to GISAID. The 81 

proportion of B.1.526 genomes in NYC has steadily increased since this variant was first 82 

detected in NYC surveillance data in late 2020, and its weekly average exceeded 10% by 14 83 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.02.14.431043doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.14.431043
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

January 2021. From early January to early March, B.1.526 has been increasing by about 0.7% 84 

per day (segmented linear regression) and was at 43% the week prior to 03 March 2021 (Figure 85 

3A). Around 54% (n=678) of the B.1.526 genomes contain the E484K mutation, which has also 86 

been rising in frequency since early 2021. The weekly average of B.1.526 genomes with E484K 87 

has been above 10% since 01 February 2021 and has been increasing around 0.4% per day 88 

(Figure 3B). 89 

 90 

This increase in B.1.526 temporally coincides with the peak and subsequent decline of the 91 

second epidemic wave in NYC (Figure 3C). If we separate the approximated number of B.1.526 92 

cases from the rest of second wave SARS-CoV-2, the non-B.1.526 virus has steadily declined 93 

since its peak in early January 2021. However, the increasing proportion of B.1.526 appears to 94 

have slowed the rate of decline in total COVID-19 case counts in NYC.  95 

 96 

Geographic distribution of B.1.526 in NYC 97 
The New York City Public Health Laboratory and the PRL in New York have sequenced 4538 98 

SARS-CoV-2 genomes from December 2020 thru February 2021 (Figure 4A). Geographic case 99 

distribution of specimens received at PHL and PRL for SARS-CoV-2 diagnostic nucleic acid 100 

amplification testing (NAAT) are representative of citywide testing efforts. Those SARS-CoV-2 101 

positive specimens with NAAT cross-threshold values below 32 were selected at random to be 102 

sequenced. On a month-to-month basis using data generated by NYC PHL and PRL, we have 103 

observed an increasing number of B.1.526 genomes identified throughout NYC. The geographic 104 

distribution of over 600 B.1.526 E484K cases is similar (Figure 4B). While the B.1.526 lineage is 105 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.02.14.431043doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.14.431043
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

not limited to NYC, almost 90% of genomes deposited to GISAID prior to March 2021, are from 106 

the New York region. 107 

 108 

Phylodynamic analysis 109 
Other SARS-CoV-2 variants of concern or interest (B.1.1.7, B.1.427, and B.1.429) have also been 110 

circulating in NYC contemporaneously with the rise of B.1.526 and have all risen in relative 111 

frequency during the second wave of the NYC pandemic (Figure 3D). To compare the relative 112 

growth rates of these variants during this time-period, we fitted an exponential population 113 

growth model21 implemented in BEAST1.1022 to the sequences that correspond to these 114 

lineages of interest. Specifically, we estimated the growth rate for the B.1.1.7, B.1.427, and 115 

B.1.429 variants and for two subsets of the B.1.526 clade sequences (with and without the 116 

E484K mutation). 117 

 118 

The B.1.526 E484K clade experienced more rapid exponential growth compared with other 119 

lineages: 23.2 (95% highest posterior density [HPD]: 19.6–27.1). B.1.526 with E484 and B.1.1.7 120 

experienced similar growth rates: 14.3 (95% HPD: 11.7–16.9) and 14.5 (95% HPD 11.6 – 17.8), 121 

respectively. The B.1.427 and B.1.429 lineages experienced lower growth rates that were 122 

significantly greater than zero: 3.8 (95% HPD: 0.7–7.0) and 5.2 (95% HPD: 2.1–8.3), respectively. 123 

We caution that these lineage growth rates do not distinguish between per-contact 124 

transmissibility or per-virion infectiousness and speak only to the relative number of people 125 

detected with these variants in NYC during late 2020 and early 2021. 126 

 127 
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 8 

As part of the phylodynamic analysis, we inferred the time of most recent common ancestor 128 

(TMRCA) for the B.1.526 E484K clade to be 08 November 2020 (95% HPD: 22 October – 24 129 

November). The TMRCA for the rest of the B.1.526 clade was estimated to be 15 September 130 

2020 (95% HPD: 17 August – 08 October). 131 

 132 

Neutralization activity of convalescent and vaccinee plasma against B.1.526 133 
The identification of several mutations associated with resistance to anti-SARS-CoV-2 134 

antibodies in B.1.526 sequences raises the question of the impact on SARS-CoV-2 immunity. We 135 

generated HIV-based pseudoviruses expressing SARS-CoV-2 spike protein containing either the 136 

most common B.1.526 mutation pattern (v.1: L5F, T95I, D253G, E484K, D614G, and A701V), the 137 

2nd most common pattern (v.2: L5F, T95I, D253G, S477N, D614G, and Q957R), or only D614G. 138 

Pseudovirus neutralization titers were determined for human plasma samples from vaccinees 139 

[Moderna (mRNA-1273) or Pfizer-BioNTech(BNT162b2)]8 or convalescent plasma [at either 140 

1.315 or 6.2 months13 post-infection]. The E484K-containing B.1.526 pseudovirus had a 141 

statistically significant reduced neutralization titer compared to the D614G control: for vaccinee 142 

plasma, 4.5-fold reduced (p = 0.00005); for 1.3-month convalescent plasma, 6.0-fold reduced (p 143 

= 0.03); and for 6.2-month convalescent plasma, 4.8-fold reduced (p = 0.02) (Figure 5a and 144 

Supplementary Table 2). The smaller reduction of the titers in the 6.2-month convalescent 145 

plasma samples compared to the 1.3-month samples is consistent with the greater resistance of 146 

more matured anti-SARS-CoV-2 antibodies to viral escape mutations23. The S477N/Q957R-147 

containing B.1.526 pseudovirus demonstrated a smaller effect on plasma neutralization (Figure 148 

5b). 149 

 150 
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 9 

Discussion 151 
Genomic surveillance is a critical tool to monitor the progression of the COVID-19 pandemic 152 

and modelling suggests that sequencing at least 5% of specimens that test positive for SARS-153 

Cov-2 in a geographic region is necessary to reliably detect the emergence of novel variants at a 154 

lower prevalence limit of between 0.1% to 1%24. Through the combination of increased 155 

sequencing efforts and the use of the software utility described here, we were able to identify 156 

the B.1.526 lineage and to begin to characterize its phylogenetic and phylodynamic patterns in 157 

NYC in early 2021. Based on sequences in GISAID as of March 2021, the majority of cases with 158 

sequence data are in the NYC region, but it is expected that the prevalence B.1.526 variants will 159 

continue to increase beyond the NYC region. The B.1.526 variant has also been described in 160 

other recent studies25,26. 161 

 162 

Pseudovirus containing spike gene mutations associated with B.1.526 was significantly more 163 

resistant to neutralization by either convalescent or vaccinee plasma. The presence of E484K 164 

mutation likely plays a key role in facilitating increased viral transmission and reducing antibody 165 

neutralizing titers, as previously shown in other studies7,27. Continued monitoring for emerging 166 

variants with mutations such as E484K is important to maximize the impact of public health 167 

measures to mitigate the effects of the SARS-CoV-2 pandemic. For example, high frequencies of 168 

SARS-CoV-2 variants has potential impacts on selection of appropriate antibody therapeutics 169 

and vaccination strategies. 170 
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 10 

Methods 171 
Variant Database Program 172 
We developed a software tool named VDB (Variant Database). This tool consists of two Unix 173 

command line utilities: (1) vdb, a program for examining spike mutation patterns in a collection 174 

of sequenced viral genomes, and (2) vdbCreate, a program for generating a list of viral spike 175 

mutations from a multiple sequence alignment for use by vdb. The design goal for the query 176 

program vdb is to provide a fast, lightweight, and natural means to examine the landscape of 177 

SARS-CoV-2 spike mutations. These programs are written in Swift and are available for MacOS 178 

and Linux from the authors or from the Github repository: https://github.com/variant-179 

database/vdb. 180 

The vdb program implements a mutation pattern query language (see Supplemental Method) 181 

as a command shell. The first-class objects in this environment are a collection of viruses (a 182 

“cluster”) and a group of spike mutations (a “pattern”). These objects can be assigned to 183 

variables and are the return types of various commands. Generally, clusters can be obtained 184 

from searches for patterns, and patterns can be found by examining a given cluster. Clusters 185 

can be filtered by geographical location, collection date, mutation count, or the presence or 186 

absence of a mutation pattern. The geographic or temporal distribution of clusters can be 187 

listed. 188 

Results presented here are based on a multiple sequence alignment from GISAID11,12 189 

downloaded on February 10, 2021. Additional sequences downloaded from GISAID on February 190 

22, 2021, were aligned with MAFFT v7.46428. 191 
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 11 

Initial Phylogenetic Analysis 192 
Multiple sequence alignments were performed with MAFFT v7.46428. The phylogenetic tree 193 

was calculated by IQ-TREE29, and the tree diagram was generated using iTOL (Interactive Tree of 194 

Life)30. The Pango lineage nomenclature system31 provides systematic names for SARS-CoV-2 195 

lineages. The Pango lineage designation for B.1.526 was supported by the phylogenetic tree 196 

shown in Supplementary Figure 1. 197 

Library preparation and sequencing 198 
RNA was extracted from positive specimens collected at NYC PHL using the EZ1 (Qiagen, CA), 199 

NUCLISENS® easyMAG® (bioMérieux Inc., Netherlands), or Kingfisher™ Flex Purification System 200 

(Thermo Fisher Scientific, MA). RNA extracts were subjected to annealing reaction with random 201 

hexamers and dNTPs (New England Biolabs Inc., NEB, MA), and reverse transcribed with 202 

SuperScript IV Reverse Transcriptase at 42ºC for 50 min. The resulting cDNA was amplified 203 

using two separate multiplex PCRs with ARTIC V3 primer pools (Integrated DNA Technologies, 204 

IA) per sample in the presence of Q5 2X Hot Start Master Mix (NEB) at 98ºC for 30 secs, 205 

followed by 35 cycles of 98ºC for 15 secs and 65ºC for 5 min32,33. The resulting PCR products per 206 

sample were combined and purified using Agencourt Ampure XP magnetic beads (Beckman 207 

Coulter, IN), at a ratio of 1:1 sample to bead ratio and quantified using a Qubit 3.0 fluorometer 208 

(Thermo Fisher Scientific, MA). The PCR products were normalized to 90 ng as input for the 209 

NEBNext Ultra II Library Preparation Kit according to standard protocol (NEB): Briefly, the ARTIC 210 

PCR products were subjected to simultaneous end-repair, 5’-phosphorylation, and dA-tailing 211 

reaction at 20ºC for 30 min, followed by heat inactivation at 65ºC for 30 min. NEBNext Adaptor 212 

was then ligated at 25º for 30 min, and then cleaved by USER Enzyme at 37ºC for 15 min. This 213 

product was subjected to bead cleanup at a ratio of 0.6x sample to bed ratio. The eluted 214 
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 12 

product was amplified for 6 cycles using NEBNext Ultra II Q5 Master Mix in the presence of 215 

NEBNext Multiplex Oligos for Illumina (NEB). The PCR product was purified with Ampure XP 216 

beads at a 0.6x sample to bead ratio. The product was a barcoded library containing Illumina P5 217 

and P7 adapters for sequencing on Illumina instruments. The individual libraries were 218 

quantified, normalized and pooled at equimolar concentration and loaded onto the Illumina 219 

MiSeq sequencing instrument using V3 600-cycle reagent kits and a V3 flow cell for 250-cycle 220 

paired end sequencing (Illumina, CA). 221 

Genome Assembly 222 
All raw paired end sequence reads are trimmed using Trim Galore version 0.6.4_dev34 removing 223 

NEB adapters and quality score below 20 from ends of the reads. The trimmed reads were 224 

assembled using the Burrows-Wheeler Aligner MEM algorithm (BWA-MEM) version 0.7.1235 225 

with SARS-CoV-2 Wuhan-Hu-1 (GenBank accession number MN908947.3) as the reference 226 

sequence. Intrahost variant analysis of replicates (iVar)36 tool was used to remove primer 227 

sequences from the amplicon-based sequencing data. Finally, the mutation calls and consensus 228 

genome were built using a combination of samtools mpileup37 and iVar consensus, with a 229 

minimum quality score of 20, frequency threshold of 0.6, and minimum depth of 15 to optimize 230 

high quality variant calls. A sequence mapping quality control tool developed in-house was used 231 

to assess depth of coverage across all sequences, percent of ambiguous bases in the consensus 232 

genome and percent sequence mapped to the reference genome. Consensus genome with 233 

more than 3% ambiguous bases or less than 95% reference mapped were excluded from any 234 

further analyses. 235 
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 13 

Library preparation and sequencing (PRL) 236 

Positive RNA specimens between cycle threshold of 15-30 were selected from all samples 237 

tested at Pandemic Response Labs, NYC and cDNA for each specimen was generated using 238 

LunaScript RT SuperMix (NEB, MA) according to manufacturer protocol. To target SARS-CoV-2 239 

specifically, cDNA for each specimen was amplified in two separate pools, 28- and 30-plex 240 

respectively, to generate 1200bp of overlapping amplicons38 using Q5 2x Hot-Start Master Mix 241 

(NEB, MA). The resulting pools are combined in equal volume and enriched for full length 1200 242 

bp product using a SPRI-based magnetic bead cleanup. Enriched amplicons are tagmented 243 

(Illumina, CA) and barcoded (IDT, IA) and paired-end sequenced on an Illumina MiSeq or 244 

NextSeq 550. 245 

 246 

Genome Assembly (PRL) 247 

For each specimen, sequencing adapters are first trimmed using Trim Galore v0.6.634, then 248 

aligned to the SARS-CoV-2 Wuhan-Hu-1 reference genome (NCBI Nucleotide NC_045512.2) 249 

using BWA MEM 0.7.17-r118835. Reads that are unmapped or those that have secondary 250 

alignments are discarded from the alignment. Consensus and mutations were called using 251 

samtools37 and Intrahost variant analysis of replicates (iVar)36 with a minimum quality score of 252 

20, frequency threshold of 0.6 and a minimum read depth of 10x coverage. A consensus 253 

genome with ≥ 90% breath-of-coverage with ≤ 3000 ambiguous bases is considered a successful 254 

reconstruction (as per APHL recommendation). 255 

 256 
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Genome alignment 257 
Complete genome sequences produced by the NYC PHL and the PRL with reported collection 258 

dates on or before 04 March 2021 were analyzed. We restricted our analysis to genomes 259 

produced by public health surveillance to NYC to reduce bias due to geography or preferential 260 

sequencing of viral variants by academic institutions. Genomes were aligned to the Wuhan-Hu-261 

1 reference genome (GenBank Accession MN908947) using mafft v7.475 (mafft --6merpair --262 

keeplength --addfragments)28. Pango lineage designations31 for variants were assigned using 263 

Pangolin v2.3.239. 264 

 265 

Segmented regression analysis 266 
To estimate the timing and approximate linear slope of increase in B.1.526 and the E484K clade 267 

prevalence, we employed a segmented regression analysis (segmented package in R).  268 

 269 

Maximum likelihood phylogenetic inference 270 
Maximum likelihood trees were inferred using IQTree2 for B.1.1.7, B.1.427, B.1.429, and 271 

B.1.526 genomes using a GTR+F+G4 substitution model40. Minimum branch length of 1e-9 was 272 

enforced and an expanded NNI search (--allnni) was employed to improve topology search. 273 

Preliminary molecular clock analyses were performed in TreeTime v0.8.1 using a fixed 274 

substitution rate of 8x10-4 substitutions/site/year and a skyline coalescent model41. This 275 

analysis identified 34 genomes whose root-to-tip genetic distance were flagged as problematic 276 

and excluded from subsequent phylodynamic analyses. TreeTime was also used to root and 277 

perform ancestral state reconstruction for a tree inferred from the 258 B.1.526 genomes 278 

sampled by the NYC PHL used to display the history of spike mutations in B.1.526 (Figure 1).  279 
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 280 

Bayesian phylodynamic inference 281 
We performed population growth rate inference in coalescence-based framework using an 282 

exponential growth model in BEAST 1.10.422. We used a strict molecular clock model with the 283 

fixed substitution rate of 8x10-4 substitutions/site/year. We applied a GTR+F+G4 substitution 284 

model and specified the following priors for the population growth model: OneOnX distribution 285 

prior for the population size parameter and Laplace distribution prior (mean = 0.0, scale = 1.0) 286 

for the growth rate prior. Markov chain Monte Carlo analyses were run for 100-300 million 287 

generations; the first 10% of samples were discarded as burn-in. Separate inference was 288 

performed for B.1.1.7 (n=354), B.1.427 (n=35), B.1.429 (n=69), B.1.526 E484 (n=569), and 289 

B.1.526 E484K (n=678). For the B.1.526 phylodynamic inference, we did not include two 290 

sequences most closely related to B.1.526 (hCoV-19/USA/NY-NYCPHL-001701/2020 and hCoV-291 

19/USA/NY-NYCPHL-002542/2021). 292 

 293 

Geocoding addresses 294 
To identify areas with the highest density of B.1.526 sequenced genomes in NYC from 295 

December 2020 to March 2021, patient addresses were geocoded to be visualized on a map42. 296 

Geocoding was performed using the NYC DOHMH’s Geoportal application. Once geocoded, a 297 

map representing the point locations of individuals with sequenced B.1.526 genomes was 298 

created in ArcMap (v. 10.6.1) and exported as a point feature class.  299 

Point density method 300 
Point density maps of individuals with B.1.526 sequenced genomes were created by using the 301 

point density tool in ArcMap. Point density calculates the density-per-unit area from point 302 
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features (individuals with a SARS-CoV-2 B.1.526 sequenced genome) that fall within a defined 303 

neighborhood by totaling the number of points that fall within the neighborhood divided by the 304 

neighborhood area. Density calculations result in the observed gradient patterns. The point 305 

density map parameters were 4000 ft radius from the center of 250 square foot cells. The 306 

symbology class for point density classification was set at equal intervals of 5. 307 

 308 
Human plasma samples 309 
Human plasma samples were among those collected in previously reported studies8,13,15. The 310 

study visits and blood draws were performed in compliance with all relevant ethical regulations 311 

and the protocol for human participants was approved by the Institutional Review Board (IRB) 312 

of the Rockefeller University (protocol #DRO-1006). 313 

 314 

Pseudovirus neutralization by human plasma samples 315 
Human plasma samples were assayed for neutralization activity against lentiviruses 316 

pseudotyped with SARS-CoV-2 spike containing a 21-amino acid cytoplasmic tail deletion and 317 

either D614G or mutations corresponding to lineage B.1.526 (L5F, T95I, D253G, E484K, D614G, 318 

and A701V). Pseudotyped lentiviruses were generated and neutralizations assays were 319 

conducted as previously described43,44. Briefly, lentiviral particles were produced by co-320 

transfecting the gene encoding SARS-CoV-2 spike protein (D614G or B.1.526) and Env-deficient 321 

HIV backbone expressing Luciferase-IRES-ZsGreen. Plasma samples were heat inactivated at 322 

56ºC for 1 hour, then 3-fold serial diluted and incubated with SARS-CoV-2 pseudotyped virus for 323 

1 hour at 37ºC. The virus/plasma mixture was added to 293TACE2 target cells, which were 324 

seeded the previous day on poly-L-lysine coated plates. After incubating for 48 hours at 37ºC, 325 
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target cells were lysed with Britelite Plus (Perkin Elmer) and luciferase activity was measured as 326 

relative luminesce units (RLUs) and normalized to values derived from cells infected with 327 

pseudotyped virus in the absence of plasma. Data were fit to 2-parameter non-linear regression 328 

in Antibody database45. 329 

 330 

Data availability 331 
The data analyzed as part of this project were obtained from the GISAID database and through 332 

a Data Use Agreement between NYC DOHMH and the University of California San Diego. 333 

Sequences analyzed by using the vdb tool were downloaded from GISAID. No personally 334 

identifying information were included as part of these analyses. SARS-CoV-2 genomes included 335 

in these analyses have been deposited in GISAID. See Supplementary Data 1 for a list of 336 

genomes, including which genomes were excluded from the phylogenetic analysis. 337 

 Data for Figure 5 are provided in Supplementary Table 2.  338 

 339 

Code availability 340 
The source code for the vdb program is available at the Github repository: 341 

https://github.com/variant-database/vdb. 342 
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Tables 368 
 369 

Table 1 370 
Mutation patterns of viruses with mutations at select Spike positions, excluding viruses related 371 

to variants B.1.1.7, B.1.351, B.1.1.248, and B.1.429. Mutations included in this analysis were 372 

E484K, N501Y, K417T, K417N, L452R, and A701V. In this table viruses are only included if their 373 

spike mutation pattern exactly matches the given pattern. Note about P681H/P681R: variant 374 

B.1.1.7 has P681H. Note about W152L: variant B.1.429 has W152C 375 

 376 

 377 

Pattern      Number of genomes Top Locations  First collection date 378 
L5F T95I D253G E484K D614G A701V   243  US(240; NY 235)  12/16/2020 379 
E484K D614G V1176F     235  Brazil(132), US(40)  4/15/2020 380 
W152L E484K D614G G769V    49  US(32)   11/1/2020 381 
E484K D614G P681H     37  US(37; MD 27)  11/18/2020 382 
R102I F157L V367F E484K Q613H P681R   36  England(35)  12/27/2020 383 
Q52R A67V H69-V70- Y144- E484K D614G Q677H F888L 36  England(22)  12/15/2020 384 

  385 
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Table 2 386 
Counts of virus genomes in lineage B.1.526 by month in New York State. The total number of 387 

sequenced genomes examined from GISAID from New York during these time periods is also 388 

listed. *Latest viral collection date was March 4, 2021. Note that geographic sampling may have 389 

varied over time as genome sequencing increased.  390 

 391 
 392 
Viruses containing spike mutations T95I and D253G (earliest collection date Nov. 23, 2020) 393 
 394 
Month            count  total sequences fraction 395 
Nov. 2020  2   524  0.4% 396 
Dec. 2020  46   2209   2.1% 397 
Jan. 2021  201   3148  6.4% 398 
Feb. 2021  1207   3868  31.2% 399 
March 2021*  124   274  45.3% 400 
 401 
 402 
 403 
Viruses containing spike mutations L5F, T95I, D253G, E484K, D614G, and A701V (earliest 404 
collection date Dec. 16, 2020) 405 
 406 
Month             count  total sequences fraction 407 
Nov. 2020  0 408 
Dec. 2020  25   2209  1.1% 409 
Jan. 2021  109   3148  3.5% 410 
Feb. 2021  628   3868  16.2% 411 
March 2021*  61   274  22.3% 412 
 413 
  414 
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Figure 1. 415 
Phylogenetic tree of lineage B.1.526 indicating spike mutations. Maximum likelihood phylogeny 416 

of SARS-CoV-2 variant B.1.526 sampled by NYC PHL (n=258). Amino acid substitutions in the 417 

spike protein occurring on internal branches are labeled, including the three spike mutations 418 

characteristic of B.1.526. The B.1.526 clade defined by the E484K mutation is highlighted in red. 419 

Inset highlights non-spike amino acid substitutions and deletions differentiating the B.1.526 420 

clade from the Hu-1 reference genome. For display purposes, only NYC PHL genomes are 421 

shown. 422 

 423 

 424 

  425 

1 mutation

E484K

A701V

S477N
Q957R

S477N

L5F
T95I

D253G

B.1.526 amino acid mutations
 N: P199L M234I
 NS3: P42L Q57H

 NS8: T11I
 NSP2: T85I

 NSP4: L438P
 NSP6: 6106-108
 NSP12: P323L
NSP13: Q88H

S: D614G
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Figure 2.  426 
Structural locations of the spike mutations of lineage B.1.526. 427 

 428 

a, Side and top views of the SARS-CoV-2 spike trimer (PDB 7JJI) with mutations of lineage 429 

B.1.526 shown as spheres. b-g, Models of representative neutralizing antibodies (cartoon, 430 

VH-VL domain only) bound to RBD (b-f, gray surface) or NTD (g, wheat surface). Sites for 431 

B.1.526 lineage mutations are shown as red spheres. The S477N site is also shown for the 432 

branch containing this mutation instead of the E484K mutation (see Figure 1); b, Class 1 (PDB 433 
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7K8M); c, Class 2 (PDB 7K8S); d, Class 3 (PDB 7K8Z); e, Class 4 (PDB 6W41); f, Class 5 8 ; g, NTD-434 

specific antibody 4A8 (PDB 7C2L).  435 

  436 
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Figure 3.  437 

 438 

Rise of SARS-CoV-2 variants in New York City (NYC) in late-2020 and early 2021. (A) Relative 439 

frequency of B.1.526. Segmented linear regression is shown as a solid black line. (B) Relative 440 

frequency of B.1.526 with E484K mutation. Segmented linear regression is shown as a dashed 441 

gray line. (C) Rolling average number of total daily COVID-19 cases in NYC through time. Color 442 

indicates the estimated proportions of B.1.526 (blue) and B.1.526 E484K (red) extrapolated 443 

from a 7-day rolling average with an average of n=236 genomes sampled per week during this 444 

time period. (D) Muller plot depicting sampling, with pseudocounts, of SARS-CoV-2 variants 445 

scaled to the rolling average of total daily COVID-19 case counts. (E) Inferred exponential 446 
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growth rates for SARS-CoV-2 variants in NYC; the horizontal line indicates the median growth 447 

rate estimate, the box outlines the interquartile range. (F) Inferred time of most recent 448 

common ancestor (TMRCA) estimates for B.1.526 (E484) and B.1.526 (E484K). 449 

  450 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.02.14.431043doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.14.431043
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

Figure 4. 451 
A 452 

 453 

B 454 

 455 

 456 

(A) Spaciotemporal increase of B.1.526 lineage in New York City (NYC). Point density of B.1.526 457 

variants geo-located by case address overlayed on a map of NYC delineated by United Hospital 458 

Fund areas. Data for each month is based on specimen collection date. The NYC PHL and the 459 

PRL in New York have sequenced 4538 SARS-CoV-2 genomes from December 2020 thru 460 
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February 2021. Data represents 11 B.1.526 variants out of 515 sequenced genomes in 461 

December 2020, 80 B.1.526 variants out of 735 sequenced genomes in January and 1063 462 

B.1.526 variants identified out of a total of 3288 sequenced genomes in February 2021. (B) 463 

Distribution of B.1.526 E484K cases in NYC. Point density map of 608 B.1.526 E484K variant 464 

cases in NYC. Data is based on specimen collection period from December 1, 2020 through 465 

February 28th, 2021. 466 

  467 
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Figure 5.  468 
Plasma neutralizing activity against pseudoviruses with B.1.526 lineage spike mutations. SARS-469 

CoV-2 pseudovirus neutralization assays were used to determine neutralization titer (NT50) for 470 

COVID-19 vaccinee (n=10) and convalescent plasma at 1.3 months (n=10) and 6.2 months (n=9) 471 

after infection. (A) Pseudovirus with spike mutations L5F, T95I, D253G, E484K, D614G 472 

(B.1.526 v.1), and A701V, (B) Pseudovirus with spike mutations L5F, T95I, D253G, S477N, 473 

D614G, and Q957R (B.1.526 v.2). Statistical significance was determined using paired two-tailed 474 

t-tests. Fold-differences of means are shown. 475 

A 476 

 477 
B 478 

  479 
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Supplementary Material 601 
 602 
Supplementary Methods. 603 
Commands for the program vdb, implementing a mutation pattern query language: 604 
 605 
Notation 606 
    cluster = group of viruses             < > = user input             n = an integer 607 
    pattern = group of mutations            [ ] = optional  ( ) = explanation of command 608 
    "world"  = all viruses in database        -> result 609 
 610 
To define a variable for a cluster or pattern:  <name> = cluster or pattern 611 
Set operations +, -, and * (intersection) can be applied to clusters or patterns 612 
If no cluster is entered, all viruses will be used ("world") 613 
 614 
 Filter commands 615 
<cluster> from <country or state>  -> cluster 616 
<cluster> containing [<n>] <pattern>  -> cluster   alias with   (matches for >=n mutations) 617 
<cluster> not containing <pattern>  -> cluster   alias without  (considers whole pattern) 618 
<cluster> before <date>   -> cluster 619 
<cluster> after <date>    -> cluster 620 
<cluster> > or < <n>    -> cluster           (filter by number of mutations) 621 
 622 
Commands to find mutation patterns 623 
consensus [for] <cluster or country or state> -> pattern 624 
patterns [in] [<n>] <cluster>    -> pattern (lists n patterns) 625 
 626 
Listing commands 627 
list [<n>] <cluster> 628 
[list] countries [for] <cluster> 629 
[list] states [for] <cluster> 630 
[list] frequencies [for] <cluster>          alias freq      (frequency of individual mutations) 631 
[list] monthly [for] <cluster> [<cluster2>]          (number of viruses per month or week) 632 
[list] weekly [for] <cluster> [<cluster2>]                  (as a fraction of number of viruses in cluster2) 633 
[list] patterns                 (list built-in and user-defined patterns) 634 
[list] clusters                     (list built-in and user-defined clusters) 635 
 636 
Other commands 637 
sort <cluster>    (by date) 638 
help 639 
history 640 
quit 641 
  642 
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Supplementary Figure 1.  643 
Phylogenetic tree of lineage B.1.526 indicating spike mutations. The inset lists non-spike 644 

mutations common in this lineage. 645 
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USA NY-NYCPHL-002466 2021 EPI ISL 883340 2021-01-14 L5F T95I D253G V483F E484K D614G A701V

USA NY-NYCPHL-002190 2021 EPI ISL 857060 2021-01-03 L5F T95I D253G S477N D614G Q957R

USA NY-Wadsworth-21006727-01 2020 EPI ISL 861175 2020-12-28 L5F T95I D253G D614G A701V

USA NY-Wadsworth-21005007-01 2020 EPI ISL 861300 2020-12-30 L5F T95I D253G E484K D614G A701V

England LOND-12F79EE 2021 EPI ISL 920158 2021-01-21 L5F T95I D253G D614G A701V

USA NY-Wadsworth-21011134-01 2021 EPI ISL 896233 2021-01-18 L5F T95I D253G E484K D614G A701V

USA NY-Wadsworth-21006379-01 2021 EPI ISL 861189 2021-01-01 L5F T95I D253G E484K D614G A701V
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  NSP6     del106-108
  NSP12   P323L
  NSP13   Q88H
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Supplementary Figure 2.  647 
Maximum likelihood phylogenetic tree of the B.1.526 lineage in relation to a sister clade 648 

defined by an L452R spike mutation and the 20C ancestral virus (both shown in gray). Tree was 649 

rooted using the clade 20C ancestral viruses. Amino acid substitutions in the spike protein 650 

occurring on internal branches are labeled leading to and within B.1.526 are labeled. The 651 

B.1.526 lineage is colored blue, except for the clade defined by the E484K mutation, which is 652 

highlighted in red. The most common pattern of spike mutations in the sister clade is D80G, 653 

DY144, F157S, L452R, D614G, T859N, and D950H. 654 

 655 
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Supplementary Table 1.  658 
List of 124 viral genomes (with their accession number, location, collection date, and spike 659 

mutations) in lineage B.1.526. Mutations E484K, S477N, Q957R are highlighted in red, blue, and 660 

cyan, respectively. 661 

 662 
EPI_ISL_683762, USA/NY-NYCPHL-001443/2020-11-23 : L5F T95I D253G D614G A701V  663 
EPI_ISL_823886, USA/NY-NYCPHL-001663/2020-12-08 : L5F T95I D253G S477N D614G Q957R  664 
EPI_ISL_812733, USA/NY-NYCPHL-001804/2020-12-15 : L5F T95I D253G D614G A701V  665 
EPI_ISL_765495, USA/NY-Wadsworth-290403-01/2020-12-16 : L5F T95I D253G E484K D614G A701V  666 
EPI_ISL_765494, USA/NY-Wadsworth-290357-01/2020-12-18 : L5F T95I D253G E484K D614G A701V  667 
EPI_ISL_765493, USA/NY-Wadsworth-290339-01/2020-12-19 : L5F T95I D253G D614G A701V  668 
EPI_ISL_767598, USA/NY-Wadsworth-291999-01/2020-12-20 : L5F T95I D253G D614G A701V  669 
EPI_ISL_767581, USA/NY-Wadsworth-292055-01/2020-12-21 : L5F T95I D253G D614G A701V  670 
EPI_ISL_767595, USA/NY-Wadsworth-291994-01/2020-12-21 : L5F T95I D253G S477N D614G Q957R  671 
EPI_ISL_832270, USA/NY-NYCPHL-001924/2020-12-23 : L5F T95I D253G E484K D614G A701V  672 
EPI_ISL_832271, USA/NY-NYCPHL-001940/2020-12-24 : L5F T95I D253G E484K D614G A701V  673 
EPI_ISL_861278, USA/NY-Wadsworth-21004976-01/2020-12-24 : L5F T95I D253G E484K D614G A701V  674 
EPI_ISL_861280, USA/NY-Wadsworth-21004979-01/2020-12-24 : L5F T95I D253G S477N D614G A701V  675 
EPI_ISL_861283, USA/NY-Wadsworth-21004982-01/2020-12-24 : L5F T95I D253G S477N D614G A701V  676 
EPI_ISL_861258, USA/NY-Wadsworth-21004944-01/2020-12-25 : L5F T95I D253G E484K D614G A701V  677 
EPI_ISL_861285, USA/NY-Wadsworth-21004984-01/2020-12-25 : L5F T95I D253G E484K D614G A701V  678 
EPI_ISL_861244, USA/NY-Wadsworth-21004930-01/2020-12-25 : L5F T95I D253G E484K D614G A701V  679 
EPI_ISL_802788, USA/NY-Wadsworth-21001942-01/2020-12-27 : L5F T95I D253G A475V S477N D614G Q957R  680 
EPI_ISL_794226, USA/NY-Wadsworth-21000327-01/2020-12-27 : L5F T95I D253G S477N D614G Q957R D1260N  681 
EPI_ISL_936036, USA/NY-Wadsworth-21007567-01/2020-12-27 : L5F T95I D253G E484K D614G A701V  682 
EPI_ISL_854459, USA/NY-Wadsworth-21005068-01/2020-12-27 : L5F T95I D253G E484K D614G A701V  683 
EPI_ISL_887843, USA/NJ-CDC-LC00000610/2020-12-27 : L5F T95I D253G F306L D614G  684 
EPI_ISL_861315, USA/NY-Wadsworth-21005029-01/2020-12-28 : L5F T95I D253G E484K D614G A701V  685 
EPI_ISL_888376, USA/IN-CDC-LC00001468/2020-12-28 : L5F T95I D253G T299I E484K D614G A701V  686 
EPI_ISL_830720, USA/NY-Wadsworth-21004807-01/2020-12-28 : L5F T95I D253G D614G A701V  687 
EPI_ISL_861308, USA/NY-Wadsworth-21005019-01/2020-12-28 : L5F T95I D253G E484K D614G A701V  688 
EPI_ISL_861175, USA/NY-Wadsworth-21006727-01/2020-12-28 : L5F T95I D253G D614G A701V  689 
EPI_ISL_936038, USA/NY-Wadsworth-21007571-01/2020-12-28 : L5F T95I D253G E484K D614G A701V  690 
EPI_ISL_854458, USA/NY-Wadsworth-21005145-01/2020-12-29 : L5F T95I D253G D614G A701V  691 
EPI_ISL_854457, USA/NY-Wadsworth-21005115-01/2020-12-29 : L5F T95I D253G E484K D614G A701V  692 
EPI_ISL_857056, USA/NY-NYCPHL-002169/2020-12-29 : L5F T95I D253G E484K D614G A701V  693 
EPI_ISL_861306, USA/NY-Wadsworth-21005017-01/2020-12-29 : L5F T95I D253G D614G A701V  694 
EPI_ISL_802448, USA/NY-Wadsworth-21001323-01/2020-12-30 : L5F T95I D253G S477N D614G Q957R  695 
EPI_ISL_861300, USA/NY-Wadsworth-21005007-01/2020-12-30 : L5F T95I D253G E484K D614G A701V  696 
EPI_ISL_854450, USA/NY-Wadsworth-21005056-01/2020-12-30 : L5F T95I D253G S477N D614G Q957R  697 
EPI_ISL_857204, USA/NY-NYCPHL-002114/2020-12-31 : L5F T95I D253G E484K D614G A701V  698 
EPI_ISL_861112, USA/NY-Wadsworth-21002954-01/2021-01-01 : L5F T95I D198G D253G S477N D614G Q957R  699 
EPI_ISL_861189, USA/NY-Wadsworth-21006379-01/2021-01-01 : L5F T95I D253G E484K D614G A701V  700 
EPI_ISL_944591, USA/CT-Yale-1000/2021-01-01 : T95I D253G E484K D614G A701V  701 
EPI_ISL_944592, USA/CT-Yale-1001/2021-01-01 : L5F T95I D253G E484K D614G A701V  702 
EPI_ISL_944594, USA/CT-Yale-1003/2021-01-01 : L5F T95I D253G E484K D614G A701V  703 
EPI_ISL_962492, Ecuador/UEES-9572/2021-01-01 : L5F T95I D253G E484K D614G A701V  704 
EPI_ISL_962493, Ecuador/UEES-9602/2021-01-01 : L5F T95I D253G E484K D614G A701V  705 
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EPI_ISL_861113, USA/NY-Wadsworth-21002959-01/2021-01-02 : L5F T95I D198G D253G S477N D614G Q957R  706 
EPI_ISL_861111, USA/NY-Wadsworth-21002949-01/2021-01-02 : L5F T95I D198G D253G S477N D614G Q957R  707 
EPI_ISL_857060, USA/NY-NYCPHL-002190/2021-01-03 : L5F T95I D253G S477N D614G Q957R  708 
EPI_ISL_861188, USA/NY-Wadsworth-21006373-01/2021-01-03 : L5F T95I D253G D614G A701V  709 
EPI_ISL_896394, USA/NY-Wadsworth-21006803-01/2021-01-04 : L5F T95I D253G E484K D614G A701V  710 
EPI_ISL_849348, USA/DE-DHSS-FLW00612372/2021-01-04 : L5F T95I D253G D614G A701V  711 
EPI_ISL_896391, USA/NY-Wadsworth-21006765-01/2021-01-04 : L5F T95I D253G S477N D614G Q957R  712 
EPI_ISL_896392, USA/NY-Wadsworth-21006780-01/2021-01-04 : L5F T95I D253G S477N D614G Q957R  713 
EPI_ISL_830577, USA/NY-Wadsworth-21004146-01/2021-01-04 : L5F T95I D253G E484K D614G A701V  714 
EPI_ISL_896395, USA/NY-Wadsworth-21006809-01/2021-01-04 : L5F T95I D253G E484K D614G A701V  715 
EPI_ISL_861361, USA/NY-Wadsworth-21006106-01/2021-01-04 : L5F T95I D253G S477N D614G Q957R  716 
EPI_ISL_830578, USA/NY-Wadsworth-21004150-01/2021-01-04 : L5F T95I D253G E484K D614G A701V  717 
EPI_ISL_861411, USA/NY-Wadsworth-21006165-01/2021-01-06 : L5F T95I D253G S477N D614G Q957R D1260N  718 
EPI_ISL_850743, USA/NJ-CDC-STM-A100415/2021-01-06 : L5F T95I D253G E484K D614G A701V  719 
EPI_ISL_854449, USA/NY-Wadsworth-21006042-01/2021-01-07 : L5F T95I D253G S477N D614G Q957R  720 
EPI_ISL_911789, USA/MD-HP01428/2021-01-07 : L5F T95I D253G S477N D614G Q957R  721 
EPI_ISL_857120, USA/NY-NYCPHL-002295/2021-01-07 : L5F T95I D253G D614G A701V  722 
EPI_ISL_855171, USA/RI-QDX-3232/2021-01-07 : L5F T95I D253G E484K D614G A701V  723 
EPI_ISL_884080, USA/NY-Wadsworth-21003395-01/2021-01-07 : L5F T95I D253G E484K D614G A701V  724 
EPI_ISL_896234, USA/NY-Wadsworth-21011146-01/2021-01-10 : L5F T95I D253G D614G A701V  725 
EPI_ISL_883447, USA/NY-Wadsworth-21008849-01/2021-01-10 : L5F T95I D253G D614G A701V  726 
EPI_ISL_896227, USA/NY-Wadsworth-21011153-01/2021-01-10 : L5F T95I D253G S477N D614G Q957R  727 
EPI_ISL_886271, USA/PA-CDC-LC0003480/2021-01-10 : L5F T95I D253G D614G A701V  728 
EPI_ISL_886626, USA/NJ-CDC-LC0003391/2021-01-11 : L5F T95I D253G E484K D614G A701V  729 
EPI_ISL_857164, USA/NY-NYCPHL-002365/2021-01-11 : L5F T95I D253G E484K D614G A701V  730 
EPI_ISL_886531, USA/CT-CDC-LC0003447/2021-01-11 : L5F T95I D253G E484K D614G A701V  731 
EPI_ISL_857163, USA/NY-NYCPHL-002336/2021-01-11 : L5F T95I D253G E484K D614G A701V  732 
EPI_ISL_886240, USA/NJ-CDC-LC0003405/2021-01-11 : L5F T95I D253G D614G A701V  733 
EPI_ISL_884055, USA/NY-Wadsworth-21005245-01/2021-01-11 : L5F T95I D253G S477N D614G A701V  734 
EPI_ISL_886384, USA/GA-CDC-LC0003561/2021-01-11 : L5F T95I D253G E484K D614G A701V  735 
EPI_ISL_886270, USA/DE-CDC-LC0003883/2021-01-12 : L5F T95I D253G D614G A701V  736 
EPI_ISL_936267, USA/NY-Wadsworth-21012072-01/2021-01-13 : L5F T95I D253G D614G A701V  737 
EPI_ISL_936292, USA/NY-Wadsworth-21012249-01/2021-01-14 : L5F T95I D253G E484K D614G A701V  738 
EPI_ISL_936261, USA/NY-Wadsworth-21012065-01/2021-01-14 : L5F T95I D253G E484K D614G A701V  739 
EPI_ISL_883338, USA/NY-NYCPHL-002433/2021-01-14 : L5F T95I D253G E484K D614G A701V  740 
EPI_ISL_883342, USA/NY-NYCPHL-002473/2021-01-14 : L5F T95I D253G V483F E484K D614G A701V  741 
EPI_ISL_883339, USA/NY-NYCPHL-002440/2021-01-14 : L5F T95I D253G S477N D614G A701V  742 
EPI_ISL_883340, USA/NY-NYCPHL-002466/2021-01-14 : L5F T95I D253G V483F E484K D614G A701V  743 
EPI_ISL_936288, USA/NY-Wadsworth-21012244-01/2021-01-14 : L5F T95I D253G E484K D614G A701V  744 
EPI_ISL_883343, USA/NY-NYCPHL-002474/2021-01-14 : L5F T95I D253G V483F E484K D614G A701V  745 
EPI_ISL_883346, USA/NY-NYCPHL-002525/2021-01-14 : L5F T95I D253G S477N D614G A701V  746 
EPI_ISL_883341, USA/NY-NYCPHL-002471/2021-01-14 : L5F T95I D253G E484K D614G A701V  747 
EPI_ISL_883330, USA/NY-NYCPHL-002514/2021-01-15 : L5F T95I D253G S477N D614G Q957R  748 
EPI_ISL_883347, USA/NY-NYCPHL-002533/2021-01-15 : L5F T95I D253G S477N D614G A701V  749 
EPI_ISL_936299, USA/NY-Wadsworth-21012257-01/2021-01-15 : L5F T95I D253G S477N D614G Q957R  750 
EPI_ISL_883331, USA/NY-NYCPHL-002535/2021-01-15 : L5F T95I D253G S477N D614G A701V  751 
EPI_ISL_937272, USA/NY-NYCPHL-002846/2021-01-15 : L5F T95I D253G E484K D614G A701V  752 
EPI_ISL_936281, USA/NY-Wadsworth-21012236-01/2021-01-15 : L5F T95I D253G D614G A701V  753 
EPI_ISL_883344, USA/NY-NYCPHL-002520/2021-01-16 : L5F T95I D253G S477N D614G A701V  754 
EPI_ISL_937190, USA/NY-NYCPHL-002680/2021-01-17 : L5F T95I D253G E484K D614G A701V  755 
EPI_ISL_883345, USA/NY-NYCPHL-002521/2021-01-17 : L5F T95I D253G E484K D614G A701V  756 
EPI_ISL_936248, USA/NY-Wadsworth-21011901-01/2021-01-17 : L5F T95I D253G E484K D614G A701V  757 
EPI_ISL_936271, USA/NY-Wadsworth-21012077-01/2021-01-17 : L5F T95I D253G S477N D614G Q957R  758 
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EPI_ISL_936256, USA/NY-Wadsworth-21012058-01/2021-01-18 : L5F T95I D253G S477N D614G Q957R  759 
EPI_ISL_936254, USA/NY-Wadsworth-21011909-01/2021-01-18 : L5F T95I D253G E484K D614G A701V  760 
EPI_ISL_936291, USA/NY-Wadsworth-21012248-01/2021-01-18 : L5F T95I D253G E484K D614G A701V  761 
EPI_ISL_896233, USA/NY-Wadsworth-21011134-01/2021-01-18 : L5F T95I D253G E484K D614G A701V  762 
EPI_ISL_937191, USA/NY-NYCPHL-002681/2021-01-18 : L5F T95I D253G E484K D614G A701V  763 
EPI_ISL_936276, USA/NY-Wadsworth-21012089-01/2021-01-19 : L5F T95I D253G S477N D614G Q957R  764 
EPI_ISL_937126, USA/NY-NYCPHL-002548/2021-01-19 : L5F T95I D253G S477N D614G A701V  765 
EPI_ISL_937192, USA/NY-NYCPHL-002682/2021-01-20 : L5F T95I D253G E484K D614G A701V  766 
EPI_ISL_937176, USA/NY-NYCPHL-002659/2021-01-21 : L5F T33I T95I D253G D614G A701V  767 
EPI_ISL_920158, England/LOND-12F79EE/2021-01-21 : L5F T95I D253G D614G A701V  768 
EPI_ISL_962431, USA/WA-S4338/2021-01-21 : L5F T95I D253G D614G A701V  769 
EPI_ISL_937205, USA/NY-NYCPHL-002704/2021-01-22 : L5F T95I D253G S477N D614G Q957R  770 
EPI_ISL_937211, USA/NY-NYCPHL-002711/2021-01-22 : L5F T95I D253G E484K D614G A701V  771 
EPI_ISL_937201, USA/NY-NYCPHL-002698/2021-01-22 : L5F T95I D253G D614G A701V  772 
EPI_ISL_937213, USA/NY-NYCPHL-002714/2021-01-22 : L5F L18F T95I D253G S477N D614G Q957R  773 
EPI_ISL_937246, USA/NY-NYCPHL-002784/2021-01-22 : L5F T95I D253G E484K D614G A701V  774 
EPI_ISL_937247, USA/NY-NYCPHL-002785/2021-01-23 : L5F T95I D253G E484K D614G A701V  775 
EPI_ISL_937258, USA/NY-NYCPHL-002831/2021-01-24 : L5F T95I D253G E484K D614G A701V  776 
EPI_ISL_937236, USA/NY-NYCPHL-002767/2021-01-25 : L5F T95I D253G S477N D614G A701V  777 
EPI_ISL_937218, USA/NY-NYCPHL-002729/2021-01-25 : L5F T95I D253G E484K D614G A701V  778 
EPI_ISL_937216, USA/NY-NYCPHL-002723/2021-01-25 : L5F T95I D253G E484K D614G A701V  779 
EPI_ISL_937265, USA/NY-NYCPHL-002839/2021-01-25 : L5F T95I D253G E484K D614G A701V  780 
EPI_ISL_937215, USA/NY-NYCPHL-002720/2021-01-25 : L5F T95I D253G E484K D614G A701V  781 
EPI_ISL_937255, USA/NY-NYCPHL-002793/2021-01-25 : L5F T95I D253G E484K D614G A701V  782 
EPI_ISL_906839, Singapore/117/2021-01-26 : L5F T95I D253G E484K D614G A701V  783 
EPI_ISL_906838, Singapore/116/2021-01-26 : L5F T95I D253G E484K D614G A701V  784 
EPI_ISL_906837, Singapore/115/2021-01-26 : L5F T95I D253G E484K D614G A701V  785 
EPI_ISL_937477, USA/ME-HETL-J1185/2021-01-29 : L5F T95I D253G E484K D614G A701V 786 
 787 
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