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This Supplementary Information is organised as follows. In Section 1, we describe the
mathematical model of enhancer-promoter communication and provide a detailed scheme. In
Sections 2 and 3, we calculate from the model the mean and variance of the number of RNAs
as a function of the contact probability between the enhancer and the promoter. In Section 4,
we calculate from the model the transcriptional burst size and burst frequency. In Section 5, we
calculate the correlation between enhancer-promoter interactions and promoter transcriptional
activity. In Section 6, we calculate an approximation of the model steady-state distribution of
the number of RNAs. In Section 7, we study qualitatively the curve describing the transforma-
tion of contact probabilities into mean number of RNAs, and how its shape depends on model
parameters. Finally in Section 8, we describe model fitting to the experimental data.

1 Description of the mathematical model of enhancer-promoter
communication

The model is fully stochastic and describes the time evolution of four variables: the enhancer
state, the promoter state, the promoter regime state, and the number of RNA molecules per
cell. The enhancer states represent the relative position of the enhancer and the promoter
(e1 := close: the enhancer is in physical proximity of the promoter, i.e. their distance is
smaller than an arbitrary threshold; e2 := far: the enhancer is not in physical proximity of
the promoter). The promoter states describe the transcriptional activity of the promoter (s1 =
off: the promoter cannot initiate transcription; s2 := on: the promoter is prone to initiate tran-
scription). In addition there are n + 1 ”promoter regime” states, which we divide in two sets:
{r1, . . . , rn} describe the ’low’ 2-state promoter regime and the state rn+1 describes the ’high’
2-state promoter regime. Transitions through the ”promoter regime” states represent the regu-
latory processes that transmit regulatory information from the enhancer to the promoter. The
promoter remains in the low regime until all the n regulatory processes have been completed,
and only at that point it can transition into the high regime (see Figure 1 in this document). The
low and high regimes differ in their on, off and initiation rates . Finally, the number of RNA
molecules per cell can be any integer m ≥ 0.

We assume that the enhancer switches between its close and far states independently of
the promoter and the promoter regime state. Transitions among the promoter regime states
are reversible, however a forward transition is only possible when the enhancer is in the close
state. Transition between the on and off state of the promoter are reversible and their rates
depend on the promoter regime. Transcription can only be initiated from the promoter state s2

(i.e on state, either in the low or high regime) and the initiation rate depends on the promoter
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regime. Synthesis and degradation of RNAs is regarded as a Poisson process (i.e. we describe
RNA initiation, elongation, nuclear export of RNA as a single kinetic step). Note that ”n + 1
promoter regime states” actually means that there are n intermediate regulatory steps between
the low regime and the high regime. The kinetic reactions are as follows.

e1

kfar


kclose

e2

e1 + rk
kforward


kback

e1 + rk+1, for k = 1, . . . , n

e2 + rk ←
kback

e2 + rk+1, for k = 1, . . . , n

s1 + rk
kloon


klooff

s2 + rk, for k = 1, . . . , n

s1 + rn+1

khion


khioff

s2 + rn+1

m+ s2 + rk →
µlo

m+ 1 + s2 + rk, for k = 1, . . . , n

m+ s2 + rn+1 →
µhi

m+ 1 + s2 + rn+1

m →
δ

m− 1

The chemical master equation is given by

dp

dt
(ei, sj, rk,m) = (m+ 1)δp(ei, sj, rk,m+ 1) + µ(i,j,k)p(ei, sj, rk,m− 1) (1)

+
∑

(̄i,j̄,k̄)

k(̄i,j̄,k̄;i,j,k)p(ei, sj, rk,m) (2)

−(mδ + µ(i,j,k) +
∑

(̄i,j̄,k̄)

k(i,j,k;̄i,j̄,k̄))p(ei, sj, rk,m) (3)

where µ(i,j,k) is the transcription rate given the enhancer state, promoter state and the promoter
regime state, and k(i,j,k;̄i,j̄,̄) is the transition rate for the enhancer and promoter to go from the
states ei, sj, rk to the states eī, sj̄, rk̄. All rates are expressed in terms of the model parameters
and are defined in Table 1.

This model can be rephrased in the general framework of multi-state promoter models
(Sánchez and Kondev [2008]) if we interpret the triplet (e, s, r) as a ”hyper” promoter state.
There are 4(n + 1) hyper promoter states which can be described either by a triplet (i, j, k)
where ei defines the enhancer state, sj defines the promoter state and rk defines the promoter
regime state, or it can be described by an integer ϕ ∈ {1, 2, . . . , 4(n+ 1)}. The two descriptors
are connected by the so-called linear indexing bijection

(i, j, k)→ ϕ = f(i, j, k) := (i− 1)2(n+ 1) + (j − 1)(n+ 1) + k. (4)

Using this new notation, The chemical master equation can be rewritten as

dp

dt
(ϕ,m) = (m+ 1)δp(ϕ,m+ 1) + µϕp(ϕ,m− 1)

+
∑
ϑ

k(ϑ;ϕ)p(ϕ,m)

−(mδ + µϕ +
∑
ϑ

k(ϕ;ϑ))p(ϕ,m)
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2 Mean and variance of the number of RNA
Following Sánchez and Kondev [2008], we define the probability vector p(m) = [p(1,m), . . . , p(4(n+
1),m)] and rewrite the chemical master equation in matrix form

dp

dt
(m) = (K−T−m∆)p(m) + (m+ 1)∆p(m+ 1) + Tp(m− 1) (5)

where the matrix K has elements Kϕϑ = k(f−1(ϕ);f−1(ϑ)) if ϕ 6= ϑ and Kϕϕ = −
∑

ϑ 6=ϕKϕϑ;
the matrix T is diagonal with diagonal elements Tϕϕ = µf−1(ϕ); and the matrix ∆ is also
diagonal with diagonal elements ∆ϕϕ = δ. The mean and the variance of the number of RNAs
per cell is given by the following formulas (Sánchez and Kondev [2008])

〈RNA〉 =
µm(0)

δ
(6)

Var(RNA) =
µm(0)

δ
+
µm(1)

δ
−
[
µm(0)

δ

]2

(7)

where we have defined the vector µ = (µf−1(1), . . . , µf−1(4(n+1))) and m(j) =
∑

mm
jp(m) the

jth moment of the number of RNAs per cell. The vectors m(0) is the solution (subject to the
normalisation

∑
ϕm

(0)
ϕ = 1) of the equation

Km(0) = 0. (8)

(Sánchez and Kondev [2008]). The vectorsm(1) is the solution of the equation

(K−∆)m(1) + Tm(0) = 0. (9)

(see equation 4 in Sánchez and Kondev [2008]).

3 Mean and variance of the number of RNAs as a function
of the contact probability

In the enhancer-promoter model, the contact probability is the steady-state probability that the
enhancer is in the close state. It can be directly calculated from the close rate and the far rate,

pc =
kclose

kclose + kfar
. (10)

From equation (10), we can express kclose in terms of kfar and pc,

kclose =
kfarpc
1− pc

. (11)

We substitute equation (11) for kclose in equation (5) and obtain the mean number of RNA
molecules as a function of the rate parameters kfar, kback, kforward, k

lo
on, k

lo
off, k

hi
on, k

hi
off, µ

lo, µhi, the
number of intermediate regulatory steps n, and the contact probability pc.
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4 Burst size and burst frequency
In our model, a transcriptional burst is defined as a ”stay” of the promoter in the on state.
Hence, the mean duration of a burst is the average time that the promoter stays in the on state,
〈Ton〉. The burst size is defined as the mean number of mRNA produced during an average
burst, i.e.

bs = 〈Ton〉(µhipon|high + µlowpon|low) (12)

where pon|high and pon|low the steady-state probabilities that the promoter is in the on state given
that it is in the low regime or in the high regime. The burst frequency is defined as the number
of bursts per mRNA life time, i.e.

bf =
pon

〈Ton〉δ
(13)

where pon is the steady-state probability that the promoter is in the on state.
The average duration of a stay in the on state can be directly calculated from the transition

rate matrix K using the theory of absorbing Markov chain (Iosifescu [1980]).

5 Correlation between enhancer-promoter interactions and
promoter activity

The correlation between enhancer-promoter interactions and promoter activity is the steady-
state correlation between the enhancer state close and the promoter state on, i.e.

Corr(close, on) =
pclose,on − ponpclose√

pon(1− pon)pclose(1− pclose))
(14)

where pclose,on is the steady-state probability that the enhancer is in the close, state and that
the promoter is in the on, state, pclose is the steady-state probability that the enhancer is in the
close, state, and pon is the steady-state probability that the promoter is in the on, state. Those
three probabilities are calculated from the steady-state distribution of the hyper promoter states,
m(0), by summing its elements that correspond to the hyper promoter states (close,on), close,
and on, respectively.

6 Distribution of the number of RNAs per cell
The joined steady-state distribution of the enhancer state, promoter state, promoter regime state
and number of RNA per cell, p̃(·), is the equilibrium of equation (5), i.e. p̃(·) solves

dp

dt
(m) = 0, for all m. (15)

The marginal steady-state distribution of the number of RNA per cell is given by

p∗(m) =

4(n+1)∑
ϕ=1

p̃ϕ(m). (16)

We calculated the joined steady-state probability distribution of the enhancer-promoter
model by using the finite state projection method (Munsky and Khammash [2006]). This
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method consists of truncating the infinite state space of the system into a finite subset of
states in order to reduce the infinite-dimensional system of ODEs into a finite system. For
the enhancer-promoter model, this truncation consists in fixing a maximal number of RNAs
per cell which we set to 120% of the maximal number observed in the FISH experiment. The
code for these calculations was written in Matlab (version 2019b) and are available on Github
(https://github.com/gregroth/Zuin_Roth_2021).

7 Qualitative study of the transcriptional response to changes
in contact probabilities

In this Section, we investigate the effect of the model parameters on the shape of the tran-
scriptional response, i.e. the curve describing how enhancer-promoter contact probabilities are
translated into mean number of RNAs. We will show that there are only three possible scenarios
that we call sub-linear, sigmoidal-like, and super-linear. We define the curve to be sub-linear
if its first derivative is positive for all contact probabilities and its second derivative is negative
at contact probabilities 0 and 1. The curve is sigmoidal-like if its first derivative is positive and
its second derivative is negative a contact probability 0 and positive at contact probability 1.
Finally, the curve is super-linear if its first derivative is positive for all contact probabilities and
its second derivative is positive at contact probabilities 0 and 1. Figure 2B illustrates the types
of curve.

The main effect of the contact probability on the mean number of RNAs is due to the fact
that enhancer-promoter contacts allow for a transient shift to the high promoter regime, which
has a larger apparent transcription rate compared to the low promoter regime. Therefore, the
relationship between contact probabilities and mean number of RNA (i.e. 〈RNA〉(pc)) should
be qualitatively similar to the relationship between contact probability and the probability that
the promoter is in the high regime mode, i.e. phi(pc) = P(r = n+ 1)(pc).

The high regime probability phi(pc) depends only on 4 parameters (i.e. kfar, kback, kforward,
and n). We can explore analytically the effect of each parameter in the shape of the transcrip-
tional response. The high regime mode probability is directly calculated from the steady state
probability vector m(0) by summing its elements that correspond to the high regime mode (i.e.
(i, j, n+ 1) for i = 1, 2 and j = 1, 2):

phi = ehim(0) (17)

where ehi is the vector of length 4(n + 1) whose elements ehif(i,j,k) = 1 are 1 if k = n + 1 and
0 elsewhere. The expression of phi in terms of the model parameters is derived by solving the
linear equation (8).

Without intermediate regulatory steps (n = 1). We first focus on a version of the model
where the transition between the promoter low and high regimes occurs in a single step. n = 1.
We show that in this case, the curve phi(pc) is always sub-linear.

The exact formula for phi(pc) is

phi(pc) =
pckforward(kback + kfar − pckback)

pc(kfarkforward − kbackkforward − k2
back) + kbackkfar + kbackkforward + k2

back
(18)

(we used the symbolic toolbox in Matlab to solve equation (8)). By defining the two dimen-
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sionless parameters z =
kfar

kback
and u =

kforward

kback
, we can rewrite equation (18) as

phi(pc) =
−up2

c + u(1 + z)pc
pc(zu− u− 1) + z + u+ 1

. (19)

In order to study the shape of phi(pc), we calculate its first and second derivatives

∂phi
∂pc

(pc) =
u(z2 + 2(1− pc)z + (1− p2

c)uz + (1− pc)2u+ (1− pc)2)

(z + u(1− pc) + pczu+ 1− pc)2
(20)

∂2phi
∂p2

c

(pc) = − 2z2u2(z + u+ 1)

(z + u(1− pc) + pczu+ 1− pc)3
(21)

The first derivative ∂phi
∂pc

(pc) is always positive and the second derivative ∂2phi
∂p2c

(pc) is always
negative. Hence, phi is a sub-linear function of the contact probability for any values of the
parameters u and z.

We then analyse how the parameters u and z affect the ”strength” of the sub-linearity, which
is related to how the probability of being in the high regime increases at low contact probability
(i.e. ∂phi

∂pc
(0)) and at high contact probability (i.e. ∂phi

∂pc
(1)). Sub-linearity is ”strong” when the

probability of being in the high regime sharply increases at low contact probability (i.e. ∂phi
∂pc

(0)

large) and plateaus at high contact probability (i.e. ∂phi
∂pc

(1) small). The derivatives at contact
probabilities 0 and 1 are given by

∂phi
∂pc

(0) =
u(1 + z)

(1 + z + u)
(22)

and
∂phi
∂pc

(1) =
u

(1 + u)2
(23)

Thus the degree of sub-linearity increases when u and/or z increase, which means an increase
in the ratio kforward

kback
and/or in the ratio kfar

kback
. Thus when memory is long, i.e. the promoter remains

in the high-regime mode much longer than the average duration of an interaction ( kfar

kback
>> 1),

and the intermediate regulatory steps are fast (kforward

kback
>> 1), then transcription levels are highly

sensitive to changes in contact probabilities when contact probabilities are low, and conversely
poorly sensitive when contact probabilities are high.

With one intermediate regulatory step (n = 2). When the number of intermediate regula-
tory steps is larger than 1, the formulae become more complicated. In order to understand the
effect of the intermediate regulatory steps on the qualitative shape of the function phi(pc), we
first restrict ourselves to the case n = 2. We show that for any value of the parameter z, there
exist u∗1 < u∗0 such that phi(pc) is sub-linear for u ≤ u∗1, sigmoidal-like for u∗1 < u < u∗0 and
super-linear for u ≥ u∗0 (see Figure 2A-B for examples).

For any value of the parameters, the derivative of phi(pc) is positive as the only way to
reach the high regime is to move forward in the regulatory steps which is only possible when
the enhancer and the promoter are in contact. Therefore, we only need to calculate the curvature
at contact probability 0 and 1 which yields

∂2phi
∂p2

c

(0) =
2u2z2(−u2 + (z + 2)u+ (1 + z)2)

(z2 + 2uz + 2z + u2 + u+ 1)3
(24)
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∂2phi
∂p2

c

(1) = −2u2(u4 + (2 + z)u3 + (1 + 3z)u2 − (1 + z))

z(u2 + u+ 1)3
(25)

We now demonstrate our claim, i.e. the existence of u∗0 and u∗1 such that ∂2phi
∂p2c

(0) < 0 and
∂2phi
∂p2c

(1) < 0 for u ≤ u∗1, ∂2phi
∂p2c

(0) > 0 and ∂2phi
∂p2c

(1) < 0 for u∗1 < u < u∗0 and ∂2phi
∂p2c

(0) > 0

and ∂2phi
∂p2c

(1) > 0for u ≥ u∗0. The sign of ∂2phi
∂p2c

(0) depends only on the second factor in the
numerator of equation (24) which has a single positive root,

u∗0 = 1 +
z

2
+
√

(z + 2)(z + 1). (26)

The sign of ∂2phi
∂p2c

(1) depends only on the second factor in the numerator of equation (25) which
has a single positive root, u∗1 (in theory its expression can be calculated but it is not needed here).
Next we show that u∗1 < u∗0. Since the the second factor in the numerator of equation (25) is an
increasing function in u and that its sign is negative when u = 0, we only need to show that its
sign is positive for u = u∗0. This is the case because 2 < 1 + z

2
+
√

(z + 1)(z + 1) < u∗0 and
the second factor in the numerator of equation (25) evaluated in u = 2 is clearly positive for
any value of z. The signs of ∂2phi

∂p2c
(0) and ∂2phi

∂p2c
(1) as function of u and z are shown in Figure

2A.

With more intermediate steps (n > 2). Finally, we conjecture that this trichotomy (i.e. sub-
linear, sigmioal-like, super-linear) is still valid for small n > 2 but the sub-linear parameter
region tends to disappear for large n. This is motivated by numerical calculations of the second
derivatives ∂2phi

∂p2c
(0) and ∂2phi

∂p2c
(1) for a large set of values for the parameters u and z and for

different values of n (see Figure 3A-B for few examples). Thus, we investigate numerically
the effect of n on the sensitivity of the curve at low contact probability which we measure as
∂phi
∂pc

(0)/phi(1). For that we approximate numerically the derivative at contact probability 0 and
vary the number of regulatory steps n and the dimensionless parameter u and z. Figure 3C
shows that the sensitivity increases with an increase in the number of regulatory steps.

8 Model fitting
The enhancer-promoter communication model described above was fitted simultaneously to
the mean eGFP levels measured in individual cell lines, to the distribution of RNA numbers
measured by smRNA FISH in a control line where the SCR is absent (C l), and in a cell line
where the full-length Sox2 control region (SCR) is adjacent to the promoter (Ch). This section
describes in detail how this was done.

8.1 RNA FISH data.
For the cell linesCk (i.e.k = l, h), we calculated the histogram, hk of the RNA molecule counts
obtained from the smRNA FISH experiment. The bin size bk and the number of bins nkb were
chosen using the function histogram in Matlab.

For each set of rates θ = (kfar, kback, kforward, k
lo
on, k

lo
off, k

hi
on, k

hi
on, µ

lo, µhi) and each number
of regulatory steps n, we calculated the steady-state probability distributions predicted by the
enhancer-promoter model with parameters (n,θ) and contact probabilities equal to 0 (for the
cell line C l) and 1 (for the cell line Ch). Next, we discretised the steady-state distributions
in a histogram ηk(n,θ) which is comparable with the histogram hk obtained from the FISH
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data. We assume that the count in bin i for cell line k follows a binomial distribution of mean
ηkiNk and variance ηki (1 − ηki )Nk, where Nk is the total number of counts. We approximate
the binomial distribution by a normal distribution. Hence, the likelihood of observing the
histogram hk given the parameters (n,θ) is

Lk(n,θ) =

nkb∏
i=1

1√
2πNkηki (1− ηki )

e
− (hki −η

k
i (θ))

2

2ηk
i
(1−ηk

i
)Nk (27)

and the log likelihood is

LLk(n,θ) =

nkb∑
i=1

[
− (hki − ηki (θ))2

2ηki (1− ηki )Nk

+
1

2
log(2πNkη

k
i (1− ηki ))

]
(28)

8.2 Mean eGFP levels.
The data consist of the inferred mean number of RNA molecule per cell in each of the N indi-
vidual eGFP+ cell lines (obtained via the calibration with sRNA FISH (Suppl. Fig. 1H)) and
the associated genomic distance from the promoter to the SCR. The data were then averaged
in bins of length 20 kb, yielding a vector g whose elements are the binned mean number of
RNA per cell and a vector d of genomic distances. The genomic distances were transformed in
contact probabilities using the Capture Hi-C data (6.4-kb resolution; see Figure 2A), yielding
a vector π of contact probabilities associated to the vector g.

For each set of rates θ = (kfar, kback, kforward, k
lo
on, k

lo
off, k

hi
on, k

hi
on, µ

lo, µhi), each number of reg-
ulatory steps n, and each cell line i, we calculate the mean number of RNA per cell, γi(n,θ, πi),
predicted by the enhancer-promoter model with parameter (n,θ) and contact probability πi (us-
ing equation (6)). Assuming that the deviations from the model are normally distributed with
mean 0 and variance σ2, the log likelihood function is given by

LLmean(n,θ) = −
N∑
i=1

(gi − γi(θ, πi))2

2σ2
+N

1

2
log(2πσ) (29)

where N is the number of cell lines.

8.3 Model fitting for the full-length SCR data set
When the contact probability is 0, the enhancer-promoter model reduces to a two-state model
with parameters θl = (kloon, k

lo
off, µ

lo). Therefore, we first fit a two-state model to the RNA FISH
distribution of the control line where the SCR is absent (C l). The best fit parameters of the low
regime θ∗l maximises the log likelihood function LLl(n,θ) where all parameters other than the
ones in θl are set to a fixed value.

Next we fit the enhancer-promoter model simultaneously to both the binned mean eGFP
levels measured in individual cell lines and the RNA FISH distribution of the cell line where
the SCR is adjacent to the promoter (Ch), keeping the low regime parameters fixed to their best
fit values, i.e. θ∗l . The best fit parameter (n∗,θ∗) maximises the total log likelihood function

LLtot := LLmean(n,θ) + LLh(n,θ). (30)

Since the number of regulatory steps n is an integer parameter, we maximise the total log
likelihood function LLtot for each value of n separately. For the parameter n, we set a lower
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bound of 1 and an upper bound of 10. For parameters kfar, kback, kforward, k
lo
on, k

lo
off, k

hi
on, k

hi
off, we

set a lower bound of 0 and an upper bound of 100. Finally for the parameters µlo, µhi, we
set a lower bound of 0 and an upper bound of 3000. We ensured that the best fit parameters
found were not at the boundaries. For all the maximisations we use a global search approach.
Specifically, we use the Matlab function MultiStart in the Global Optimization toolbox. All
codes were written in Matlab (version 2019b) and are available at https://github.com/
gregroth/Zuin_Roth_2021.

Best fit parameter sensitivity. For each best-fit parameter value, we numerically calculated
its minimal perturbation required for a 0.02 increase in the R2 of the model prediction. Figure
4 shows that the best fit is mostly sensitive to the rates driving the regulatory steps and to the
high regime parameter rates. The best fit is weakly sensitive to the number of regulatory steps
(∆R2 < 0.02 for 4 ≤ n ≤ 11).

8.4 Model fitting for the truncated SCR data set
We fit the enhancer-promoter model to the binned mean number of RNA molecule inferred
from the eGFP+ cell lines with the truncated version of the SCR. We successively maximise
the log likelihood function LLmean under the constrain of having different combinations of free
parameters – the other ones being fixed to the best fit values obtained for the full-length SCR
data set. For each combination we calculate theR2 of the model prediction. Finally, we rank all
the combinations in terms of their R2. Any combination of the parameters describing the high
regime (i.e. khion, k

hi
off, µ

hi) yields a R2 > .94. Any combination of the parameters describing the
intermediate steps processes (i.e. kback, kforward) yields a R2 < 0.22. Finally, when khion, k

hi
off, µ

hi

and kback, kforward are all free parameters, R2 is equal to 0.97.
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Rate Expression From To
Hyper state transition rates

k(1,j,k;2,j,k) kfar close far
for j = 1, 2, k = 1, . . . , n+ 1

k(2,j,k;1,j,k) kclose far close
for j = 1, 2, k = 1, . . . , n+ 1

k(i,1,k;i,2,k) kloon off/low on/low
for k = 1, . . . , n
k(i,2,k;i,1,k) klooff on/low off/low

for k = 1, . . . , n
k(i,1,n+1;i,2,n+1) khion off/high on/high

for i = 1, 2
k(i2,n+1;i,1,n+1) khioff on/high off/high

for i = 1, 2
k(1,j,k;1,j,k+1) kforward close/rk close/rk+1

for j = 1, 2, k = 1, . . . , n
k(2,j,k;2,j,k+1) 0 far/rk far/rk+1

for j = 1, 2, k = 1, . . . , n
k(i,j,k;i,j,k−1) kback rk rk−1

for j = 1, 2, k = 2, . . . , n+ 1
Initiation rates

µi,2,k µlo on/low regime on/low+1 RNA
for i = 1, 2, k = 1, . . . , n

µi,2,n+1 µhi on/high regime on/high +1 RNA
for i = 1, 2

Table 1: Transition rates used in equations (1) and (5). All the rates µ(i,j,k) and k(i,j,k;̄i,j̄,k̄) that are not
described in the table have value equal to 0.
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Low 
regime

High
regime

close/o�/n+1

far/o�/n+1far/o�/nfar/o�/2far/o�/1

close/o�/nclose/o�/2close/o�/1

close/on/n+1close/on/nclose/on/2close/on/n1

far/on/n+1far/on/nfar/on/2far/on/1

Figure 1: Scheme of the enhancer-promoter model. For simplicity every rate is indicated only once in
similar reactions. Opacity differences are only intended to increase the clarity of the figure and do not
relate to properties of the states themselves.
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Figure 2: A. Sign of the second derivative of the probability of the promoter being in the high 2-state
regime, plotted as a function of the dimensionless parameters u =

kforward
kback

and z = kfar
kback

when the contact
probability is 0 (left panel) and 1 (centre panel), and the number of regulatory step is n = 2. The right
panel shows the resulting trichotomy in the shape of the curve phi(pc). B. Representation of the three
possible shapes of the curve phi(pc). Parameters: n = 2, z = .1, u = .9 (dark blue line), u = 5 (black
line), u = 40 (light blue line).
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Figure 3: A. Types of the curve phi(pc) (i.e. sub-linear, sigmoidal-like, super-linear) as a function of the
dimensionless parameters u =

kforward
kback

and z = kfar
kback

for different numbers of regulatory steps (left, n = 2;
centre, n = 5; right, n = 10). B. Representation of mean number of RNA predicted by the enhancer-
promoter model with parameters kfar, kforward corresponding to the parameters chosen in Figure 2B and
the other parameters are kback = 1, kloon = .1, klooff = 1, khion = 4, khioff = 2, µlo = 1, µhi = 60. C.
Sensitivity study of the curve phi(pc) at contact probability 0. The degree of sensitivity is calculated as
∂phi
∂pc

(0)/phi(1).
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