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Abstract

The intrinsic functional connectome can reveal how a lifetime of learning and lived experience is
represented in the functional architecture of the aging brain. We investigated whether network
dedifferentiation, a hallmark of brain aging, reflects a global shift in network dynamics, or
comprises network-specific changes that reflect the changing landscape of aging cognition. We
implemented a novel multi-faceted strategy involving multi-echo fMRI acquisition and
de-noising, individualized cortical parcellation, and multivariate (gradient and edge-level)
functional connectivity methods. Twenty minutes of resting-state fMRI data and cognitive
assessments were collected in younger (n=181) and older (n=120) adults. Dimensionality in the
BOLD signal was lower for older adults, consistent with global network dedifferentiation.
Functional connectivity gradients were largely age-invariant. In contrast, edge-level connectivity
showed widespread changes with age, revealing discrete, network-specific dedifferentiation
patterns. Visual and somatosensory regions were more integrated within the functional
connectome; default and frontoparietal regions showed greater coupling; and the dorsal attention
network was less differentiated from transmodal regions. Associations with cognition suggest
that the formation and preservation of integrated, large-scale brain networks supports complex
cognitive abilities. However, into older adulthood, the connectome is dominated by large-scale
network disintegration, global dedifferentiation and network-specific dedifferentiation associated
with age-related cognitive change.
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Spontaneous oscillations in brain activity provide the basis for characterizing large-scale
functional networks (Biswal et al., 2010; Fox and Raichle, 2007; Yeo et al., 2011). This intrinsic
functional network architecture is determined by both genetic factors and experience-dependent
neuroplastic changes occurring across timescales, from moments to decades (Stevens and
Spreng, 2014). Studying these networks in older adulthood can yield important insights into
cognitive aging, and how a lifetime of learning and lived experience is instantiated in the aging
brain. Key organizational features of the aging connectome include reduced within and greater
between network connectivity (Geerligs et al., 2015), consistent with a dedifferentiated network
architecture (Wig, 2017). An outstanding question is whether network dedifferentiation with age
conveys information about the trajectory of neurocognitive aging. There are two tenable
hypotheses. First, network dedifferentiation may represent a non-specific, global shift in network
dynamics. Such global shifts may result from systemic alterations in structural,
neurophysiological or metabolic factors, associated with domain general patterns of cognitive
change. Alternatively, distinct patterns of network dedifferentiation may reflect specific changes
in cognitive abilities in later life (Spreng and Turner, 2019). However, distinguishing between
these possibilities presents significant methodological and conceptual challenges. Overcoming
persistent and pervasive methodological limitations confronting resting-state functional
connectivity (RSFC) investigations is critically necessary to fully leverage the value of this
imaging modality as an indicator of brain and cognitive health in older adulthood. Here we adopt
an innovative and multi-faceted data acquisition and analysis protocol to interrogate the precise
nature of network dedifferentiation in older adulthood, thereby providing a more comprehensive
account of the intrinsic network organization of the aging brain. To differentiate global from
network specific changes in the aging connectome, we implemented several methodological
innovations, described briefly below.

First we utilized multi-echo fMRI (ME-fMRI) data acquisition and a multi-echo independent
components analysis (ME-ICA) preprocessing pipeline (Kundu et al., 2017). Innovations in
ME-fMRI data acquisition protocols, combined with a TE-dependence model of BOLD signal
denoising using ME-ICA, enables one to reliably separate BOLD from non-BOLD (i.e. noise)
signal into different components (Kundu et al., 2017). Isolating neural components is chief
among the challenges confounding investigations of age differences in resting-state fMRI.
ME-ICA processing eliminates distant-dependent motion confounds (Power et al., 2017) and the
need for multiple confound regression, including the global signal (Spreng et al. 2019), while
allowing for valid between-group comparisons of the full range of positive and negative RSFC
values. Recent validation work demonstrated that ME-fMRI processed data provides excellent
reliability and temporal signal-to-noise, sufficient for individual-subject precision mapping
(Lynch et al., 2020; Lynch, Elbau, Liston, 2021).

The number of independent BOLD components in ME-fMRI signal, or BOLD dimensionality,
declines from childhood to middle-adulthood (Kundu et al., 2018). This putatively reflects the
integration of spatially-distributed brain regions into large-scale functional networks in early
adult development (Kundu et al., 2018). For the first time, we examine whether this global
pattern of network reorganization persists into older adulthood. The integrity of large scale
networks is reduced with age, as within-network connectivity declines and between-network
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connections increase (Betzel et al., 2014; Madden et al., 2020; Malagurski et al., 2020; Stumme
et al., 2020; Zonneveld et al., 2019). We predict that BOLD dimensionality, as a proxy for global
network dedifferentiation, will be significantly lower for older versus younger adults. Further, we
predict that reduced BOLD dimensionality in young, reflecting network integration, will be
associated with better performance in cognitive domains requiring fast, integrative, and flexible
processing. In contrast, reduced BOLD dimensionality in older adulthood may reflect global
network dedifferentiation and be associated with lower performance on complex cognitive tasks.

Next we examined whether dedifferentiation is detectable as shifts in specific network
interactions across the connectome. Topographic specificity in network dedifferentiation and
integration may serve as a more selective marker of age-related cognitive changes (Ng et al.,
2016; Reick et al., 2016; Spreng et al., 2016; Turner and Spreng, 2015). To investigate this
possibility we first assessed age differences in macroscale connectivity gradient architecture
across the cortex (Huntenburg et al., 2018; Margulies et al., 2016; Paquola et al., 2019; Vos de
Wael et al., 2020). Gradients identify transitions in regional connectivity patterns, and changes
with age would signal large-scale reorganization in functional brain organization. One recent
investigation reported age-differences in gradient connectivity patterns (i.e., eccentricity of the
gradient manifold; Bethlehem et al., 2020). However, only weak associations with cognition
were reported. While little prior evidence is available, and none using ME-fMRI, gradients are
robust, phylogenetic features of brain organization (Margulies et al., 2016). Thus we predict that
these patterns would be resistant to normative ontogenetic changes. However, changes may
emerge for regional connectivity profiles within the macroscale gradient architecture, reflecting
network or node specific shifts in connectivity patterns.

To further evaluate this prediction of topographical specificity in network dedifferentiation, we
conducted edge-level analyses using multivariate partial least squares analyses (PLS, Krishnan et
al., 2011; McIntosh and Misic, 2013). This approach offers node and edge-level precision to
detect age differences in the organization of functional brain networks, and associations with
cognition. PLS analyzes the full edge-level connectivity matrix in a single statistical step,
eliminating the need for additional thresholding within an a priori defined network parcellation
scheme. This offers two methodological advantages. First we are able to identify reliable
age-differences across the full edge-level connectivity matrix. Second, individual differences in
the expression of these network connectivity patterns can be associated with individual
differences in cognitive performance. We first examined edge-level connectomics within a
canonical seven-network solution (Yeo et al., 2011). Based on previous work showing significant
age changes among dorsal attention, default and frontoparietal control networks (Grady et al.,
2016; Spreng & Schacter, 2012; Sullivan et al., 2019), we also conducted an a priori analysis of
the sub-network topography for these three networks, derived from the 17-network solution by
Yeo and colleagues (2011).

For both the gradient and edge-level connectivity analyses, we adopted an individualized
functional parcellation approach to identify person-specific functional network nodes (Chong et
al., 2017). Valid comparison of RSFC between younger and older adults may be compromised
when template registration is unable to account for the individual variability in functional
organization of the cortex (Braga and Buckner, 2017; Chong et al., 2017; Gordon, et al. 2017;
Kong et al., 2019; Kong et al., 2021; Laumann et al., 2015; Wang et al., 2015). Deriving
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functionally-defined, person-specific cortical parcellations can account for differences at the
level of the individual which may introduce systematic biases in between group comparisons.
Adopting an individualized parcellation approach further ameliorates noise artifacts that can
obscure small yet reliable group differences, and increases power to detect reliable brain and
behavior associations (Kong et al., 2021).

Here we bring together these innovative methods to conduct a comprehensive investigation into
the intrinsic functional architecture of the aging brain. First, we examine age differences in the
dimensionality of the BOLD signal, a global measure of network differentiation. Next, we
examine macroscale gradient architecture as well as edge-level changes in the aging connectome.
Finally, we examine observed global, gradient, and edge-level changes in large-scale brain
networks for associations with aging cognition. This integrated approach provides a multiscale
investigation of the shifting functional architecture of brain and cognition in later life.

Results

We implemented a multifaceted data acquisition and analysis protocol in 181 younger
(Mage=22.59y) and 120 older (Mage=68.63y) healthy adults (See Table 1 and Methods and
Materials). Overall, predicted age-group differences in cognition were observed. Younger adults
performed better on indices of episodic memory (t(281)= 17.51 p < .001; Cohen’s d = 2.11),
executive function (t(281)= 12.67, p <.001; Cohen’s d=1.52), and processing speed (t(281)=
15.03, p < .001; Cohen’s d = 1.81). Older adults had higher semantic memory index scores
(t(281)= 9.18, p < .001; Cohen’s d = 1.10; see Table 1 for descriptives).
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Table 1 Note: Episodic Memory, Semantic Memory, and Executive Function are index scores. Processing Speed is a
z-score on Symbol Digit Modalities Task, Oral. * significant group differences.
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BOLD Dimensionality
Two 10-minute runs of resting-state ME-fMRI were collected. BOLD dimensionality, the
number of independent BOLD components in ME-fMRI signal, was stable across runs (r(299) =
.79, p < .001, [.75, .83]; Figure 1A). Younger adults showed greater BOLD dimensionality than
older adults (t(299)=15.38, p < .001; Cohen’s d= 1.81; Figure 1B). In the context of lifespan
development, which included an additional sample aged 8-46 (Kundu et al., 2018), a power
function provided a suitable fit between age and BOLD dimensionality (R2=.547; Figure 1C).

BOLD dimensionality demonstrated significant relationships with cognition (Table 2). In older
adults, higher BOLD dimensionality was associated with higher episodic memory scores
(r(118)= .251, p < .01, [.08, .41]). In younger adults, BOLD dimensionality showed a positive
trending relationship with semantic memory (r(161)= .155, p = .048, [.00, .30]), which did not
survive Bonferroni correction. Overlapping confidence intervals indicated no group differences
in cognitive associations with BOLD dimensionality. Across the entire cohort, controlling for
age, greater BOLD dimensionality was related to higher semantic memory scores (pr(281)
=.158, p < .01, [.04, .27]) and lower executive function scores (pr(281)= -.177, p <. 005, [-.29,
-.06]).

Figure 1

Figure 1 Caption: BOLD signal dimensionality (A) High test-retest reliability across two ME-fMRI runs. (B) Violin
plots show distributions of total BOLD signal components across runs in younger and older adults. (C) The scatter
plot shows BOLD signal dimensionality by age with a power distribution and 95% confidence intervals overlaid.
Points in white were contributed by Kundu and colleagues (2018). Adjusted BOLD signal dimensionality = Total
number of accepted BOLD components / number of time points acquired.

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2021. ; https://doi.org/10.1101/2021.03.31.437922doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437922
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gradients & Manifold Eccentricity
We next characterized gradients of functional connectivity in younger and older adults (e.g.,
Hong et al., 2019; Margulies et al., 2016). In both groups, the principal gradient spanned from
unimodal regions to transmodal regions (Figure 2A). A whole-brain age group comparison
revealed higher gradient values within bilateral superior parietal lobule in older adults (FWE p <
.05; cluster defining threshold p < .01; Figure 2A). Here, higher gradient values represent greater
functional connectivity similarity with transmodal regions as opposed to unimodal regions. In
older adults, the superior parietal lobule is more closely affiliated with heteromodal cortex,
including the default network, than in younger adults. The second gradient of cortical
connectivity displayed a continuum of functional connectivity pattern similarity spanning visual
cortex on one end to somatomotor and auditory cortices on the other (Figure 2B). Whole-brain
group comparisons revealed no significant differences in the second gradient.

We rendered principal-second gradient manifold scatterplots in a 2D gradient embedding space
in younger and older adults (Figure 2C). Older adults showed more diffuse and dedifferentiated
vertices. We quantified this diffusivity by calculating manifold eccentricity –the sum of
Euclidean distance across all vertices from the median– for each participant and compared across
groups. Results revealed significantly greater manifold eccentricity in older adults (t(299 ) =
-10.74, pSPIN < 0.01, Cohen’s d=1.26). 

Manifold eccentricity associations with cognition were also examined (Table 2). In younger
adults, manifold eccentricity was negatively related to episodic memory (r(161)= -.191, p < .05,
[-.34, -.04]) and processing speed (r(161)= -.168, p < .05, [-.31, -.01]), but neither correlation
survived Bonferroni correction. No relationships were observed in older adults, and no
relationships remained across the full sample when controlling for age. 

BOLD dimensionality and manifold eccentricity both demonstrated significant age-group
differences. We conducted post-hoc product-moment correlations to test whether these global
measures of brain organization were reliably associated. Negative correlations were observed in
both younger (r(179)= -.575, p < .001, [-.64, -.50]) and older adults (r(118)= -.255, p < .005,
[-.37, -.13]), such that higher BOLD dimensionality was related to less diffuse, more compact
vertices in the manifold. In computing a partial correlation controlling for age, the relationship
remained when performed on the full sample (pr(299)= -.391, p < .001, [-.48, -.29]).
Non-overlapping 83% confidence intervals (Austin & Hux, 2002) indicated a significantly
stronger correlation in younger adults.
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Figure 2

Figure 2 Caption: Gradients of cortical connectivity in younger and older adults. (A) The mean principal gradient for
younger (left) and older (center) adults, representing an axis of functional connectivity similarity variance that
ranged lowest to highest from unimodal to transmodal cortex. Older adults > younger adults contrast revealing
statistically significant clusters at FWE p < 0.05, cluster defining threshold p < 0.01 (right). (B) The mean second
gradient for younger (left) and older (right) adults, representing an axis of functional connectivity similarity variance
that ranged lowest to highest from visual to somatomotor cortex. No group differences were observed for the second
gradient. (C) Scatterplots representing the principal-second gradient manifold for younger (left) and older (right)
adults. Scatterplot colors indicate functional network as per the 7-network solution by Yeo et al. (2011). VIS =
visual, SOM= somatomotor, DAN= dorsal attention, VAN = ventral attention, LIM = limbic, FPC= frontoparietal
control, DN= default.
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Table 2 Note: Within younger and older adults, r (p) values displayed. When controlling for age, pr (p) values
displayed. * survives Bonferroni correction at p < .013.
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Connectomics
We next examined whole-brain interregional functional connectivity differences between
younger and older adults. Group mean connectivity matrices are in Figure 3A-B. Qualitative
differences in the top 5% of positive connections between groups can be observed with a
spring-embedded layout arranged by their network membership (Figure 3C-D). The
spring-embedded plot displays stronger integration of the dorsal attention and frontoparietal
control networks in older adults.

Age-related differences in the 79800 interregional connections (i.e., the lower triangle of the
400x400 functional connectivity matrix) were quantitatively assessed with PLS. A significant
latent variable (permuted p = 0.0001) revealed a pattern of age differences in RSFC, with
increases and decreases observed across the connectome (Figure 3E). Network contribution
analysis of within- and between- network edges revealed significant age effects. Older adults
demonstrated lower within-network connectivity across all seven networks, and lower
connectivity between limbic, frontoparietal control and default networks (Figure 3F). Older
adults showed greater between-network connectivity across systems for the visual and
somatomotor networks (Figure 3G). The overall pattern of age-related differences was similar
when examined with a 200 parcellation scheme (Supplementary Figure 3).

Brain connectivity scores were extracted from the group-wise difference in connectivity (Figure
3E) to interrogate how the observed pattern related to cognition. Higher brain connectivity scores
for each age-group convey a stronger expression of the pattern of connectivity observed: greater
within-network and lower between-network connectivity in younger adults; and lower
within-network and greater between-network connectivity in older adults. Brain scores in
younger adults were not reliably related to cognition, although a positive trending relationship
with semantic memory was observed (r(161)= .158, p = .044, [.00, .30]; Table 3), which did not
survive Bonferroni correction. Older adults’ brain scores were negatively associated with
executive function (r(118)= -.350, p < .001, [-.50, -.18]; Table 3). This indicates that greater
between-network and lower within-network connectivity was negatively associated with
executive function in older adults.
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Figure 3.

Figure 3 Caption: Functional connectomics in younger and older adults. Mean RSFC for the 400-parcellated data in
(A) younger and (B) older adults. Spring-embedded plots with a 7-network solution (5% edge density) of the mean
correlation matrices for (C) younger and (D) older adults. (E) Multivariate PLS analysis was used to identify
age-related differences in RSFC between younger and older adults. Red color indicates significantly greater RSFC in
younger adults, and blue color indicates significantly greater RSFC in older adults. (F-G) Network contributions
reflecting differences in large-scale distributed networks. (F) Greater within- and between- network connectivity in
younger adults. (G) Greater within- and between- network connectivity in older adults. The mean positive (F) and
negative (G) bootstrap ratios within and between networks are expressed as a p-value for each z-score relative to a
permuted null model. Higher z-scores indicate greater connectivity than predicted by the null distribution. VIS =
visual, SOM= somatomotor, DAN= dorsal attention, VAN = ventral attention, LIM = limbic, FPC= frontoparietal
control, DN= default.
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Dorsal Attention, Frontoparietal Control, and Default Sub-Network Connectomics 
In an a priori, targeted sub-network analysis we examined age-group differences in functional
connectivity among subnetworks of the dorsal attention, frontoparietal control and default
networks, and associations with cognition. The age-group average sub-network matrices are
shown in Figure 4A-B. The spring-embedded representation of the average top 5% of positive
connections in each group (Figure 4C-D) suggests that older adults show more integration of the
default network (DN-A) and frontoparietal control network (CONT-A). 

Quantitative comparison with PLS of the inter-regional functional connectivity revealed a
distinct pattern of age differences (permuted p < 0.001; Figure 4E). Younger adults (Figure 4F)
showed more within-network connectivity, and frontoparietal control to default connectivity
(CONT-A to DN-A; CONT-A to DN-B; CONT-C to DN-C). Older adults (Figure 5G) showed
greater between-network connectivity of the dorsal attention network (DAN-A) with all other
sub-networks, as well as greater connectivity between the dorsal attention network (DAN-B) and
the frontoparietal control (CONT-C) and default networks (DN-A). Older adults also showed
greater connectivity between the frontoparietal control (CONT-C) and default network (DN-A).
A similar pattern of connectivity was observed with a 200 parcellation scheme (Supplementary
Figure 6).

Brain connectivity scores were extracted from the group-wise difference in dorsal attention,
frontoparietal control and default sub-network connectomics (Figure 5E) and related to
cognition. Sub-network brain connectivity scores did not show any reliable associations with
cognition in younger adults (Table 3). In older adults, sub-network brain connectivity scores
demonstrated a negative association with executive function (r(118)= -.434, p < .001, [-.57,
-.28]; Table 3B).
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Figure 4

Figure 4 Caption: Functional connectivity of the dorsal attention (DAN), frontoparietal control (CONT), and default
(DN) sub-networks following the Yeo 17-network solution. Mean group connectivity in (A) younger and (B) older
adults. Spring-embedded plots (5% edge density) of the mean correlation matrices for (C) younger and (D) older
adults. (E) Differences in RSFC between younger and older adults among DAN, CONT, and DN. (F) Greater within-
and between- network connectivity in young. (G) Greater within- and between- network connectivity in older adults.

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2021. ; https://doi.org/10.1101/2021.03.31.437922doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437922
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3 Note: r (p) values displayed. Subnetworks encompass the dorsal attention, frontoparietal control, and default
networks. * survives Bonferroni correction.

Cross-Validation of the PLS Connectomics Findings
To verify that our results were not confounded by potential overfitting of the PLS model, the full
and sub-network PLS analyses were conducted only on the first resting-state data run. Brain
connectivity scores were then computed from the run one-derived weights and the run two
individual-subject RSFC matrices and compared between groups. Age group differences were
replicated in the held out run (t(299)= 17.48, p < .001, Cohen’s d= 2.06). Additionally, brain
connectivity scores derived from run two were significantly correlated with executive function in
older adults (r(118)= -.366, p < .001, [-.51,-.20]). In the sub-network analysis, age group
differences were also replicated in the held out run (t(299)= 19.46, p < .001, Cohen’s d= 2.29).
Sub-network brain connectivity scores derived from run two were also significantly correlated
with executive function in older adults (r(118)= -.425, p < .001, [-.56,-.27]). These
cross-validation analyses (see Supplementary Figure 7) demonstrate that the PLS results are
robust to potential issues of model overfitting.
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Discussion
 
These findings provide a comprehensive account of the intrinsic functional network architecture
of the aging brain. Leveraging a novel multi-faceted strategy, we investigated whether network
dedifferentiation, a hallmark of brain aging, reflects a global shift in network dynamics, or
comprises network-specific changes that more closely adhere to the landscape of cognitive
aging. Dimensionality, the number of BOLD components in the fMRI signal, was lower for older
adults, consistent with a global pattern of network dedifferentiation. Macroscale connectivity
gradients were age-invariant, suggesting that the macroscale functional architecture of the brain
is largely preserved into older age. In contrast, edge-level connectivity analyses revealed three
distinct network dedifferentiation patterns for older adults: Visual and somatomotor regions were
more integrated within the broader connectome; default and frontoparietal regions showed
greater coupling among the strongest edge-wise connections, and dorsal attention regions
became less functionally segregated from other transmodal networks. These results provide the
first multiscale analysis of age differences in the functional connectome. They reveal that the
intrinsic network architecture of the aging brain is marked by both global and specific
topographical patterns of network dedifferentiation. Associations with cognition suggest that the
formation and preservation of integrated, large-scale brain networks can support complex
cognitive abilities across the lifespan. However, in older adulthood the connectome becomes
increasingly dominated by large scale network disintegration, global dedifferentiation and the
emergence of network-specific connectivity patterns associated with age-related cognitive
decline.

BOLD signal dimensionality and global network dedifferentiation

Dimensionality in the BOLD signal was significantly lower for older versus younger adults,
reflecting a generalized pattern of network dedifferentiation continuing into later life. This
finding builds upon an earlier report of cross-sectional dimensionality reductions from
adolescence to early and middle adulthood (Kundu et al., 2018; Figure 1). Reductions in
dimensionality in early adult development, largely attributable to functional integration among
prefrontal and other transmodal cortices, reflects the transition from local connectivity to
longer-range connections and the formation of spatially distributed yet intrinsically coherent
brain networks (Kundu et al., 2018). The shift in functional brain organization parallels cognitive
development over this period, which is marked by the emergence of more integrative and
complex cognitive functions (Zelazo and Carlson, 2012), and is also evident within the structural
connectome (Park et al., 2020). Our finding of an inverse relationship between dimensionality
and executive functioning across the full sample, controlling for age, is consistent with this idea.
Greater integration of distributed brain regions into stable yet discrete functional networks,
indexed here by lower dimensionality, provides the neural substrate necessary to support
complex cognitive abilities across the lifespan (Bullmore et al., 2009). Controlling for age, we
also observed a positive association between BOLD signal dimensionality and semantic, or
crystallized, knowledge. This correlation, driven largely by the younger group, is consistent with
the shift from discrete, knowledge-dependent processing operations towards the emergence of
more flexible, schema-based and integrative cognitive functions (Dumontheil, 2014; Ferrer et al.,
2009). Within-group analyses revealed only a single positive correlation between dimensionality
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and episodic memory in the older adult cohort. While speculative, this may reflect the integrity
of the default network and its sub-network architecture in older adulthood (Andrews-Hanna et
al., 2014). The medial temporal lobe subsystem, strongly implicated in episodic memory, is
particularly vulnerable to age-related change (Buckner et al., 2005). The extent to which this
subsystem is preserved as a distinct component of the default network, reflected as greater
dimensionality in the BOLD signal, may support episodic memory performance into later life.
Contrary to expectation, lower BOLD dimensionality was associated with higher executive
functioning across the whole sample, discussed below.

Few studies have investigated BOLD signal dimensionality as a marker of adult cognitive
development, and we are not aware of any published work investigating these associations in
older adulthood. Our interpretations, therefore, of associations between dimensionality and
cognitive abilities must be considered preliminary. What is clear from these findings is that the
declines in the dimensionality of the BOLD signal, which begin in adolescence, continue
unabated throughout adulthood and into later life. In younger adults, lower dimensionality
reflects greater functional integration and the emergence of large-scale brain networks (Kundu et
al., 2018). However, our observation of continued reductions in BOLD signal dimensionality
into older adulthood suggests that network integration may reach an inflection point in middle
age (Zonneveld et al., 2019). After this point, continued reductions in dimensionality may no
longer be driven by network integration, but rather global network disintegration, and associated
loss of coherent network components in the BOLD signal. While beyond the scope of the current
report, such global shifts may result from systemic structural, neurophysiological, metabolic or
cerebrovascular changes known to occur with advancing age (e.g., Tsvetanov et al., 2020).

Macroscale and edge-level connectomics

Reductions in BOLD signal dimensionality into older age suggests a global shift towards a
dedifferentiated network architecture. We investigated whether this global shift may comprise
more precise topographical patterns, reflected as integration between specific networks and
nodes. We tested this hypothesis by examining both macroscale gradients and edge-level
differences in the aging connectome. While this is the first report of gradient analyses using
ME-fMRI and individualized parcellation methods, our findings largely recapitulate
connectivity gradients observed in young adults (Margulies et al., 2016). Coherent transitions in
functional connectivity patterns were observed from unimodal to transmodal association cortices
(principal gradient) and from visual to somatomotor cortices (second gradient). The topography
of both gradient patterns was preserved into older adulthood, indicating that the macroscale
organization of cortical connectivity is largely age-invariant. We did observe closer alignment of
the superior parietal lobule, a node of the dorsal attention network, with transmodal regions
which include regions of the default network. This is consistent with earlier reports of reduced
anticorrelation between the dorsal attention and default networks in later life (Spreng et al.,
2016). As predicted, we did not find reliable associations between measures of gradient
organization and cognition for either age group. While weak brain and behavior associations
have been reported previously (Bethlehem et al., 2020), the current findings suggest that the
macroscale gradient architecture of the brain is largely age-invariant and is likely an insensitive
marker of age-related cognitive change.
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To more precisely investigate edge-level connectivity patterns, we adopted a multivariate
analytical approach. As PLS uses singular value decomposition to test age-differences across all
edges in a single analytical step, we report RSFC differences across the full functional
connectome, eliminating the need to apply functional connectivity strength or density thresholds.
Visual inspection of the full connectomes for younger and older adults (Figure 3, Panels A-D)
reveals a global pattern of network dedifferentiation for older adults, consistent with our
dimensionality findings and previous reports (Betzel et al., 2014; Chan et al., 2014; Geerligs et
al., 2015; Malagurski et al., 2020; Strumme et al., 2020). These qualitative differences were
statistically validated in the group analysis (Figure 3, Panel E) and aggregate network matrices
(Figure 3, Panels F-G). As predicted, younger adults showed a robust pattern of within-network
connectivity, as well as connectivity between transmodal networks (Bullmore et al., 2009;
Gratton et al., 2012).

Despite preserved macroscale gradients, edge-level analyses revealed striking age differences in
network-specific connectivity patterns. First, within-network connectivity declined across the
seven canonical networks investigated here. Reduced within-network functional connectivity is a
hallmark of normative aging (Damoiseaux, 2017 for a review). As noted above, we speculate
that degraded within-network coherence is likely a key determinant of reduced BOLD signal
dimensionality in older adulthood. In addition to reduced within network coherence, edge-level
analyses also revealed three distinct, network-specific dedifferentiation patterns. The most
striking of these revealed greater integration of visual and somatomotor regions with all other
networks for older adults (Figure 3, Panel G). Functional integration of visual and somatosensory
regions has been observed previously. Age-related increases in node participation, a graph
analytic marker of functional integration, were limited to visual and somatosensory networks in a
large study of age-differences in RSFC (Geerligs et al., 2015). Connectivity patterns for visual
regions showed greater alignment with other networks for older adults in a recent study of
connectivity gradients (Bethlehem et al., 2020). Stumme and colleagues (2020) reported that age
differences in RSFC were most prominent in visual and somatosensory cortices, and these
changes mediated cognitive abilities in their older adult sample. Intrinsic functional integration
of visual regions within the broader connectome is consistent with task-based evidence
suggesting greater top-down modulation of visual association cortices by transmodal regions in
older adulthood. Greater activation of transmodal cortices, in the context of age-related declines
in the fidelity of sensory signaling, has been interpreted as increased demand for top-down
modulation of early sensory processing (Clapp et al., 2011; Li and Rieckmann, 2014; Payer et
al., 2006; Spreng and Turner, 2019). Indeed, sensory declines and motor slowing account for
much of the individual variability in cognitive functioning among older adults (Baltes and
Lindenberger, 1997; Salthouse, 1996). This suggests that greater modulation of these primary
sensorimotor regions may be necessary to sustain complex thought and action in later life. While
beyond the scope of the current study, we speculate that such task-driven demands for greater
cross-talk between transmodal and sensorimotor cortices may, in turn, shape the intrinsic
functional architecture of these networks in older adulthood.

We also conducted a targeted analysis of age-differences in the frontoparietal control, dorsal
attention, and default networks. Previous work has demonstrated that these networks interact
during goal-directed cognitive tasks (Spreng et al., 2010; Dixon et al., 2018; Murphy et al.,
2020), show similar connectivity profiles during both task and rest (Spreng et al., 2013) and
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undergo significant changes into older adulthood (Grady et al., 2016; Sullivan et al., 2019). For
this a priori analysis, we adopted the sub-network topography for the three networks derived
from the 17-network solution (Yeo et al., 2011). This enabled us to investigate age-related
changes with greater precision. While the predicted pattern of reduced within-network
connectivity was recapitulated across the sub-networks, two additional network-specific
dedifferentiation patterns also emerged. As predicted, we observed greater age-related coupling
of default and frontal brain regions, a pattern we have described as the Default to Executive
Coupling Hypothesis of Aging (DECHA; Turner and Spreng, 2015; Spreng and Turner, 2019).
This pattern did not emerge in the seven network analysis (Figure 3) or in the full, edge-level
sub-network matrices (Figure 4, panels E-G). However, when we applied a connectivity
threshold (top 5% of connectivity strengths), a clear DECHA pattern emerged for DN-A to
Control-A sub-networks (Figure 3, panel C-D). We have posited that this dedifferentiation
pattern may reflect the shifting architecture of cognition in later life (Spreng et al., 2018) with
both adaptive and maladaptive consequences for cognitive aging (Spreng and Turner, 2019).

A second dedifferentiation pattern emerged in this sub-network analysis. Older adults showed
greater connectivity between the dorsal attention and the two other association networks. This
pattern was particularly pronounced for a DAN-A subnetwork which includes the superior
parietal lobule. Previous reports have shown reduced anti-correlation between dorsal attention
and default networks (Keller et al., 2015; Spreng et al., 2016) in older adulthood. These
edge-level findings also converge with our gradient analyses where the superior parietal lobule, a
core node of DAN-A, was the only region to show an age-difference in connectivity gradient,
becoming more functionally integrated with other transmodal regions. The DAN-A sub-network
encompasses regions of the frontal, parietal and temporal cortices implicated in top-down, or
goal-directed, attentional control. This is again consistent with a neuromodulatory account of
neurocognitive aging, wherein greater allocation of attentional resources may be engaged to
sharpen perceptual representations in later life (Li et al., 2006; Li and Rieckmann, 2014).

BOLD dimensionality, functional connectivity and behavior

Our findings suggest that both global and network-specific dedifferentiation are core features of
the functional aging connectome. In a final series of analyses we investigated whether these
network changes were associated with aging cognition. Lower BOLD dimensionality, a marker
of generalized network dedifferentiation, was associated with higher executive functioning
across the whole sample, controlling for age. As noted above, this pattern has been associated
with the formation of a more modular network architecture in early development (Kundu et al.,
2018), and coincides with the emergence of executive control functions. Our data, the first to
report dimensionality in older adults, suggests that the relationship between dimensionality and
complex cognition may follow an inverted U-shaped function across the adult lifespan. In
adolescence and early adulthood, decreasing dimensionality reflects an adaptive shift from
discrete, localized processing units to a more integrated, large-scale, and lower dimensional
network architecture, necessary to support complex cognitive functions across the adult lifespan.
However, continued reductions in BOLD signal dimensionality into older age may reflect a
transition from network integration to network dedifferentiation, and the (re)emergence of local
processing networks. This interpretation is consistent with the recent observation that functional
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network integration may reach an inflection point in middle adulthood, marking a shift from
cognitive resilience to cognitive decline (Zonneveld et al., 2019).

This idea is consistent with reports associating network specific dedifferentiation with poorer
functioning on standardized measures of complex cognition (Chan et al., 2014; Rieck et al.,
2016; Spreng et al., 2018). We suggest that the emergence of these cross-network connections, in
the context of global reductions in the integrity of canonical brain networks, represent the
emergence of a more fractionated and maladaptive functional architecture into older age. We
have also argued that the emergence of these age-specific, cross-network circuits (e.g., default to
executive coupling) may also support or sustain complex, real world functioning in older
adulthood (Spreng and Turner, 2019). However, testing this hypothesis will require more
ecologically valid measures of complex cognition, and will be an important direction for future
work.

Conclusion

Employing a multifaceted data acquisition and analysis protocol, we provide a comprehensive,
multiscale account of the intrinsic functional architecture of the aging brain. As predicted, lower
connectivity was observed within all canonical brain networks, and associated sub-networks,
highlighting network dedifferentiation as a core feature of the aging connectome. Two distinct
dedifferentiation patterns emerged from the analyses. Reduced BOLD signal dimensionality
reflected the global shift towards a dedifferentiated network organization in older versus younger
adults. While macroscale network organization was age invariant, edge-level analyses did reveal
several network-specific patterns of dedifferentiation. Visual and somatomotor regions were
more functionally integrated into the broader network connectome, default and frontoparietal
control networks became more closely coupled, and the dorsal attention network showed less
differentiation from other transmodal networks. Continued network dedifferentiation across the
adult lifespan appears to reach an inflection point in later life, marking a shift from network
integration to network dedifferentiation. This global shift in functional architecture is also
accompanied by the emergence of specific cross-network connectivity patterns, likely marking
the transition from an adaptive to a maladaptive network organization.

The methodological and analytical innovations implemented here ameliorated several of the
most pervasive and enduring challenges in lifespan network neuroscience. These include
age-related variability in noise profiles within the BOLD signal, as well as distortions introduced
by group-wise spatial alignment to standardized templates. Of course, ME-fMRI protocols and
individualized parcellations cannot address the totality of confounds that complicate
cross-sectional data analyses. Among the most critical issues remaining involves resolving, or at
least accurately modeling, age differences in neurovascular coupling. Altered neurovascular
coupling with age can introduce spurious RSFC differences that are difficult to detect with
standard imaging protocols (Tsvetanov et al., 2020). While ME-ICA methods, which separate
neural from non-neural sources in the BOLD signal, are a significant advance, implementation of
multimodal methods such as simultaneous arterial spin labeling and echo-planar imaging may be
necessary to resolve this issue (Tsvetanov et al., 2020). Despite these limitations, we suggest that
the methodological innovations implemented here provide a comprehensive, multi-faceted, and
high-fidelity representation of age-differences in the functional network architecture of the brain.
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Taken together, the findings add much needed clarity and precision to the current understanding
of how functional networks are formed, shaped, and shifted into older adulthood.

Materials and Methods

Participants 
Participants were 181 younger (Mage=22.59y, SD=3.27; 57% female) and 120 older (Mage=68.63y,
SD=6.44; 54% female) healthy adults from Ithaca, New York, and Toronto, Canada (Table 1),
rendering a total sample size of 301. Participants were screened to rule out individuals with a
history of neurological or other medical illness known to impact cognition, acute or chronic
psychiatric illness, those undergoing current or recent treatment with psychotropic medication,
and those having experienced significant changes to health status within three months of the
eligibility interview. Younger and older participants were screened for depressive symptoms
using the Beck Depression Inventory (Beck et al., 1996) or the Geriatric Depression Scale
(Yesavage et al., 1982), respectively. Two older adults were excluded due to a rating of
“moderate depression”. Older adults were additionally administered the Mini-Mental State
Examination (MMSE; Folstein et al., 1975) to rule out mild cognitive impairment or sub-clinical
dementia. Participants with MMSE scores below 27/30 were excluded if fluid cognition scores
(Gershon et al., 2013) also fell below an age-adjusted national percentile of 25%. All participants
were right-handed with normal or corrected-to-normal vision. Procedures were administered in
compliance with the Institutional Review Board at Cornell University and the Research Ethics
Board at York University.

Cognitive Assessment
283 of 301 individuals (163/181 younger adults, 120/120 older adults) underwent extensive
cognitive assessment over three to four days prior to brain scanning. Index scores were created
for cognitive domains of episodic memory, semantic memory, executive function, and processing
speed (descriptives in Table 1). Episodic memory tasks included Verbal Paired Associates from
the Wechsler Memory Scale-IV (Wechsler, 2009), the Associative Recall Paradigm (Brainerd et
al., 2014), and NIH Cognition Toolbox Rey Auditory Verbal Learning and Picture Sequence
Memory Tests (Gershon et al., 2013). Semantic memory tasks included Shipley-2 Vocabulary
(Shipley et al., 2009), and NIH Cognition Toolbox Picture Vocabulary and Oral Reading
Recognition Tests (Gershon et al., 2013). Executive function comprised the Trail Making Test
(B-A; Reitan, 1958), the Reading Span Task (Daneman & Carpenter, 1980), NIH Cognition
Toolbox Flanker Inhibitory Control and Attention task, Dimensional Change Card Sort, and List
Sort Working Memory Tests (Gershon et al., 2013). Processing speed was tested with the Symbol
Digit Modalities Test, Oral (Smith, 1982). 

All data were z-scored. Index scores represent the average z-score (reversed where relevant) for
all measures included within a cognitive domain. Across the four domains, higher scores
represent better performance. Brain-behavior product-moment correlations were conducted at an
alpha level of .05 with 83% confidence intervals (Austin & Hux, 2002) and Bonferroni
adjustment for multiple comparison of p<.013 for four index score tests.
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Neuroimaging

Image Acquisition
Imaging data were acquired on a 3T GE750 Discovery series MRI scanner with a 32-channel
head coil at the Cornell Magnetic Resonance Imaging Facility or on a 3T Siemens Tim Trio MRI
scanner with a 32-channel head coil at the York University Neuroimaging Center in Toronto.
Scanning protocols were closely matched across sites. Anatomical scans at Cornell were
acquired using a T1-weighted volumetric magnetization prepared rapid gradient echo sequence
(TR=2530ms; TE=3.4ms; 7° flip angle; 1mm isotropic voxels, 176 slices, 5m25s) with 2x
acceleration with sensitivity encoding. At York, anatomical scans were acquired using a
T1-weighted volumetric magnetization prepared rapid gradient echo sequence (TR=1900ms;
TE=2.52ms; 9° flip angle; 1mm isotropic voxels, 192 slices, 4m26s) with 2x acceleration and
generalized auto calibrating partially parallel acquisition (GRAPPA) encoding at an iPAT
acceleration factor of 2. Two 10m06s resting-state runs were acquired using a multi-echo (ME)
EPI sequence at Cornell University (TR=3000ms; TE1=13.7ms, TE2=30ms, TE3=47ms; 83° flip
angle; matrix size=72x72; field of view (FOV)=210mm; 46 axial slices; 3mm isotropic voxels;
204 volumes, 2.5x acceleration with sensitivity encoding) and York University (TR=3000ms;
TE1=14ms, TE2=29.96ms, TE3=45.92ms; 83° flip angle; matrix size=64x64; FOV=216mm; 43
axial slices; 3.4x3.4x3mm voxels; 200 volumes, 3x acceleration and GRAPPA encoding).
Participants were instructed to stay awake and lie still with their eyes open, breathing and
blinking normally in the darkened scanner bay.

Image Processing
Anatomical images were skull stripped using the default parameters in FSL BET (Smith, 2002).
Brain-extracted anatomical and functional images were submitted to ME-ICA (version 3.2 beta;
https://github.com/ME-ICA/me-ica; Kundu et al., 2011; Kundu et al., 2013). ME-ICA relies on
the TE-dependence model of BOLD signal to determine T2* in every voxel and separates BOLD
signal from non-BOLD sources of noise. Prior to TE-dependent denoising, time series data were
minimally preprocessed: the first 4 volumes were discarded, matrices were computed for
de-obliquing, motion correction, and anatomical-functional coregistration, and volumes were
brought into spatial alignment across TEs. The T2* maps were then used for
anatomical-functional coregistration. Gray matter and cerebrospinal fluid compartments are more
precisely delineated by the T2* map than by raw EPI images (Speck et al., 2001; Kundu et al.,
2017), which is an important consideration in aging research where these boundaries are often
blurred by enlarged ventricles and greater subarachnoid space. Volumes were then optimally
combined across TEs and denoised.

Image quality assessment was performed on the denoised time series in native space to identify
and exclude participants with unsuccessful coregistration, residual noise (in-scanner motion >3
mm coupled with denoised time series showing DVARS >1, Power et al., 2012), poor temporal
signal to noise ratio < 50, or fewer than 10 retained BOLD-like components (see Supplementary
Figure 1 for the group temporal signal to noise map). 

The denoised BOLD component coefficient sets in native space, optimized for functional
connectivity analyses (Kundu et al., 2013), were used in subsequent steps. We refer to these as
multi-echo functional connectivity (MEFC) data. Additional measures were taken to account for
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variation in the number of independent components from ME-ICA once connectivity matrices
were estimated, as detailed below. MEFC neuroimages were mapped to a common cortical
surface for each participant using FreeSurfer v6.0.1 (Fischl et al., 2012). To maximize alignment
between intensity gradients of structural and functional data (Greve & Fischl, 2009), MEFC data
were first linearly registered to the T1-weighted image by run. The inverse of this registration
was used to project the T1-weighted image to native space and resample the MEFC data onto a
cortical surface (fsaverage5) with trilinear volume-to-surface interpolation. Once on the surface,
runs were concatenated and MEFC data at each vertex were normalized to zero mean and unit
variance.

Individualized Parcellation. We generated participant-specific functional parcellations to
examine individual differences in functional brain network organization using the Group Prior
Individual Parcellation (GPIP; Chong et al., 2017). This approach enables a more accurate
estimation of participant-specific individual functional areas (Chong et al., 2017) and is more
sensitive to detecting RSFC associations with behavior (Kong et al., 2019; Mwilambwe-Tshilobo
et al., 2019). The main advantage of this approach is that the correspondence among parcel labels
is preserved across participants, while the parcel boundaries are allowed to shift based on the
individual-specific functional network organization of each participant—thus providing a
similar connectivity pattern that is shared across the population. Starting from an initial
pre-defined group parcellation atlas, GPIP first refines each individual’s parcel boundaries
relative to their resting-state fMRI data. Next, the concentration (inverse covariance/partial
correlation) matrices from all subjects are jointly estimated using a group sparsity constraint.
GPIP iterates between these two steps to continuously update the parcel labels until convergence.
Compared to other group-based parcellation approaches, GPIP has shown to improve the
homogeneity of the BOLD signal within parcels and the delineation between regions of
functional specialization (Chong et al., 2017).

We extracted MEFC data from each vertex and applied the above parcellation across the entire
cohort of 301 participants at resolutions of 200 and 400 parcels. For each resolution, MEFC data
were initialized to a group parcellation atlas developed by Schaefer et al. (2018). The two-step
iterative process was repeated 20 times to produce a final parcellation representing the optimal
partition with respect to the entire cortical surface. We calculated homogeneity by taking the
average correlation coefficient of all pairs of vertices in a given parcel and then averaging across
all parcels. This was repeated at each repetition to observe the incremental change in
homogeneity as the iterative parcellation proceeded. Homogeneity was calculated first at the
participant level and then averaged across the entire cohort for a group estimate. For a subset of
participants, some parcels from the final partition merged into the medial wall (where no data
existed) or into parcels belonging to the contralateral hemisphere. Because partitions likely
reflect participant-specific neurobiological variations in functional organization, parcels assigned
to the contralateral hemisphere were allowed to retain their original group atlas label. With the
400-parcel resolution, parcels merging with the medial wall occurred in 69 older adults and 35
younger adults, averaging 2-3 parcels in these participants; parcels migrating to the contralateral
hemisphere occurred in 62 older adults and 24 younger adults, averaging 2-3 parcels. With the
200-parcel resolution, parcels merging with the medial wall occurred in 18 older adults and 10
younger adults, averaging 1 parcel in these participants. No parcels migrated to the contralateral
hemisphere at this resolution.
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Functional Connectivity Matrix. A connectivity matrix was constructed for each participant
according to their individualized parcel solution. We extracted and spatially averaged the
resulting MEFC data from each parcel and computed the product-moment correlation between
each pair, resulting in a nparcels × nparcels functional connectivity matrix (Ge, Holmes, Buckner,
Smoller, & Sabuncu, 2017). In this approach, RSFC was calculated as the correlation of the ICA
coefficients across parcels, rather than a correlation across BOLD signal time-series, as is
typically done (see Kundu et al., 2013). The canonical Fisher’s r-to-z transformation was then
applied to normalize the distribution of correlation values and account for variation in MEFC
data degrees of freedom, or the number of de-noised ICA coefficients, across individuals (Kundu
et al., 2013):

Z = arctanh(R)･ 𝑑𝑓 − 3

where R is the product-moment correlation value and df refers to the number of denoised ICA
coefficients. Computing functional connectivity with approximately independent component
coefficients rendered global signal regression unnecessary (Spreng et al., 2019). Critically,
ME-ICA effectively removes distance-dependent RSFC motion confounds from fMRI data
(Power et al., 2018).

Analysis

BOLD Dimensionality
A unique advantage of ME-fMRI and the ME-ICA processing framework is that BOLD- and
non-BOLD-like signals can be separated into independent components. A novel metric of
“BOLD dimensionality,” the number of BOLD components identified in the ME-fMRI time
series, may then be examined (e.g. Kundu et al., 2018). We assessed the test-retest reliability of
BOLD dimensionality across two runs of data. Total BOLD dimensionality was then compared
between groups with an independent samples t-test. To observe the trajectory of BOLD
dimensionality with increasing age across the lifespan, BOLD dimensionality data from an
independent developmental sample (N = 51, 10 female; Mage=21.9 years; age range, 8.3 – 46.2
years; see Kundu et al., 2018 for details) were pooled with the current data. To render the
samples comparable and account for differences in acquisition across datasets, BOLD
dimensionality was scaled by the number of timepoints acquired. The relationship between age
and BOLD dimensionality was then fit to a power law function (see Supplementary Figure 2 for
unscaled version).
 
Gradients & Manifold Eccentricity
Cortical gradients were computed using functions from the BrainSpace toolbox
(https://github.com/MICA-MNI/BrainSpace; Vos de Wael et al., 2020), as implemented in
MATLAB. For each participant, the 400 x 400 GPIP functional connectivity matrix was
thresholded row-wise to the upper 10% of connections to retain only the strongest positive
connections (Hong et al., 2019; Margulies et al., 2016). Cosine similarity was computed on the
sparse matrix to input to the diffusion map embedding algorithm employed below, generating a
matrix that captures similarity in whole-brain connectivity patterns between vertices (Hong et al.,
2019; Margulies et al., 2016). 
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We then applied diffusion map embedding, a non-linear dimensionality manifold learning
technique from the family of graph Laplacians (Coifman et al., 2005), to identify gradient
components at the individual participant level. Each gradient represents a low-dimensional
embedding estimated from a high-dimensional similarity matrix. In the embedding space,
vertices that feature greater similarity in their whole-brain functional connectivity patterns
appear closer together, whereas vertices that are dissimilar are farther apart. Each embedding
axis can thus be interpreted as an axis of variance based on connectivity pattern
similarity/dissimilarity. Euclidean distance in the embedded space is equivalent to the diffusion
distance between probability distributions centered at those points, each of which is equivalent to
a difference in gradient score. The algorithm is controlled by a single parameter α, which
controls the influence of density of sampling points on the manifold with α = 0.5 (Margulies et
al, 2016). This differentiates diffusion map embedding from Laplacian eigenmaps, and allows
the inclusion of both global and local relationships in the estimation of the embedded space. An
iterative Procrustes rotation was performed to align participant-specific gradient components to a
Young-Old group average template and enable group comparisons. Group contrasts were
conducted using surface-based linear models, as implemented in Surfstat (Worsley et al., 2009;
http://www. math.mcgill.ca/keith/surfstat/).

We calculated a metric of manifold eccentricity to quantify the diffusivity of vertices in gradient
space. Following Bethlehem et al. (2020) and Park et al. (2020), we summed the squared
Euclidean distance of each vertex from the whole-brain median in a 2-dimensional gradient
space for each participant. Mean manifold eccentricity was then compared across age groups.
Statistical significance was determined with spin-test permutation testing, which overcomes
biases in the test statistic due to the spatial autocorrelation inherent to BOLD data
(Alexander-Bloch et al., 2018). 
 
Edge-level Connectomics
Inter-regional functional connectivity group differences were determined with partial least
squares (PLS). PLS is a multivariate method that determines the association between two sets of
variables by identifying linear combinations of variables in both sets that maximally covary
together (McIntosh and Lobaugh, 2004; McIntosh and Misic, 2013). In our analyses, one set of
variables was individual RSFC matrices, while the other set represented group assignment or
individual difference metrics. 

Functional connectivity was assessed at the whole-brain level using the Schaefer atlas (Schaefer
et al., 2018; Yeo et al., 2011; 400 x 400 matrix; 200 x 200 matrix as supplementary analysis,
Supplementary Figure 3). Motivated by prior work (e.g., Grady et al., 2016; Sullivan et al., 2019;
Spreng et al., 2016), we also examined RSFC among sub-networks of the default, frontoparietal
control, and dorsal attention networks. For the sub-network analysis, we first reassigned each of
the 400 parcels to the corresponding network of the Yeo 17-network solution following the
mapping based on Schaefer et al. (2018). Next, we created a matrix for the pairwise connections
between the following 8 sub-networks: dorsal attention (DAN-A, DAN-B), frontoparietal control
(CONT-A, CONT-B, CONT-C), and default (DN-A, DN-B, DN-C) resulting in a 192x192 parcel
matrix. The full 17-network characterization of the 400x400 parcel results, along with the
17-network and sub-network characterizations of the 200x200 matrix, can be found in
Supplementary Figures 4, 5, and 7. At each level, a data matrix X was created using all

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2021. ; https://doi.org/10.1101/2021.03.31.437922doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437922
http://creativecommons.org/licenses/by-nc-nd/4.0/


participants’ parcellated functional connectivity matrices. The X matrix was organized such that
each row corresponded to an observation (each participant, nested in age groups), and the cells in
each column corresponded to the unique connections from each participant’s connectivity matrix
(the lower triangle of the matrix). The column means within each group were calculated, and the
data in X were mean-centered. The mean-centered data were then submitted to singular value
decomposition (SVD) to provide mutually orthogonal latent variables. Each latent variable
represents a specific relationship (e.g. RSFC x Group) and consists of three elements: (1) a left
singular vector consisting of the weighted connectivity pattern that optimally expresses the
covariance, (2) a right singular vector, which represents the weights of the study design variables
and can be interpreted as data-driven contrast weights between groups, and (3) a scalar singular
value, which represents the covariance strength between the design variables (Group) and RSFC
accounted for by each latent variable. Brain connectivity scores were calculated by taking the dot
product of the left singular vector and each participant’s RSFC matrix. A brain connectivity
score, therefore, represents a single measure of the degree to which a participant expresses the
connectivity pattern captured by a given latent variable. 

All PLS latent variables were statistically evaluated using permutation testing. Rows of X were
randomly reordered and subjected to SVD iteratively, as described above. This was done 1,000
times, creating a distribution of singular values under the null hypothesis of no existing
relationships between X and Y for the corresponding PLS analysis, that there is no group
difference in whole-brain (or sub-network) RSFC. A p-value was computed for each latent
variable as the proportion of permuted singular values greater than or equal to the original
singular value. Critically, permutation tests involve the entire multivariate pattern and are
performed in a single analytic step, so correction for multiple comparisons is not required
(McIntosh and Lobaugh, 2004). 

Bootstrap resampling was used to estimate the reliability of weights for each RSFC edge.
Participants were randomly resampled (rows in X) with replacement while respecting group
membership. The matrix was subjected to SVD and the process was repeated 1,000 times,
generating a sampling distribution for the weights in the singular vectors. To identify individual
connections that made a statistically significant contribution to the overall connectivity pattern,
we calculated the ratio between each weight in the singular vector and its bootstrap-estimated
standard error. Bootstrap ratios are equivalent to z-scores if the bootstrap distribution is
approximately unit normal (Efron and Tibshirani, 1986). Bootstrap ratios were, therefore,
thresholded at values of ±1.96, corresponding to the 95% CI. 

Network-Level Contributions
PLS analyses identified inter-regional connectivity patterns that differed by group and/or
covaried with individual difference metrics. For each of these analyses, network-level effects
were also examined. To quantify the network-level contributions to the PLS-derived functional
connectivity pattern, two separate weighted adjacency matrices were constructed from positive
and negative RSFC weights. For both matrices, nodes represent parcels defined by the individual
parcellation, while edges correspond to the thresholded bootstrap ratio of each pairwise
connection. Network-level functional connectivity contributions were quantified by assigning
each parcel according to the network assignment reported by Yeo et al. (2011), and taking the
average of all connection weights in a given network, thereby generating a 7 x 7 matrix (17 x 17
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matrix for the 17-network solution; and an 8 x 8 matrix when examining interactivity for the
default, frontoparietal control, and dorsal attention sub-networks). The significance of mean
within- and between- network connectivity was computed by permutation testing. During each
permutation, network labels for each node were randomly reordered and the mean within- and
between- network connectivity were recalculated. This process was repeated 1000 times to
generate an empirical null sampling distribution that indicates no relationship between network
assignment and connectivity pattern (Shafiei et al., 2019). The significance of the pairwise
connections of the original network matrix was determined by estimating the proportion of times
the value of the sampling distribution was greater than or equal to the original value. 

Spring-Embedded Plots
Spring-embedded plots were rendered from group average matrices of RSFC data using Pajek
software (Mrvar & Batagelj, 2016). Sparse matrices containing the top 5% of positive
connections were created and fed into Pajek. A partition was assigned based on the Yeo 7 or 17
network solution (Yeo et al., 2011) to optimize community (i.e., network) structure for
visualization.
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Supplemental Material

Supplementary Figure 1

Supplementary Figure 1 Caption: Temporal Signal to Noise. A temporal signal to noise ratio (tSNR) map was
created for both runs of each participant’s denoised data and averaged. The average group map (N=301) was
projected onto an inflated surface, separated by L and R hemispheres. Maps were thresholded to demonstrate that
the low end of tSNR values were well above 50. A maximum tSNR of 400 is shown here for visualization purposes.
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Supplementary Figure 2

Supplementary Figure 2 Caption: BOLD signal dimensionality. The scatter plot shows BOLD signal dimensionality
by age with a power distribution and 95% confidence intervals overlaid. Points in white were contributed by Kundu
and colleagues (2018). Here, BOLD dimensionality is not adjusted by number of time points acquired. BOLD
dimensionality was averaged across two runs for points in black.
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Supplementary Figure 3

Supplementary Figure 3 Caption: Functional connectomics in younger and older adults. Mean RSFC for the
200-parcellated MEFC data in (A) younger and (B) older adults. Spring-embedded plots with a 7-network solution
(5% edge density) of the mean correlation matrices for (C) younger and (D) older adults. (E) Multivariate PLS
analysis was used to identify age-related differences in RSFC between younger and older adults. Red color indicates
greater RSFC in younger adults, and blue color indicates greater RSFC in older adults. (F-G) Network contributions
reflecting differences in large-scale distributed networks. (F) Greater within- and between- network connectivity in
young, lower in older adults. (G) Greater within- and between- network connectivity in older adults, lower in
younger adults. The mean positive (F) and negative (G) bootstrap ratios within and between networks are expressed
as a p-value for each z-score relative to a permuted null model. Higher values indicate greater connectivity than
predicted by the null distribution. VIS = visual, SOM= somatomotor, DAN= dorsal attention, VAN = ventral
attention, LIM = limbic, FPC= frontoparietal control, DN= default.
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Supplementary Figure 4

Supplementary Figure 4 Caption: Functional connectomics in younger and older adults. Mean RSFC for the
400-parcellated MEFC data in (A) younger and (B) older adults. Spring-embedded plots with a 17-network solution
(5% edge density) of the mean correlation matrices for (C) younger and (D) older adults. (E) Multivariate PLS
analysis was used to identify age-related differences in RSFC between younger and older adults. Red color indicates
greater RSFC in younger adults, and blue color indicates greater RSFC in older adults (p<0.0001; 100% variance
explained). (F-G) Network contributions reflecting differences in large-scale distributed networks. (F) Greater
within- and between- network connectivity in young, lower in older adults. (G) Greater within- and between-
network connectivity in older adults, lower in younger adults. The mean positive (F) and negative (G) bootstrap
ratios within and between networks are expressed as a p-value for each z-score relative to a permuted null model.
Higher values indicate greater connectivity than predicted by the null distribution. VIS = visual, SOM=
somatomotor, DAN= dorsal attention, VAN = ventral attention, LIM = limbic, FPC= frontoparietal control, DN=
default.
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Supplementary Figure 5

Supplementary Figure 5 Caption: Functional connectomics in younger and older adults. Mean RSFC for the
200-parcellated MEFC data in (A) younger and (B) older adults. Spring-embedded plots with a 17-network solution
(10% edge density) of the mean correlation matrices of (C) younger and (D) older adults. The threshold used for the
spring-embedded plots was set at a higher threshold due to the sparsity of the graph at thresholds lower than 10%.
(E) Multivariate PLS analysis was used to identify age-related differences in RSFC between younger and older
adults (p<0.0001; 100% variance explained). Red color indicates greater RSFC in younger adults, and blue color
indicates greater RSFC in older adults. Network contributions reflecting differences in large-scale distributed
networks between (F) younger and (G) older adults. The mean positive bootstrap ratios within and between networks
are expressed as a z-score relative to a permuted null model. Higher values indicate greater than expected
connectivity in both age groups. VIS = visual; SOM=somatomotor; DAN= dorsal attention; VAN = ventral attention;
LIM = limbic, FPC= frontoparietal control, DN= default.
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Supplementary Figure 6

Supplementary Figure 6 Caption: Functional connectivity of the dorsal attention (DAN), frontoparietal control
(CONT), and default (DN) sub-networks following Yeo 17-network solution. Mean group connectivity for the
200-parcellated MEFC data in (A) younger and (B) older adults. Spring-embedded plots (10% edge density) of the
mean correlation matrices for (C) younger and (D) older adults. A lower threshold was used for the
spring-embedded plots due to the sparsity of the graph at higher thresholds (p<0.0001;100% variance explained). (E)
Differences in RSFC between younger and older adults among DAN, CONT, and DN. (F) Greater within- and
between- network connectivity in young. (G) Greater within- and between- network connectivity in older adults.
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Supplementary Figure 7

Supplementary Figure 7 Caption: Cross-validation of the PLS results. (A) Age differences in the full functional
connectome from run one. (B) Group differences in brain scores computed from run two, based upon the
edge-weights determined in run one. (C) Age differences in the functional connectivity of the dorsal attention
(DAN), frontoparietal control (CONT), and default (DN) sub-networks from run one. (D) Group differences in brain
scores computed from run two, based upon the edge-weights determined in run one.
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