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Abstract

The traditional model of genomic data analysis — downloading data from centralized warehouses for analysis
with local computing resources — is increasingly unsustainable. Not only are transfers slow and cost prohibitive,
but this approach also leads to redundant and siloed compute infrastructure that makes it difficult to ensure
security and compliance of protected data. The NHGRI Genomic Data Science Analysis, Visualization, and
Informatics Lab-space (AnVIL; https://anvilproject.org) inverts this model, providing a unified cloud computing
environment for data storage, management, and analysis. AnVIL eliminates the need for data movement,
allows for active threat detection and monitoring, and provides scalable, shared computing resources that can
be acquired by researchers as needed. This presents many new opportunities for collaboration and data
sharing that will ultimately lead to scientific discoveries at scales not previously possible.
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Main Text
I. History of genomics data sharing

Genomics has become a central component to the study of many facets of biology and medicine (Green et al.,
2020; Koboldt et al., 2013). Across ancestry analysis (Byrska-Bishop et al., 2021; Karczewski et al., 2020),
disease & trait associations (Taliun et al., 2021; Wainschtein et al., 2019), developmental biology (Tanay &
Regev, 2017; Trapnell et al., 2014), and many other fields, large scale genome and genomics sequencing has
grown tremendously over the past few decades, driven in large part by the technological improvements that
have substantially decreased the cost and time required for sequencing (Goodwin et al., 2016). For example,
the National Human Genome Research Institute (NHGRI) Centers for Common Disease Genomics (CCDG)
and Centers for Mendelian Genomics (CMG) programs seek to identify the genetic components of many major
common and rare diseases through the sequencing of more than one hundred thousand genomes (Green et
al., 2020). This scale of analysis opens many new opportunities for discovery that would not otherwise be
possible, especially for detecting weak associations with rare variants that can only be measured over large
cohorts (McCarthy et al., 2008). However, this scale of sequencing also introduces major new technical
challenges that require overhauling how genomics and genomics data science are performed. Most urgently, it
has become increasingly impractical to perform genomics research by replicating project data across
institutional computing clusters, causing us to reformulate how genomics data can be shared and analyzed.

Because the power of genomics is often only realized through large scale data aggregation, genomics has
developed a strong tradition for collaborative research and the open sharing of data. Most famously, this tenet
was codified by the leaders of the Human Genome Project in 1996 as the “Bermuda Principles”, where they
agreed that all human genomic sequence information generated by the project should be made freely available
and in the public domain within 24 hours after generation (Barranco, 2021). These principles were established
to maximize the benefit of the data to society, especially as private companies during this era were beginning
to apply for patents around human gene sequences (Gold & Carbone, 2010). These core principles were later
extended in 2009 by the “Toronto Agreement”, which established the rules for sharing data prepublication
(Toronto International Data Release Workshop Authors et al., 2009), and later in 2015 by the NIH Genomic
Data Sharing Policy, which requires all large scale sequencing data funded by the NIH to be openly shared
(National Institutes of Health, 2014). Complementing the efforts by the funding agencies, many major scientific
journals now require data to be deposited into public databases before papers will be published, especially
journals serving the genomics community (Powell, 2021).

In response to these requirements for data sharing, several large repositories have been established for
storing and sharing genomics data. For high throughput sequencing data, the NCBI Sequence Read Archive
(SRA) has emerged as the largest publicly available repository, with over 50 Petabases (Pbp) of data currently
available through multiple cloud providers and NCBI servers (Leinonen et al., 2011). As most patients have not
consented for open release of their genomics data, the closely related database of Genotypes and Phenotypes
(dbGaP) was developed to archive and distribute genomics and related data from studies that have
investigated the interaction of genotype and phenotype in humans (Tryka et al., 2014). This database currently
manages access for 7,582 datasets in 1,232 studies, most of which are “controlled access” where researchers
must apply for access to the datasets to an NIH Data Access Committee (DAC) that evaluates if the research
goals are consistent with patient consent forms and any constraints identified by the institutions that submitted
the data.
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However, as valuable as these and related databases have become, they are generally static resources that
do not allow detailed analysis to be performed directly within these systems. Instead, researchers using public
data and researchers involved in large sequencing efforts most often begin by downloading the data to an
institutional computing cluster for analysis.

Il. Inverting the model of data sharing

The traditional model of genomic analysis has been centered around institutional computing clusters where
researchers install and maintain their own suite of computational tools to analyze the datasets that are stored
directly within their data center. This model presents a high level of flexibility and control for an individual
researcher, but the siloed nature of this model introduces several major barriers and inefficiencies. To start, this
model leads to redundant infrastructure where each institution establishes its own data center, and creates
major administrative inefficiencies where many of the same analysis tools must be deployed and maintained
within each center. Software management tools like bioconda (Griining et al., 2018) or integrated analysis
suites such as Bioconductor (Gentleman et al., 2004), aim to simplify such installations, but maintaining
software remains a huge burden in aggregate considering the large number of data centers and users
involved.

This model is particularly challenging for collaborative analysis, as it requires data to be copied from one data
center to another, which becomes more difficult and costly as the data sets increase in size. For example, a
moderately large project, such as the 1000 Genomes project, which contains the CRAM files for 3,202
genomes in the extended collection (Byrska-Bishop et al., 2021) is ~80TB and requires several days to make a
single copy over typical institutional Internet connections. Larger studies, such as the recent TopMed release
with 563,831 genomes (Taliun et al., 2021) is approximately 2PB in size for the CRAM files and will require
several weeks to several months to make a single copy. Equally important, reproducibility is very challenging in
such a distributed analysis as it becomes increasingly difficult to record the provenance of how files are created
across systems. In extreme cases, incompatible or conflicting versions of a tool or dataset could be used by
different groups, leading to scientifically invalid results.

A much more scalable model for collaborative research is to invert the model of data sharing: instead of
moving data to each researcher, researchers remotely move to the data through the use of cloud computing
resources (Langmead & Nellore, 2018; Schatz et al., 2010) (Figure 1). This way only a single copy of the data
needs to be maintained, which can then be accessed and analyzed by any number of researchers. This model
introduces substantial advantages, including reduced redundancy and costs for data storage and greater
flexibility in computing resources. Notably, computing in the cloud is “elastic”’, meaning that additional
computational resources can be dynamically added to match the needs for the analysis to be performed at a
given time. Crucially, these resources can also be scaled down when they are not needed after an analysis is
complete to limit the costs involved. This model is also much more efficient to manage, as software only needs
to be installed or updated in one location for all users to benefit. Finally, centralized services, especially
intrusion detection and auditing, can be far more detailed to ensure data security for protected data sets.

Such web-based and cloud-based resources have a strong and growing role in genomics, starting with
ubiquitous and classic examples such as the NCBI BLAST server (Johnson et al., 2008) or the UCSC Genome
Browser (Navarro Gonzalez et al., 2021). Another rich example is Galaxy (Goecks et al., 2010; Jalili et al.,
2020), an open, web-based computational workbench for performing accessible, reproducible, and transparent
genomic science with features for executing scientific workflows, data integration, and data and analysis
persistence. Even more recent was the NCI Cloud Pilots program, which aimed to provide secure on-demand
access to cancer datasets, analysis tools and computing resources (Lau et al., 2017). However, historically
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these systems have not been sufficient for complete end-to-end analyses of large-scale human genetics and
genomics research: their analysis & data management capabilities were too narrow, the data footprint was too
large to effectively manage, or the computing environment was not certified for the analysis of protected
datasets. Fortunately, as described below, recent advances now make it possible to address all of these issues
and provide a cloud-based computing environment that is flexible enough and scalable enough to support any
analysis as well as or better than a local computing cluster.
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Figure 1. Inverting the model for data sharing. In the traditional model (left), project data are copied from to
multiple sites where they are accessed by users on institutional computing clusters. In the inverted model
(right), users connect to a cloud-enabled resource such as the AnVIL to remotely access and analyze the data
without copying.

lll. AnVIL System Architecture

In response to these needs, we the AnVIL team with the support of the NHGRI have developed the Genomic
Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL). The AnVIL is a federated cloud
platform designed to manage and store genomics and related data, enable population-scale analysis, and
facilitate collaboration through the sharing of data, code, and analysis results. It includes a variety of graphical
user interfaces along with RESTful interfaces and APls for programmatic access in several popular languages.
The compute environment for AnVIL is currently built on the Google Cloud Platform (GCP) to enable massive
scalability and capacity for users, as well as a robustly established security perimeter authorized for the
storage and analysis of controlled access datasets. Specifically, the AnVIL is a FISMA-Moderate certified
computing environment and complies with all requirements set forth in NIST-800-53. This includes robust
logging of access to data, periodic audits by third party analysts, and monitoring for abnormal use patterns.

Within the AnVIL, users have several options for analysis and a rich data management ecosystem allowing
researchers to search across large collections of data and build novel synthetic cohorts to empower new
discoveries out of existing datasets. The analysis components can be broadly characterized as those
supporting batch computing, especially through the use of the Workflow Description Language, and interactive
computing, using popular analysis suites such as R/Bioconductor, Jupyter notebooks, and Galaxy. Through
these components, thousands of genomics analysis tools and workflows are available for a wide variety of


https://doi.org/10.1101/2021.04.22.436044
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.22.436044; this version posted April 23, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

analyses. This includes population-scale variant calling with GATK or freebayes (Garrison & Marth, 2012; Van
der Auwera et al., 2013), gene expression analysis for both bulk and single cell datasets (Amezquita et al.,
2020; Grabherr et al., 2011; Li et al., 2020), methylation analysis (Krueger & Andrews, 2011), COVID-19 viral
genomics analysis workflows (Baker et al., 2020; Lemieux et al., 2021), and thousands more. For example,
Supplemental Note 1 displays the workspace for germline variant calling using GATK4. With it, a standard 30x
coverage short read dataset can be aligned and variant called in less than 1 day and for less than $5.00 worth
of compute. Interestingly, because of the highly scalable nature of cloud computing, processing additional
samples, even hundreds or thousands of additional samples, will require approximately the same amount of
wall clock time, although costs will scale approximately linearly with the number of samples. Supplemental
Note 2 displays the workspace for analyzing differential gene expression with Bioconductor’s edgeR package.
Using the interactive notebooks environment, code and visualizations can easily be interleaved throughout the
analysis, starting with quality control through the identification of statistically significant differentially expressed
genes. In this example, 1,933 genes decreased expression and 1,794 genes increased expression within a
BACH1 knockout dataset. A major current focus is to integrate additional tools and workflows for clinical
genomics, especially the calculation and utilization of polygenic risk scores (Torkamani et al., 2018) and
pharmacogenomics analysis (Lauschke & Ingelman-Sundberg, 2020). Already more than 15,000 users have
used the AnVIL, and the number of users is rapidly growing. Here we review some of the major analysis
components found within the AnVIL (Figure 2).

AnVIL Portal: Entry into the AnVIL ecosystem

The initial entry point for AnVIL users is through the AnVIL Portal (https://anvilproject.org). The portal provides
unified entry to all of the available tools and datasets available within the system. In addition to a wide variety
of training materials and announcements, the portal also has a searchable catalog of the data that are loaded
within the AnVIL. Currently, the AnVIL hosts data from >280,000 human genomes from >240 different cohorts
spanning CCDG, CMG, the Electronic Medical Records and Genomics (eMERGE) Network, GTEx (GTEx
Consortium, 2020) and several others (Figure 2). Because only summary information is displayed, any user
can browse all of the datasets that are present even if they are not authorized to view the specific data files.
This way a user can learn what is available (e.g. all studies of a particular disease or phenotype), and if
necessary, direct them to apply for authorization through the appropriate Data Access Committee (e.g. dbGaP
or the consortium that maintains the data). The AnVIL also maintains a few critical open access datasets,
especially the widely used 1000 Genomes collection of diverse human samples (Byrska-Bishop et al., 2021),
including both raw data and harmonized variant calls.

Gen3: Management, analysis, harmonization, and sharing of large datasets

Gen3 (https://gen3.theanvil.io) is an open-source cloud-based data platform for managing, analyzing,
harmonizing, and sharing large datasets. It is based on a set of standards-based services with open APIs
called framework services for authentication, authorization, creating and accessing FAIR data objects
(Wilkinson et al., 2016), and importing and exporting bulk clinical and phenotype data. In particular, it supports
assigning persistent digital identifiers to data objects, assigning associated metadata, and accessing the data
objects using the GA4GH DRS standard. Gen3 supports authentication and authorization management using
OpenlID tokens and interoperates with the NIH Research and Authorization Service (RAS). Framework
services are also used by other large scale genomics platforms, including NCI's Cancer Research Data
Commons, NHLBI’s BioData Catalyst, and the Kids First Data Resource. Framework services provide the
basic scaffolding so that systems such as AnVIL can access data from other cloud-based platforms for
genomic data and, in turn, make their data available to these platforms, assuming the appropriate policies
supporting this interoperability are in place.
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Gen3d also provides services for managing clinical and phenotype data and metadata using a graph database.
Gen3d’s Windmill service is an interactive website built over the graph database that allows users to explore,
submit, and download data. Notably, the Windmill service allows for interactive data exploration, search and
cohort-building based on phenotypic variables and data types. Selected cohorts can then be exported into a
Terra workspace for downstream processing.
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Figure 2: Overview of AnVIL. (top) The AnVIL is a federated cloud environment for the analysis of large
genomic and related datasets. The AnVIL is built on a set of established components that have been used in a
number of flagship scientific projects. The Terra platform provides a compute environment with secure data
and analysis sharing capabilities. Dockstore provides standards based sharing of containerized tools and

workflows. R/Bioconductor, Jupyter, and Galaxy provide environments for users at different skill levels to

construct and execute analyses. The Gen3 data commons framework provides data and metadata ingest,
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querying, and organization. (bottom) Summary of the datasets available within the AnVIL as of March 2021 as
shown at https://anvilproject.org/data.

Terra: Access data, Run analysis tools, and Collaborate in Workspaces

Terra (https://anvil.terra.bio) is a cloud-native platform for biomedical researchers to access data, run analysis
tools, and collaborate within the AnVIL. Workspaces are the building blocks of Terra - a dedicated space where
collaborators can access and organize the same data and tools and run analyses together. Each workspace is
associated with a cloud bucket where data can be stored, such as data generated by a workflow analysis
(Reiter et al., 2020) or notebook files for interactive computing. Workspaces also provide data tables for storing
and maintaining structured data similar to a spreadsheet. By including links to the data's actual location in the
cloud, the data table links large scale data sets to workspace tools. Finally, within a workspace, users can
launch batch analysis jobs or one of several interactive computing environments.

Batch analysis in Terra uses the Workflow Description Language (WDL, https://openwdl.org). WDL is a
specialized programming language to specify data processing workflows with a human-readable and -writable
syntax. WDL makes it straightforward to define analysis tasks, chain them together in workflows, and
parallelize their execution without retooling the application to fit a new programming paradigm. The language
makes common patterns (scatter/gather, etc) simple to express, while also admitting uncommon or
complicated behavior through conditionals; and strives to achieve portability not only across execution
platforms, but also different types of users. WDLs can be stored, shared, and described in Dockstore
(described below), and executed in Terra using the Cromwell compute engine (https://cromwell.readthedocs.io)
allowing for reproducible analysis of even the largest cohorts with tens of thousands of samples.

Dockstore: Registry of Tools and Workflows

The Dockstore (https://dockstore.org) provides a place where users can find, share, and use curated tools and
workflows. Workflow content is encapsulated in Docker (Boettiger, 2015) and described using a workflow
language. The use of Docker makes workflows in Dockstore reproducible by making them easy to run without
user installation. Dockstore enables scientists to share analytical tools in a way that makes them machine
readable and runnable in a variety of environments. Dockstore currently supports 4 workflow languages: the
Workflow Description Language (WDL), Common Workflow Language (CWL), Nextflow, and Galaxy Workflows
(GW). Dockstore currently contains 536 workflows in WDL that can be launched in Terra within a few clicks of a
button. As such, Dockstore provides one of the most straightforward entry points for users to add batch
workflows to AnVIL as it can work with any tool/workflow that can be encapsulated into a Docker container and
executed on the command line.

Jupyter Notebooks: Transparent Code, Visualizations, and Narratives

Jupyter Notebooks (https://jupyter.org) are widely-used open-source web applications that allow users to
create and share documents that contain live code, equations, visualizations, and narrative text. Uses include:
data cleaning and transformation, numerical simulation, statistical modeling, data visualization, machine
learning, and many other analyses. Jupyter supports multiple programming languages, including Python, R,
Julia, and Scala. Jupyter Notebooks are an open document format based on JSON that contain a complete
record of the user's sessions and include code, narrative text, equations and rich output. The familiar
programming environment makes it easy for new users to perform custom analysis of AnVIL data in a secure
and collaborative research environment.
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RStudio: Interactive Machine Learning, Statistical Computing, and Visualizations

RStudio (https://rstudio.com) is an integrated development environment for R, a programming language for
statistical computing and visualization. R and its libraries implement a wide variety of statistical and graphical
techniques, including linear and nonlinear modeling, classical statistical tests, time-series analysis,
classification, clustering, and others. R is easily extensible through functions and extensions, and the R
community actively contributes many new packages. Other strengths of R include advanced static and
interactive graphics, and facile creation of graphical user interfaces for easy use of highly specialized
packages.

Bioconductor: Community-driven Interactive Genomics with R and RStudio

Bioconductor (https://bioconductor.org) is a free, open source and open development software project for the
analysis and comprehension of genomic data, with a focus on developing new computational and statistical
methods to interpret biological data. Many of these methods are developed by members of the Bioconductor
community (Gentleman et al., 2004), and the Bioconductor project serves as a software repository for a wide
range of statistical tools developed in the R programming language. Using a rich array of statistical and
graphical features in R, more than 1,900 Bioconductor software packages, 3,200 exemplary experiments, and
50,000 model organism annotation resources have been curated for use in genomic data analysis. The use of
these packages requires only an understanding of the R language. As a result, R / Bioconductor packages,
which include state-of-the-art statistical inference tools tailored to problems arising in genomics, are widely
used by biologists who benefit significantly from their ability to explore and analyze both public and privately
developed datasets. Many R / Bioconductor applications can be presented to users in a way that does not
require advanced programming expertise, e.g., as ‘Shiny’ applications with graphical interfaces. The
AnVIL/Bioconductor environment contains many important resources for the AnVIL, including a fully
computable version of the online book Orchestrating Single Cell Analysis with Bioconductor (Amezquita et al.,
2020).

Galaxy: Accessible, Reproducible, and Transparent Genomic Science

Galaxy (http://usegalaxy.org) is an open, web-based computational workbench for performing accessible,
reproducible, and transparent genomic science that is used daily by thousands of scientists across the world.
There are more than 8,000 analysis tools available within Galaxy that are now accessible within the AnVIL
including for variant calling & interpretation, ChiP-seq analysis, RNA-seq analysis, genome assembly,
proteomics, epigenomics, transcriptomics, and a host of other analyses in the life sciences. To maintain data
security, each AnVIL user runs within an independent Galaxy instance where they can import both unprotected
data and the protected human genomics datasets they are authorized to access. This is accomplished using a
newly developed import tool allowing data to be added into a user's instance, where the full suite of Galaxy
tools and workflows can be securely run. An AnVIL user can thus use any available Galaxy tool to analyze or
visualize data within the boundaries of a compliant, isolated, and secure environment. This marks a major
advance as AnVIL users can now leverage Galaxy for the analysis of protected human datasets, which is not
possible with other public instances of Galaxy.

Extending the AnVIL

In addition to the components described above, there are many ways to extend the AnVIL to include new
capabilities. The most straightforward approaches are to develop a new Docker-based WDL that can launch
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novel analysis tools or to wrap an analysis or visualization tool so that it can be executed within the Galaxy
GUI. More sophisticated integrations are also possible, using a variety of low level APIs and resources. Recent
efforts have focused on deploying new applications using Kubernetes (https://kubernetes.io), which can be
used for managing very complicated software stacks on scalable infrastructure. Applications are deployed and
managed in the Kubernetes cluster by Helm (https://helm.sh/) in the form of Charts. In this design, a Helm
chart translates an application's software stack into customizable Kubernetes manifests. This model, originally
developed by the Galaxy Team to enable Galaxy's deployment within the AnVIL, can be replicated and
extended to facilitate the integration of other platforms of varying complexity into the AnVIL. We also have
several major additional components in development, including deploying seqr (https://seqgr.broadinstitute.org)
and the UCSC Genome Browser (Navarro Gonzalez et al., 2021) within the AnVIL.

IV. Data Access and Data Use

A key priority of the AnVIL is ensuring responsible data sharing, which includes secure access to the data in its
cloud storage and compute environments. The AnVIL Data Access Working Group (DAWG) defines the
methods used to securely control and grant access to controlled-access datasets hosted within AnVIL, and is
testing improved processes for handling data access requests (DARs). The DAWG evaluates the data coming
into AnVIL and considers downstream data access needs. For example, the DAWG generated the Consortium
Guidelines for AnVIL Data Access
(https://anvilproject.orag/learn/for-consortia/consortium-data-access-quidelines) to clarify expectations for the
various consortia using AnVIL facilitate inter-consortium data sharing and access controls.

Importantly, the DAWG is leading a pilot of the Data Use Oversight System (DUOS)
(https://duos.broadinstitute.org/), a platform developed by the Broad Institute, which aims to expedite data
access for researchers, by facilitating and enhancing data access committee's workflows. The pilot currently
includes multiple NIH DACs, who are testing the system and providing feedback to further develop the DUOS
software, most notably DUOS’ DAR decision-support algorithm. This algorithm leverages the Global Alliance
for Genomics and Health (GA4GH) Data Use Ontology (DUO) (https://qithub.com/EBISPOT/DUQ) to code
both datasets’ data use terms and researchers’ proposed research contained within DARs. With both of these
inputs in terms from the same ontology, the algorithm can assess if the proposed research is within the bounds
of the data use terms, and provide a recommended decision to the DAC. In the long term, the pilot will also
provide powerful empirical and conceptual evidence of the feasibility of semi-automated approaches to data
use oversight.

The DAWG is also refining the Library Card concept, by which an institution can pre-authorize trusted
researchers to make controlled-data access requests. This concept will leverage the GA4GH Passport Visa
specification (https://github.com/ga4gh-duri/ga4gh-duri.github.io). If implemented, the Library Card concept
would reduce the steps required for researchers to submit a DAR, while ensuring the researcher has the
appropriate permissions to do so.

If successful, we believe DUOS and the Library Card concept will standardize and streamline the DAR
process. As the number of requests for data increases in magnitude over the years, DUOS could ensure DAC
members’ time is reserved for fine-grained judgement of complex requests and the Library Card could
streamline the authorization of researchers. We hope that by pioneering implementations of the GA4GH DUO
and Passports standards, AnVIL will drive interoperable, ethical, and accelerated genomics research.
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V. AnVIL Community

The AnVIL is designed to support a broad range of user communities, from multi-institution consortia, to
individual labs and their trainees, to computational tool developers, and researchers at institutions without
access to high-performance computing. Some needs of these communities are common - the ability to upload,
manage, and share controlled access protected data, the ability to do high-performance computation in either
workflow or interactive environments, and the ability to develop training materials and share results with the
broader community. However, the diversity of the AnVIL user base also requires satisfying specific needs of the
constituent communities.

e Consortia and data generators - The primary needs of these groups include data ingestion, quality
control, management and sharing within consortium members and collaborators. We have developed a
process for data ingestion and management on the AnVIL platform that supports consortia to share
their data while ensuring user management and access via access groups following consortium’s data
sharing and access guidelines. As of February 2021, the AnVIL contained over 200 NHGRI datasets
including the popular GTEx version 8 data, which is also optionally available for direct download free of
egress charges.

e Research groups and investigators - The primary needs of these groups include access to data,
interactive and batch workflow computing environments, and the ability to manage their data science
projects. We have developed a user management system leveraging the Terra workflow and workspace
access management system. We have also partnered with STRIDES
(https://datascience.nih.gov/strides) to support several pilot user education events with an eye toward
scaling support to the broader research community. As of February 2021, the AnVIL has supported
computation from more than 1,950 users running more than 775 workflows and launching more than
240 workspaces.

e Computational tool developers - tool developers need an environment where they can reproducibly
test their genomic data science tools, integrate them into workflows, and share them with the broader
community. The AnVIL supports several major avenues of deployment, including Docker containers to
execute as WDL workflows, conda packages that can execute within Galaxy, or new Bioconductor
packages. Notably, by leveraging existing data science tool developer communities thousands of
Bioconductor software packages and Galaxy workflows are already integrated in the AnVIL
environment.

e Under-resourced Genomic Data Science Communities - one of the biggest advantages of a fully
cloud-based computational environment like the AnVIL is the ability to do high-performance computing
from anywhere. Genomic data science with the AnVIL is accessible to anyone with a web browser and
an internet connection - extending access to high-performance computing to communities that do not
have local resources to support this kind of science. We have begun a collaboration called the Genomic
Data Science Community Network (http://gdscn.org) with community colleges, historically black
colleges and universities, and tribal colleges to support data intensive genomic research and teaching
using the AnVIL.

VL. Interoperability with other cloud platforms

Cloud-based systems such as the NHGRI AnVIL as well as NCI's CRDC and Cloud Resources and NHLBI's
BioData Catalyst have shifted the way researchers work with genomic and other large omics datasets. Freed
from the constraint of needing to download data to local compute infrastructure, these environments have
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allowed researchers to streamline data access and focus on the analysis to be done. Across the AnVIL and
peer projects including NHLBI's BioData Catalyst (BDCat, https://biodatacatalyst.nhlbi.nih.gov), Common
Fund’s Gabriella Miller Kids First Pediatric Research Program (GMFK, https://kidsfirstdrc.org), and NCI Cancer
Research Data Commons (CRDC, htips://datacommons.cancer.gov) for example, almost eight petabytes of
genomic and related data are accessible to researchers in cloud-based analysis platforms and growing quickly.
Each of these platforms hosts unique datasets and offers unique analysis components to serve their respective
research communities. Yet, despite the enormous opportunity to cross-analyze data from these resources,
researchers are faced with a daunting task of understanding the various technical interface differences
between systems in order to analyze across them -- from a programmatic, user interface, and even policy
perspective. As a result, there is great motivation for these systems to adopt consistent conventions and
standards, enabling interoperability that facilitates researchers ability to ask questions across the individual
platforms.

The AnVIL project has pushed the interoperability envelope by piloting new technologies and adopting key
standards and conventions, from known standards bodies such as the Global Alliance for Genomics and
Health (GA4GH, https://www.ga4gh.org). This was done to realize the vision of researchers using data and
compute across NIH cloud-based platforms seamlessly. AnVIL's interoperability strategy focuses on 4 distinct
areas: 1) data access, 2) portable analysis, 3) authentication & authorization, and 4) search and handoff
between systems. For data access, AnVIL has implemented the GA4GH Data Repository Service (DRS),
which provides a consistent interface to data resources on cloud environments (both public and private). To
enable portable analysis, AnVIL supports both the Workflow Definition Language (WDL) and Galaxy Workflows
through Terra and Galaxy, respectively. Each system allows researchers to write analysis tools and workflows
that leverage Docker images, a popular containerization technology that facilitates portability. These workflows
are shared through Dockstore which, itself, supports the GA4GH Tool Registry Service (TRS), making it
possible to share workflows between many different systems beyond AnVIL. For authentication and
authorization the AnVIL uses the Research Auth Service (RAS) from NIH. This uses the OIDC/OAuth2
standards and leverages GA4GH Passports, providing a consistent way to describe datasets a researcher is
authorized to access. Finally, AnVIL has explored search and data discovery through the Fast Healthcare
Interoperability Resource (FHIR) standard and developed a search handoff mechanism between the AnVIL
data discovery portal and Terra analysis environment using the Portal Format for Bioinformatics (PFB).

The interoperability vision and accomplishments of AnVIL were not done in isolation but as part of a larger
collaboration within the NIH. The NIH Cloud Platform Interoperability (NCPI, https://anvilproject.org/ncpi) effort
was started in late 2019 with the goal of establishing and implementing guidelines and technical standards to
empower end-users to analyze data across participating platforms and to facilitate the realization of a
trans-NIH, federated data & compute ecosystem spanning AnVIL, BDCat, CRDC, and GMFK, along with
strong ties to other NIH services such as dbGaP and the SRA. The NCPI Systems Interoperation working
group has focused on leveraging the interoperability standards of DRS and TRS, conventions like PFB, and
the auth services of RAS to address real-world scientific use cases. In 2020 these interoperability standards
were put to use and researchers were able to search across two of the participating stacks (BDCat and AnVIL),
access data from both in the AnVIL workspace environment, parameterize and run a workflow, and generate a
meaningful result. The NCPI is using this demonstration as the foundation for future work in 2021 with the goal
of expanding the interoperability between systems to all of the NCPI (adding GMKF and CRDC) and beyond.

Beyond technical interoperability, is the need for semantic interoperability. The AnVIL hosts data from a wide
diversity of projects which contain differing levels of annotation, alternate ontologies, and even mismatched
measurement units, sometimes even within the same project. These issues make analyzing phenotypic data in
conjunction with the genomic data difficult, even if the systems utilize the same APIs for data transfer. In
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developing a unified data transform for the AnVIL data dashboard, we encountered known problems with
common metadata and phenotypic data elements, such as inconsistent or missing: project disease mapping,
subject disease affected status, consistent keys for specimen, specimen attributes, CRAM/BAM statistics, and
other missing files.

Extending on these data normalization efforts researchers from the AnVIL project began mapping common
elements to other other NIH projects. One example of NIH investment in these standards is HL7 Fast
Healthcare Interoperability Resources (FHIR, http://hl7.org/fhir) - a standard for representing, searching, and
sharing clinical data. For data commons, FHIR can be seen as a target data model and staging database for
data interchange efforts. With a common data model, protocol and search mechanism for clinical attributes in
place, the gap becomes a difference between meta-data values and ontologies. Recent Notices from NHGRI
and the NIH at large have emphasized the importance for projects to follow standards for meta-data formatting
(https://grants.nih.gov/grants/quide/notice-files/NOT-HG-21-022.html), including the use of FHIR
(https://grants.nih.gov/grants/quide/notice-files/NOT-OD-19-122.html). And while the original primary focus of
FHIR development was on enabling the exchange of medical data, its formalization of record versioning,
provenance tracking and ontology mapping make it a useful platform for cross project data interoperability. This
technology is now being utilized to provide more normalized data models that allow for queries across AnVIL
and other NIH projects, such as the Kid's First Data Resource (https://kidsfirstdrc.org/).

VI. Outlook

The last twenty years have seen tremendous growth in genomics, with millions of human genomes sequenced
so far and many millions more to be sequenced in the near future (Stephens et al., 2015). These data,
combined with ever growing amounts of single cell & functional genomics data, electronic medical records, and
other healthcare data have the potential to substantially enhance our understanding of the basic processes for
healthy life as well as revolutionize the treatment of disease. This research will be accomplished, in part, by
aggregating and synthesizing data using new computational, statistical and machine learning methods,
combined with new high throughput experimental methods that can systematically evaluate large numbers of
candidate relationships. However, reaching these ambitious goals requires us to embrace new paradigms for
computational research where cloud computing plays a central role; there is simply no other way to effectively
share and analyze data at these scales.

The AnVIL launched just over two years ago. While there has been remarkable progress since then, there is
still significant work required before the promise of this effort is fully realized. We are still in the earliest stages
of the cloud transformation within the life sciences, and institutions have already made significant investments
into institutional computing clusters and data centers that we cannot ignore. During this transition period it is
likely that cloud resources will be used for the largest analyses and collaborative research projects, but
summarized data and institutionally generated private data will still be analyzed locally. As such, one of the key
requirements for the AnVIL is that all of the major analysis components can be run locally: WDLs are
increasingly used on institutional computing clusters, R/Bioconductor works equally well on a laptop or in the
cloud, and Galaxy can be deployed on a laptop or within an institutional cluster as needed. Within AnVIL we
also provide free egress for one of the most important datasets, the raw data for the widely studied GTEXx
dataset, by mirroring our cloud copy within an academic computing center so that authorized users can access
it freely over Internet2

(https://anvilproject.org/news/2020/11/20/nhari-anvil-now-supports-free-export-of-gtex-data)

Another major consideration for cloud-based research are the costs involved. Even if the cost per genome or
cost per sample is only a few dollars, once multiplied by thousands of genomes, the total costs for an analysis
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can quickly become a major expense. While computing costs also play a major role for local computing, these
costs are often amortized or supplemented through institution-wide or department-wide initiatives beyond
individual research labs. Researchers currently have limited information for the expected costs for running
analysis tools in the cloud, which challenges budgeting and prevents many researchers from adopting cloud
solutions. In addition, software developers may not focus on optimizing costs for cloud environments, which
increases expense even when relatively simple optimizations are available. We and the entire genomics
community must address this using all options available, including (1) educating users of the expected costs
for different analyses and strategies for minimizing costs; (2) implementing additional technology safeguards
(“bumpers”) that will prevent users from uncontrolled spending; and (3) developing optimized tools and
workflows to reduce costs. As cloud costs are broadly a function of CPU time, peak RAM required, and disk
space, this will include optimizations for decreasing computing time by leveraging parallel & vectorized
computing instructions (e.g. AVX512 vectorization (Darby et al., 2020)) or advanced search strategies (e.g.
learned index structures (Kirsche et al., 2020; Kraska et al., 2017)), decreasing RAM requirements using more
advanced data structures (e.g. Burrows-Wheeler transform (Langmead et al., 2009), Bloom filters (Chikhi &
Rizk, 2013), or Sequence Bloom Trees (Solomon & Kingsford, 2016)), and decreasing storage requirements by
using compressed data formats (e.g. CRAM (Hsi-Yang Fritz et al., 2011)), using optimized 10 routines (e.g.
fixed length records instead of variable length records (Langmead et al., 2019)), and removing intermediate
data. This will also include developing heuristics and approximation techniques that can often run substantially
faster than more exhaustive approaches (Ondov et al., 2016; Rhyker Ranallo-Benavidez et al., 2020).

Overall, the future of the AnVIL and the future of cloud computing in genomics is very bright. We have several
major initiatives underway to enhance our capabilities for basic science and clinical genomics, such as by
integrating the tools and data from the Telomere-to-Telomere (Miga et al., 2020) and Human Reference Pan
Genome projects to provide more comprehensive and more diverse reference human genomes as well as
major efforts with the American Heart Association (AHA), the Electronic Medical Records and Genomics
(eMERGE) Network and the Clinical Sequencing Evidence-Generating Research (CSER) programs to
increase our capabilities for clinical genomics. We are particularly excited by how these efforts will allow us to
consider additional variant types, especially complex structural variants, and additional functional genomics
data types, including at the single cell level level, to develop a better understanding of the molecular basis of
health and disease across diverse patient populations. Internally, we also have several major technical
enhancements planned, such as offering multicloud support, and enhanced support for deploying additional
complex applications using kubernetes. In addition, NHGRI is broadening the support for the AnVIL by
promoting it as a primary data sharing platform and/or a primary data analysis platform for several funding
opportunities. Finally, these efforts are coupled with major efforts for training and outreach to ensure everyone
is aware of the platform and can use it for their research needs for many years to come.
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