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Abstract

Copy number alterations constitute important phenomena in tumor evolution.
Whole genome single cell sequencing gives insight into copy number profiles of
individual cells, but is highly noisy. Here, we propose CONET, a probabilistic
model for joint inference of the evolutionary tree on copy number events and
copy number calling. CONET employs an efficient MCMC procedure to search
the space of possible model structures and parameters and utilizes both per-bin
and per-breakpoint data. We introduce a range of model priors and penalties for
efficient regularization. CONET achieves excellent performance on simulated data
and for 260 cells from xenograft breast cancer sample.

Keywords: copy number alterations; tumor evolution; single cell sequencing;
probabilistic model; MCMC sampling

Background
Elucidating tumor evolutionary history is pivotal to a better understanding of car-
cinogenesis and helps developing new cancer treatments. Copy number alterations
(CNAs) are ubiquitous in the genomes of tumors across all types of cancer [1–3],
constitute the most common alteration types associated with tumor hypermutabil-
ity [4], and play an important role as drivers of tumor evolution. In particular,
amplifications can activate so called oncogenes, promoting increased growth and
other hallmarks of cancer [5], while deletions can disable tumor suppressors [1, 2].
Recently, the technology of single cell DNA sequencing (scDNA-seq) revolutionizes
the analysis of tumor cell populations and gives valuable insights into tumor evo-
lution [6]. Modeling copy number evolution of tumors from this data, however, is
challenged by the noise, and the fact that copy number events may overlap, inval-
idating the often-made finite sites assumption. Thus, the methods addressing this
problem are still in their infancy [7].

Tumor phylogeny reconstruction from bulk sequencing data has been approached
by a multitude of methods, most of which focus on the evolution of single nucleotide
variants (SNVs) [8–23]. Bulk tumor DNA sequencing data jointly measures a mix-
ture of millions of cells coming from different subclones and an unknown quantity of
healthy cells. Reconstruction of copy number evolution from this data is notoriously
difficult, as only the aggregated signal per region is observed [7]. Dedicated meth-
ods addressing this problem are challenged by the mixture of different copy number
profiles and their proportions in bulk samples or the difficulty of finding appropriate
measures of phylogenetic distance between the CNA samples [12,24–29].
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In contrast to bulk sequencing, the more recent scDNA-seq offers the measure-
ment of the genomic sequence at the level of individual cells. As such, it paves
the way to computational identification of genomic alterations such as CNAs and
SNVs in single genomes, and their evolutionary relationships [30,31]. The single cell
measurements, however, are noisy, with major issues being low coverage depth or
low coverage uniformity. This calls for dedicated probabilistic approaches to tumor
evolution reconstruction from this data [7]. Several approaches have already been
proposed for modeling tumor evolution of SNVs from scDNA-seq data [32–36] or
jointly from bulk and scDNA-seq [37–39].

A number of scDNA-seq high-throughput techniques, such as DOP-PCR [40–42]
and C-PCR-L [43] achieve relatively even coverage distribution along the whole
genome of the sequenced cells [7, 44]. Recently, DLP and DLP+ have been pro-
posed as technologies omitting the pre-amplification step, and thus avoiding the
amplification bias [45,46]. These techniques open up a new avenue to copy number
calling in single tumor cells, suggesting that also reconstruction of copy number tree
evolution models from such type of data is feasible.

Existing copy number calling approaches, however, suffer from high false positive
rates [44,47]. In particular, identifying the locations of the borders between genomic
segments with different copy number, which are referred to as breakpoints, is largely
hindered by the inherent noise in the scDNA-seq data. Joint inference of tumor
phylogeny from single cells and copy number calling from even coverage scDNA-seq
is expected to result in more accurate copy number calls.

There are, in fact, two types of readouts available for copy number evolution
inference and copy number calling from raw scDNA-seq data. The first type of
readout is the per-bin data: sequencing counts in each genomic bin, which, after
appropriate normalization and correction for mappability and GC content, indicate
the copy number at that bin. The second is the per-breakpoint data, given by the
change of the counts at the potential breakpoint loci. On the one hand, at a locus
where there is no copy number event start or end, we expect no difference between
the counts in the bin preceding the locus and the counts in the bin succeeding the
locus. On the other hand, at a breakpoint locus we expect a large difference between
the counts, and the larger the absolute value of the change, the more evidence for
the presence of that breakpoint in the cell.

Recent approaches analyzing copy number changes in single cells from an evolu-
tionary perspective aim at either improving breakpoint and copy number calling
from scDNA-seq based on breakpoint trees [48], or modeling cell lineages based on
the similarities of copy number profiles between single cells and identifying events
carrying fitness advantage [49], or inference of copy number evolution and copy
number calling from the binned read counts [50]. None of these approaches, how-
ever, infers copy number event trees or identifies copy number states from both
per-bin and per-breakpoint data.

Here, we propose a novel approach for Copy Number Event Tree (CONET) in-
ference and copy number calling (Figure 1). CONET fully exploits the signal in
scDNA-seq, as it relies directly on both the per-breakpoint and per-bin data. The
model jointly infers the structure of an evolutionary tree on copy number events
and copy number profiles of the cells, gaining statistical power in both tasks. The
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nodes of the evolutionary tree are copy number events, which are allowed to over-
lap. Results on simulated and real breast cancer data demonstrate the excellent
performance of CONET in both tasks. Taken together, the proposed approach is a
step towards a better understanding of copy number evolution in cancer.

CONET implementation is available at https://github.com/tc360950/CONET.

Figure 1 Joint inference procedure of CONET and integer copy numbers. A Preparation of
sc-DNA-seq data as an input for the model involves calculation of the corrected count absolute
differences for all genomic loci (per-breakpoint data) using GC and mappability corrected counts
in bins (per-bin data); and defining the set of potential breakpoints. B The main CONET
inference procedure is an efficient MCMC sampling scheme, searching the space of possible
CONET structures and model parameters, using per-breakpoint data for likelihood calculation and
per-bin data for model regularisation. C, D In the post-processing steps the cells are attached to
the final CONET nodes using Maximum Likelihood and the inferred breakpoint history in each
single cell, together with per-bin data, are used to determine the cell’s copy number profiles.

Results
Model overview
We propose a joint procedure that efficiently infers the history of copy number events
occurring in single cells in the tumor tissue, identifies the presence of breakpoints
and estimates the integer copy numbers in regions defined by these breakpoints
in each cell from scDNA-seq data (Figure 1). In the first step (Figure 1 A), we
process per-bin scDNA-seq data from tumor sample, which needs to be corrected
for GC content and mappability, and normalized so that the corrected counts in
bins reflect the underlying integer copy numbers with neutral copy number equal to
two. To specify the per-breakpoint input data to the CONET model, we calculate
the differences between the corrected counts in adjacent bins for each cell, arriving
at the corrected count absolute difference matrix (Methods). Finally, we establish
the set of candidate breakpoint loci (the definition of this set belongs to the user -
see Real data preprocessing).

In the second step (Figure 1 B), we run CONET, a generative probabilistic model
for inferring tumor evolution on single cell copy number events. The structure of
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CONET is defined by a tree, with the root representing a healthy cell with a neu-
tral copy number, and each remaining node corresponding to an evolutionary event
interpreted as a copy number change that introduces the occurrence of two break-
points (start and end loci of the event, graphically represented by different shapes
in the Figure 1). The events from different nodes (different copy number events)
are allowed to overlap. The candidate breakpoint loci are allowed to repeat as a
start or end loci of different events. In this way, our model follows the finite sites
assumption. In contrast to the infinite sites assumption, which is often made by
models operating on single nucleotide variants, the finite sites assumption is much
more realistic for copy number events, as the same breakpoint loci with increased
genomic instability were observed to be re-used in tumor evolution [51]. The evo-
lutionary tree structure, together with the cells’ attachment to its vertices, defines
the copy number events history of each cell and consequently, the set of breakpoints
that should be observed within each cell sequence.

We further model the per-breakpoint data assuming that the corrected count
absolute differences follow different distributions for breakpoint or no-breakpoint
loci, i.e. for loci with or without copy number change in adjacent bins, respectively.
Specifically, the corrected count absolute differences in no-breakpoint loci are ex-
pected to be close to zero i.e. follow the right half of the normal distribution with
th expected value equal to zero and unknown variance depending on the quality of
the data. In contrast, for breakpoint loci, the corrected count absolute differences
should be close to or greater than one (depending on the magnitude of copy number
change) and follow a mixture of normal distributions with unknown expected values
and variances. The components of the mixture are expected to correspond to the
copy number differences that occur in the analyzed cells at the breakpoint loci. The
parameters of those two distributions constitute the set of model parameters. We de-
vise an efficient Markov Chain Monte Carlo (MCMC) sampling scheme that allows
to jointly search the vast space of possible CONETs and sample model parameters
with cell attachment marginalisation. Summing over the cell attachment reduces
the complexity of likelihood calculation. To regularize the model performance for
noisy biological data, we employ a set of priors that help obtaining reliable results
with desirable tree complexity. We also introduce a count discrepancy penalty that
includes the per-bin data and penalizes the model for the inconsistency of corrected
counts in bins with the same copy number change history.

After finishing the MCMC sampling step and obtaining the final CONET, we use
Maximum Likelihood to attach each of the single cells to one of the tree vertices
(Figure 1 C). The final step of the procedure is CN calling, where we further utilize
the fact that we can recreate copy number change history for each bin in each cell
by reading the path from the vertex to which each cell is attached in the CONET
to the tree root. By performing this task for all cells, we define clusters of bins that
underwent exactly the same copy number changes thus should have the same integer
copy number. We calculate the inferred CN in each bin in each cell by averaging
and rounding the corrected counts in each cluster. For all the bins not included in
any copy number event, we assume a neutral copy number, thus arriving at the
estimated integer CN matrix (Figure 1 D).
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Performance of CONET model on simulated data
To assess the performance of CONET in a setting where the ground truth is known,
we conduct the evaluation on simulated data. To this end, we use the generative
CONET model, which samples a tree of a given size with attached predefined num-
ber of cells and outputs per-breakpoint data in the form of an absolute count dif-
ference matrix, according to the assumed absolute count difference distributions
(Simulated data).

The difference matrix is used as an input for CONET inference procedure and
the results are compared with the ground truth to assess the quality of the output
tree structure and breakpoints in each cell, according to cell attachment which
maximizes likelihood (ML cell attachment).

Each evaluation scenario is described by three parameters - the size of the
CONET tree (with values from {20, 40}), the number of cells (with values from
{200, 400, 1000, 2000}) which are randomly assigned to tree vertices, and finally ab-
solute count difference distributions which will be used for the generation of the
difference matrices. The number of potential breakpoint loci is fixed to twice the
tree size.

Entries of the difference matrix are sampled from two corrected counts absolute
difference distributions settings - well separated and poorly separated. The first one
provides a clear distinction between the distribution of the absolute count differences
at breakpoint loci and the differences at loci without breakpoints. The well separated
setting corresponds to higher quality data, with less noise and higher coverage.
The poorly separated setting represents input data with more noise and as such is
expected to be more challenging for our algorithm. During the inference procedure,
the distributions of the corrected count absolute differences are assumed to be
unknown and must be inferred by our algorithm.

Additionally, we run our algorithm with two different choices of priors. The data
size prior penalizes inference of large trees. The impact of this penalty depends on
the constant which is set by the user, and we evaluate this prior with the constant
set either to 0.1 or to 0.5. The attachment prior encourages our scheme to propose
trees that attach cells to nodes with a history consisting of shorter events.

For each of the scenarios described above (number of cells, tree size, distributions
setting, prior) we generate 10 random models. For each of the generated models, we
run our inference scheme 10 times (each time with a different seed) with 5 ·105 steps
for parameter inference and 106 MCMC steps, obtaining 10 inferred CONETs and
10 breakpoint matrices (information about breakpoints in each cell according to
their maximum attachment to the tree). The average running time of one inference
procedure ranges from less than two minutes in the least computationally demand-
ing scenario (tree size 20 with 200 cells) to half an hour in the most demanding
scenario (tree size 40 with 2000 cells). We then compare the inferred data to the
ground truth information from the simulated models. This strategy allows us to
evaluate not only the quality of a single prediction, but also the consistency of the
results across different runs of the algorithm for common input data.

To facilitate the assessment of the quality of inference results we introduce six
scores – Inferred Tree Size, Edge Sensitivity, Edge Precision and False Positive
Rate, False Negative rate, Symmetric Distance. Their precise description can be
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found in section Model evaluation methods for simulated data. Here we only remark
that the first three scores assess the quality of the inferred CN event tree. Value of
Inferred Tree Size should ideally be as close to the size of the real tree as possible.
Edge Sensitivity and Edge Precision quantify the similarity of the inferred tree’s
edge set to that of the real tree with their larger values indicating closer similarity.
The last three scores assess the quality of breakpoint detection with lower values
indicating better inference results. False positive rate is the fraction of inferred
breakpoints that are not present in the cells according to the true tree and cell
attachment, False negative rate - a fraction of breakpoints that should be present in
cells according to the true tree and cell attachment but are not according to inference
results and Symmetric Distance measures the average number of incorrectly inferred
breakpoints per cell.

Figure 2 Assessment of the tree structure inference for simulated data tests results. A-D
Distribution of inferred tree sizes (y axis) depending on the cell number (x axis) for all simulation
scenarios. The horizontal line indicates the size of the true event tree. E-H Distribution of edge
sensitivity (y axis) depending on the cell number (x axis) for all scenarios. I-L Distribution of edge
precision (y axis) depending on the cell number (x axis) for all scenarios. The results indicate very
high efficiency in detecting real event history.

Figure 2 depicts aggregated tree scores for the analyzed simulation scenarios and
demonstrates the high performance of the model in terms of inferring CONET
structure. The sizes of the inferred trees oscillate around the real values of 20 or
40, with slight over- or under-prediction being dependent on the choice of prior
(Figure 2 A–D). There is a tendency, however, that the trees grow as the number
of cells increases. This is to be expected, since for a higher amount of cells the
algorithm has more possibilities of increasing the likelihood by adding subtrees
that correspond to small subpopulations of cells. All evaluated priors regularize
the model and are effective at limiting the inferred tree growth. For the data size
prior, the results depend on the constant controlling the prior’s strength. The more
complex scenarios with more cells and bigger true trees, the strong data size prior
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(constant 0.5) sometimes over-penalizes the tree size, resulting in overly small trees.
In comparison to the strong data size prior, the moderate data size prior (constant
equal to 0.1) results in trees of size closer to the true values. The attachment prior
works in the most subtle way i.e. the model returns the biggest trees compared to
the two other priors.

Edge sensitivity (Figure 2 E–H) decreases with stronger regularization due to
smaller tree size, but is very high for adequate regularization choice. In simulation
scenarios, the strong data size prior gives the smallest edge sensitivity. For trees of
size 20 and the case of the well separated distributions (Figure 2 E), both the at-
tachment prior and moderate data size prior yield a high edge sensitivity of around
0.75, regardless of the number of cells. For the same tree size and the poorly sep-
arated case, edge sensitivity decreases by around 0.1 for these priors (Figure 2 F).
For larger trees (Figure 2 G,H) edge sensitivity further decreases, but it grows with
larger numbers of cells. In the most difficult of the analyzed simulation scenar-
ios (tree size 40 and poorly separated data), with 2000 cells, the attachment and
moderate data size prior give edge sensitivity of around 0.65.

Compared to edge sensitivity, the different regularization priors have less effect
on edge precision (Figure 2 I-L). In all analyzed simulation scenarios, the majority
of discovered edges is contained in the real history. In the simplest scenario (tree
size 20 and well separated data, Figure 2 I), edge precision is around 0.75 for all
cell numbers. Even in the most difficult scenario (Figure 2 L), the median edge
precision of the algorithm exceeds 0.5, regardless of the prior and the cell count. In
some simulation scenarios (Figure 2 I,J), edge precision decreases with the increasing
number of cells for the attachment prior. This is because with this prior, larger trees
are inferred.

Figure 3 illustrates the excellent performance of breakpoint detection using our
algorithm. In all analyzed scenarios, the median false positive rate of the detected
breakpoints is very low. Indeed, regardless of the choice of the prior and the number
of cells, the median false positive rate is below 0.1 (Figure 3 A–D). In the well
separated data scenarios (Figure 3 A,C), the false positive rates are even lower
(median less than 0.05).

Similarly, the false negative rate is very low in all scenarios (Figure 3 E–H). Only
in the most difficult simulation scenario (tree size 40 and poorly separated data)
and only for the strong data size prior (constant 0.5), the median false negative rate
exceeds 0.1. Better data separability (Figure 3 E,G) yields even better results, with
median false negative rates below 0.025. Transition to poorly separated distribution
results in a more significant deterioration of the false negative rate than of the false
positive rate – this is an outcome of more pronounced underestimation of tree size
in those scenarios (Figure 2).

Interestingly, both false positive and false negative breakpoint rates are very small
for the attachment prior, also in the scenarios with small trees, where attachment
prior yielded relatively low edge precision (Figure 2 I,J) and proposed trees were
larger than the true trees (Figure 2 A,B). This result suggests that even though
edge precision may be worse for CONET with priors that propose trees that are
too large, the algorithm can still exhibit good breakpoint detection.

The excellent performance in breakpoint re-detection for simulated data is best
quantified using the symmetric difference metric (Figure 3 I–L). Again, even in the
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Figure 3 Assessment of breakpoints inference for simulated data tests results. A-D Distribution
of false positive rate (y axis) as a function of cell count (x axis) for all simulation scenarios. E-H
Distribution of false negative rat (y axis) as a function of cell count (x axis) for all scenarios. I-L
Distribution of symmetric distance score between inferred and real breakpoints (y axis) as a
function of cell count (y axis) for all scenarios. Overall results are very good for all scenarios, and
good data separability is a determining factor of the quality of the results.

most difficult scenario (Figure 3 L), the symmetric distance between real and the

inferred breakpoint matrices is only around 1. This means that on average every

cell has only a single missed or wrongly inferred breakpoint.

In conclusion, although the best results are achieved for the smaller trees with

well separated absolute count difference distributions, overall the algorithm excels

in breakpoint detection across all evaluated measures, while the correct choice of

regularization ensures satisfactory edge sensitivity and precision.

Application of CONET to scDNA-seq data of SA501X3F xenograft breast cancer

sample

Here we present the application of CONET model to scDNA-seq data from 260

xenograft breast cancer cells in the SA501X3F data set [45], sequenced using the

Direct Library Preparation (DLP) method. This specific scDNA-seq technology

omits the preamplification step, thus ensuring better coverage uniformity which in

turn allows for more reliable CNAs detection.

First, we demonstrate the reasoning behind the choice of regularization used for

the inference procedure. Second, we present the inferred CONET, together with

breast cancer genes affected by the copy number events on the tree, and the infor-

mation about the number of cells attached to each vertex. Finally, we present the

model-derived CN calls and compare them to the ones published together with the

sample in [45], which were inferred using HMMcopy [52] without the aid of joint

CN evolution reconstruction.
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Model calibration for scDNA-seq data sample
In the case of the true scDNA-seq data set, it is advantageous to apply additional
regularisation in the form of the count discrepancy penalty for biological data with
per-bin corrected count data available. The count discrepancy penalty consists of
two terms (Section Definition of the count discrepancy penalty). The first term
corresponds to the L2 distance between the noisy counts in the data and the CN
estimation based on the model. The weight of this term is controlled by a constant
s1, with s1 = 0 corresponding to the fact that this term is not included in the
penalty. The second term penalizes trees that create regions changed by CN events
and inferred copy number equal to two. The weight of this term is controlled by the
constant s2.

In the first scenario, similarly to the tests on simulated data, we do not apply
the count discrepancy penalty at all (s1 = s2 = 0). In the second scenario we
apply only the first penalty (s1 = 200000, s2 = 0). Finally, in the third scenario
we take advantage of both count discrepancy penalties (s1 = s2 = 200000). In
each case, CONET inference is performed under the same MCMC sampling setting
(MCMC Sampling): 0.5 million iterations with joint inference of the tree structure
(Tree moves) and the corrected count absolute difference distributions (Moves on
parameter space), proceeded with 1 million iterations with only tree moves.

The run time for the first scenario is 2.5 hours, the second scenario - 11.5 hours,
and the third - just under 10 hours (on a high performance computer with AMD
Ryzen Threadripper 3990X 64-Core CPU and 128 GB RAM, using 5 threads).
For each scenario, the run times for the whole inference procedures in the case of
biological data are longer than for simulated data, since we deal with over ten times
more potential breakpoints (which translates to around 100 times more potential
CN events). The first scenario is substantially the least computationally demanding
because it skips the count discrepancy calculation in each MCMC step and - as a
result - infers much smaller trees (tens vs hundreds of vertices). The second scenario
runs longer than the third because the inferred trees are larger when we do not
penalize trees for inferring regions with CN equal to two.

Table 1 Assessment of CONET inference for biological data.

Scenario
Tree
size

No of
clusters

Avg cluster
support

Perc of
good
clusters

Perc of
CN=2
clusters

1 35 127 83% 69% 17%
2 380 3136 89% 89% 16%
3 225 905 90% 90% 4%

The obtained CONETs are evaluated using several quality measures (Section
Model evaluation methods for biological data). Apart from the tree size (the number
of CN events inferred for a given data set), we evaluate the number and the quality
of bin clusters that can be defined for each inferred model. Given a CONET, clusters
are defined as such sets of those bins across cells that share the same event history,
determined by the tree and the cell attachment (Methods). For each model, apart
from computing the number of clusters, we evaluate the average cluster support (the
percentage of bins in the cluster that have corrected count close to the cluster’s
inferred CN, averaged over all bins in the cluster). In addition, we compute the
percentage of good clusters (the proportion of clusters with support higher than
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70%). The higher the value of the average cluster support and the percentage of
good clusters, the better the quality of the inferred CONET. Finally, we evaluate
the percentage of clusters with inferred copy number equal to 2. The high value of
this parameter indicates that the reconstructed history of CN events is less credible
since it is less likely that after series of CN changing events the resulting copy
number will return to two.

The analyzed scenarios and proposed quality measures facilitate the comparison
of the CONET inference results with and without the additional count discrepancy
(Table 1). In the first scenario, the tree inferred without the penalty contains only
35 events and defines 127 clusters. It is hard to expect that such a small tree can
fully explain the copy number variation in 260 single tumor cells. Correspondingly,
according to all quality measures, this tree has the lowest quality of clusters, com-
pared to the trees obtained with the additional count discrepancy penalty. The tree
obtained in the second scenario is noticeably larger, and although the cluster quali-
ties are comparable to the third scenario, the percentage of clusters with CN equal
to two is too high. The comparison clearly demonstrates the overall advantage of
applying the full count discrepancy penalty (scenario 3), which yields the CONET
of the average size and combines the good quality of nodes with low percentage
of clusters that infer copy number equal to 2. The fact that the inference without
the additional penalty (the first scenario) gives very good performance on simu-
lated data, shows that the real biological data poses a significantly more difficult
challenge for the model.

Table 2 Assessment of CN calling for biological data.

Scenario
Avg
Gini Index
in events

Avg
Entropy
in events

Gini Index
outside
events

Entropy
outside
events

CN-TPR CN-FPR CN-RMSE

1 0.12 0.43 0.22 0.57 27% 20% 0.74
2 0.08 0.20 0.10 0.34 96% 73% 0.37
3 0.09 0.16 0.11 0.37 84% 9% 0.40

Second, we evaluate the models obtained in the three scenarios with respect to the
quality of CN estimation (Methods; Table 2). As above, the evaluation is based on
the quality of bin clusters (sets of bins that share the same event history according
to the model). Here, we first consider bin clusters that are indeed changed by events
of the tree, referred to as in events. Second, we consider bins that are in one large
cluster of all bins that were not included in the events of the tree, i.e. the tree does
not infer any copy number tree for these bins. These bins are referred to as outside
events. To quantify the dispersion of corrected counts in both the bin clusters inside
and outside events, we use the Gini index and Shanon Entropy measures. Next, copy
number true positive rate (CN-TPR) is computed as the fraction of bins with true
corrected count not rounding to two and contained in events of a CONET, out
of all bins with true corrected count not rounding to two. Here, we consider the
bins with true corrected count not rounding to two as the positive examples of
bins that truly underwent a copy number change event. The copy number false
positive rate (CN-FPR) quantifies the fraction of bins that are part of a CONET
events (the bins that underwent a CN event according to our model) out of the
total number of bins with corrected count rounding to two (the bins that did not
undergo a CN event according to the data). Root mean square error for our CN
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calling procedure (CN-RMSE) is calculated as the quadratic mean of the differences
between inferred integer CN and corrected count in each bin, i.e. the square root
of the count discrepancy penalty. For a correctly inferred CONET, the CN-RMSE
reflects the noisiness of scDNA-seq data.

The small size of the CONET inferred without the count discrepancy penalty
in the first scenario, results in bad overall quality of inferred CNs according to
all quality measures. Compared to the trees inferred with the penalty, this tree
has higher dispersion inside events and - more apparently - outside events, very
low CN-TPR and almost two times higher CN-RMSE. In the second scenario an
opposite situation occurs, where the CN-TPR is close to 100% because this most
complicated CONET includes such a high number of events that almost all bins
with CN far from two are included inside them. The dispersion measures improve
substantially compared to scenario 1 and the CN-RMSE is the lowest. This happens
at the cost of CN-FPR, which is over three times higher than in the first scenario
and nine times higher than in the third scenario. This again proves that without
penalizing inference of copy number equal to two inside events, the inferred tree
grows too large. The CN calling results obtained using the CONET with the full
discrepancy penalty in the third scenario are by far the best, constituting a well
balanced compromise between the too simple and too complicated CONETs from
the two other scenarios. The quality of CN calling results for the tree in scenario 3
is higher than for the first scenario across all parameters. In comparison to the tree
obtained in scenario 2, this tree is similar in terms of low dispersion in counts in
bins inside and outside events, rare inclusion of bins with corrected count far from
two in CN events (CN-TPR) and low CN calling error (CN-RMSE), while scoring
far better in terms of restricting the inclusion of bins with corrected count close to
two (CN-FPR).

We conclude that additional regularisation in the form of the full count discrep-
ancy penalty is necessary when dealing with noisy, low-depth scDNA-seq data from
real experiments. The degree of this regularisation should be calibrated to the spe-
cific biological data set with scDNA-seq technology in mind, utilising different s1
and s2 count discrepancy constants’ values and comparing the results with the aid
of different quality measures described in Model evaluation methods for biological
data.

CONET for SA501X3F xenograft breast cancer data
Figure 4 A presents the CONET inferred using the full count discrepancy penalty

described in the third scenario from the previous section. The complex structure
of the obtained CONET illustrates the high level of instability in the cancerous
genome. In total, the events in the tree overlap with 27 genes determined as associ-
ated with breast cancer by the COSMIC Cancer Gene Census [53]). Additional file
1 presents the comprehensive list of all the CONET vertices with information about
their parent, genomic coordinates of each event and breast cancer genes concerned
by the event.

Looking closer at the inferred CN events history, we first observe a linear evolu-
tion of the tumor, where the vast majority of cells undergo a series of common CN
events, visible in the trunk of the tree. Those events overlap with many characteris-
tic breast tumor suppressor genes such as BRCA1, TP53, RB1 or CASP8 [53]. Copy
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Figure 4 CONET for SA501X3F xenograft breast cancer data set. A The CONET is drawn in a
compacted form, with part of vertices collapsed when it is possible without losing important
information, i. e. when the collapsed vertex has no cells attached and not more than one child.
Specifically, the collapsed vertex is joined with its closest descendant that does not satisfy these
criteria (number of events is shown at the beginning of joint vertices). This results in decreasing
the tree size from 225 to 131. The number of cells attached to each vertex is illustrated with
different colors, where white vertices have no cells attached and the darker green indicates more
cells attached. The most biologically significant information are the names of the breast cancer
genes [53] concerned by copy number events, which are printed in alphabetical order in all internal
vertices. Underlined genes appear only once in the CONET. B, C Enlarged parts of corrected
counts matrix heatmap are visible on the sides with areas around breast cancer genes that divide
the cells into two distinctive subpopulations. The yellow lines are the borders of each of the genes
drawn for cells that have copy number change of the gene according to their attachment in the
CONET.

number events that can cause a decrease in expression of those genes (all genes fall

into clusters with inferred CN equal to one - see Figure 5) could have contributed

to the onset of breast cancer. The next significant event in the evolutionary history

of this tumor sample is the branching of the trunk that divides the cells into two

distinct subgroups, the smaller one (left of the tree in Figure 4 A) characterized by

unique NTRK3 gene copy number change, and the more abundant (on the right of

the tree in Figure 4 A), distinguished by unique FLNA, IRS4 and ZMYM3 copy

number changes (with inferred copy number equal to one). Figure 4 B presents an

enlarged fragment of corrected counts heatmap with the genomic region around

NTRK3 where the gene location and subpopulation of cells with lowered CN ac-
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cording to the inferred CONET is marked in yellow. The second subpopulation of
cells which emerged during main tree branching is shown in Figure 4 C across frag-
ments of corrected counts heatmaps surrounding FLNA, IRS4 and ZMYM3. It can
be speculated that the copy number event concerning the NTRK3 gene could have
been part of a known translocation causing the formation of the ETV6-NTRK3
fusion oncoprotein characteristic of human secretory breast carcinoma [54]. This
event could result in an evolutionary advantage for the subpopulation of cells that
are attached under the vertex describing this copy number event. Among the genes
characterising the other larger subpopulation, ZMYM3 is a known tumor suppres-
sor [53], whose deficiency impairs DNA repair by homologous recombination and
can result in high genome instability [55]. Evidence of this instability is clearly visi-
ble in the CONET structure for this subpopulation where we distinguish numerous
CN events that do not overlap with new breast cancer genes. Another interesting
observation can be drawn from genes such as ESR1 or POLQ (both falling into
regions with amplified copy number for most of the cells - not shown) that reappear
many times in the events of the inferred CONET, also in parallel branches, sug-
gesting that some genomic regions have very high instability and are more prone to
CNAs. This also points to the fact that the evolutionary trees reconstructing copy
number changes do not follow the perfect phylogeny assumption.

Copy number calling for SA501X3F xenograft breast cancer data
Figure 5 graphically represents the high quality of the CN calling procedure for
SA501X3F xenograft breast cancer data. The regions with clearly visible deviations
from the neutral copy number in the corrected counts heatmap (Figure 5 A) are
for the most part correctly identified as such in the inferred integer CN heatmap
(Figure 5 B). At the same time, the inferred CN heatmap lacks the noise observed in
the true corrected count data. Importantly, the fidelity of CN events’ reconstruction
is maintained even for very narrow genomic events (sometimes up to one bin wide).
This is especially true for CN events that are common for a large enough number
of cells.

Comparison to other methods
To demonstrate the advantage of the CN calling procedure, we compare it to HMM-
copy [52], the CN calling method developed specifically for this type of scDNA-seq
data. We run HMMcopy using the same SA501X3F xenograft breast cancer data.
The inferred HMMcopy CN matrix is used to calculate CN-RMSE the same way as
was done for our CN calling procedure results. The CN-RMSE for HMM is equal
to 0.75, which is similar to CN-RMSE obtained by the CONET in the first scenario
described in Model calibration for scDNA-seq data sample and two times higher
than the best result of the CONET described in the second scenario. This clearly
demonstrates that using CONET to call integer copy number in genomic bins im-
proves the fitting of inferred CN matrix to the real data compared to the method
that does not involve joint inference of CN evolution.

Conclusions and discussion
Recent developments of high-throughput scDNA-seq technologies have enabled trac-
ing copy number changes in single cell genomes. In this work, we introduce CONET,
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Figure 5 Graphical illustration of CN calling procedure for SA501X3F xenograft breast cancer
data set. A The CC heatmap illustrates the biological data with corrected counts in genomic bins,
B the CN heatmap presents the inferred integer CN for equivalent bins. Columns correspond to
genomic locations, rows to single cells. The rows in both matrices are in the same order fixed
using hierarchical clustering of cells according to their inferred copy numbers.

a novel Bayesian model for inference of an evolutionary tree of copy number events

and copy number calling for scDNA-seq data. CONET is robust to errors in scDNA-

seq data, as it models the per-breakpoint and per-bin readouts in a probabilistic

manner. By combining the process of tree inference and copy number calling, it

gains power in both tasks. We propose an efficient MCMC procedure for the search

across the space of possible trees and model parameters.

CONET performs favorably in terms of evolutionary tree reconstruction and copy

number calling both on simulated and real data. Comprehensive analysis on sim-

ulated data indicates that CONET excels in the correct breakpoint detection for

single cells, even in the case of more demanding scenarios with bigger trees and more

noisy data. Appropriate choice of regularization priors enables accurate inference

of the model structure, as measured by the edge precision and sensitivity.
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Using CONET, we analyzed the evolutionary history of copy number events and
copy number changes in single cells for a xenograft breast cancer sample. Evalua-
tion of the trees obtained using different regularization schemes indicates that in the
case of modeling real data, penalization for the disagreement between the estimated
and actual per-bin counts is crucial for constraining the model and obtaining high-
quality trees. Comparison of the corrected per-bin data with inferred copy number
profiles illustrates the excellent performance of breakpoint detection and the CN
calling procedure for biological data. We observe the smoothing of the noisy biologi-
cal signal for less evident events. Since the biological truth is unknown, it is difficult
to assess the quality of the inferred CONET structure. Still, the presence of many
genes important for breast cancer evolution in the trunk of the inferred tree and
division of cells into two distinct subclones, testifies to the fact that our model can
be of help in deconvoluting evolutionary relationships between cancerous cells and
identifying driver events.

To our knowledge, CONET is the first Bayesian probabilistic approach for copy
number evolution inference and copy number calling, that fully exploits the scDNA-
seq readouts, in the form of both per-breakpoint and the per-bin data. CONET
differs from other recent evolutionary models of breakpoints or copy number events:
the model of [48], MEDALT [49] and SCICoNE [50]. For the trees inferred by [48] or
MEDALT, the nodes do not correspond to copy number events. Each node of [48]
tree corresponds to acquisition of only a single breakpoint. The MEDALT model
is a lineage tree spanning the input cells. In contrast, SCICoNE explicitly models
an event tree, where each node is labeled with a vector of starts and ends of CN
events, together with the copy number change that occurred for each of the events.
We deliberately avoid modeling the exact copy number changes acquired at each
event, thereby vastly reducing the space of possible models.

The reduced space and efficient MCMC implementation facilitate advantageous
computation times for CONET inference procedure. The main factors influencing
the run time are the number of cells and the size of inferred CONETs, which can
be regulated by the user with the number of potential breakpoints, data size priors
and the choice of corrected counts penalty. The control over model parameters and
regularization will give a particular advantage when dealing with the much larger
and hopefully less noisy data sets, which can be anticipated in the future, given the
constant advances in whole genome scDNA-seq techniques.

Given that a tumor sample was sequenced using both scDNA-seq with high cover-
age uniformity and using such other techniques that allow SNV calling, the output
from CONET can be utilized to enhance approaches analysing SNV evolution. For
example, the accurate CN calls from CONET can provide valuable input to meth-
ods that rely on CNA information for improved elucidation of tumor subclones and
their relationships from variant allele frequencies in bulk sequencing data [9, 10].
Compared to the CN calls alone, CONET output can define even more specific con-
straints for reliable modeling of evolutionary SNV trees inferred from high coverage
scDNA-seq [56].

Deciphering the gene copy number evolution of tumors is of huge importance
for the understanding of the process of carcinogenesis. Application of CONET to
scDNA-seq data from tumor samples of patients enables identification of copy num-
ber events that occur early in tumor evolution, amplifying or deleting cancer driver
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genes in the entire population of tumor cells. For the SA501X3F breast cancer
sample, the trunk genes included BRCA1, TP53, RB1 or CASP8, all of which
play pivotal roles in breast cancer progression. Such trunk alterations could po-
tentially suggest the choice of efficient anticancer treatment. On top of that, our
approach can identify distinct subclones characterised by unique gene copy number
alterations caused by events from specific tree sub-branches. For the breast cancer
application, examples of such genes identified as subclonally altered are NTRK3
and ZMYM3. The alterations of these genes can in turn confer resistance to ther-
apy, and as such can highlight the need for additional therapeutic intervention or
combinatorial treatment.

In summary, CONET is a powerful tool that takes advantage of scDNA-seq to
better understand the copy number evolution in cancer and may guide the choice
of therapy when applied to patient data in the clinic. Ultimately, once scDNA-seq
data from larger cohorts is available, the application of CONET will help to uncover
general patterns of the order of occurrence of CNAs in tumors together with their
importance.

Methods
Real data preprocessing
To illustrate the performance of our model on true biological data we apply it to
scDNA-seq data from 260 xenograft breast cancer cells SA501X3F data set [45]
sequenced using Direct Library Preparation (DLP) method. According to [45] the
sequencing reads were binned into 150 kilo base bins, corrected for GC content
and mappability and normalized such that 2 signifies a neutral copy number. The
resulting positive real numbers for each bin are further called corrected counts in
bins and constitute the per-bin input to our model. We calculate the corrected count
absolute differences by subtracting corrected counts in the adjacent bins and taking
the absolute value. The resulting corrected count absolute differences matrix with
genomic loci in columns and cell ids in rows represents the per-breakpoint input to
the model.

To run our model, we also need to establish candidate breakpoint loci set. The
set of candidate loci determines the set of possible copy number events and as
a consequence significantly influences the computational complexity of the model
inference procedure. The candidate breakpoints are set by the user.

Here, we run HMMcopy [52] implemented as Bioconductor package using cor-
rected counts as input with standard parameters, obtaining integer copy number
state for each bin. We further assume that each locus with inferred copy number
state change in adjacent bins is a possible breakpoint. To this set of candidate
breakpoints we also add the beginning and end of each chromosome, together with
loci which show high corrected count absolute difference evidence (more than 80%
of cells with the corrected count absolute difference higher than 3). To complete our
potential breakpoint loci set, for each of the above mentioned candidates (except
chromosome ends) we add one locus to the right to be always able to infer short one
bin events. The final set of candidate loci for the SA501X3F data set contains 2044
possible breakpoints. After this step, we prepare the final corrected count absolute
differences input matrix restricted to chosen candidate breakpoint loci columns.
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CONET - Copy Number Event Tree model
Below, we explain CONET, a generative probabilistic model for inferring tumor
evolution on single cell copy number events. Let C = {cj,i}j∈{1,...,m},i∈{1,...,n} denote
a data set of corrected read counts from n genomic bins for a total of m cells.
We assume the read count data are pre-processed, in particular, normalized to
neutral copy number 2, corrected for GC content and other potential biases. For
each chromosome we add an artificial bin representing the end of a chromosome with
corrected count equal to 2. This is necessary to being able to include copy number
events that start or end at the ends of a chromosome, i.e., physically have only one
breakpoint. The data modeled by CONET is defined as the absolute differences of
counts at consecutive bins:

dj,i =

|cj,i − cj,i−1| if i− 1  1

|cj,i − 2| otherwise.
(1)

Each difference is indexed with j, denoting the cell it is calculated for, and with i,
denoting the genomic locus (or interchangeably - the genomic bin starting in this
locus). We assume a set of loci L ⊂ {1, ..., n} is given. We define a copy number
event as an ordered pair of loci (i, l) from L, such that i < l, i.e., locus i occurs
before l in the genome, and loci represented by i, l lie on the same chromosome. We
assume that in bins [i, i+ 1, ..., l) the copy number changed during the evolutionary
history of cells that underwent this event. Since the loci i and l mark the endpoints
of the deleted or amplified regions, we refer to them as breakpoints. Loci from L

will be referred to as candidate breakpoints.
We assume that each copy number event can occur only once in the tumor evolu-

tion. Still, one breakpoint can be part of many copy number events and the events
can overlap. In this sense, our tree does not satisfy the infinite sites assumption.

Let D denote the data matrix of absolute count differences for such bins that start
at candidate breakpoints, i.e., such that for dj,i it holds i ∈ L and j ∈ {1, . . . ,m}.

CONET is a tuple (T, σ, θ), where T is the evolutionary tree structure, σ is referred
as cell attachment, and θ denotes the set of model parameters. Let T denote a
directed rooted tree with a set of vertices VT corresponding to copy number events
and edges to the partial order of these events. Additionally, Vl denotes the set of all
the tree leaves and V0 denotes the set of all possible events, which are not present
on the tree (i.e., that do not belong to VT ). We refer to V0 as the set of inactive
events, an(v) denotes the ordered set of vertices (including vertex v) that occur on
the path from vertex v to tree’s root and depth(v) denotes the depth of vertex v

in the tree. The root of the tree is given as an artificial event denoted by (0, 0),
corresponding to no somatic copy number events.

The attachment of cells to the tree is given by a function σ : {1, . . . ,m} → VT .
For a given cell j, the path from σ(j) to the root of the tree defines the set of events
that the cell j underwent and their order (an(σ(j))). It also specifies the set of
breakpoints that this cell has. Indeed, for a given tree T and cell attachment σ(j),
the set of breakpoints of cell j, denoted by Ibp(j|T, σ) is given by the breakpoints
that occur in at least one event on the path an(σ(j)). We also define I0(j|T, σ) to
be the set of remaining candidate breakpoints in L, i.e., I0(j|T, σ) := L\Ibp(j|T, σ).
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The set of parameters θ parametrizes the distributions of the absolute count

differences, depending on whether they are calculated at breakpoints or not. The

absolute count differences at breakpoints are expected to be large, while differences

at loci that are not breakpoints should oscillate around zero. Accordingly, for a

given tree T and attachment σ, we have dj,i ∼ f(dj,i|T, σj , θ), where

f(dj,i|T, σj) =

fbp(dj,i|θbp) if i ∈ Ibp(j|T, σ)

f0(dj,i|σ0) if i ∈ I0(j|T, σ),

and fbp is a mixture of K normal distributions truncated to R+ and f0(·|σ0) is a

mean zero normal distribution, also truncated to R+. Thus, θbp = {µ1, . . . , µK , σ21 , . . . , σ2K , w1, . . . wK},
where µ1, . . . , µK , are the means, σ21 , . . . , σ

2
K are the variances and w1, . . . , wK are

the weights of the mixture components. The full set of CONET parameters is given

by θ = θbp ∪ {σ0}. The number of mixture components K is user defined. During

the optimization procedure K is decreased when the corresponding weights decrease

beyond a user defined threshold.

Thus, the likelihood of the data D (the count difference matrix), given unknown

model constituents (tree structure, attachment, parameters) is defined to be:

P (D|T, θ, σ) =
m∏
j=1

∏
i∈L

f(dj,i|T, σj , θ)

=
m∏
j=1

 ∏
i∈I0(j|T,σ)

f0(dj,i|σ0)
∏

i∈Ibp(j|T,σ)

fbp(dj,i|θbp))

 (2)

Intuitively, the likelihood is expected to be high for such tree structures and

attachments that indicate breakpoints for count differences with relatively high

values and vice versa: no breakpoints for small count differences.

We assume that cells’ attachment probabilities are conditionally independent

given the tree structure and do not depend on θ:

P (σ|T, θ) =
m∏
j=1

P (σj |T ). (3)

The exact form of P (σj |T ) is specified below (Section Attachment prior). To de-

crease the complexity of the state space of our algorithm, we marginalize out the

cell attachment vector σ. We furthermore use assumption (3) to transform the

marginalized version of formula (2) to achieve O(|L| ·m · |VT |) complexity of a single

likelihood computation:
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P (D|T, θ) =
∑
σ

P (D|T, θ, σ)
m∏
j=1

P (σj |T )


=
∑
σ

m∏
j=1

P (σj |T )
∏

i∈I0(j|T,θ)

f0(dj,i|σ0)
∏

i∈Ibp(j|T,θ)

fbp(dj,i|θbp)


=

m∏
j=1

∑
σj

P (σj |T )
∏

i∈I0(j|T,θ)

f0(dj,i|σ0)
∏

i∈Ibp(j|T,θ)

fbp(dj,i|θbp)

 .
(4)

Cell attachment information is obtained from (T, θ) by choosing such σ, which max-
imizes P (D|T, θ, σ). Such σ is denoted by σ∗ and referred to as maximal attachment.

The described generative model deliberately ignores the actual copy number
change associated with each event and the actual count data observed at each bin.
In this way, the state space for our model is significantly reduced. Still, the copy
number state for each event and each bin in each cell can easily be estimated. We
utilize this fact to 1) penalize the model for inconsistency between the estimated
copy number state and counts in each bin and cell during training and 2) estimate
the state in the bins for the final model (see below).

Priors
Here, we define the priors: P (T ) for tree structure, P (θ) for the parameters and
P (σi|T ) for attachment given the tree structure. In all formulas below, kx are model
hyperparameters that are set by the user.

Tree structure priors
We define the tree structure prior as a product of three different prior distributions,
i.e.,

P (T ) = Pds(m, |VT |, k1) · Pel(E, k0) · PT (T ). (5)

The Pds is a prior for the tree size, following the Occam’s razor principle, that
the simplest explanation is the most probable. The prior Pds controls the growth
of simulated tree size and prevents overfitting of the tree structure and is defined
as follows

Pds(m, |VT |, k1) = e−k1·|VT |·m. (6)

This prior explicitly depends on the number of cells m. This constant is used to
avoid over-fitting of the model to the data and constrains excessive growth of the
tree size with increasing sample size.

The prior Pel accounts for the observation that shorter copy number aberrations
occur more often than the long ones [51], and favors trees with smaller total length
of copy number events ET , i.e.:

Pel(ET , k0) = e−k0·|ET |, (7)
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where |ET | =
∑
v∈VT |v| and |v| denotes the length of event v (the position of the

end locus minus the position of the start locus).
The last prior is technical and serves as a stabilizer for proposal ratios of those

MCMC sampling moves that change the tree size (Add leaf, Remove leaf).

PT (T ) = e−C0|VT | ,where C0 = log
(
|V0||VT |
|Vl|

)
. (8)

Attachment prior

The attachment prior P (σj |T ) reflects our belief about probable attachment of
cell j. We can choose between an uniform attachment prior or assume that cell
attachment depends on the tree structure and the resulting copy number events. In
the latter case the prior is proportional to

P (σj = v|T ) ∝ exp

− ∑
u∈an(v)

|u|
depth(v)

 . (9)

During cell attachment marginalisation the second alternative attributes more
weight to attachments that correspond to a shorter average length of events in
cells.

Parameters priors

Recall that the set of parameters consists of θ = {σ20 , µ1, . . . , µK , σ21 , . . . , σ2K , w1, . . . , wK}.
To facilitate MCMC sampling of θ, we instead work with the parameters’ set

θ := {log(σ20), µ1, . . . , µK , log(σ21), . . . , log(σ2K), log(w1), . . . , log(wK)}

(denoted also by θ with a slight abuse of notation). Moreover, we do not force the
log-weights to sum to one – this enables moves which change only one of the weights
and enhances exploration of state space.

Priors for each of the 3K + 1 transformed one-dimensional parameters’ distribu-
tions are independent centered normal distributions (for means priors are truncated
to R+) with variances νi : i = 1, . . . , 3K + 1. In our simulations we set νi = 1 for
all i.

Count discrepancy penalty

Here, we describe 1) the estimation of the copy number states of bins in each cell
given a certain event tree T and 2) penalization of the model for the inconsistency
between the estimated states and actual counts.

Estimation of copy number states for each bin in each cell
Consider all possible bin-cell pairs, denoted (i, j), for i ∈ {1, . . . , n} and j ∈
{1, . . . ,m}. We say bin i is contained in event v = (l1, l2), denoted i ∈ v, if i is
larger or equal than l1 and lower than l2.

For a given tree T and cell attachment σ, consider such a bin-cell pair (i, j) for
which there exists an event v ∈ an(σ(j)) that satisfies i ∈ v, i.e., according to
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the model, bin i has its copy number changed during cell’s j evolutionary history.
Note that since we allow events in VT to overlap, there may be several such events
in an(σ(j)). Denote by vF (i, j|T, σ) the set of all such events in an(σ(j)). In the
evolutionary history of the tumor described by T and σ, vF (i, j|T, σ) is the set of
all events that affected the copy number state of bin i in cell j.

For a bin-cell pair (i, j) there may be no such vertex v ∈ an(σ(j)) that i ∈ v. In
this case, according to T and σ, the copy number state of bin i in cell j was not
changed during the evolutionary history of the tumor. Such a bin has the same copy
number state as the root (0, 0) of the tree, and we fix vF (i, j|T, σ) = ∅.

Given an event tree T and attachment σ, we define a clustering BC =
⋃
BCw,

where each cluster BCw is defined by bin-cell pairs with the same vF (i, j|T, σ)

BCw = {(i, j)|w = vF (i, j|T, σ)} for w ∈ P(VT ), (10)

where P(VT ) denotes the powerset of vertices. For w 6= ∅, BCw is a set of bins
that share events that changed their copy number state. In contrast, BC∅ is the set
of bins that did not have their copy number state changed.

Note that for (T, σ) reflecting the true copy number event history, all corrected
counts in bins belonging to a given BCw should be approximately equal (mod-
ulo measurement noise) and reflect the true copy number in those bins. Thus, we
estimate the copy number in bins from BCw using the average count in cluster

w :=
1

|BCw|
∑

(i,j)∈BCw

cj,i.

For the root node cluster BC∅, prior knowledge tells that ∅ should be equal to 2.
(this value can be adjusted to incorporate other scenarios) Thus, in this special case
we fix ∅ = 2.

Definition of the count discrepancy penalty
To score how a given event history fits to corrected count data we define

S(T,σ) :=
1

m · n
∑

w∈P(VT )

∑
(i,j)∈BCw

(cj,i − w)2

The S score can be seen as the L2 distance between noisy counts C and the CN
calling results of the model.

Furthermore, we define a second score, S′ which counts the number of bins for
which the average count is close to 2. The penaltyS′ is motivated by the fact that
a bin with copy number 2 is not expected to be a result of copy number evolution.
Such bins could result for example from an amplification by one copy and then
deletion by another copy, but such a situation, by Occam’s razor, is less likely.
Thus, we define

S
′

(T,σ) :=
1

m · n
∑

w∈P(VT )\∅

1w∈[1.5,2.5)|BCw|
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which penalizes events with inferred CN = 2.
Finally, we define the count discrepancy penalty as

R(C,D, T, θ) = s1 · S(T,σ∗) + s2 · S
′

(T,σ∗), (11)

where s1 and s2 are user defined non-negative constants and σ∗ is the maximum
likelihood attachment of cells calculated from (D,T, θ). In the case when the data
C is not available, we set R(C,D, T, θ) = 0. This situation occurs when the data is
simulated from the generative model, as CONET only generates the count differ-
ences D.

Copy number calling
Given an event tree T and the count data, we form the clustering BC =

⋃
BCw.

The estimated copy number state for each bin in each cell mapped to BCw is given
by the integer number that is closest to w with maximum inferred CN equal to 10.

MCMC Sampling
Our approach is to maximize the penalized a posteriori distribution P (T, θ|D).
P (T, θ|D) is proportional to P (D|T, θ) · P (θ) · P (T ) while the penalized version of
the log-distribution is equal to:

L(T, θ|C,D) = ln(P (T, θ|D)) + λ ·R(C,D, T, θ) (12)

To this end, we employ a standard Metropolis-Hastings (M-H) algorithm on the
joint space of event trees and mixture parameters (attachment variables have been
marginalized out to decrease the size of the state space).

Moves on the state space are divided into two groups - those that change the count
difference distribution parameters θ and those that modify the tree structure T . We
switch between those two types in an alternating fashion. For one parameter update,
we perform a fixed number of tree changing moves (in the case of our simulations
this number was set to 10). This is motivated by the fact that moves on θ are more
computationally intensive.

We use q(T ′, θ′|T, θ) to denote the proposal kernel. Note that by the discussion
above always either T ′ = T or θ′ = θ. When it causes no confusion we omit fixed
variables from the kernel, so for instance the kernel for the moves that change tree
structure will be denoted by q(T ′|T ).

Move acceptance probability is standard and given by the expression

ρ = min
(

1,
q(T, θ|T ′, θ′)
q(T ′, θ′|T, θ)

exp(L(T ′, θ′|D,C)− L(T, θ|D,C))
)
. (13)

Tree moves
We employ standard moves on the space of trees, i.e., Prune and reattach and
it’s combinations: Swap subtrees and Swap vertices on the tree. Additionally, we
employ moves that change VT : Add leaf, Remove leaf, Swap event ends between the
tree vertices and Swap vertices between VT and V0.
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A tree of required size can be obtained from any tree by subsequent applications
of Remove leaf, Add leaf moves. Structure of a tree can be adjusted by Prune and
reattach moves. And finally any labeling can be obtained by Swap vertices between
VT and V0 moves. Hence our tree sampling scheme is irreducible. Aperiodicity of
Prune and reattach assures aperiodicity of the whole chain. Below we explain the
moves in detail.

Prune and reattach
We sample a vertex v uniformly from the tree and cut the edge leading to this
vertex to remove the subtree rooted at v from the tree. Then we sample one of
the remaining vertices (including the root) uniformly and attach the subtree there
instead. The reverse of this move, where we again sample v first but then pick its
old parent, has the same proposal probability since the non-descendant set has the
same size each time v is removed. Since we can also choose the old parent when
sampling a new one, this move has a non-zero probability of proposing the same
tree T , ensuring aperiodicity. There is also a path from any tree to a tree with all
vertices attached to the root, by moving each vertex to the root step by step. Via
reversibility, we can likewise move from there to any other tree.

Swap vertices on the tree
We sample two vertices uniformly from the set VT \ {(0, 0)}

(we can not relabel the root) and exchange their positions on the tree. To reverse
the move, we need to resample the same vertices. Hence, the proposal kernel is
symmetric.

Swap subtrees
We sample two vertices u and v uniformly from the set VT \ {(0, 0)}. If the two
vertices are not in an ancestor/descendant relationship we detach them (together
with their subtrees) from their parents and reattach them to each others’ former
parent. Since for the reverse move we would simply need to select the same pair of
vertices, this case is symmetric.

In the other case, assume v is a descendant of u. First, we cut the edge leading to
v and move it with its subtree and attach it to the parent of u. Next, we detach u

and its remaining subtree (with v and its descendants removed). The new parent of
u is sampled uniformly from among v and all of its descendants. This assures the
move to be reversible. To reverse the move, we again need to sample u and v at
the start, and also to sample the previous parent of v from among u and its new
(remaining) descendants. If we denote the number of descendants of u as d(u), the
proposal probabilities now depend also on d(u) and d(v), i.e.,

q(T |T ′)
q(T ′|T )

=
d(v) + 1
d(u) + 1

. (14)

Swap vertices between VT and V0
We sample a vertex u uniformly from the set VT \ {(0, 0)} and a vertex v from
|V0| available inactive events. Then we transpose those vertices: we put v on the
tree instead of u and move u to V0. To reverse the move, we again sample v first
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from |VT \ {(0, 0)}| and u from |V0| available inactive events. The reverse move has
the same proposal probability since both VT and V0 have the same cardinalities as
before the move.

Swap event ends between the tree vertices

Let e(l0, l1) denote unique event created from loci l0, l1, i.e., e(l0, l1) is equal to
(l0, l1) if l0 < l1 and to (l1, l0) otherwise.

We sample two vertices – (l0, l1), (u0, u1) from VT uniformly. If the vertices repre-
sent events that belong to different chromosomes, the move is rejected. Otherwise,
we have four possible ways of obtaining new events for vertices (l0, l1), (u0, u1):

• e(l0, u0), e(l1, u1),
• e(l0, u1), e(l1, u0),
• e(l1, u1), e(l0, u0),
• e(l1, u0), e(l0, u1).

We sample one of those uniformly. If both new events are valid and belong to V0
then we change (l0, l1) and (u0, u1) to new labels with probability given by (13).
Otherwise, the move is rejected.

Formally, if one of the new events is either not valid or is already present on the
tree then we set the likelihood P (T ′, θ|D,C) of such structure to zero. This allows
us to reject such a proposal deterministically since the acceptance ratio (13) is equal
to zero.

This move changes both the VT and V0 sets, but their cardinality remains the
same. The move is symmetric.

Add leaf

We uniformly sample a vertex v from the set of inactive events V0 and add it as a
leaf to uniformly sampled vertex from the VT set. Denote the updated set of leaves
by Vl′ . |Vl′ | depends on the fact whether we added v as a leaf under internal vertex
of the initial tree T , thus increasing the number of leaves, or under a leaf, leaving
the number of leaves unchanged. To reverse this move, we resample v from Vl′ ,
remove v from the tree and add it to V0. This yields the Hastings ratio

q(T |T ′)
q(T ′|T )

=
|V0||VT |
|Vl′ |

=


|V0||VT |
|Vl|

, if leaf added under a leaf

|V0||VT |
|Vl|+ 1

, otherwise.
(15)

Remove leaf

We uniformly sample a leaf v from the set of leaves Vl, remove v from the tree
and add it to the set of inactive events V0. To reverse this move, we resample v
from updated set of inactive events V0′ (V0′ = |V0| ∪ v), and add it as child to it’s
former parent. To choose this parent, we sample it from the updated VT ′ = VT \ v.
Consequently, the Hastings ratio for this move becomes

q(T |T ′)
q(T ′|T )

=
|Vl|

(|V0|+ 1)(|VT | − 1)
. (16)
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Moves on parameter space

Recall that the vector of parameters is equal to:

θ :=
(
log(σ20), µ1, . . . , µK , log(σ21), . . . , log(σ2K), log(w1), . . . , log(wK)

)
.

We use the Metropolis-within-Gibbs algorithm, i.e. one move from θ to θ′ consists
of changing the value of only one of the coordinates. We use the deterministic scan
strategy. The coordinate, which will be updated is chosen periodically – i-th step
proposes new value for 1 + (i mod 3K + 1) coordinate. For every coordinate, we
use adaptive scaling random walk Metropolis kernel, where the step size is adjusted
to achieve optimal acceptance probability. [57].

Improving the convergence of MCMC sampling

To improve the convergence of our algorithm we divide the sampling scheme into
two chains. We start with a chain that works on the joint space (T, θ) and outputs
the estimated maximum a posteriori value of mixture parameters (let us denote this
value by θ∗). This chain alternates between moves changing T and moves changing
θ, as was described in section MCMC Sampling. The second chain runs a fixed
number R (this constant is user defined) of copies of the chain on the space of trees
in parallel. The values of the mixture parameters are fixed and set to θ∗.

Let us describe the latter phase more precisely. Denote trees of the chains by
T1, . . . , TR and let γ1 = 1 > γ2 > . . . > γR > 0 be a sequence of temperatures.
Chain number i targets distribution given by log-density

Li(T |C,D, θ∗) = ln(P (D|T, θ∗)γi · P (θ∗) · P (T )) + λ ·R(C,D, T, θ∗).

Notice that the difference between the standard distribution 12 and Li is that the
likelihoods P (D|T, θ) are tempered and values of the parameters are held fixed.

One iteration of the second phase consists of two procedures:

• Each chain samples new tree T ′i independently using scheme from MCMC
Sampling,

• States of chains J, J + 1 are swapped with probability
(
P (D|T ′J+1,θ

∗)
P (D|T ′

J
,θ∗)

)γJ−γJ+1
.

J is a random index sampled uniformly from {1, . . . , R− 1}.
This scheme is an example of parallel tempering algorithm [58] and it can be

shown that its stationary distribution is proportional to
∏R
i=1 exp (Li(Ti|C,D, θ∗)).

Instead of fixing specific values for the temperatures, we utilize the adaptive Parallel
Tempering algorithm of [58]. Maximum a posteriori tree found by the latter scheme
together with θ∗ is defined to be the output of the whole procedure.

The speed of convergence of chain inferring θ∗ is highly dependent upon a good
choice of initial values for θ. We aggregate D matrix into one vector and assume
that it is a sample from a mixture of K + 1 truncated normal distributions with
non-negative means from which one is constrained to have mean zero. We employ
the EM algorithm [59] to infer the parameters of this mixture and use them as
initial values for θ.
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Simulated data
Simulations are performed to test of our model’s performance in the conditions
where we know the ground truth CONET tree. Different simulation settings are
generated, by varying the size t of the simulated tree T , the number of loci |L|,
the number of single cells m and whether the distribution of the corrected count
absolute differences for the breakpoint loci is well separated from the distribution
for the non-breakpoint loci (well separated setting) or not (poorly separated setting).
The data is simulated as originating from one chromosome.

First, the tree structure T is sampled uniformly from the set of all trees of pre-
specified size t. The size t is either 20 with the number of all possible breakpoints |L|
equal to 40 or two times more, i.e., 40 with 80 possible breakpoints. Next, we sample
the events corresponding to each vertex from the set of all possible events with log-
probability proportional to the negative length of the event. The probability of a
cell being attached to a given vertex v is equal to α∗v, where (α∗v)v∈V (T ) is sampled
from Dirichlet(1).

Finally, we generate simulated corrected count absolute differences dj,i for each
cell j = 1, . . . ,m and each locus i ∈ L. To this end, for each cell, its breakpoints are
read from its tree attachment. Differences for loci without breakpoint are sampled
from distribution f0 while differences for loci with breakpoint are sampled from
distribution fbp. In the well separated setting case we set:

• f0 = N (0, 0.3)
• fbp is a mixture of (N (1, 0.4),N (2, 0.4),N (3, 1.7)) with weights (0.5, 0.35, 0.15).

In the poorly separated setting case we set:
• f0 = N (0, 0.7)
• fbp is a mixture of (N (1, 0.7),N (2, 0.7),N (3, 1.7)) with weights (0.5, 0.35, 0.15).

Where N (a, b) denotes normal distribution with mean a and standard deviation b.
In the simulations we do not produce corrected count data C and thus set the s0
constant to 0, i.e., the R(C,D, T, θ) penalty is ignored in the inference.

Model evaluation methods for simulated data
To facilitate the assessment of the quality of inference results for simulated data
we introduce six performance scores. The scores can be divided into two groups –
those that evaluate the quality of breakpoint detection and those that evaluate the
quality of the inferred event history.

The breakpoint detection scores are based on the comparison of the inferred break-
point matrix to the real (simulated) one. By breakpoint matrix we mean a matrix

H = {hj,i}j∈{1,...,m},i∈{1,...,n}

where hj,i is equal to 1 when locus i is a breakpoint for cell j and 0 otherwise.
False positive rate (FPR) – number of 1 entries from inferred breakpoint matrix

which are equal to 0 in the real matrix divided by the total sum of entries of the
inferred matrix. FPR ranges from 0 to 1.

False negative rate (FNR) – number of 0 entries from inferred breakpoint matrix
which are equal to 1 in the real matrix divided by the total sum of entries of the
real matrix. FNR ranges from 0 to 1.
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Symmetric distance (SD) – L1 distance between real and inferred breakpoint
matrices divided by the number of cells. Notice that although the first two scores
are divided by the total number of breakpoints, this one is not. As a result values of
SD may exceed 1.0. For instance, SD = 1 indicates that on average one breakpoint
is missed or wrongly inferred for each cell.

Lower values of FPR, FNR and SD indicate better breakpoint detection.

The event history scores facilitate the comparison of the inferred tree structure
to the real (simulated) structure and consist of:

Tree size (TS) – the size of the inferred tree |T |, i.e. the number of vertices
including root. In the evaluation, this number is compared to the real tree size.

Edge sensitivity (ES) – the proportion of the inferred tree edges that are present
in the real tree.

Edge precision (EP) – the proportion of real tree edges that are present in the
inferred tree.

The values of both ES and EP range between 0 and 1, where larger values indicate
better inference of the event history.

Model evaluation methods for biological data

Since in the case of biological data the ground truth about CONET structure is
unknown, we introduce additional methods to assess the quality of our inference
procedure applied to experimental data sets.

For basic characterization of the inferred trees we report Tree size as defined in
Model evaluation methods for simulated data and No of clusters – the number of
all BCw clusters i.e. subsets of bins that share the same copy number event history,
including the B∅ cluster.

To evaluate the consistency of an inferred CONET with the count data, we use
characteristics defined below. Cluster support refers to a cluster’s inferred CN sup-
port calculated as the number of bins in a given cluster with corrected count close
to inferred CN (c ∈ [CN − 0.5, CN + 0.5]) divided by the number of all the bins in
the cluster.

Avg cluster support – average over all BCw clusters’ supports,

Perc of good clusters – percentage of clusters with at least 0.7 support,

Perc of CN=2 clusters – percentage of clusters that infer CN equal to two (not
including B∅ cluster).

Finally, we define detailed measures evaluating the quality and consistency of the
CN calling results, where by bins inside events we mean bins in all BCw clusters
except for BC∅.

Avg Gini Index in events – Gini Index calculated separately for corrected counts
in bins for each BCw cluster (w 6= ∅), averaged over the clusters,

Avg Entropy in events – normalized Shannon Entropy calculated separately for
corrected counts in bins in each BCw cluster (w 6= ∅), averaged over the clusters; to
calculate the entropy in each cluster the corrected counts are grouped into intervals
of width 1, concentrated around integer copy numbers,

Gini Index outside events – Gini Index calculated for corrected counts in bins in
the BC∅ cluster,
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Entropy outside events – normalized Shannon Entropy calculated for corrected
counts in bins in the BC∅ cluster,

CN-TPR – The number of bins inside events with corrected count c far from two,
i.e. c /∈ [1.5, 2.5], divided by the total number of bins with the true corrected count
far from two,

CN-FPR – The number of bins inside events with corrected count c close to two,
i.e. c ∈ [1.5, 2.5]m divided by the total number of bins with the true corrected count
close to two.

CN-RMSE – root mean square error for CN calling, the quadratic mean of the
differences between the inferred integer copy number for each bin and the corrected
count for each corresponding bin, which is equal to the square root of count dis-
crepancy penalty:

√
S(T,σ).

Availability of data and materials
CONET implementation is freely available under CC-BY-NC 4.0 International li-
cense at https://github.com/tc360950/CONET.
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7. Lähnemann, D., Köster, J., Szczurek, E., McCarthy, D.J., Hicks, S.C., Robinson, M.D., Vallejos, C.A.,

Campbell, K.R., Beerenwinkel, N., Mahfouz, A., Pinello, L., Skums, P., Stamatakis, A., Attolini, C.S.-O.,
Aparicio, S., Baaijens, J., Balvert, M., Barbanson, B., Cappuccio, A., Corleone, G., Dutilh, B.E., Florescu, M.,
Guryev, V., Holmer, R., Jahn, K., Lobo, T.J., Keizer, E.M., Khatri, I., Kielbasa, S.M., Korbel, J.O., Kozlov,
A.M., Kuo, T.-H., Lelieveldt, B.P.F., Mandoiu, I.I., Marioni, J.C., Marschall, T., Mölder, F., Niknejad, A.,
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