1	Title: The circadian clock gene circuit controls protein and phosphoprotein rhythms in
2	Arabidopsis thaliana.
3	
4	Short title: Clock gene regulation of the Arabidopsis (phospho)proteome
5	
6	Authors:
7	Dr Johanna Krahmer ^{1,2,5} , Dr Matthew Hindle ³ , Dr Laura K Perby ⁴ , Prof Tom H Nielsen ⁴ , Prof
8	Karen J Halliday ² , Dr Gerben van Ooijen ² , Dr Thierry Le Bihan ¹ , Prof Andrew J Millar ¹
9	
10	Affiliations:
11	¹ SynthSys and School of Biological Sciences, CH Waddington Building, Max Born Crescent,
12	Kings Buildings, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
13	² Institute for Molecular Plant Science, School of Biological Sciences, Daniel Rutherford
14	Building, Building, Max Born Crescent, Kings Buildings, University of Edinburgh,
15	Edinburgh, EH9 3BF, United Kingdom
16	³ The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, Edinburgh,
17	EH25 9RG, United Kingdom
18	⁴ Department of Plant and Environmental Sciences, University of Copenhagen, Section for
19	Molecular Plant Biology, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
20	⁵ Present address: Center for Integrative Genomics, Faculty of Biology and Medicine,
21	University of Lausanne, 1015 Lausanne, Switzerland
22	Corresponding author information:
23	Johanna Krahmer, email: johanna.krahmer@unil.ch
24	Andrew J Millar, email: Andrew.Millar@ed.ac.uk
25	
2 6	ORCID:
- 0 27	Johanna Krahmer: 0000-0001-7728-5110

- 28 Matthew Hindle: 0000-0002-6870-4069
- 29 Andrew Millar: 0000-0003-1756-3654
- 30 Gerben van Ooijen: 0000-0001-7967-0637

31 Abbreviations:

- 32 TTFL Transcriptional translational feedback loop
- 33 NTO non-transcriptional oscillator
- 34 F2KP fructose-6-phosphate-2-kinase / phosphatase
- 35 CCA1 Circadian clock associated 1
- 36 CCA1-OX CCA1 overexpressor
- 37 CK casein kinase
- 38 SNF-1 sucrose non-fermenting
- 39 SnRK SNF-1 related kinase
- 40 TOC1 timing of CAB expression 1
- 41 TOC1-Ox TOC1 overexpressor
- 42 PRX peroxiredoxin
- 43 PCA principal component analysis
- 44 Col-0 Columbia 0
- 45 ZT Zeitgeber time
- 46 h hour
- 47 WT wildtype
- 48 GO gene ontology
- 49 SEM standard error of the mean
- 50 BH Benjamini Hochberg
- 51

52 Abstract

- 53 24-hour, circadian rhythms control many eukaryotic mRNA levels, whereas the levels of their
- 54 more stable proteins are not expected to reflect the RNA rhythms, emphasizing the need to
- test the circadian regulation of protein abundance and modification. Here we present circadian

56	proteomic and phosphoproteomic time-series from Arabidopsis thaliana plants under constant
57	light conditions, estimating that just 0.4% of quantified proteins but a much larger proportion
58	of quantified phospho-sites were rhythmic. Approximately half of the rhythmic phospho-sites
59	were most phosphorylated at subjective dawn, a pattern we term the 'phospho-dawn'.
60	Members of the SnRK/CDPK family of protein kinases are candidate regulators. A CCA1-
61	over-expressing line that disables the clock gene circuit lacked most circadian protein
62	phosphorylation. However, the few phospho-sites that fluctuated despite CCA1-over-
63	expression still tended to peak in abundance close to subjective dawn, suggesting that the
64	canonical clock mechanism is necessary for most but perhaps not all protein phosphorylation
65	rhythms. To test the potential functional relevance of our datasets, we conducted
66	phosphomimetic experiments using the bifunctional enzyme fructose-6-phosphate-2-kinase /
67	phosphatase (F2KP), as an example. The rhythmic phosphorylation of diverse protein targets
68	is controlled by the clock gene circuit, implicating post-translational mechanisms in the
69	transmission of circadian timing information in plants.
70	
70 71	Keywords
	Keywords circadian clock; non-transcriptional oscillator; Arabidopsis; phosphoproteomics
71	•
71 72	•
71 72 73	circadian clock; non-transcriptional oscillator; Arabidopsis; phosphoproteomics
71 72 73 74	circadian clock; non-transcriptional oscillator; Arabidopsis; phosphoproteomics Introduction
71 72 73 74 75	circadian clock; non-transcriptional oscillator; Arabidopsis; phosphoproteomics Introduction Most circadian observations in the well-characterised plant species <i>Arabidopsis thaliana</i> can
71 72 73 74 75 76	circadian clock; non-transcriptional oscillator; Arabidopsis; phosphoproteomics Introduction Most circadian observations in the well-characterised plant species <i>Arabidopsis thaliana</i> can be explained by a genetic network of mostly negatively interacting transcription factors (1,2).
71 72 73 74 75 76 77	circadian clock; non-transcriptional oscillator; Arabidopsis; phosphoproteomics Introduction Most circadian observations in the well-characterised plant species <i>Arabidopsis thaliana</i> can be explained by a genetic network of mostly negatively interacting transcription factors (1,2). In addition to transcriptional interactions, this transcriptional-translational feedback loop
71 72 73 74 75 76 77 78	circadian clock; non-transcriptional oscillator; Arabidopsis; phosphoproteomics Introduction Most circadian observations in the well-characterised plant species <i>Arabidopsis thaliana</i> can be explained by a genetic network of mostly negatively interacting transcription factors (1,2). In addition to transcriptional interactions, this transcriptional-translational feedback loop (TTFL) system requires post-translational modification of transcription factor proteins (3).
 71 72 73 74 75 76 77 78 79 	circadian clock; non-transcriptional oscillator; Arabidopsis; phosphoproteomics Introduction Most circadian observations in the well-characterised plant species <i>Arabidopsis thaliana</i> can be explained by a genetic network of mostly negatively interacting transcription factors (1,2). In addition to transcriptional interactions, this transcriptional-translational feedback loop (TTFL) system requires post-translational modification of transcription factor proteins (3). Phosphorylation of CCA1 by casein kinase (CK) 2 for example is necessary for the circadian
 71 72 73 74 75 76 77 78 79 80 	circadian clock; non-transcriptional oscillator; Arabidopsis; phosphoproteomics Introduction Most circadian observations in the well-characterised plant species <i>Arabidopsis thaliana</i> can be explained by a genetic network of mostly negatively interacting transcription factors (1,2). In addition to transcriptional interactions, this transcriptional-translational feedback loop (TTFL) system requires post-translational modification of transcription factor proteins (3). Phosphorylation of CCA1 by casein kinase (CK) 2 for example is necessary for the circadian clock function (4).

in circadian timekeeping are similar across eukaryotes. For instance CK2 is also important for
circadian timing in mammals (6) and fungi (7). Protein phosphorylation is also involved in the
output of the circadian clock (8). However, only one study has so far addressed the question
of how pervasive circadian protein phosphorylation is in higher plants (9).

88

89 In circadian biology, transcriptional studies have long dominated research efforts, leading to 90 the well-established TTFL models (e.g. refs (1,2,10-12)). However, it has become apparent 91 that protein abundance and post-translational modification cannot be ignored, since these do 92 not simply follow transcript expression patterns (e.g. refs. (13–15)). There is even evidence 93 that circadian oscillations can be driven by non-transcriptional oscillators (NTOs) that are 94 independent of rhythmic transcription. The cyanobacterial circadian clock is based on 95 rhythmic autophosphorylation of the KaiC protein together with the KaiA and KaiB proteins 96 and this mechanism does not even require a living cell to create oscillations (16). Evidence 97 for NTOs also exists in eukaryotes; the protein peroxiredoxin (PRX) is rhythmically over-98 oxidized in the absence of transcription in algae and human red blood cells (17,18). Circadian 99 rhythms of PRX over-oxidation were also observed in organisms that have impaired circadian 100 oscillators, in mutants of the fungus Neurospora crassa and in transgenic Arabidopsis plants 101 (19). The circadian PRX over-oxidation rhythm even exists in cyanobacteria and archaea 102 (19). In addition, circadian magnesium and potassium ion transport has been observed across 103 eukaryotes and can occur in transcriptionally inactive Ostreococcus tauri and human red 104 blood cells (20,21). Therefore, at least some eukaroytes possess NTOs that appear to be 105 evolutionarily ancient and conserved (3). 106 107 With mass spectrometer technology becoming more and more advanced, several circadian

108 proteomics studies have been conducted in different species, such as proteomics analyses of

109 protein abundance time courses (15,22–25), proteomics specifically at the day / night

transition (25,26) or circadian phosphoproteomics (9,24).

111 In this study, we used mass spectrometry based proteomics and phosphoproteomics on

112	circadian time courses to address the following questions: (1) How pervasive are rhythms in
113	protein abundance and phosphorylation as a clock output in a normally functioning circadian
114	clock system, and what are the characteristics of such rhythms? and (2) can protein abundance
115	or phosphorylation be rhythmic in a plant with a disabled transcriptional oscillator? To
116	investigate (1), we used a time course of WT plants, and for addressing (2), we generated time
117	courses from plants overexpressing the CIRCADIAN CLOCK-ASSOCIATED 1 gene (CCA1-
118	OX), which have an impaired TTFL. We generated global proteomics and phosphoproteomics
119	data in parallel from the same protein extracts. Our analysis revealed that the transcriptional
120	oscillator is required for most rhythmic protein phosphorylation, and that most rhythmic
121	phosphopeptides peak at subjective dawn. We also found this 'phospho-dawn' trend among
122	the time courses of fluctuating phosphopeptides in the CCA1-OX. Finally, we selected a
123	phosphosite of the bifunctional enzyme fructose-6-phosphate-2-kinase / fructose-2,6-
124	bisphosphatase (F2KP) to illustrate how our data can be used to study the mechanisms of
125	clock output pathways that connect to central carbon metabolism.
126	
126 127	Experimental Procedures
	Experimental Procedures
127	Experimental Procedures <i>Plant material</i>
127 128	-
127 128 129	Plant material
127 128 129 130	Plant material Arabidopsis thaliana WT (Col-0 accession) and a CCA1 over-expressing plants ('CCA1-OX',
127 128 129 130 131	 Plant material Arabidopsis thaliana WT (Col-0 accession) and a CCA1 over-expressing plants ('CCA1-OX', (27)) were used in this study. Seeds were germinated and grown on plates (2.15g/l Murashige
127 128 129 130 131 132	 Plant material Arabidopsis thaliana WT (Col-0 accession) and a CCA1 over-expressing plants ('CCA1-OX', (27)) were used in this study. Seeds were germinated and grown on plates (2.15g/l Murashige & Skoog medium Basal Salt Mixture (Duchefa Biochemie), pH 5.8 (adjusted with KOH) and
127 128 129 130 131 132 133	 Plant material Arabidopsis thaliana WT (Col-0 accession) and a CCA1 over-expressing plants ('CCA1-OX', (27)) were used in this study. Seeds were germinated and grown on plates (2.15g/l Murashige & Skoog medium Basal Salt Mixture (Duchefa Biochemie), pH 5.8 (adjusted with KOH) and 12g/l agar (Sigma)) at 85µmol m⁻² s⁻¹ white fluorescent lights at 21°C in Percival incubators
127 128 129 130 131 132 133 134	 Plant material Arabidopsis thaliana WT (Col-0 accession) and a CCA1 over-expressing plants ('CCA1-OX', (27)) were used in this study. Seeds were germinated and grown on plates (2.15g/l Murashige & Skoog medium Basal Salt Mixture (Duchefa Biochemie), pH 5.8 (adjusted with KOH) and 12g/l agar (Sigma)) at 85µmol m⁻² s⁻¹ white fluorescent lights at 21°C in Percival incubators for 11 days in 12h light, 12h dark cycles. Seedlings were transferred to soil and grown for 11
127 128 129 130 131 132 133 134 135	 Plant material Arabidopsis thaliana WT (Col-0 accession) and a CCA1 over-expressing plants ('CCA1-OX', (27)) were used in this study. Seeds were germinated and grown on plates (2.15g/l Murashige & Skoog medium Basal Salt Mixture (Duchefa Biochemie), pH 5.8 (adjusted with KOH) and 12g/l agar (Sigma)) at 85µmol m⁻² s⁻¹ white fluorescent lights at 21°C in Percival incubators for 11 days in 12h light, 12h dark cycles. Seedlings were transferred to soil and grown for 11
127 128 129 130 131 132 133 134 135 136	<i>Plant material</i> <i>Arabidopsis thaliana</i> WT (Col-0 accession) and a <i>CCA1</i> over-expressing plants ('CCA1-OX', (27)) were used in this study. Seeds were germinated and grown on plates (2.15g/l Murashige & Skoog medium Basal Salt Mixture (Duchefa Biochemie), pH 5.8 (adjusted with KOH) and 12g/l agar (Sigma)) at 85µmol m ⁻² s ⁻¹ white fluorescent lights at 21°C in Percival incubators for 11 days in 12h light, 12h dark cycles. Seedlings were transferred to soil and grown for 11 more days at a light intensity of 110µmol m ⁻² s ⁻¹ in the same light-dark cycle.

139 on continuously and collection of plant material started at ZT 12 (dataset I) or ZT 24 (dataset

140 II). In dataset I, six time points at 4h intervals were taken with five replicates for each time

- 141 point, harvesting eight rosettes for the WT and 12 rosettes for the CCA1-OX. In dataset II,
- also at 4h intervals, at least six replicates of eight rosettes each were taken for the WT, five
- 143 (16 rosettes each) of the CCA1-OX. In dataset I, the time course was sampled from ZT12 to

144 ZT32, in dataset II from ZT24 to 48 (CCA1-OX) or ZT24 to ZT52 (WT).

- 145 Statistical analysis of time courses required assessment of not only changes but also
- 146 rhythmicity. We therefore used both analysis of variance (ANOVA) and JTK_CYCLE as
- 147 statistical tools (see below for details).
- 148

149 Sample preparation

- 150 Rosettes without roots were harvested by flash-freezing in liquid nitrogen. Protein extraction
- and precipitation was carried out according to method 'IGEPAL-TCA' described by (28).

152 Briefly, protein was extracted and precipitated with TCA and phase separation, then washed

153 with methanol and acetone. 500µg re-suspended protein was digested using a standard in-

solution protocol and peptides were desalted. Before drying, eluted peptides were separated

155 into two parts: 490µg of the digest was used for phosphopeptide enrichment, 10µg was saved

156 for global protein analysis. Phosphopeptides were enriched using the TitansphereTM spin tip

157 kit (GL Sciences Inc.) and desalted on BondElut Omix tips (Agilent) according to the

- 158 manufacturers' instructions.
- 159

160 Mass spectrometry, peptide merging and Progenesis analysis

161 LC-MS/MS measurement and subsequent analysis by the Progenesis software (version

162 4.1.4924.40586) was carried out as previously described (28): Dried peptides were dissolved

- 163 in 12 μl (phosphoproteomics) or 20μl (global proteomics) 0.05% TFA and passed through
- 164 Millex-LH 0.45µm (Millipore) filters. 8 µl were run on an on-line capillary- HPLC-MSMS
- system consisting of a micropump (1200 binary HPLC system, Agilent, UK) coupled to a
- 166 hybrid LTQ-Orbitrap XL instrument (Thermo-Fisher, UK). Reverse phase buffer used for
- 167 LC-MS separation was buffer A (2.5% acetonitrile, 0.1% FA in H₂O) and buffer B (10%

168 H₂O, 90% acetonitrile, 0.1% formic acid, 0.025% TFA). LC peptide separation was carried 169 out on an initial 80 min long linear gradient from 0% to 35% buffer B, then a steeper gradient 170 up to 98% buffer B over a period of 20 min then remaining constant at 98% buffer B for 15 171 min until a quick drop to 0% buffer B before the end of the run at 120 min. 172 The tair Arabidopsis 1rep (version 20110103, 27416 protein entries) database was used for 173 data-dependent detection, using the Mascot search engine (version 2.4), including all peptide 174 sequences of rank smaller than 5. Search parameters were as follows: charges 2+, 3+ and 4+, 175 trypsin as enzyme, allowing up to two missed cleavages, carbamidomethyl (C) as a fixed 176 modification, Oxidation (M), Phospho (ST) and Phospho (Y), Acetyl(Protein N-term) as 177 variable modifications, a peptide tolerance of 7 ppm, and MS/MS tolerance of 0.4 Da, peptide 178 charges 2+, 3+, and 4+, on an ESI-trap instrument, with decoy search and an ion-cutoff of 20. 179 In all but one cases, these parameters resulted in a false-discovery rate (FDR), of less than 5% with one exception (phosphoproteomics dataset I: 3.5%, phosphoproteomics dataset II: 3.2, 180 181 global dataset I: 6.8%, global dataset II: 4.5%, calculated using the formula 2*d/(n+d) (29), n 182 and d being the number of hits in the normal and decoy databases, respectively, using an ion 183 score cutoff of 20). Peptides were quantified by their peak area by Progenesis, and proteins 184 were quantified by using the sum of the quantitation of all unique peptides. Where peptides 185 matched very similar proteins, multiple accession numbers are shown in exported results from 186 Progenesis (Supplementary Data S1, S2). 187 In order to remove duplicates of phosphopeptides due to alternative modifications other than 188 phosphorylation or missed cleavages, we used the qpMerge software following the Progenesis 189 analysis (30). The data are publicly available in the pep2pro database (31) at http://fgcz-190 pep2pro.uzh.ch (Assembly names 'ed.ac.uk Global I', 'ed.ac.uk Global II', 'ed.ac.uk Phospho 191 I', 'ed.ac.uk Phospho II') and have been deposited to the ProteomeXchange Consortium 192 (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository (32) with the 193 dataset identifier PXD009230. Exported .csv files from Progenesis with all peptide and 194 protein quantifications can be found in the online supplementary material (Data S1 and S2).

196 General statistics and outlier removal

197	Results of statistical analyses are summarised in Data S3. Outlier analysis, statistics and Venn
198	diagrams were done using R version 3.2.1 (33). Zero values for the quantification were
199	exchanged for 'NA'. For outlier analysis and parametric tests such as ANOVA, arcsinh
200	transformed data was used to obtain a normal distribution, while untransformed data was used
201	for plotting time courses and for the non-parametric JTK_CYCLE analysis. For
202	phosphoproteomics analysis all replicates in which the Pearson correlation coefficient among
203	replicates of the same time point was lower than 0.8 were regarded as outliers (supplementary
204	methods, Supplementary Data S4). In global dataset II, the first run replicate of each time
205	point had to be excluded as an outlier due to an apparent drift (Supplementary Data S4). To
206	generate heat maps, the abundance of each peptide or protein was normalized by the time
207	course mean of the peptide or protein, followed by taking the log2 to centre values around 0,
208	and the heatmap.2 function from the pvclust R package was applied (34).

209

210 JTK CYCLE analysis

We used the R-based tool JTK_CYCLE (35) to determine rhythmicity, with the following
modifications: (1) we ran the JTK_CYCLE algorithm for each phosphosite or protein
separately rather than the entire list, to allow handling of missing quantification values for

some replicates. Benjamini Hochberg (BH) (36) correction of p-values was carried out after

application of the JTK_CYCLE tool. (2) Since our time course durations are close to the

216 periods of rhythms we are searching for, some identifications were assessed as rhythmic by

217 the original JTK_CYCLE tool that were increasing or decreasing continually over the entire

time course. We excluded these from the group of rhythmic identifications ('excl.' in p-value

column in Supplementary Data S5). For dataset-wide analyses we used p<0.05 as a cutoff for

220 rhythmicity and then trusted results that agree between experiments. Similarly, for judging

individual time courses we focus on those with p < 0.05 in both datasets.

222

223 Kinase prediction using GPS3.0

224 Kinases for each site were predicted using the Arabidopsis thaliana specific GPS 3.0 225 prediction tool in its species specific mode for Arabidopsis thaliana (37,38). For each 226 phosphorylation site, an amino acid sequence was generated that contained 50 amino acids on 227 either side of the phosphorylated residue using a python script. This resulted in 101 amino 228 acid long sequences, unless the phosphosite was closer than 50 residues to the C or T 229 terminus in which case the missing positions were filled by 'X'. The phosphopeptides used as 230 foreground were the significantly rhythmic phosphosites (JTK CYCLE p-value < 0.05) 231 peaking at a given time point, all other phosphosites identified in the same experiment were 232 used as background. The high threshold setting was used to minimize false-positive 233 predictions and searches were done for S and T residues. In order to reduce the complexity of 234 the dataset, we used a simplification: where kinases from different families were predicted, 235 only the one with the highest difference between score and cutoff was used. For foreground 236 and background the numbers of predictions for each occurring kinase group were counted and 237 the Fisher's Exact test was used to determine predicted kinases that were significantly 238 enriched in the foreground group (p < 0.05). 239

GO analysis

241 For GO analysis, foreground and background were chosen as in the kinase prediction

analysis. With these groups, GO analysis was conducted using the topGO script (39),

followed by Fisher's exact test to determine enrichment of terms (supplementary data S6).

244

245 *Generation of F2KP point mutations and expression constructs*

246 The F2KP coding sequence in the pDONR221 vector, lacking a stop codon, was kindly

247 provided by Dr Sebastian Streb, ETH Zürich. The QuikChange Lightning Site-Directed

- 248 Mutagenesis kit (Agilent Technologies) was used to introduce point mutations using primer
- 249 pair AspF and AspR for mutation of S276 to aspartic acid or AlaF and AlaR for mutation to
- alanine (Table S 4). The WT or mutated F2KP coding sequences were amplified by PCR
- using primers F2KP-F and F2KP-R (Table S 4), introducing restriction sites for AfIII (3' end)

252	and XbaI (5' end) and a stop codon. Using these restriction sites, digested PCR products were
253	ligated into the pmcnEAVNG expression vector which allows expression in <i>E.coli</i> with an N-
254	terminal GST tag and a T7 promoter for IPTG inducibility. Plasmids were transformed into
255	Rosetta TM 2(DE3)pLysS Competent expression strain (Novagen).
256	
257	Expression of GST-F2KP constructs in E. coli cells
258	The three constructs, WT, S276E and S276A were expressed in <i>E.coli</i> and purified using the

- 259 GST tag. Two independent expression experiments were performed (experiment 1 and
- 260 experiment 2), each in triplicates. 200ml *E.coli* cultures were grown at 37°C with 100µg/ml
- ampicillin and 25µg/ml chloramphenicol and induced with 1mM IPTG at OD₆₀₀ values
- between 0.6 and 0.8. Cells were harvested by centrifugation after 2.5h of expression at 37°C.
- 263 Each pellet was from 50ml bacterial culture. For purification of GST-F2KP, pellets were
- lysed in 2.5ml PBS with Complete protease inhibitor cocktail (Roche) with a probe sonicator.
- 265 After clearing of the lysates, AP was carried out using GSH-agarose beads, with 167µl GSH-
- agarose bead suspension (Protino glutathione agarose 4B, Macherey-Nagel), a binding
- incubation of 30min at room temperature, 4 washes with 10x the volume of the bead
- suspension and elution in PBS with 100mM reduced glutatione (pH 8.0) 3 times 30min at
- room temperature.
- 270
- 271 F2KP activity assay
- 272 F2KP activity of purified F2KP was measured as described in (40) (F-2,6-BP producing
- 273 reaction) and (41) (measurement of generated F-2,6-BP by its activation of PFP and
- subsequent production of NADH produced from glycolytic enzymes).
- 275
- 276 Western blot quantification of F2KP concentration in AP eluates
- 277 To test whether the differences in F2KP activity of eluates could be caused by differences in
- abundance in the eluate, we quantified the amount of F2KP in equal volumes of eluates by
- 279 western blotting. Samples were prepared for SDS-PAGE with 25% 4xLDS (Life

- 280 Technologies, NP0008) and 20mM DTT and were incubated at 70°C for 10min. Two
- 281 concentration series of an equal mix of all three eluates were loaded on each gel for relative
- 282 quantitation. Individual eluates were examined in duplicates (expression 1) or triplicates
- 283 (expression 2). 4-12% Bis-Tris Gels (Life Technologies) were run and protein was blotted
- 284 onto nitrocellulose membrane using the iBlot[®] system. Two primary antibodies were used in
- parallel: anti-F2KP from rabbit, raised against amino acids 566-651 (42) and anti-GST from
- 286 mouse (Thermo Scientific), both at a dilution of 1:1,000 overnight. Secondary antibodies
- 287 were goat-anti-rabbit (IRDye®800CW, LI-COR) and goat-anti-mouse (IRDye®680RD, LI-
- 288 COR). Bands were quantified using the ImageStudioLite (version 2) software.

290

291 Results

- 292 *Circadian protein phosphorylation requires the canonical transcriptional oscillator*
- 293 We generated global proteomics and phosphoproteomics datasets for two independent
- 294 circadian time courses and for two genotypes each WT and the CCA1-OX line which has an
- impaired circadian oscillator (27). This resulted in four datasets: global protein and
- phosphopeptide datasets I (Zeitgeber time (ZT) 12 to ZT32) and datasets II (ZT24 to ZT48
- 297 (CCA1-OX) or ZT52 (WT)) (Figure 1A,B). We removed outliers before conducting further
- statistical analysis (Supplementary Data S4).
- 299

300 We identified 2287 phosphopeptides in dataset I, 1664 in dataset II, which condensed to

301 between 1000 and 1500 in each dataset after applying qpMerge (30) to remove duplicate

302 phosphopeptides (Table 1A). These were from several hundred proteins in each dataset and

303 over 1000 in both datasets together (Table 1B). In the global protein analysis, we identified

304 1896 and 1340 proteins in dataset I and II, respectively, adding up to a total of 2501 for both

305 datasets combined (Table 1A,B). To assess the circadian rhythmicity of each phosphopeptide

306 or protein, we employed the non-parametric JTK_CYCLE method (35) as it can be applied to

307 time courses of only one cycle, taking the curve shape into account. Unless otherwise stated

308 we considered periods of 22 to 26h and excluded continuously increasing or decreasing

309 profiles from the group of rhythmic phosphopeptides or proteins. In dataset I, 606 (40%)

310 phosphopeptides were rhythmic in the WT, in dataset II 100 (8.8%) based on the p-value of

311 the individual timeseries. 338 (23%) (dataset I) and 26 (2.3%) (dataset II) were rhythmic after

312 adjusting for multiple testing ('q-value' < 0.05) (36). The fraction of rhythmic proteins in the

313 global proteomics analysis was smaller than in the case of phosphopeptides: 171 (9.0%) in

dataset I, 45 (3.4%) in dataset II had JTK_CYCLE p-values < 0.05. 6 proteins also had q-

315 value < 0.05 in each dataset (0.32% in dataset I, 0.45% in dataset II). Phosphopeptides and

316 proteins with JTK CYCLE p<0.05 in both datasets are listed in Table 2.

317

318	In the CCA1-OX line, 37 (2.5%) phosphopeptides had a JTK_CYCLE p-value < 0.05 in
319	dataset I, 17 (1.5%) in dataset II; in the global datasets, 122(6.4%) and 57 (4.3%) had a
320	JTK_CYCLE p-value < 0.05 in datasets I and II, respectively. After adjusting for multiple
321	testing, only two significant identifications remained for the CCA1-OX phosphopeptides in
322	dataset I and none in dataset II (Table 1A). This analysis suggests that a functional TTFL is
323	required for most rhythmic protein phosphorylation.
324	
325	For further whole-dataset analyses, we used JTK_CYCLE p-value < 0.05 as a criterion for
326	rhythmicity and treated results as reliable if rhythmic scores were obtained from separate
327	analysis of each dataset. This approach is also supported by comparison with existing data:
328	Among the phosphopeptides with $p < 0.05$ and $q > 0.05$ were phosphosites that were
329	previously shown to be rhythmic with almost identical phases, such as RTT(pS)LPVDAIDS
330	of WITH NO LYSINE (WNK) 1, and TL(pS)STPLALVGAK of CHLORIDE-CHANNEL-A
331	(CLC-A) (Supplementary Data S3) (9). As expected, the global proteomic analysis did not

332 quantify all the proteins identified by the phosphoproteomic enrichment (Figure 1 C,E). We

found very few proteins with rhythms in abundance as well as rhythmic phosphopeptides (12

in dataset I, 2 in dataset II). About half of the rhythmic phosphopeptides or proteins had

335 rhythmic transcripts (Figure 1D,F).

336

337 Since CCA1 is a morning-expressed gene, the CCA1-OX line might be expected to have a 338 'morning-locked' circadian oscillator. To test whether this observation applies at the protein 339 abundance and phosphorylation level, we calculated the absolute value of the difference 340 between CCA1-OX and WT (|CCA1-OX - WT|) at each dawn and dusk time point (i.e. ZT12, 341 24, 36 and 48) for time courses of all proteins or phosphopeptides that were rhythmic in WT 342 (p-value <0.05) and quantified in CCA1-OX. For each dawn – dusk pair, we determined 343 whether the difference between CCA1-OX and WT was larger at dusk or at dawn and counted 344 the number of such pairs as a coarse indication of the difference between the proteome or 345 phosphoproteome of these two genotypes, for each dataset and time point pair (Table S 1).

346 CCA1-OX differed more from the WT at dusk rather than dawn, in all but one of the time

347 point pairs (the exception was one of the smallest pairs, in global dataset II). This is consistent

348 with a partially morning-locked circadian clock at the protein (modification) level, as

349 expected from the role of CCA1 in the TTFL. The consistency of the dataset supports our

- 350 interpretation, from the very few rhythmic identifications in CCA1-OX, that the TTFL is
- accessary for most of the rhythms observed in WT plants.
- 352
- 353 Circadian rhythms of proteins in the global proteomics datasets

We applied GO analysis to the global proteomics data, using rhythmic proteins at each peak

355 time point as foreground and all other identified proteins as background (Supplementary Data

- 356 S6). In both datasets, enriched GO terms in the WT at the end of the subjective day (ZT12
- and ZT36) were photosynthesis related terms, 'response to glucose', 'regulation of protein

358 dephosphorylation' and oxidoreductase activity with NAD or NADP as acceptor. The latter

- 359 was also enriched in the CCA1-OX in dataset I. In addition, in the CCA1-OX, two terms
- 360 related to cell wall metabolic processes were enriched in both datasets during the subjective
- 361 night (ZT20 and ZT44) (Supplementary Data S6).
- 362 Among rhythmic proteins shared between the datasets, we identified six for the WT, three for
- 363 the CCA1-OX (Table 2D,E). One protein, INOSITOL 3-PHOSPHATE SYNTHASE 1
- 364 (MIPS1, AT4G39800) was rhythmic with a peak at 24-28h in both datasets and both

365 genotypes but with lower p-value and higher amplitude in the WT (Figure 2A). Two other

366 examples of high-confidence rhythms in protein abundance are chloroplast BETA-

- 367 AMYLASE 3 (BAM3) (Figure 2B) and the light-harvesting chlorophyll a/b binding protein
- 368 LHCB2.2 (Figure 2C).
- 369

370 WT phosphoproteomics data reveals rhythmic phosphoproteins with a variety of functions,

371 including previously unknown phosphosite rhythms

37	'2	GO	term	enrichme	nt within	the n	eak :	time	orour	s of	the 1	nhasr	hoi	proteomics	data	reveale	h h	hat
57	4	υU	utilli	cinicinite		i une p	Car	unic	group	501	une	pnosp	лю	Juconnes	uata	reveau	JUI	mai

- 373 only one GO term ('cotyledon development') was shared between the two datasets and the
- 374 ZTs of enrichment are 16 h apart (Supplementary Data S6). Several terms were shared
- 375 between the WT and the CCA1-OX in dataset I, most of them related to energy metabolism or
- ion homeostasis, and all of them were enriched at ZT24 or ZT28. Apart from overlap of exact
- 377 GO IDs, we found enrichment of terms related to translation in the WT at 24h in both
- 378 phosphoproteomics datasets, which is consistent with rhythmic phosphorylation of RPS6
- 379 isoforms (Supplementary data S6, Table 2, Data S3) (9).
- 380 In agreement with the small number of consistently enriched GO terms and with (9), we
- 381 found that the proteins for which we found rhythmic phosphosites in the WT are associated
- 382 with a large variety of functions, such as translation initiation (RPS6A, RPS6B), nitrogen /
- amino acid metabolism or transport (NIA2, NRT1.7, CLC-A), light harvesting (CAB4) or

384 flowering (COL-9).

- 385 In our datasets we also found previously unknown phosphosite rhythms, such as on
- 386 ASPARAGINE SYNTHETASE (ASN) 2, SWEET12, PLASMA MEMBRANE INTRINSIC
- 387 PROTEIN (PIP) 2;7 and VARICOSE RELATED (VCR) (Figure 3, and see discussion).
- 388

389 Very few proteins are rhythmically phosphorylated in the CCA1-OX

390 Only 2 phosphopeptides with p<0.05 for the CCA1-OX appear in both datasets (Table 2B): A

391 phosphopeptide of a Leucine rich repeat protein kinase (AT2G33830) and a dormany/auxin

- associated family protein (AT1G51805). The latter showed a significant increase in its total
- 393 protein abundance in dataset I (Table 2B), therefore changes may be due to increasing protein
- and expression in constant light.
- 395

396 'Phospho-dawn': most rhythmic phosphopeptides peak in the subjective morning

- 397 Analysis of the number of phosphopeptides that peak at each time point revealed that 45%
- 398 (dataset I) and 73% (dataset II) of rhythmic phosphopeptides peak around subjective dawn in
- the WT (Figure 4A, Figure 5A,B). This is in agreement with previous observations in

400 Ostreococcus and Arabidopsis (9,43). By contrast, in the global proteomics dataset no 401 tendency for increased abundance at dawn was observed (Figure 4C, Figure 5C,D). These 402 observations hold true when using an alternative ANOVA analysis, detecting change rather 403 than rhythmicity, with a p-value cutoff of p<0.05 (Figure S 1). Therefore, the preponderance 404 of 'phospho dawn' patterns is more likely due to (de)phosphorylation events rather than to 405 changes in the abundance of the cognate proteins. 406 Interestingly, almost all of the few phosphopeptides with JTK CYCLE p-value < 0.05 also 407 peaked at subjective dawn in the CCA1-OX plants (Figure 4B, Figure 5A, B, Figure S 1), 408 which suggests residual rhythmicity phased similarly to the WT. To expand the search for 409 rhythms in the CCA1-OX, we tested whether there are rhythmic phosphopeptides with shorter 410 periods that would have been excluded from the analysis above. We repeated the 411 JTK CYCLE analysis, allowing periods down to 12 h. Hardly any phosphopeptides had 412 periods of less than 22 h in the WT, while the majority of phosphopeptides had a predicted 413 period of 12 or 16 h in the CCA1-OX (Figure 5E,F). Interestingly, the majority of those short-414 period rhythmic phosphopeptides also peaked at 24 h or 48 h (Figure 5A,B). In conclusion, in 415 both of our independent WT phosphoproteomics datasets, the majority of phosphopeptides 416 peak around subjective dawn, and this 'phospho dawn' may not be completely abolished by 417 disruption of the TTFL. 418

419 Kinase prediction suggests CDPK/SnRK family members target dawn phased

420 phosphopeptides

421 We reasoned that there may be a kinase activity that is present predominantly around

422 subjective dawn which is either very robustly dawn-timed by the TTFL even when it is

423 strongly impaired, or an alternative oscillator, such as an NTO, contributes to the dawn

424 phased kinase activity. Characterisation of the phospho-dawn peptides could help to identify

425 either a very robust dawn-phased TTFL output, or potentially consequences of an NTO. For

- 426 this reason, we focused on the dawn peaking phosphopeptides to identify candidate kinases,
- 427 using phosphosite motif analysis and kinase prediction. In these analyses we used the ZT24 or

428 ZT48 peaking rhythmic (JTK CYCLE p-value <0.05) phosphopeptides as foreground and all 429 other identified phosphopeptides as background. No target site motifs were significantly over-430 represented in a consistent way between datasets (Figure S 2, Figure S 3). For predicting 431 candidate kinases, we searched for enrichment of kinase groups that target phosphopeptides 432 with JTK CYCLE p-value <0.05 (Table 3) using the GPS3 resource. In the WT, both datasets 433 share enrichment of CMGC kinase groups such as MAPK, and CAMK groups. The latter 434 caught our attention since it is the only consistently enriched group in both genotypes and 435 both datasets. The CAMK group was also consistently enriched among significantly changing 436 phosphopeptides scored using ANOVA p-value < 0.05 (Table S 2). 437 The CAMK group in plants contains the CDPK/SnRK family of kinases with 89 members 438 (44) in the EKPD database (45) that informs GPS3. Interestingly, among the phospho dawn 439 peptides we found phosphosites that may be direct or indirect SnRK1 target proteins 440 according to two proteomics studies (46,47): NITRATE REDUCTASE (NIA) 1 and 2 and the 441 bifunctional enzyme F2KP (Figure S 4, Table S 3). Interestingly, nitrate reductases have been 442 reported as classical SnRK1 targets in other species (48). In light-dark cycles, NIA1 and 443 NIA2 protein abundances are rhythmic (25), while in our analysis under constant light NIA1 444 protein was not detected in the global analysis and NIA2 protein abundance changed 445 significantly (Figure S 4B) but not in phase with the phosphosites, suggestive of regulated 446 (de)phosphorylation. Another indication of increased SnRK1 activity at subjective dawn are 447 rhythms in phosphopeptides and abundance of the protein FCS-LIKE ZINC FINGER (FLZ)6 448 (Figure S 5): transcriptional up-regulation of FLZ6 by SnRK1 signalling has previously been 449 shown (49,50). In a datset with WT seedlings in constant light (51), the FLZ6 transcript peaks 450 4h before the FLZ6 protein in our dataset.

451

452 Rhythmically phosphorylated kinases and phosphatases

453 Since kinases and phosphatases themselves can be regulated by phosphorylation, we were

454 interested in rhythmic phosphopeptides of kinases and phosphatases. Identification of

455 rhythmic kinase or phosphatase activities in the WT could help to discover components of

456 clock output pathways that are mediated *via* protein phosphorylation.

457 For two kinases, CRK8 and AT5G61560, we found rhythmic phosphopeptides in the WT

458 where protein abundance did not oscillate in parallel, indicating that rhythmicity is due to

459 phosphorylation rather than changes in protein abundance (Figure S 6). CRK8 is a member of

the CDPK-SnRK1 superfamily (44), To our knowledge no specific functions have been

461 investigated for either of these kinases.

462 All rhythmically phosphorylated phosphatases in our data are members of the protein

463 phosphatase 2C (PP2C) family (Figure S 7) and were classified as rhythmic only in the WT.

464 PP2C G1 (Figure S 7A) is involved in ABA dependent salt stress response and, in contrast to

465 PP2CAs is a positive ABA signalling regulator (52) but to our knowledge, no reports exist on

the functional relevance of its own phosphorylation. AT3G51470 is also a PP2C G family

467 member, was only rhythmic in dataset I and no functional information is available (53). The

468 final PP2C POLTERGEIST (POL, Figure S 7C) is involved in stem cell regulation (54). In

the CCA1-OX data, the profiles for the kinases and phosphatases discussed above can show

470 some similarity to the WT pattern but none were classified as rhythmic by JTK CYCLE. The

471 biochemical mechanisms underlying the relatively robust phosphoprotein rhythms in the WT

472 should prove easier to investigate than any remaining rhythmicity in the CCA1-OX.

473

474 Phospho-null mutation of Ser267 of the enzyme F2KP enhances F6P-2kinase activity in-vitro 475 As an example of how our datasets can be used to investigate new clock output pathways, we 476 analysed the molecular function of a phosphosite of the bifunctional enzyme F2KP. Several 477 phosphosites were detected in F2KP with only Ser276 showing a circadian rhythm in the WT, 478 in dataset II only but at a very high significance level (Figure S 4C, Supplementary Data S3). 479 One F2KP peptide was detected in the global protein analysis of dataset II. Its changes over 480 the timecourse are not significant and do not parallel the Ser276 phosphopeptide, therefore it 481 is unlikely that the rhythm in Ser276 phosphorylation is caused by changes in F2KP protein 482 abundance.

483

484	We tested whether the Ser276 phosphorylation site is relevant for F2KP function, since this
485	site is highly conserved with other plant species (Figure S 8A), and a very specific enzymatic
486	assay has been described (41,55). Maximum F6P,2K activity was measured of GST-tagged
487	phosphomimetic mutants S276D and S276A, and the unmutated WT control enzyme in vitro.
488	Two independent preparations (bacterial expression and purification using a GST tag) were
489	tested to ensure reproducibility. Equivalence of the amounts of expressed F2KP protein in
490	assays was verified by western blotting with two different antibodies (Figure 6C, Figure S
491	8D). S276A had an approximately 2.5 fold increased activity compared to the unmutated
492	version, while S276D had only slightly increased activity (Figure 6 A,B, Figure S 8B,C,E).
493	The rhythmicity observed at this phosphosite is therefore consistent with a rhythmic input to
494	F2KP function in central carbon metabolism.
495	
495 496	Discussion
	Discussion This study focusses on global and phospho-proteomic timeseries in <i>Arabidopsis</i> plants
496	
496 497	This study focusses on global and phospho-proteomic timeseries in Arabidopsis plants
496 497 498	This study focusses on global and phospho-proteomic timeseries in <i>Arabidopsis</i> plants harvested under constant light conditions, where rhythmicity is driven by the circadian clock.
496 497 498 499	This study focusses on global and phospho-proteomic timeseries in <i>Arabidopsis</i> plants harvested under constant light conditions, where rhythmicity is driven by the circadian clock. In WT plants, we tested the prevalence of circadian rhythms in protein phosphorylation and
496 497 498 499 500	This study focusses on global and phospho-proteomic timeseries in <i>Arabidopsis</i> plants harvested under constant light conditions, where rhythmicity is driven by the circadian clock. In WT plants, we tested the prevalence of circadian rhythms in protein phosphorylation and abundance, which has rarely been reported. In the CCA1-OX transgenic line, we tested the
496 497 498 499 500 501	This study focusses on global and phospho-proteomic timeseries in <i>Arabidopsis</i> plants harvested under constant light conditions, where rhythmicity is driven by the circadian clock. In WT plants, we tested the prevalence of circadian rhythms in protein phosphorylation and abundance, which has rarely been reported. In the CCA1-OX transgenic line, we tested the importance of the clock gene circuit for that rhythmic regulation, given that markers of a
496 497 498 499 500 501 502	This study focusses on global and phospho-proteomic timeseries in <i>Arabidopsis</i> plants harvested under constant light conditions, where rhythmicity is driven by the circadian clock. In WT plants, we tested the prevalence of circadian rhythms in protein phosphorylation and abundance, which has rarely been reported. In the CCA1-OX transgenic line, we tested the importance of the clock gene circuit for that rhythmic regulation, given that markers of a Non-Transcriptional Oscillator (NTO) are rhythmic in Arabidopsis, and that protein
496 497 498 499 500 501 502 503	This study focusses on global and phospho-proteomic timeseries in <i>Arabidopsis</i> plants harvested under constant light conditions, where rhythmicity is driven by the circadian clock. In WT plants, we tested the prevalence of circadian rhythms in protein phosphorylation and abundance, which has rarely been reported. In the CCA1-OX transgenic line, we tested the importance of the clock gene circuit for that rhythmic regulation, given that markers of a Non-Transcriptional Oscillator (NTO) are rhythmic in Arabidopsis, and that protein

507 functional clock. In this line we found very few rhythmic phosphopeptides and proteins, and

- 508 those with statistical significance typically had less convincing waveforms than rhythms in
- 509 the WT (Table 1). Therefore, if an NTO exists in *Arabidopsis*, it confers rhythmicity only to
- 510 very few of the phosphosites we detected. Intriguingly, in both datasets, we still observe the

511	phospho-dawn phenomenon in the CCA1-OX (Figure 4, Figure 5, Figure S 1), whereas a
512	uniform phase distribution would be expected in the noise-driven fluctuations of an
513	arrhythmic plant. It remains possible that an NTO controls this fraction of dawn-phased
514	phosphorylation, albeit too weakly to yield robust rhythms, whereas the majority of
515	phosphoprotein rhythmicity requires a functioning clock gene circuit. We cannot exclude that
516	some rhythmicity of that canonical gene circuit remains even in the CCA1-OX, for example
517	as the CaMV 35S promoter does not confer strong expression in all tissues (56). Additional
518	experiments, such as phosphoproteomics in other arrhythmic mutants, testing other post-
519	translational markers such as redox modifications, and identifying NTO outputs other than
520	PRX over-oxidation (19) and Mg^{2+} rhythms (20,21) might further define the effects of a
521	potential NTO in Arabidopsis.
522	
523	Proteins with rhythmic abundance
524	We found that the proportion of rhythmic phosphopeptides is larger than for protein
525	abundance, but smaller than for rhythmic transcripts (Table 1). The set of rhythmic proteins
526	does not support extensive inference, though we note that the three examples of rhythmic
527	proteins in Figure 2 all follow the rhythmic regulation of their cognate transcripts. MIPS1
528	(Figure 2A) is transcriptionally induced by light, acting through FAR-RED ELONGATED
529	HYPOCOTYLS (FHY)3 and FAR-RED IMPAIRED RESPONSE (FAR)1 at the transition
530	from darkness to light in light-dark cycles, and enhances myo-inositol abundance, which in
531	turn limits oxidative stress at the onset of photosynthesis (57,58). Rhythmic MIPS1 transcript
532	abundance peaks towards the end of the subjective night in constant light (59,60), before a
533	protein peak shortly after subjective dawn. The rhythmic control of MIPS1 abundance is
534	consistent with anticipation of light-induced oxidative stress, providing a potential
535	physiological function in addition to the subsequent, light-responsive induction of myo-
536	inositol production.
537	BAM3 (Figure 2B) is the dominant beta-amylase contributing to starch degradation (61). The
538	circadian clock is key for the timing of night-time starch degradation (62). In light-dark

cycles, *BAM3* transcript abundance drops at the beginning of the day and increases during the
night (63,64), and this pattern persists in constant light (59,60). We observe a protein
abundance pattern that matches the transcript dynamics, indicating that the transcriptional
control may be responsible for the protein rhythm. This is also the case for LHCB2.2 (Figure
2C), a component of the photosystem II light harvesting complex (60).

544

545 *Proteins with newly discovered phosphopeptide rhythms*

546 We show four examples of newly discovered phosphopeptide rhythms in Figure 3. ASN2

547 (Figure 3A) is one out of three described *Arabidopsis* asparagine synthetases which catalyse

548 the transfer of an amino group from glutamine to aspartate, producing asparagine and

549 glutamate, but ASN2 may also directly use ammonia as a substrate (65,66). The two most

550 expressed asparagine synthetase enzymes in Arabidopsis are ASN1 and ASN2 (65), and in

551 contrast to ASN1, the physiological function of ASN2 is less well understood. We did not

552 find any evidence for ASN2 protein abundance rhythms (Figure 3A), indicating that the

phosphosite's peak near subjective dawn is due to rhythmic kinase and / or phosphatase

action. Interestingly, the ammonia transporter AMT1;1 also has a rhythmic phosphosite with

a temporal profile that parallels the ASN2 peptide (Data S3, Table 2). The presence of

rhythmic phosphosites of proteins involved in nitrate metabolism or transport in our data and

557 (9) supports the notion that nitrogen related processes are under control of the circadian clock

at the post-translational level, in part through rhythmic AMT1;1 and ASN2 phosphorylation.

559

560 In water transport, our results demonstrate a previously undiscovered phosphosite rhythm on

the aquaporin PLASMA MEMBRANE INTRINSIC PROTEIN (PIP)2;7 (Figure 3B).

562 According to (67) this phosphosite is a CPK1 and CPK34 target, and its abundance decreases

563 in response to ABA treatment (68). In response to salt stress, the entire protein is internalised

from the plasma membrane, with a concomitant reduction in hydraulic conductivity (69),

565 indicating that decreasing PIP2;7 activity limits water loss. Rhythmic phosphorylation of

566 other aquaporins was previous demonstrated in constant light or darkness (9,70). Therefore,

567 PIP2;7 may, together with other aquaporins, mediate circadian clock regulation of hydraulic

568 conductivity or high salinity response through its phosphorylation status.

569 In carbon transport, a newly discovered phosphosite rhythm was found for the sucrose efflux

570 transporter SWEET12 (Figure 3C) (71). To our knowledge, the function of this phosphosite is

571 unknown but one may speculate that this rhythm could reflect circadian control of carbon

572 reallocation.

573 Finally, we have high confidence in the rhythmicity of a phosphopeptide of the putative RNA

574 decapping protein VARICOSE RELATED (VCR) (Figure 3D). VCR and its close homologue

575 VARICOSE (VCS) interact with and are phosphorylated by SnRK2.6 and SnRK2.10 at

576 several serines (72,73). While the VCR phosphosite shown in Fig S6D is not one of the

577 phosphosites identified by (73), SnRK2.10 phosphorylates an almost identical site on VCS

578 (TLSYPTPPLNLQpSPR). Therefore, it is very likely that the corresponding site on VRC is

also a SnRK2.10 target.

580 Altogether, these examples demonstrate how our data can be used to generate hypotheses on

581 clock output pathways affecting different aspects of plant physiology through

582 phosphorylation.

583

584 A rhythmic F2KP phosphosite is biochemically relevant

585 The specific roles of most of the rhythmic phosphorylation sites identified in our study have

586 not been investigated. To exemplify in an experimental approach how circadian

587 phosphorylation of a protein can be linked to its function, we analysed the effect of a

588 phosphosite mutation on the activity of the enzyme F2KP. F2KP is one of the regulators of

589 carbon partitioning into starch and sucrose (74) and is necessary to maintain normal growth in

fluctuating light conditions (75). With its kinase domain it can synthesize F-2,6-BP from F-6-

591 P, and with its phosphatase domain it catalyzes the reverse reaction (74).

592 The phosphosite of interest, Ser276, is within the plant-specific regulatory N-terminal domain

593 (42,76) but is not among the phosphosites in the known 14-3-3 binding site (77). Ser276 is

regulated by SnRK1 (46) and is conserved in many plant species (Figure S 8A).

595	Our <i>in-vitro</i> F-6-P,2 kinase activity measurement experiments showed that substitution of
596	Ser276 by Ala increases F2KP's kinase activity. It is unknown whether in vitro expressed
597	F2KP is phosphorylated at Ser276 or not. However, comparison of Ser276 mutation to Ala
598	with the WT and with mutation to Asp, suggests that a lack of negative charge at position 276
599	leads to increased kinase activity. In dataset II, pSer276 decreased gradually during the
600	subjective day (Figure S4C). Assuming that the phospho mimic / WT and null mutations
601	reflect the behaviour of the phosphoryated and non-phosphorylated site, respectively, we
602	extrapolate that towards the end of the day, more F-2,6-BP is produced and therefore starch
603	synthesis is favoured over UDP-glucose and sucrose synthesis. Indeed, F-2,6-BP levels in the
604	plant increase slowly across the day in short day conditions (77). Testing the function of these
605	mutations in planta will be interesting to determine whether this phosphosite has
606	physiological relevance, in addition to biochemical effectiveness.
607	
608	Phospho-dawn is likely mediated by several different kinases
609	We aimed to characterise the phospho-dawn phenomenon as it may point to novel dawn-
610	specific circadian clock output through post-translational mechanisms. Although the striking
611	abundance of dawn-phased phosphopeptides could partly be biased towards the easily
612	detectable or abundant phosphopeptides of our dataset, it is consistent with highest transcript
613	expression of kinases and phosphatases at the end of the night in diel time courses (26,78).
614	Our kinase prediction revealed enrichment of some CMGC subgroups, such as MAPK, CK2,
615	GSK, DYRK, CDK or DAPK. CK2 is involved in the circadian clock function in Arabidopsis
616	by phosphorylating CCA1 (4,79). A previous study reported enrichment of predominantly
617	CK2 predictions among significantly changing phosphopeptides (9). Roles for MAPK and
618	GSK have been reported for the circadian clock function in other eukaryotes (80-83).
619	However, the most consistently enriched group of kinases at subjective dawn in our datasets
620	is the CAMK group (Table 3, Table S 2), which comprises the 89 members of the CDPK-
621	SnRK superfamily of kinases.

All of these 89 CDPK-SnRK member are potential candidates for causing the observed

- 623 phospho-dawn. Not all of these kinases have been studied in much detail, and for the majority
- 624 of rhythmic phosphopeptides no experimental evidence for kinase specificities exists.
- 625 However, making use of literature on existing kinase target pairs can help to narrow down
- 626 candidates. For example, as mentioned above, CPK1, CPK34 and likely SnRK2.10
- 627 phosphorylate dawn-peaking phosphosites shown in Figure 3. In addition, SnRK and CPK /
- 628 CDPK kinases can themselves be regulated by phosphorylation (44). CRK8, of which we
- 629 found a very prominently dawn-peaking rhythmic phosphopeptide (Figure S 6A), is therefore
- 630 another candidate phospho-dawn kinase.

631 We also show that several previously reported SnRK1 regulated sites are rhythmic with peaks

- around subjective dawn including phosphopeptides of F2KP and nitrate reductases NIA1 and
- 633 NIA2 (Figure S 4). Additional indication comes from the protein FLZ6 which is

transcriptionally induced by and interacts with SnRK1 and may serve as a platform for

- 635 SnRK1 signalling (84). FLZ6 protein abundance and two phosphopeptides were rhythmic in
- the WT with a peak around subjective dawn (Figure S 5). SnRK1 may be a particularly
- 637 relevant candidate as its involvement in circadian timing has previously been reported (85–
- 638 87) and as it is an important metabolic hub. In normal light-dark conditions the morning is
- 639 associated with profound metabolic changes in plants, such as the transition from using starch
- 640 to direct photoassimilates, or to the alternative, a starvation response if light intensities remain
- 641 low while starch is almost depleted.
- 642 SnRK1 signaling is regarded as antagonistic to TOR signaling (47). Nevertheless, RPS6A and
- 643 RPS6B phosphosites that are targets of the TOR signalling kinase S6K, are rhythmically
- 644 phosphorylated in the WT, and in dataset I also in the CCA1-OX (Table 2, supplementary
- 645 data S3 and (9)), with peaks at subjective dawn. This adds to growing evidence that the
- 646 interplay between SnRK1 and TOR may be more complex than simply antagonistic (88). In
- 647 fact, the above-mentioned SnRK1 induced FLZ6 negatively feeds back to SnRK1, and this
- has been suggested as a mechanism to allow sufficient TOR activity in spite of high SnRK1

activity (50), which may allow RPS6 phosphorylation to peak at approximately the same time

as SnRK1 activity.

651

652	Altogether.	the identities	of the phos	pho dawn p	peptides in our	study, along	with their known

- and predicted kinases suggest that phospho-dawn is caused not by a single kinase but several
- 654 members of the SnRK-CDPK family and also potentially kinases outside this family such as
- 655 S6K. Further experimentation is required to give evidence for involvement of any such
- 656 kinases in phospho-dawn, such as time courses of kinase activity and time-resolved
- 657 phosphoproteomics in mutants of specific candidate kinases. Finding mechanisms that
- 658 connect the canonical oscillator to prominent post-translational changes at dawn could reveal
- major clock output pathways that may control a wide range of physiological functions and
- 660 expand our understanding of how the circadian oscillator increases plant fitness.

661

662 Acknowledgements

663 We thank Lisa Imrie, Katalin Kis and Helle K Mogensen for expert technical support.

664

665 Funding

This work was supported by the Wellcome Trust [096995/Z/11/Z] and BBSRC, and EPSRC
awards [BB/D019621] and [BB/J009423].

668

669 Data availability

670 The data are publicly available in the pep2pro database (31) at http://fgcz-pep2pro.uzh.ch (Assembly

names 'ed.ac.uk Global I', 'ed.ac.uk Global II', 'ed.ac.uk Phospho I', 'ed.ac.uk Phospho II') and have

- been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via
- 673 the PRIDE partner repository (32) with the dataset identifier PXD009230. Exported .csv files from
- 674 Progenesis with all peptide and protein quantifications can be found in the online supplementary
- 675 material (Data S1 and S2).

References

- 1. Pokhilko, A. *et al.* The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. *Mol. Syst. Biol.* **8**, 574 (2012).
- Fogelmark, K. & Troein, C. Rethinking Transcriptional Activation in the Arabidopsis Circadian Clock. *PLoS Comput. Biol.* 10, e1003705 (2014).
- van Ooijen, G. & Millar, A. J. Non-transcriptional oscillators in circadian timekeeping. *Trends Biochem. Sci.* 37, 484–92 (2012).
- 4. Daniel, X., Sugano, S. & Tobin, E. M. CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. *Proc. Natl. Acad. Sci. U. S. A.* **101**, 3292–7 (2004).
- Nishiwaki, T. *et al.* Role of KaiC phosphorylation in the circadian clock system of Synechococcus elongatus PCC 7942. *Proc. Natl. Acad. Sci. U. S. A.* 101, 13927–13932 (2004).
- 6. Maier, B. *et al.* A large-scale functional RNAi screen reveals a role for CK2 in the mammalian circadian clock. *Genes Dev.* 23, 708–718 (2009).
- Yang, Y., Cheng, P., He, Q., Wang, L. & Liu, Y. Phosphorylation of FREQUENCY protein by casein kinase II is necessary for the function of the Neurospora circadian clock. *Mol. Cell. Biol.* 23, 6221–8 (2003).
- Kusakina, J. & Dodd, A. N. Phosphorylation in the plant circadian system. *Trends Plant Sci.* 1– 9 (2012). doi:10.1016/j.tplants.2012.06.008
- Choudhary, M. K., Nomura, Y., Wang, L., Najagami, H. & Somers, D. E. Quantitative circadian phosphoproteomic analysis of Arabidopsis reveals extensive clock control of key components in physiological, metabolic and signaling pathways. *Mol. Cell. Proteomics* 14, 2243–2260 (2015).
- Leloup, J. C. & Goldbeter, A. Toward a detailed computational model for the mammalian circadian clock. *Proc Natl Acad Sci U S A* 100, 7051–7056 (2003).
- Baker, C. L., Loros, J. J. & Dunlap, J. C. The circadian clock of Neurospora crassa. *FEMS Microbiol. Rev.* 36, 95–110 (2012).
- Takahashi, J. S. Transcriptional architecture of the mammalian circadian clock. *Nat. Rev. Genet.* (2016). doi:10.1038/nrg.2016.150
- Mauvoisin, D. *et al.* Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. *Proc. Natl. Acad. Sci. U. S. A.* (2013). doi:10.1073/pnas.1314066111
- Lück, S., Thurley, K., Thaben, P. F. & Westermark, P. O. Rhythmic Degradation Explains and Unifies Circadian Transcriptome and Proteome Data. *Cell Rep.* 741–751 (2014). doi:10.1016/j.celrep.2014.09.021
- 15. Choudhary, M. K., Nomura, Y., Shi, H., Nakagami, H. & Somers, D. E. Circadian Profiling of

the Arabidopsis Proteome Using 2D-DIGE. Front. Plant Sci. 7, 1-14 (2016).

- Nakajima, M. *et al.* Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. *Science* 308, 414–5 (2005).
- 17. O'Neill, J. S. *et al.* Circadian rhythms persist without transcription in a eukaryote. *Nature* **469**, 554–558 (2011).
- Neill, J. S. O. & Reddy, A. B. Circadian clocks in human red blood cells. *Nature* 469, 498–503 (2011).
- 19. Edgar, R. S. *et al.* Peroxiredoxins are conserved markers of circadian rhythms. *Nature* **485**, 459–464 (2012).
- Feeney, K. A. *et al.* Daily magnesium fluxes regulate cellular timekeeping and energy balance. *Nature* 532, 375–379 (2016).
- 21. Henslee, E. A. *et al.* Rhythmic potassium transport regulates the circadian clock in human red blood cells. *Nat. Commun.* **8**, (2017).
- 22. Reddy, A. B. *et al.* Circadian orchestration of the hepatic proteome. *Curr. Biol.* **16**, 1107–15 (2006).
- Robles, M. S., Cox, J. & Mann, M. In-Vivo Quantitative Proteomics Reveals a Key Contribution of Post-Transcriptional Mechanisms to the Circadian Regulation of Liver Metabolism. *PLoS Genet.* 10, (2014).
- Robles, M. S. *et al.* Phosphorylation Is a Central Mechanism for Circadian Control of Metabolism and Physiology. *Cell Metab.* 0, 35–48 (2016).
- 25. Uhrig, R. G. *et al.* Diurnal dynamics of the Arabidopsis rosette proteome and phosphoproteome. *Plant Cell Environ.* 821–841 (2020). doi:10.1111/pce.13969
- Uhrig, R. G., Schläpfer, P., Roschitzki, B., Hirsch-Hoffmann, M. & Gruissem, W. Diurnal changes in concerted plant protein phosphorylation and acetylation in Arabidopsis organs and seedlings. *Plant J.* 99, 176–194 (2019).
- Wang, Z. Y. & Tobin, E. M. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. *Cell* 93, 1207–17 (1998).
- Krahmer, J., Hindle, M. M., Martin, S. F., Bihan, T. Le & Millar, A. J. in *Circadian Rhythm. Biol. Clocks* 551, 405–431 (Elsevier Inc., 2015).
- 29. Elias, J. E. & Gygi, S. P. Target-Decoy Search Strategy for Mass. *Methods Mol. Biol.* **604**, 55–71 (2010).
- 30. Hindle, M. M. *et al.* qpMerge: Merging different peptide isoforms using a motif centric strategy. *bioRxiv* 047100, (2016).
- 31. Baerenfaller, K. et al. pep2pro: a new tool for comprehensive proteome data analysis to reveal

information about organ-specific proteomes in Arabidopsis thaliana. *Integr. Biol. (Camb).* **3**, 225–37 (2011).

- 32. Vizcaíno, J., Deutsch, E. & Wang, R. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. *Nat. Biotechnol.* **32**, 223–226 (2014).
- R Core Team. R: A Language and Environment for Statistical Computing. (2015). at <http://www.r-project.org/>
- Suzuki, R. & Shimodaira, H. pvclust: Hierarchical Clustering with P-Values via Multiscale Bootstrap Resampling. (2015). at ">http://cran.r-project.org/package=pvclust>
- Hughes, M. E., Hogenesch, J. B. & Kornacker, K. JTK_CYCLE: An Efficient Nonparametric Algorithm for Detecting Rhythmic Components in Genome-Scale Data Sets. *J. Biol. Rhythms* 25, 372–380 (2010).
- 36. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate : A Practical and Powerful Approach to Multiple Testing. *J R Stat. Soc B* **57**, 289–300 (1995).
- 37. Xue, Y. *et al.* GPS 2.0: Prediction of kinase-specific phosphorylation sites in hierarchy 10.1074/mcp.M700574-MCP200. *Mol Cell Proteomics* M700574--MCP200 (2008). at <<u>http://www.mcponline.org/cgi/content/abstract/M700574-MCP200v1></u>
- 38. Liu, Z. *et al.* GPS 3.0: web servers for the prediction of protein post-translational modification sites. *Manuscr. Submitt.* (2015).
- 39. Alexa, A., Rahnenführer, J. & Lengauer, T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. *Bioinformatics* **22**, 1600–7 (2006).
- Kalt-torres, W., Kerr, P. S., Usuda, H. & Huber, S. C. Diurnal Changes in Maize Leaf Photosynthesis. *Plant Physiol.* 83, 283–288 (1987).
- Van Schaftingen, E., Lederer, B., Bartrons, R. & Hers, H.-G. A Kinetic Study of Pyrophosphate : Fructose-6-Phosphate Phosphotransferase from Potato Tubers Application to a Microassay of Fructose 2,6-Bisphosphate. *Eur. J. Biochem.* 129, 191–195 (1982).
- Villadsen, D. & Nielsen, T. H. N-terminal truncation affects the kinetics and structure of fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase from Arabidopsis thaliana. *Biochem. J.* 359, 591–7 (2001).
- Noordally, Z. B. *et al.* Circadian protein regulation in the green lineage I. A phospho-dawn anticipates light onset before proteins peak in daytime. *bioRxiv* (2018). doi:http://dx.doi.org/10.1101/287862
- Hrabak, E. M. *et al.* The Arabidopsis CDPK-SnRK Superfamily of Protein Kinases. *Plant Physiol.* 132, 666–680 (2003).
- 45. Wang, Y. *et al.* EKPD: A hierarchical database of eukaryotic protein kinases and protein phosphatases. *Nucleic Acids Res.* **42**, 496–502 (2014).

- Cho, H. Y., Wen, T. N., Wang, Y. T. & Shih, M. C. Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence. *J. Exp. Bot.* 67, 2745–2760 (2016).
- Nukarinen, E. *et al.* Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation. *Sci. Rep.* 6, 31697 (2016).
- Sugden, C., Donaghy, P. G., Halford, N. G. & Hardie, D. G. Two SNF1-related protein kinases from spinach leaf phosphorylate and inactivate 3-hydroxy-3-methylglutaryl-coenzyme A reductase, nitrate reductase, and sucrose phosphate synthase in vitro. *Plant Physiol* 120, 257– 274 (1999).
- Jamsheer, M. K. & Laxmi, A. Expression of Arabidopsis FCS-like Zinc finger genes is differentially regulated by sugars, cellular energy level, and abiotic stress. *Front. Plant Sci.* 6, 1–12 (2015).
- 50. Jamsheer, M. K. *et al.* The FCS-like zinc finger scaffold of the kinase SnRK1 is formed by the coordinated actions of the FLZ domain and intrinsically disordered regions. *J. Biol. Chem.* **293**, 13134–13150 (2018).
- Covington, M. F., Maloof, J. N., Straume, M., Kay, S. a & Harmer, S. L. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. *Genome Biol.* 9, R130 (2008).
- Liu, X. *et al.* AtPP2CG1, a protein phosphatase 2C, positively regulates salt tolerance of Arabidopsis in abscisic acid-dependent manner. *Biochem. Biophys. Res. Commun.* 422, 710– 715 (2012).
- Sahoo, S. A., Raghuvanshi, R., Srivastava, A. K. & Suprasanna, P. in *Protein Phosphatases* Stress Manag. Plants Funct. Genomic Perspect. (ed. Pandey, G. K.) 163–201 (Springer International Publishing, 2020). doi:10.1007/978-3-030-48733-1 10
- Yu, L. P., Miller, A. K. & Clark, S. E. POLTERGEIST encodes a protein phosphatase 2C that regulates CLAVATA pathways controlling stem cell identity at Arabidopsis shoot and flower meristems. *Curr. Biol.* 13, 179–188 (2003).
- Kalt-Torres, W. & Huber, S. C. Diurnal Changes in Maize Leaf Photosynthesis. *Plant Physiol.* 83, 283–288 (1987).
- Holtorf, S., Apel, K. & Bohlmann, H. Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. *Plant Mol. Biol.* 29, 637–646 (1995).
- Donahue, J. L. *et al.* The Arabidopsis thaliana myo-inositol 1-phosphate synthase1 gene is required for myo-inositol synthesis and suppression of cell death. *Plant Cell* 22, 888–903 (2010).

- Ma, L. *et al.* Arabidopsis FHY3 and FAR1 Regulate Light- Induced myo-Inositol Biosynthesis and Oxidative Stress Responses by Transcriptional Activation of MIPS1. *Mol. Plant* 9, 541– 557 (2016).
- 59. Edwards, K. D. *et al.* FLOWERING LOCUS C Mediates Natural Variation in the High-Temperature Response of the Arabidopsis Circadian Clock. *Plant Cell* **18**, 639–650 (2006).
- Covington, M. F. & Harmer, S. L. The Circadian Clock Regulates Auxin Signaling and Responses in Arabidopsis. *PLoS Biol.* 5, 1773–1784 (2007).
- 61. Monroe, J. D. Involvement of five catalytically active Arabidopsis β -amylases in leaf starch metabolism and plant growth. *Plant Direct* **4**, 1–10 (2020).
- Graf, A., Schlereth, A., Stitt, M. & Smith, A. M. Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. *Proc. Natl. Acad. Sci. U. S. A.* 107, 9458–9463 (2010).
- 63. Smith, S. *et al.* Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in arabidopsis leaves. *Plant Physiol.* **136**, 2687–2699 (2004).
- 64. Bläsing, O. E. *et al.* Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. *Plant Cell* **17**, 3257–3281 (2005).
- Coruzzi, G. M. Primary N-assimilation into Amino Acids in Arabidopsis. Arab. B. 2, e0010 (2003).
- Wong, H. K., Chan, H. K., Coruzzi, G. M. & Lam, H. M. Correlation of ASN2 Gene Expression with Ammonium Metabolism in Arabidopsis. *Plant Physiol.* 134, 332–338 (2004).
- Curran, A. *et al.* Calcium-Dependent Protein Kinases from Arabidopsis Show Substrate Specificity Differences in an Analysis of 103 Substrates. *Front. Plant Sci.* 2, 1–15 (2011).
- Kline, K. G., Barrett-Wilt, G. a & Sussman, M. R. In planta changes in protein phosphorylation induced by the plant hormone abscisic acid. *Proc. Natl. Acad. Sci. U. S. A.* 107, 15986–15991 (2010).
- 69. Pou, A. *et al.* Salinity-mediated transcriptional and post-translational regulation of the Arabidopsis aquaporin PIP2;7. *Plant Mol. Biol.* **92**, 731–744 (2016).
- 70. Prado, K. *et al.* Oscillating aquaporin phosphorylation and 14-3-3 proteins mediate the circadian regulation of leaf hydraulics. *Plant Cell* **31**, 417–429 (2019).
- Chen, L.-Q. *et al.* Sucrose Efflux Mediated by SWEET Proteins as a Key Step for Phloem Transport. *Science (80-.).* 335, 207–211 (2012).
- Deyholos, M. K. *et al.* Varicose, a WD-domain protein, is required for leaf blade. *Development* 130, 6577–6588 (2003).
- 73. Kawa, D. et al. SnRK2 protein kinases and mRNA decapping machinery control root

development and response to salt. Plant Physiol. 182, 361-371 (2020).

- 74. Nielsen, T. H., Rung, J. H. & Villadsen, D. Fructose-2,6-bisphosphate: a traffic signal in plant metabolism. *Trends Plant Sci.* **9**, 556–63 (2004).
- McCormick, A. J. & Kruger, N. J. Lack of fructose 2,6-bisphosphate compromises photosynthesis and growth in Arabidopsis in fluctuating environments. *Plant J.* 81, 670–683 (2015).
- 76. Villadsen, D., Rung, J. H., Draborg, H. & Nielsen, T. H. Structure and heterologous expression of a gene encoding fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase from Arabidopsis thaliana. *Biochim. Biophys. Acta* 1492, 406–413 (2000).
- Kulma, A. *et al.* Phosphorylation and 14-3-3 binding of Arabidopsis 6-phosphofructo-2kinase/fructose-2,6-bisphosphatase. *Plant J.* 37, 654–667 (2004).
- Bläsing, O. E. *et al.* Sugars and Circadian Regulation Make Major Contributions to the Global Regulation of Diurnal Gene Expression in Arabidopsis. *Plant Cell* 17, 3257–3281 (2005).
- Sugano, S., Andronis, C., Ong, M. S., Green, R. M. & Tobin, E. M. The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis. *Proc. Natl. Acad. Sci. U. S. A.* 96, 12362–6 (1999).
- Akashi, M. & Nishida, E. Involvement of the MAP kinase cascade in resetting of the mammalian circadian clock. *Genes Dev.* 14, 645–649 (2000).
- Iitaka, C., Miyazaki, K., Akaike, T. & Ishida, N. A role for glycogen synthase kinase-3beta in the mammalian circadian clock. *J. Biol. Chem.* 280, 29397–29402 (2005).
- Besing, R. C. *et al.* Circadian Rhythmicity of Active GSK3 Isoforms Modulates Molecular Clock Gene Rhythms in the Suprachiasmatic Nucleus. *J. Biol. Rhythms* XX, 1–6 (2015).
- Martinek, S., Inonog, S., Manoukian, A. S. & Young, M. W. A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. *Cell* 105, 769–779 (2001).
- 84. Nietzsche, M., Schießl, I. & Börnke, F. The complex becomes more complex: protein-protein interactions of SnRK1 with DUF581 family proteins provide a framework for cell- and stimulus type-specific SnRK1 signaling in plants. *Front. Plant Sci.* 5, 54 (2014).
- 85. Shin, J. *et al.* The metabolic sensor AKIN10 modulates the Arabidopsis circadian clock in a light-dependent manner. *Plant. Cell Environ.* (2017). doi:10.1111/pce.12903
- Sánchez-Villarreal, A., Davis, A. M. & Davis, S. J. AKIN10 activity as a cellular link between metabolism and circadian-clock entrainment in Arabidopsis thaliana. *Plant Signal. Behav.* 13, e1411448 (2018).
- Frank, A. *et al.* Circadian Entrainment in Arabidopsis by the Sugar-Responsive Transcription Factor bZIP63. *Curr. Biol.* 28, 2597-2606.e6 (2018).
- 88. González, A., Hall, M. N., Lin, S. C. & Hardie, D. G. AMPK and TOR: The Yin and Yang of

Cellular Nutrient Sensing and Growth Control. Cell Metab. 31, 472-492 (2020).

Footnotes

This work was supported by the Wellcome Trust [096995/Z/11/Z] and BBSRC, and EPSRC awards [BB/D019621] and [BB/J009423].

Figure legends

Figure 1: Experiment workflow and comparison of protein and phosphopeptide numbers with published transcriptome time courses. A) WT and CCA1-OX plants were grown in 12h light: 12h dark cycles for 22 days and then subjected to continuous light. In dataset I, rosettes were harvested every 4h from ZT12, in dataset II from ZT24 until ZT48 (black arrows) with an additional WT time point at ZT52 (grey arrow). B) Sample processing and data analysis workflow: Plants were crushed and protein was extracted, precipitated and digested insolution. Peptides were split into 10µg for global protein analysis (of which 4µg were injected) and 490µg for phosphopeptide enrichment on TiO₂ spin tips. Peptides were analysed by LC-MS/MS. Outliers were removed before further bioinformatics analysis. C) Venn diagrams showing overlap of quantified (C,E) and rhythmic (WT only; D,F) transcripts (Covington et al. 2008), proteins and phosphoproteins in dataset I (C,D) and dataset II (E,F).

Figure 2: Examples of three proteins with rhythmic abundance in both datasets. (A) MIPS1,(B) BAM3, (C) LHCB2.2. JTK_CYCLE p-values are indicated under the graphs.

Figure 3: Examples of newly described phosphopeptide rhythms with JTK_CYCLE p<0.05 in both datasets. Phosphopeptide from (A) an asparagine synthetase, ASN2, with global protein abundance plots (B) from aquaporin PIP2;7 with global protein abundance plot from dataset I (not detected in dataset II) (C) from the sucrose efflux protein SWEET12 and (D) from VCR. Protein not detected in global proteomics for (C) and (D). JTK_CYCLE p-values are indicated under the graphs.

Figure 4: Whole-dataset protein and phosphopeptide dynamics. Heatmaps were generated by hierarchical clustering of phosphopeptide (A, B) or global protein (C, D) abundance time courses in dataset I and II (indicated on the right) for WT (A,C) and CCA1-OX (B,D).

Figure 5: Peak time and period distribution of phosphopeptide and global protein time courses. (A-D): Number of rhythmic (JTK_CYCLE p-value <0.05) phosphopeptides (A,B) or proteins (C,D) peaking at each time point, allowing a period of around 24h (22 to 26) or 12 to 20h. (E-F) Periods according to JTK_CYCLE allowing periods from 12 to 24h for phosphoproteomics dataset I (E) and II (F). Number of rhythmic phosphopeptides (JTK_CYCLE p-value < 0.05) for each predicted period is plotted.

Figure 6: *In vitro* GST-F2KP activity assay with WT and Ser276 point mutations. A) fructose-2,6-bisphosphate (F26BP)) accumulation during the reaction. B) Kinase activity calculated from slopes in (A). C) relative quantification of GST-F2KP in eluates probed with rabbit (Rb) anti F2KP and mouse (Ms) anti GST. Protein blot is shown below quantification for rabbit anti F2KP. A dilution series of a sample mix was used for quantification, ranging from 0.5 to 1.5 loading equivalent of the samples. Averages of both dilution curves were used. Error bars: SEM. * p-value < 0.05 in t-test.

Tables

Table 1: Identification counts for global and phosphoproteomics datasets. A) Numbers of quantified and changing identifications in each dataset, B) shared and added numbers of both datasets. In B) protein IDs of peptides are used for simplicity of comparison.

Α			Dataset I		Dataset II				
		Global oteomics	Phosphop		Global oteomics	Phosphoproteomics			
	WT	CCA1- OX	WT	CCA1-OX	WT	CCA1- OX	WT	CCA1-OX	
Quantifiable identifications before merging	189	6 proteins	2287 phos	phopeptides	134	0 proteins	1664 phos	phopeptides	
Quantifiable identifications after merging			1498 from	944 proteins			1132 from	747 proteins	
Significantly changing (ANOVA p<0.05)	245	147	406	296	68	46	88	83	
Adjusted for multiple testing (ANOVA q<0.05)	13	3	56	4	3	2	14	7	
Rhythmic by JTK_CYCLE (p<0.05)	171	122	606 from 481 proteins	37 from 32 proteins	45	57	100 from 91 proteins	17 from 17 proteins	
Adjusted for multiple testing (JTK:CYCLE q<0.05)	6	0	338	2	6	0	26	0	
JTK_CYCLE p<0.05 in both genotypes		17	22			9	3		

В	Glob	oal Proteomics	Phosphoproteomics		
	WT	CCA1-OX	WT	CCA1-OX	
JTK p<0.05 detected in both datasets	6	3	48	2	
all quantified protein IDs detected in both datasets		137		626	
sum of all quantifiable protein IDs in both datasets		2501	1065		

Table 2: List of all proteins and phosphopeptides that are rhythmic in WT or CCA1-OX in both datasets (i.e. shared rhythmic IDs). All p-values are based on JTK_CYCLE analysis. * in some phosphopeptides, the location of phosphorylated residues differs slightly (either shifted by 1-2 residues or one of several phosphates is missing) between datasets, in which case the phosphorylated residues of both datasets are noted (dataset I / dataset II). Bold: phase difference of peak is up to 4h. fam. = family, pr. = protein A) Phosphopeptides, WT

Peptide ID Peptide ID Peptide ID Peptide Sequence Provide p	T
Accession Description Iminest I Instead Iminest I Instead Periode sequence IVAAVAGSPCT Periode sequence IVAAVAGSPCT Description Images I Images I Instead Images I Images I Image	Peak
AT402340 TPR-like superfam. pr. 15668 12233 SASLDLN.R 3 9.5E.05 19E.00 57E.03 12E.06 12 Dormaney/auxin associated TV AVA/GSPCT 1 1 12.0E.02 2.6E.06 6.5E.02 8.9E.06 12 AT12G33300 fim. pr. ASSL ALKSAAAKEYNTA 1.4.5/1.4.11 2.0E.06 6.5E.02 8.9E.06 24 AT3G3750 COL9 8.182 H1184 RSSA 3.0E.03 2.4E.07 2.7E.02 3.8E.05 24 AT4G37070 RPS6A 8.624 11184 RSSAAAKPSVTA 1.4.5 2.0E.07 3.8E.07 4.9E.07 4.9E.04 4.9E.04 <t< td=""><td>dataset I (h)</td></t<>	dataset I (h)
DormaneyJaxin associated 220 TVAAVAGSPCT 13 / 11 2.0E-02 2.0E-08 6.5E-02 8.9E-06 12 AT4G3380 RPS6A 8624 778 SRLSSAAARSPVTA 1.45/1.411 2.0E-08 6.5E-02 8.9E-06 24 ATGG750 COL9 8.182 11184 RSY SLSSAAARSPVTA 1.45/1.41 2.0E-06 2.8E-07 4.9E-04 3.9E-05 24 ATGG760 COL9 8.182 11184 RSY 1.4.5 2.0E-06 2.8E-07 4.9E-04 3.9E-05 24 ATGG7600 RPS6A 8.02-4 21 SRLSSAAARPVTA 1.4.5.1 2.0E-06 2.8E-07 4.9E-04 1.0E-04 2.4E-07	(II) 32
AT2G3380 fim. pr. 6246 2709 PTTPGSAR 13 1 2.0E-06 6.5E-02 8.9E-06 12 ATGG31700 RPS6A 8624 778 SRUSSAAKEPSYTA 1.4.5.7.4.1 2.6E-08 6.5E-02 8.9E-04 3.0E-05 24 ATGG3700 RPS6A 8624 1785 SRUSSAAKEPSYTA 1.4.5 3.0E-03 2.4E-07 2.7E-02 3.8E-05 24 ATGG3700 RPS6A 8624 1785 SRUSSAAKEPSYTA 1.4.5 7.4E-03 4.8E-07 4.0E-04 3.0E-05 32 ATGG3700 RPS6A 41,175 2.8 KRUSSAAKEPSYTA 1.4.5 7.4E-03 4.8E-07 4.0E-04 3.0E-05 32 ATGG3700 RPS6A 42,1 1.8 SRUSSAAKEPSYTA 1.4.5,1 1.4.5 1.4E-04 3.0E-02 1.5E-04 3.4E-02 3.24 7.16 3.8E-03 2.8E-04 44 ATGG3700 RE7. 7.7 7.142 8.476 SSPGSILDACKOKPRLA 3.5 5.1E-04	32
AT4G3100 RPS6A 8624 778 SRLSSAAARSPNTA [4,57],4,11 20E-06 24 AT3G47470 CAB4 715 605 DLSFTSIGSSAK 3 1.3E+06 1.6E+07 4.9E+04 3.0E+05 28 AT3G07505 COL9 8182 11184 RSV 3 1.5E+06 2.4E+07 4.9E+04 3.0E+05 24 AT3G01650 RPS6A 8624 1785 RLSSAAARPSVTA 1.4, 5 1.4E+07 4.9E+04 3.0E+05 24 AT3G01650 RPS6A 8624 1785 RLSSAAARPSVTA 1.4, 5/1.4 2.0E+06 4.8E+01 3.0E+02 2.4E+07 4.9E+04 1.4E+04 3.4E+07 4.8E+07	40
AT3G47470 CAB4 715 6.36 DLSFTSIGSSAK 3 13E-06 1.6E-07 4.9E-04 3.0E-05 28 AT3G0765 COL9 8182 11184 RES AGEAVDYDPLTPT 5 3.0E-03 2.4E-07 2.7E-02 3.8E-05 24 AT4G31700 RPS6A 8.624 11785 SRLSSAAAKPSVTA 1.4,5 2.0E-06 9.5E-07 4.9E-04 3.9E-05 32 AT3G10360 RPS6A 8.624 21 SRLSSAAAKPSVTA 1.4,5 1.4,5 1.4,5 1.4,5 1.4,5 1.4,5 1.4,6 4.0E-03 2.4E-07 2.1E-04 1.4E AT5G48800 CLC-A 1.7B3 1.852 HRLSSTPLALVGAK 3.5 5.1E-05 1.1E-04 3.6E-03 2.4E-01 2.4E-01 2.4E-01 2.4E-01 2.4E-01 2.4E-02 1.5E-03 1.2E-02 2.4E 1.3E-05 1.1E-04 3.6E-03 2.4E-01 2.5E-03 2.4E-01 2.5E-03 2.4E-01 2.4E-01 2.5E-03 2.4E-02 1.5E-03 1.2	24
ATGG7560 COL9 8182 11184 ACEA TOY DPLTPT 15 3.0E-03 2.4E-07 2.7E-02 3.8E-05 24 ATGG1700 RPS6A 8624 1785 SRLSSAAAKPSVTA 1,4,5 2.0F-06 2.8E-07 4.9F-04 3.9E-05 24 ATGG10060 RPS6A 8624 21 SRLSSAAAKPSVTA 1,4,5 2.0F-06 2.8E-07 4.9F-04 3.9E-05 24 ATGG10300 RPS6A 8624 21 SRLSSAAAKPVAA 4/1,4 7.4F-04 3.8E-04 24 ATGG76300 B-box type zinc finger 11033 16261 RSV SSRG3UDAEK 3 1.7E-04 3.0E-05 2.8E-04 24 ATGG76300 NRT1.7 7142 8476 SSRG3UDAEK 3 1.7E-04 3.0E-03 2.8E-04 24 ATGG7600 DUF1677 4202 S127 TSSSGAUCOIRS 8.0F-03 1.1E-04 4.9E-03 1.6E-04 2.3E-02 1.0E-02 28 ATGG7800 DUF581 1700	32
AT3G07650 COL9 \$182 11184 RSY 15 3.0E-03 2.7E-02 2.8E-05 24 ATGG3100 RPS6A 8624 1785 SRLSSAAARPSVTA 1.4, 5 / 1, 4 7.4E-03 4.8E-07 49E-04 3.8E-05 24 ATGG3100 RPS6A 8624 21 SRLSSAAARPSVTA 1.4, 5 / 1, 4 7.4E-03 4.8E-07 4.9E-04 1.1E-04 24 ATGG3100 RPS6A 8624 21 SRLSSAAARPSVTA 1, 4, 5 / 1, 4 7.4E-03 1.6E-06 4.0E-02 1.6E-04 24 ATGG4800 CLC-A 1783 1852 HRTLSTPLALVGAK 3.5 5.1E-04 3.0E-03 3.6E-02 3.2E-03 24 ATGG4080 CLC-A 1783 1852 HRTLSTPLALVGAK 3.5 5.1E-04 1.6E-04 24 3.7E-03 24 ATGG300 DUF167 1901 1997 16AGUVDRNBFT 3.7E-03 1.6E-04 2.4E-02	
AT4G31700 RPS6A 8624 1785 SRLSSAAAKPSVTA 1,4,5 200.00 2.8E-07 49E-04 3.9E-05 24 AT4G31700 RPS6A 8624 21 SRLSSAAAKPSVTA 1,4,5/1,4 7.16-03 4.8E-01 40E-02 5.9E-05 32 AT4G31700 RPS6A 8624 21 SRLSSAAAKPSVTA 1,4,5/1,4 2.0E-06 9.5E-07 4.9E-04 1.1E-04 24 AT4G31700 RPS6A 8624 21 SRLSSAAAKPSVTA 1,4,5/1,4 2.0E-06 9.5E-07 4.9E-04 1.1E-04 24 AT4G31700 RPS6A 362-1 7.4E-04 1.6E-04 24 24 206070 2.8E-07 1.0E-04 2.8E-07 1.2E-04 24 24507 3.24 4.9E-03 1.6E-04 2.8E-07 1.0E-02 28 20607 0.0F1677 4020 1.97 LGAGLVQSPLDR 8 6.0E-03 1.1E-04 2.4E-02 1.0E-02 28 AT167380 UFidme knase fam. 10001 8639 LSLDDDTVSPK 10 1.7E-01 1.9E-04 1.1E-02 24 2.4E-02 1.1E	40
AT5G10560 RPS6B 41,1736 28 SRLSSAPAKPVAA 4/1,4 7,4203 4,8E-07 4,0E-02 5,9E-03 32 AT4G31700 RPS6A 8624 21 SRLSSAAAKPSVTA 1,4,5/1,4 2,0E-03 9,5E-07 4,9E-04 1,1E-04 24 AT5G4820 B-box type zine finger 11033 16261 RSY 15/16 7,4E-03 1,6E-06 4,0E-02 1,6E-04 24 AT5G69820 NRT1.7 7142 8476 ISSPGSILDAEK 3 1,7E-04 3,0E-06 48E-02 7,3E-03 24 AT5G362070 DUF1677 4202 S127 TSSSGALPOLIDGVESR 3/4 1,9E-03 1,6E-04 2,4E-02 1,6I-02 28E AT1G73080 DUF1677 4202 S127 TSSSGALPOLIDGVESR 1/4 1,7E-04 3,6E-02 2,1E-02 28 AT1G73980 DUF1677 4202 S124 ISSD SLSLDDDTVSSPK 10 1,7E-03 6,1E-02 28 1,1G-02 28 AT1G37800 UPI651 1700 3249,1093 LSMVTPSSPSPR 7/4,810 3,2E-02 <td>24</td>	24
AT4G31700 RPS6A 8624 21 SELSSAAKPSVTA 1, 4, 5 / 1, 4 2.0E-06 9.5E-07 4.9E-04 L1E-04 24 AT5G48250 B-box type zinc finger 11033 16261 RSY 15 / 16 7.4E-03 1.6E-06 4.0E-02 1.6E-04 24 AT1G690800 NRT1.7 7142 8476 ISSPGSILDAEK 3 1.7E-04 3.0E-06 6.8E-03 2.8E-04 24 AT5G08080 CLC-A 1783 1852 HRTLSSTPLAUCGAK 3 1.7E-04 3.0E-06 6.8E-03 2.8E-04 24 AT5G0300 CLC-A 178 1852 HRTLSSTPLAUCGAK 3 1.4E-04 3.6E-02 7.3E-03 28 AT1G7300 UFidit family pr. 1950 1997 LGAGLVQSPLDR 8 6.0E-03 1.1E-04 3.EE-02 1.1E-02 28 AT1G7300 UFidit family pr. 1001 8639 LSMVTPR 3 3.2E-02 1.1E-04 3.2E 24 24 AT1G7300 DUF581	24
AT5G48250 B-box type zinc finger 11033 16261 SGEAYDYDPMSPT 15 / 16 7.4E-03 1.6E-04 24 AT5G48250 NRT1.7 7.142 8476 SSPGSILDAEK 3 1.7E-04 3.6E-06 6.8E-03 2.8E-04 24 AT5G48050 CLC-A 1783 1852 HRTLSSTPLALVGAK 3.5 5.1E-04 1.6E-04 2.8E-04 24 AT5G4020 CLC motif family pr. 1950 1997 LGAGUVQRUDR 8 6.0E-03 1.E6-04 2.8E-02 1.0E-02 28 AT5G20670 DUF1677 4202 5127 TSSSGALPGIDQVESR 3/4 1.9E-03 1.6E-04 2.4E 2.1E-04 1.8E-02 28 AT1G70800 DUF581 1700 3249, 1093 LLSMVTPR 3 1.3E-05 2.1E-04 1.8E-03 1.2E-02 24 AT1678020 DUF581 5742 2183 RHSGDPSDAGHFLR 3 2.4E-02 1.5E-03 1.2E-02 2.4 AT1670800 DUF581 5743	24
ATSG48250 B-box type zinc finger 11033 162.61 RSY 15 / 16 7.4E-03 1.6E-06 4.0E-02 1.6E-04 24 ATIG69870 NRT1.7 7142 8476 SSPGSILDAEK 3 1.7E-04 3.0E-06 6.8E-03 2.8E-04 24 ATSG36870 NLT.7 1783 1852 IRTLSSTPLALVGAK 3.5 5.1E-04 3.0E-06 6.8E-03 2.8E-04 24 ATSG3670 DUF1677 4202 5127 TSSSGALPGIDGVESR 3/4 1.9E-03 1.6E-04 2.4E-02 1.0E-02 2.8E-02 1.0E-02 2.8E-02 1.0E-02 2.8E-02 1.1E-02 2.8E-02 1.1E-02 2.8E-02 1.1E-02 2.8E-02 1.1E-02 2.8E-02 1.1E-02 2.8E-02 1.2E-02 2.4 ATIG78020 DUF581 10097 3249, 1093 LSMVTPR 3 1.3E-05 2.1E-04 1.5E-03 1.2E-02 2.4 2.1E-01 1.2E-02 4.2E-02 1.2E-02 2.4 1.6E-04 2.4 3.0E-03 3.6E-03 2.1E-01 3.2 3.2E-03 1.2E-01 3.2E-03 3.2E-03 <td< td=""><td></td></td<>	
ATIG69870 NRTL7 7142 8476 SSPGSILDAEK 3 1.7E-04 3.0E-06 6.8E-03 2.8E-04 24 ATI5G40890 C.C.T. motif family pr. 1950 1997 LGAGLVOSPLDR 8 6.0E-03 1.1E-04 4.0E-02 7.3E-03 28 ATI5G3206 70 DUF1677 4202 5127 TSSSGALPGIDGVESR 3./ 1.9E-03 1.6E-04 2.3E-02 1.0E-02 28 ATIG73080 Uridine kinase fam. 10001 8639 LSLDDDTVSSPK 10 1.7E-02 1.9E-04 5.9E-02 2.1E-02 28 ATIG73080 DUF581 1700 3249, 1093 LSMVTPR 3 1.3E-05 2.1E-04 1.5E-03 1.2E-02 24 ATIG78020 DUF581 5542 2081 RHISGDFSDAGHFLR 3 2.4E-02 1.5E-03 7.4E-02 6.2E-02 24 ATIG78020 UP581 5385 JSSS DISAFSPSFKR 8 1.1E-02 4.0E-03 3.6E-02 2.2E-01 32 <td< td=""><td>40</td></td<>	40
ATSG04900 CLC-A 1783 1852 HRTLSSTPLALVGAK 3.5 5.1E-05 1.1E-04 4.0E-03 7.3E-03 24 ATSG3070 DUF1677 4202 5127 TSSSGALPCIDCVESR 3.4 1.9E-03 1.6E-04 2.8E-02 1.0E-02 28 Phosphorbulokinase / 10001 8639 ESLDDDTVSSPK 10 1.7E-02 1.9E-04 5.9E-02 1.1E-02 28 ATIG73020 DUF581 10001 8639 ESLDDDTVSSPK 10 1.7E-02 1.9E-04 1.5E-03 1.2E-02 24 ATIG73020 DUF581 2081, 5542 213, 77, R RISGDFSDAGHFLR 3 2.4E-02 1.5E-03 7.4E-02 6.2E-02 24 ATIG73020 DUF581 5542 2081 STS SSAAAKPSYTA 9 1.5E-03 3.6E-03 2.7E-02 1.2E-01 32 ATG35100 RPSA 4140 6826 TLSYPTPPLNPQSPR 13 3.0E-03 3.7E-01 1.9E 32 ATG35300 VCR 4140 124 ALGSPRSNATN 4,7 1.1E-02 8.7E-03 3.6E	48
ATSG33420 CCT motif family pr. 1950 1997 LGAGL/QSPLDR 8 6.0E-03 1.1E-04 3.6E-02 7.3E-03 28 ATSG30670 DUF1677 4202 5127 TSSSGALPGIDGVESR 3./ 1.9E-03 1.6E-04 2.3E-02 1.0E-02 28 ATIG73080 Uridine kinase fam. 10001 8639 LSDDDTVSSPK 10 1.7E-02 1.9E-04 5.9E-02 1.1E-02 28 ATIG78020 DUF581 5542 2081 RHSGDFSDAGHFLR 3 2.4E-02 1.5E-03 7.4E-02 6.9E-02 24 ATIG78020 DUF581 5542 2081 RHSGDFSDAGHFLR 3 2.4E-02 1.5E-03 7.4E-02 6.9E-02 24 ATG31200 MRS6A 2489 3985 SSAAAKPSYTA 9 1.5E-03 7.6E-03 2.6E-03 2.7E-02 1.6E-01 28 AT4G3100 MPSA 1440 6826 TLSYPTPPLNQSPR 13 3.0E-03 5.4E-03 2.7E-02 1.6E-01 28	24
AT5G20670 DUF1677 4202 5127 TSSSGALPGIDGVESR 3 / 4 1.9E-03 1.6E-04 2.3E-02 1.0E-02 28 AT1G7380 Duffanc kinase fam. 10001 8639 SLDDDTVSSPK 10 1.7E-02 1.9E-04 5.9E-02 1.1E-02 28 AT1G7300 DUF581 1700 3249, 1093 LLSMVTPR 3 1.3E-05 2.1E-04 1.5E-03 7.4E-02 6.2E-02 24 AT1G73020 DUF581 5542 2113, 737, RHSGDFSDAGHFLR 3 2.4E-02 1.5E-03 7.7E-02 6.5E-02 3.2 AT4G31700 RPS6A 2489 3985 LSSAAAKPSYTA 9 1.5E-03 3.6E-03 2.1E-02 1.2E-01 32 AT3G13200 VCR 4140 626 TLSYPTPLNPQSPR 13 3.0E-03 5.4E-03 3.2E-02 1.2E-01 32 AT3G13200 VCR 4140 626 TLSYPTPLNPQSPR 13 3.0E-03 3.6E-02 3.2E-01 2.8E AT4G35100 </td <td>48</td>	48
Phosphorbulokinase / 10001 8639 LSLDDDTVSSPK 10 1.7E-02 1.9E-04 5.9E-02 1.1E-02 28 ATIG73980 DUF581 1700 3249, 1093 LLSMVTPR 3 1.3E-05 2.1E-04 1.5E-03 1.2E-02 24 ATIG78020 DUF581 25542 2131, 3737. RHSGDFSDAGHFLR 3 2.4E-02 1.5E-03 7.7E-03 6.0E-02 32 ATIG1310 MLO2 1496 3909 SVENPSSPSPK 7 (8.10) 2.3E-04 1.9E-03 3.6E-03 2.1E-02 1.2E-01 32 ATG32240 unknown 5883 7383 DIDLSYSSPTKR 8 1.1E-02 4.0E-03 4.9E-02 1.3E-01 28 ATG32300 VCR 4140 6826 TLSYPTPPLNPQSPR 13 3.0E-03 3.6E-02 2.0E-01 32 ATG33500 PIPA 140 214 ALGSPRNATN 4,7 1.1E-02 8.0E-03 3.6E-02 2.0E-01 32 ATIG37580 KINV	48
ATIG73980 Uridine kinase fam. 10001 8639 LSLDDDTVSSPK 10 1.7E-02 1.9E-04 5.9E-02 1.1E-02 28 ATIG78020 DUF581 1700 3249, 1093 LLSMVTPR 3 1.3E-05 2.1E-04 1.5E-03 1.2E-02 24 ATIG78020 DUF581 5542 2081 RHSGDFSDAGHFLR 3 2.4E-02 1.5E-03 7.4E-02 6.2E-02 24 ATIG78020 DUF581 5542 2081 RHSGDFSDAGHFLR 3 2.4E-02 1.5E-03 7.4E-02 6.2E-02 24 ATIG1310 MLO2 1496 3909 SVENYPSSPSPR 7 / 8, 10 2.3E-04 1.9E-01 28 ATG32300 WCR 4140 6826 TLSYPTPLNPQSPR 13 3.0E-03 3.6E-02 2.0E-01 28 ATG3310 NIA2 4382 2045, 2045 NETHNSNAVYYK 9, 10 9.0E-04 8.8E-03 1.7E-02 2.0E-01 28 ATIG37130 NIA2 4382 2045, 2045	40
AT1G78020 DUFS81 1700 3249, 1093 LLSMVTPR 3 1.3E-05 2.1E-04 1.5E-03 1.2E-02 24 AT1G78020 DUF581 5542 2113, 737, 2081 S42 2081 5542 2113, 737, 2081 3 2.4E-02 1.5E-03 7.4E-02 6.2E-02 24 AT1G71300 RPS6A 2489 3985 LSSAAKPSVTA 9 1.5E-03 3.6E-03 2.1E-02 1.2E-01 32 AT3G3200 WCR 4140 6826 TLSVPTPPLNQSPR 13 3.0E-03 5.4E-03 2.7E-02 1.6E-01 28 AT3G3200 VCR 4140 6826 TLSVPTPPLNQSPR 13 3.0E-03 5.4E-03 1.7E-02 1.0E-01 28 AT3G3500 PIP3A 140 214 ALGSFRSNATN 4,7 1.1E-02 408-03 4.9E-02 1.9E-01 28 AT3G3500 NIA2 4382 2045, 2045 NETHNSNAVYYK 9,10 6.0E-03 8.8E-03 1.7E-02 2.0E-01 28	24
ATIG78020 DUF581 2081, 5542 2113, 737, 2081 RHSGDFSDAGHFLR 3 2.4E-02 1.5E-03 7.4E-02 6.2E-02 24 ATIG11310 MLO2 1496 3909 SVENYPSSPSPR 7/8, 10 2.3E-04 1.9E-03 7.7E-03 6.9E-02 32 AT4G31700 RPS6A 2489 3985 LSSAAAKPSVTA 9 1.5E-03 3.6E-03 2.1E-02 1.2E-01 32 ATG013100 NLO2 4140 6826 TLSYPTPLNPQSPR 13 3.0E-03 5.4E-03 2.7E-02 1.6E-01 28 AT4G35100 PIP3A 140 214 ALGSFRSNATN 4, 7 1.1E-02 8.0E-03 3.6E-02 2.0E-01 32 AT4G35100 PIP3A 140 214 ALGSFRSNATN 4, 7 1.1E-02 8.0E-03 3.6E-02 2.0E-01 32 AT1G37130 NIA2 4382 2045, 2045 NETHNSNAVYK 9, 10 9.0E-04 8.8E-03 1.7E-02 2.0E-01 28 AT1G3530	
ATIG78020 DUF581 5542 2081 RHSGDFDAGHFLR 3 2.4E-02 1.5E-03 7.4E-02 6.2E-02 24 ATIG11310 MLO2 1496 3909 SVENYPSSPSPR 7.78.10 2.3E-04 1.9E-03 7.7E-03 6.9E-02 32 ATG31700 RPS6A 2489 3985 LSSAAKPSVTA 9 1.5E-03 3.6E-03 2.1E-02 1.3E-01 24 ATG31290 VCR 4140 6826 TLSYPTPLNPQSPR 13 3.0E-03 5.4E-03 2.7E-02 1.6E-01 28 ATG33100 PIP3A 140 214 ALGSPRNATN 4,7 1.1E-02 8.0E-03 4.9E-02 1.9E-01 28 ATG37300 PIP3A 140 214 ALGSPSTASPGR 10 6.0E-03 8.8E-03 1.7E-02 2.0E-01 28 ATIG37130 NIA2 4382 2045, 2045 NETHNSNAVYK 9 0 9.0E-04 8.8E-03 1.7E-02 2.0E-01 28 ATIG37580 <td< td=""><td>24</td></td<>	24
AT1G11310 MLO2 1496 3909 SVENYPSSPSPR 7 / 8, 10 2.3E-04 1.9E-03 7.7E-03 6.9E-02 32 AT4G31700 RPS6A 2489 3985 LSSAAAKPSVTA 9 1.5E-03 3.6E-03 2.1E-02 1.2E-01 32 AT3G13204 unknown 5883 7383 DIDLSFSSPTKR 8 1.1E-02 4.0E-03 4.9E-02 1.3E-01 24 AT3G13200 VCR 4140 6826 TLSYPTPPLNPQSPR 13 3.0E-03 5.4E-03 2.7E-02 1.6E-01 28 AT4G35100 PIP3A 140 214 ALGSFRSNATN 4, 7 1.1E-02 8.0E-03 4.9E-02 1.9E-01 28 AT4G35100 PIP3A 140 214 ALGSFRSNATN 4, 7 1.1E-02 8.0E-03 8.6E-02 2.0E-01 32 AT1G3730 NIA2 4382 2045, 2045 NETHNSNAVYYK 9, 10 9.0E-04 8.8E-03 1.7E-02 2.0E-01 28 AT1G3730 NIA2 4382 2045, 2045 NETHNSNAVYYK 9, 10 9.0E-04 8.8E-03	
AT4G31700 RPS6A 2489 3985 LSSAAAKPSVTA 9 1.5E-03 3.6E-03 2.1E-02 1.2E-01 32 AT2G32240 unknown 5883 7383 DIDLSFSSPTKR 8 1.1E-02 4.0E-03 4.9E-02 1.3E-01 24 AT3G32240 WCR 4140 6826 TLSYPTPPLNPQSPR 13 3.0E-03 5.4E-03 2.7E-02 1.6E-01 28 AT4G35100 PIP3A 140 214 ALGSFRSNATN 4,7 1.1E-02 8.0E-03 4.9E-02 1.9E-01 28 ATG37130 NIA2 4683 1690 DFPDGSTTASPGR 10 6.0E-03 8.8E-03 3.6E-02 2.0E-01 32 AT1G37130 NIA2 4382 2045, 2045 NETHINSNAVYYK 9, 10 9.0E-04 8.8E-03 1.7E-02 2.0E-01 28 AT1G37130 NIA2 4382 2045, 2045 NETHINSNAVYYK 9, 10 3.0E-03 8.7E-02 2.1E-01 28 AT1G37580 CINV1 9	24
AT2G32240 unknown 5883 7383 DIDLSFSSPTKR 8 1.1E-02 4.0E-03 4.9E-02 1.3E-01 24 AT3G13290 VCR 4140 6826 TLSYPTPPLNPQSPR 13 3.0E-03 5.4E-03 2.7E-02 1.6E-01 28 AT4G35100 PIP3A 140 214 ALGSFRSNATN 4,7 1.1E-02 8.0E-03 4.9E-02 1.9E-01 28 AT5G38640 like superfam. pr. 4683 1690 DFPDGSTTASPGR 10 6.0E-03 8.8E-03 3.6E-02 2.0E-01 32 AT1G37130 NIA2 4382 2045, 2045 VHDDDEDVSSEDE 9,10 9.0E-04 8.8E-03 1.7E-02 2.0E-01 28 AT1G37130 MAPKK7 3515 6312 SKLPLVGVSSFR 10 3.0E-03 8.8E-03 2.7E-02 2.0E-01 28 AT1G35580 CINV1 903 1066 SVLDTPLSSAR 5,8 1.7E-02 9.7E-03 2.7E-02 2.1E-01 28 AT3627700 zine finger fam. pr. 9563 9073 LDTASDSGAAIASPK 13 4.8E-03	24
AT3G13290 VCR 4140 6826 TLSYPTPPLNPQSPR 13 3.0E-03 5.4E-03 2.7E-02 1.6E-01 28 AT4G35100 PIP3A 140 214 ALGSFRSNATN 4, 7 1.1E-02 8.0E-03 4.9E-02 1.9E-01 28 AT5G38640 like superfam. pr. 4683 1690 DFPDGSTTASPGR 10 6.0E-03 8.8E-03 3.6E-02 2.0E-01 32 AT1G37130 NIA2 4382 2045, 2045 NETHNSNAVYYK 9, 10 9.0E-04 8.8E-03 3.6E-02 2.0E-01 28 AT1G37130 NIA2 4382 2045, 2045 NETHNSNAVYYK 9, 10 9.0E-04 8.8E-03 3.6E-02 2.0E-01 28 AT1G37130 MIA2 4382 2045, 2045 NETHNSNAVYYK 9, 10 3.0E-03 8.8E-03 3.6E-02 2.0E-01 28 AT1G37500 Major Facilitator Superfam. pr. 6279 4702, 5728 TVPHDYSPLISSPK 12 3.0E-03 9.7E-03 2.7E-02 2.1E-01 28 AT3G6700 zine finger fam. pr. 9563 9073 LDTASDSGAAIA	48
AT4G35100 PIP3A 140 214 ALGSFRSNATN 4, 7 1.1E-02 8.0E-03 4.9E-02 1.9E-01 28 AT5G38640 NagB/RpiA/CoA transferase- like superfam. pr. 4683 1690 DFPDGSTTASPGR 10 6.0E-03 8.8E-03 3.6E-02 2.0E-01 32 AT1G37130 NIA2 4382 2045, 2045 NETINNNAVYYK 9, 10 9.0E-04 8.8E-03 1.7E-02 2.0E-01 28 AT1G37130 NIA2 4382 2045, 2045 NETINNNAVYYK 9, 10 9.0E-04 8.8E-03 2.7E-02 2.0E-01 28 AT3G13530 MAPKKK7 3515 6312 SKLPLVGVSSFR 10 3.0E-03 8.8E-03 2.7E-02 2.0E-01 28 AT1G3780 pr. 6279 4702, 5728 TVPHDYSPLISSPK 12 3.0E-03 9.7E-03 2.7E-02 2.1E-01 28 AT3G2700 zinc finger fam. pr. 9563 9073 LDTASDSGAAIASPK 13 4.8E-03 1.1E-02 3.4E-02 2.4E-01 2	48
NagB/RpiA/CoA transferase- AT5G38640 NagB/RpiA/CoA transferase- like superfam. pr. 4683 1690 DFPDGSTTASPGR 10 6.0E-03 8.8E-03 3.6E-02 2.0E-01 32 AT1G37130 NIA2 4382 2045, 2045 NETHNSNAVYYK 9, 10 9.0E-04 8.8E-03 1.7E-02 2.0E-01 28 AT3G13530 MAPKKK7 3515 6312 SKLPLVGVSSFR 10 3.0E-03 8.8E-03 2.7E-02 2.0E-01 28 AT1G3530 CINV1 903 1066 SVLDTPLSSAR 5, 8 1.7E-02 9.7E-02 2.0E-01 28 AT1G74780 pr. 6279 4702, 5728 TVPHDYSPLISSPK 12 3.0E-03 9.7E-03 2.7E-02 2.1E-01 28 AT3G27700 zine finger fam. pr. 9563 9073 LDTASDSGAAIASPK 13 4.8E-03 1.1E-02 3.4E-02 2.2E-01 28 AT4G3160 ASN2 4975 4842 AGSDLVDPLPK 3 6.9E-04 1.3E-02 1.4E-02 2.4E-01 28	48
AT5G38640 like superfam. pr. 4683 1690 DFPDGSTTASPGR 10 6.0E-03 8.8E-03 3.6E-02 2.0E-01 32 AT1G37130 NIA2 4382 2045, 2045 NETHNSNAVYYK 9, 10 9.0E-04 8.8E-03 1.7E-02 2.0E-01 28 AT3G13530 MAPKKK7 3515 6312 SKLPLVGVSSFR 10 3.0E-03 8.8E-03 2.7E-02 2.0E-01 28 AT1G35580 CINV1 903 1066 SVLDTPLSSAR 5, 8 1.7E-02 9.7E-03 5.9E-02 2.1E-01 24 Major Facilitator Superfam. pr. 6279 4702, 5728 TVPHDYSPLISSPK 12 3.0E-03 9.7E-03 2.7E-02 2.1E-01 28 AT3G27700 zinc finger fam. pr. 9563 9073 LDTASDSGAAIASPK 13 4.8E-03 1.1E-02 3.4E-02 2.2E-01 28 AT4G3160 ASN2 4975 4842 AGSDLVDPLPK 3 6.9E-04 1.3E-02 1.6E-02 2.4E-01 28 AT4G31510 AMT1;1 214 110 SPSPSGANTTPTPV 1 3.5E-02 </td <td>24</td>	24
ATIG37130 NIA2 4382 2045, 2045 NETHNSNAVYYK 9, 10 9.0E-04 8.8E-03 1.7E-02 2.0E-01 28 AT3G13530 MAPKKK7 3515 6312 SKLPLVGVSSFR 10 3.0E-03 8.8E-03 2.7E-02 2.0E-01 28 AT1G35580 CINV1 903 1066 SVLDTPLSSAR 5, 8 1.7E-02 9.7E-03 5.9E-02 2.1E-01 24 Major Facilitator Superfam. 6279 4702, 5728 TVPHDYSPLISSPK 12 3.0E-03 9.7E-03 2.7E-02 2.1E-01 28 AT3G27700 zine finger fam. pr. 9563 9073 LDTASDSGAIASPK 13 4.8E-03 1.1E-02 3.4E-02 2.2E-01 28 AT5G65010 ASN2 4975 4842 AGSDLVDPLPK 3 6.9E-04 1.3E-02 1.6E-02 2.4E-01 28 AT4G31160 associated factor 1 8754 7154, 8583 ASPR 14 3.5E-02 1.4E-02 9.3E-02 2.4E-01 28 AT4	
AT1G37130 NIA2 4382 2045, 2045 NETHNSNAVYYK 9, 10 9.0E-04 8.8E-03 1.7E-02 2.0E-01 28 AT3G13530 MAPKKK7 3515 6312 SKLPLVGVSSFR 10 3.0E-03 8.8E-03 2.7E-02 2.0E-01 28 AT1G35580 CINV1 903 1066 SVLDTPLSSAR 5, 8 1.7E-02 9.7E-03 5.9E-02 2.1E-01 24 Major Facilitator Superfam. pr. 6279 4702, 5728 TVPHDYSPLISSPK 12 3.0E-03 9.7E-03 2.7E-02 2.1E-01 28 AT3G27700 zinc finger fam. pr. 9563 9073 LDTASDSGAAIASPK 13 4.8E-03 1.1E-02 3.4E-02 2.2E-01 28 AT5G5010 ASN2 4975 4842 AGSDLVDPLPK 3 6.9E-04 1.3E-02 1.4E-02 2.4E-01 28 AT4G31160 associated factor 1 8754 7154, 8583 ASPR 14 3.5E-02 1.4E-02 9.3E-02 2.4E-01 28 AT4G3150 AMT1;1 214 110 SPSPSGANTTPTPV 1 3.5E-02<	24
AT1G37130 NIA2 4382 2045, 2045 NETHNSNAVYYK 9, 10 9.0E-04 8.8E-03 1.7E-02 2.0E-01 28 AT3G13530 MAPKKK7 3515 6312 SKLPLVGVSSFR 10 3.0E-03 8.8E-03 2.7E-02 2.0E-01 28 AT1G35580 CINV1 903 1066 SVLDTPLSSAR 5, 8 1.7E-02 9.7E-03 5.9E-02 2.1E-01 24 Major Facilitator Superfam. pr. 6279 4702, 5728 TVPHDYSPLISSPK 12 3.0E-03 9.7E-03 2.7E-02 2.1E-01 28 AT3G27700 zinc finger fam. pr. 9563 9073 LDTASDSGAAIASPK 13 4.8E-03 1.1E-02 3.4E-02 2.2E-01 28 AT5G5010 ASN2 4975 4842 AGSDLVDPLPK 3 6.9E-04 1.3E-02 1.4E-02 2.4E-01 28 AT4G31160 associated factor 1 8754 7154, 8583 ASPR 14 3.5E-02 1.4E-02 9.3E-02 2.4E-01 28 AT4G3150 AMT1;1 214 110 SPSPSGANTTPTPV 1 3.5E-02<	
AT1G35580 CINV1 903 1066 SVLDTPLSSAR 5, 8 1.7E-02 9.7E-03 5.9E-02 2.1E-01 24 Major Facilitator Superfam. pr. 6279 4702, 5728 TVPHDYSPLISSPK 12 3.0E-03 9.7E-03 2.7E-02 2.1E-01 28 AT3G27700 zinc finger fam. pr. 9563 9073 LDTASDSGAAIASPK 13 4.8E-03 1.1E-02 3.4E-02 2.2E-01 28 AT5G65010 ASN2 4975 4842 AGSDLVDPLPK 3 6.9E-04 1.3E-02 1.6E-02 2.4E-01 28 AT4G31160 associated factor 1 8754 7154, 8583 ASPR 14 3.5E-02 1.3E-02 9.3E-02 2.4E-01 28 AT4G13510 AMT1;1 214 110 SPSPSGANTTPTPV 1 3.5E-02 1.4E-02 9.3E-02 2.4E-01 24 AT3G26730 RING/U-box superfam. pr. 5794 6017 NQTQSLSPPDVSR 7 1.3E-04 2.2E-02 6.2E-03 3.5E-01 24 AT4G20910 HEN1 15648 13859 SSSPNVFAAPPILQK 3 / 2, 3	28
Major Facilitator Superfam. 6279 4702, 5728 TVPHDYSPLISSPK 12 3.0E-03 9.7E-03 2.7E-02 2.1E-01 28 AT3G27700 zinc finger fam. pr. 9563 9073 LDTASDSGAAIASPK 13 4.8E-03 1.1E-02 3.4E-02 2.2E-01 28 AT5G65010 ASN2 4975 4842 AGSDLVDPLPK 3 6.9E-04 1.3E-02 1.6E-02 2.4E-01 28 AT4G31160 associated factor 1 8754 7154, 8583 ASPR 14 3.5E-02 1.3E-02 9.3E-02 2.4E-01 28 AT4G13510 AMT1;1 214 110 SPSPSGANTTPTPV 1 3.5E-02 1.4E-02 9.3E-02 2.5E-01 32 AT5G23660 SWEET12 14806 17187 LGTLTSPEPVAITVVR 6 9.1E-03 1.8E-02 4.3E-02 3.0E-01 24 AT3G26730 RING/U-box superfam. pr. 5794 6017 NQXISSPDVSR 7 1.3E-04 2.2E-02 5.2E-01 3.2 AT4G20910 <td>40</td>	40
Major Facilitator Superfam. 6279 4702, 5728 TVPHDYSPLISSPK 12 3.0E-03 9.7E-03 2.7E-02 2.1E-01 28 AT3G27700 zinc finger fam. pr. 9563 9073 LDTASDSGAAIASPK 13 4.8E-03 1.1E-02 3.4E-02 2.2E-01 28 AT5G65010 ASN2 4975 4842 AGSDLVDPLPK 3 6.9E-04 1.3E-02 1.6E-02 2.4E-01 28 AT4G31160 associated factor 1 8754 7154, 8583 ASPR 14 3.5E-02 1.3E-02 9.3E-02 2.4E-01 28 AT4G13510 AMT1;1 214 110 SPSPSGANTTPTPV 1 3.5E-02 1.4E-02 9.3E-02 2.5E-01 32 AT5G23660 SWEET12 14806 17187 LGTLTSPEPVAITVVR 6 9.1E-03 1.8E-02 4.3E-02 3.0E-01 24 AT3G26730 RING/U-box superfam. pr. 5794 6017 NQXISSPDVSR 7 1.3E-04 2.2E-02 5.2E-01 3.2 AT4G20910 <td>24</td>	24
AT1G74780 pr. 6279 4702, 5728 TVPHDYSPLISSPK 12 3.0E-03 9.7E-03 2.7E-02 2.1E-01 28 AT3G27700 zinc finger fam. pr. 9563 9073 LDTASDSGAAIASPK 13 4.8E-03 1.1E-02 3.4E-02 2.2E-01 28 AT5G65010 ASN2 4975 4842 AGSDLVDPLPK 3 6.9E-04 1.3E-02 1.6E-02 2.4E-01 28 DCAF1, DDB1-CUL4 VHEGAPDTEVLL VHEGAPDTEVLL 0.93E-02 2.4E-01 28 AT4G13510 AMT1;1 214 110 SPSPSGANTTPTVV 1 3.5E-02 1.3E-02 9.3E-02 2.5E-01 32 AT5G23660 SWEET12 14806 17187 LGTLTSPEPVAITVVR 6 9.1E-03 1.8E-02 4.3E-02 3.0E-01 24 AT3G26730 RING/U-box superfam. pr. 5794 6017 NQSTYEGYGSPIREEP 7 1.3E-04 2.2E-02 6.2E-03 3.5E-01 24 AT4G20910 HEN1 15648 13859 SSSPNVFAAPPILQK 3 /2, 3 9.5E-05 2.6E-02 5.7E-03 3.7E-01	
AT3G27700 zinc finger fam. pr. 9563 9073 LDTASDSGAAIASPK 13 4.8E-03 1.1E-02 3.4E-02 2.2E-01 28 AT5G65010 ASN2 4975 4842 AGSDLVDPLPK 3 6.9E-04 1.3E-02 1.6E-02 2.4E-01 28 DCAF1, DDB1-CUL4 WHEGAPDTEVLL VHEGAPDTEVLL 2 14 3.5E-02 1.3E-02 9.3E-02 2.4E-01 28 AT4G13510 AMT1;1 214 110 SPSPSGANTTPTPV 1 3.5E-02 1.4E-02 9.3E-02 2.4E-01 28 AT3G26730 RING/U-box superfam. pr. 5794 6017 NQTQSLSPPDVSR 7 1.3E-04 2.2E-02 6.2E-03 3.5E-01 24 AT4G20910 HEN1 15648 13859 SSSPNVFAAPPILQK 3 / 2, 3 9.5E-05 2.6E-02 5.7E-03 3.7E-01 24 AT4G20910 HEN1 15648 13859 SSSPNVFAAPPILQK 3 / 2, 3 9.5E-05 2.6E-02 5.7E-03 3.7E-01 24 <td< td=""><td>48</td></td<>	48
AT5G65010 ASN2 4975 4842 AGSDLVDPLPK 3 6.9E-04 1.3E-02 1.6E-02 2.4E-01 28 DCAF1, DDB1-CUL4 AT4G31160 associated factor 1 8754 7154, 8583 ASPR 14 3.5E-02 1.3E-02 9.3E-02 2.4E-01 28 AT4G13510 AMT1;1 214 110 SPSPSGANTTPTVV 1 3.5E-02 1.4E-02 9.3E-02 2.5E-01 32 AT5G23660 SWEET12 14806 17187 LGTLTSPEPVAITVVR 6 9.1E-03 1.8E-02 4.3E-02 3.0E-01 24 AT3G26730 RING/U-box superfam. pr. 5794 6017 NQTQSLSPPDVSR 7 1.3E-04 2.2E-02 6.2E-03 3.5E-01 24 AT4G20910 HEN1 15648 13859 SSSPNVFAAPPILQK 3 / 2, 3 9.5E-05 2.6E-02 5.7E-03 3.7E-01 28 AT4G20910 HEN1 15648 13859 SSSPNVFAAPPILQK 3 / 2, 3 9.5E-05 2.6E-02 5.7E-03 3.7E-01 24 AT4G26130 unknown pr. 1518 7456 ASNFINK(F	48
DCAF1, DDB1-CUL4 associated factor 1 8754 VHEGAPDTEVLL 7154, 8583 ASPR 14 3.5E-02 1.3E-02 9.3E-02 2.4E-01 28 AT4G13510 AMT1;1 214 110 SPSPSGANTTPTV 1 3.5E-02 1.4E-02 9.3E-02 2.4E-01 28 AT4G13510 AMT1;1 214 110 SPSPSGANTTPTV 1 3.5E-02 1.4E-02 9.3E-02 2.5E-01 32 AT5G23660 SWEET12 14806 17187 LGTLTSPEPVAITVVR 6 9.1E-03 1.8E-02 4.3E-02 3.0E-01 24 AT3G26730 RING/U-box superfam. pr. 5794 6017 NQSLSPPDVSR 7 1.3E-04 2.2E-02 6.2E-03 3.5E-01 24 AT4G20910 HEN1 15648 13859 SSSPNVFAAPPILQK 3 / 2, 3 9.5E-05 2.6E-02 5.7E-03 3.7E-01 28 AT4G20910 HEN1 15648 13859 SSSPNVFAAPPILQK 3 / 2, 3 9.5E-05 2.6E-02 5.7E-03 3.7E-01 24 AT	
AT4G31160 associated factor 1 8754 7154, 8583 ASPR 14 3.5E-02 1.3E-02 9.3E-02 2.4E-01 28 AT4G13510 AMT1;1 214 110 SPSPSGANTTPTPV 1 3.5E-02 1.4E-02 9.3E-02 2.5E-01 32 AT5G23660 SWEET12 14806 17187 LGTLTSPEPVAITVVR 6 9.1E-03 1.8E-02 4.3E-02 3.0E-01 24 AT3G26730 RING/U-box superfam. pr. 5794 6017 NQTQSLSPPDVSR 7 1.3E-04 2.2E-02 6.2E-03 3.5E-01 24 AT4G20910 HEN1 15648 13859 SSPNVFAAPPILQK 3 / 2, 3 9.5E-05 2.6E-02 5.7E-03 3.7E-01 28 AT2G07360 SH3 domain-containing pr. 2769, 5085 9464, 8286 PPYSYSEPQSR 10 1.1E-02 2.6E-02 3.7E-01 24 AT4G26130 unknown pr. 1518 7456 ASNFINK(FK) 3 1.4E-02 2.6E-02 5.3E-02 3.7E-01 24 AT1G44800 nodulin MtN21 7377 34568 SQELPITNVVK 1	24
AT4G13510 AMT1;1 214 110 SPSPSGANTTPTPV 1 3.5E-02 1.4E-02 9.3E-02 2.5E-01 32 AT5G23660 SWEET12 14806 17187 LGTLTSPEPVAITVVR 6 9.1E-03 1.8E-02 4.3E-02 3.0E-01 24 AT3G26730 RING/U-box superfam. pr. 5794 6017 NQTQSLSPPDVSR 7 1.3E-04 2.2E-02 6.2E-03 3.5E-01 24 AT4G20910 HEN1 15648 13859, SSPNVFAAPPILQK 3/2, 3 9.5E-05 2.6E-02 5.7E-03 3.7E-01 28 AT2G07360 SH3 domain-containing pr. 2769, 5085 9464, 8286 PPYSYSEPQSR 10 1.1E-02 2.6E-02 5.7E-03 3.7E-01 24 AT4G26130 unknown pr. 1518 7456 ASNFINK(FK) 3 1.4E-02 2.6E-02 5.3E-02 3.7E-01 24 AT1G44800 nodulin MtN21 7377 34568 SQELPITNVVK 1 4.4E-06 2.6E-02 5.3E-02 3.7E-01 28 AT2G46920 POL 7848 11608 SNFSAPLSFR 8	48
AT5G23660 SWEET12 14806 17187 LGTLTSPEPVAITVVR 6 9.1E-03 1.8E-02 4.3E-02 3.0E-01 24 AT3G26730 RING/U-box superfam. pr. 5794 6017 NQTQSLSPPDVSR 7 1.3E-04 2.2E-02 6.2E-03 3.5E-01 24 AT4G20910 HEN1 15648 13859 SSSPNVFAAPPILQK 3 / 2, 3 9.5E-05 2.6E-02 5.7E-03 3.7E-01 28 AT2G07360 SH3 domain-containing pr. 2769, 5085 9464, 8286 PPYSYSEPQSR 10 1.1E-02 2.6E-02 4.9E-02 3.7E-01 24 AT4G26130 unknown pr. 1518 7456 ASNFINK(FK) 3 1.4E-02 2.6E-02 5.3E-02 3.7E-01 24 AT1G44800 nodulin MtN21 7377 34568 SQELPITNVVK 1 4.4E-06 2.6E-02 5.3E-02 3.7E-01 24 AT2G46920 POL 7848 11608 SNFSAPLSFR 8 1.9E-03 3.1E-02 2.3E-02 4.1E-01 28	48
AT4G20910 HEN1 15648 13859, 13859 SSSPNVFAAPPILQK 3 / 2, 3 9.5E-05 2.6E-02 5.7E-03 3.7E-01 28 AT2G07360 SH3 domain-containing pr. 2769, 5085 9464, 8286 PPPYSYSEPQSR 10 1.1E-02 2.6E-02 5.7E-03 3.7E-01 24 AT4G26130 unknown pr. 5416, 7652, 1518 7456 ASNFINK(FK) 3 1.4E-02 2.6E-02 5.3E-02 3.7E-01 24 AT1G44800 nodulin MtN21 7377 34568 SQELPITNVVK 1 4.4E-06 2.6E-02 6.5E-04 3.7E-01 28 AT2G46920 POL 7848 11608 SNFSAPLSFR 8 1.9E-03 3.1E-02 2.3E-02 4.1E-01 28	40
AT4G20910 HEN1 15648 13859 SSSPNVFAAPPILQK 3 / 2, 3 9.5E-05 2.6E-02 5.7E-03 3.7E-01 28 AT2G07360 SH3 domain-containing pr. 2769, 5085 9464, 8286 PPYSYSEPQSR 10 1.1E-02 2.6E-02 4.9E-02 3.7E-01 24 AT4G26130 unknown pr. 5416, 7652, TISIGDGGEEGVDDK 1 1.4E-02 2.6E-02 5.3E-02 3.7E-01 24 AT4G26130 unknown pr. 1518 7456 ASNFINK(FK) 3 1.4E-02 2.6E-02 5.3E-02 3.7E-01 24 AT1G44800 nodulin MtN21 7377 34568 SQELPITNVVK 1 4.4E-06 2.6E-02 5.3E-02 3.7E-01 28 AT2G46920 POL 7848 11608 SNFSAPLSFR 8 1.9E-03 3.1E-02 2.3E-02 4.1E-01 28	24
AT2G07360 SH3 domain-containing pr. 2769, 5085 9464, 8286 PPPYSYSEPQSR 10 1.1E-02 2.6E-02 4.9E-02 3.7E-01 24 AT4G26130 unknown pr. 5416, 7652, 1518 TSIGDGGEEGVDDK 7456 TSIGDGGEEGVDDK ASNFINK(FK) 3 1.4E-02 2.6E-02 5.3E-02 3.7E-01 24 AT1G44800 nodulin MtN21 7377 34568 SQELPITNVVK 1 4.4E-06 2.6E-02 6.5E-04 3.7E-01 28 AT2G46920 POL 7848 11608 SNFSAPLSFR 8 1.9E-03 3.1E-02 2.3E-02 4.1E-01 28	
AT2G07360 SH3 domain-containing pr. 2769, 5085 9464, 8286 PPPYSYSEPQSR 10 1.1E-02 2.6E-02 4.9E-02 3.7E-01 24 AT4G26130 unknown pr. 1518 7456 ASNFINK(FK) 3 1.4E-02 2.6E-02 5.3E-02 3.7E-01 24 AT1G44800 nodulin MtN21 7377 34568 SQELPITNVVK 1 4.4E-06 2.6E-02 6.5E-04 3.7E-01 28 AT2G46920 POL 7848 11608 SNFSAPLSFR 8 1.9E-03 3.1E-02 2.3E-02 4.1E-01 28	24
AT4G26130 unknown pr. 5416, 7652, 1518 TTSIGDGGEEGVDDK ASNFINK(FK) 3 1.4E-02 2.6E-02 5.3E-02 3.7E-01 24 AT1G44800 nodulin MtN21 7377 34568 SQELPITNVVK 1 4.4E-06 2.6E-02 5.3E-02 3.7E-01 28 AT2G46920 POL 7848 11608 SNFSAPLSFR 8 1.9E-03 3.1E-02 2.3E-02 4.1E-01 28 62, 40, 62, 40, 62, 40, 62, 40, 62 6	26
AT4G26130 unknown pr. 1518 7456 ASNFINK(FK) 3 1.4E-02 2.6E-02 5.3E-02 3.7E-01 24 AT1G44800 nodulin MtN21 7377 34568 SQELPITNVVK 1 4.4E-06 2.6E-02 6.5E-04 3.7E-01 28 AT2G46920 POL 7848 11608 SNFSAPLSFR 8 1.9E-03 3.1E-02 2.3E-02 4.1E-01 28 62, 40, 62, 40,	36
AT1G44800 nodulin MtN21 7377 34568 SQELPITNVVK 1 4.4E-06 2.6E-02 6.5E-04 3.7E-01 28 AT2G46920 POL 7848 11608 SNFSAPLSFR 8 1.9E-03 3.1E-02 2.3E-02 4.1E-01 28 62, 40, 62, 40, 28	40
AT2G46920 POL 7848 11608 SNFSAPLSFR 8 1.9E-03 3.1E-02 2.3E-02 4.1E-01 28 62, 40, 62, 40, 62, 40, 62, 40, 62, 40, 62, 40, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64	52
62, 40,	40
	40
	24
AT3G60240 EIF4G 1585 1579 QVLQGPSATVNSPR 12 3.8E-03 4.3E-02 4.9E-01 28	48
AT1G70770 DUF2359 514 169,800 MTAIDSDDDGVVR 6 7.4E-03 4.3E-02 4.0E-02 4.9E-01 24	48
ATIG/07/0 D012559 514 109,000 MTADSDDDGVVR 0 7.42-03 4.5E-02 4	48
A15040890 CLC-A /49 400 ILSSIFLALVOAK 5 1.5E-04 4.5E-02 0.2E-05 4.9E-01 26 Chaperone DnaJ-domain	40
AT4G12770 superfam. pr. 238, 238 318 FENVFSSISSSPTK 11 6.0E-03 4.7E-02 3.6E-02 5.2E-01 28	48

Table 2 continued

B) Phosphopeptides, CCA1-OX

Accession	Description	Peptide ID dataset I			Phospho residue(s)	1	4	1		dataset I	Peak dataset II (h)
	Dormancy/auxin associated fam. pr.	1348, 43281	2709	TVAAVAGSPGTPTTPGSAR	11	0.023	0.0069	1	1	12	24
AT1G51805	Leucine-rich repeat protein kinase fam. pr.	2617	2514, 1136	VEGTLPSYMQASDGRSPR	16	0.019	0.021	1	1	24	24

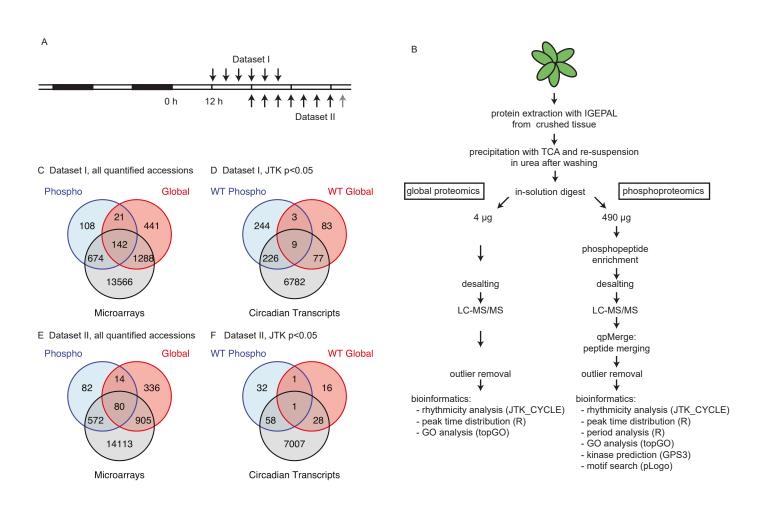
C) Phosphopeptides, CCA1-OX, allowing periods of 12 to 20h

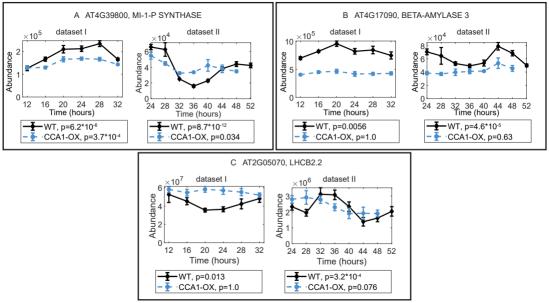
Accession		Peptide ID dataset I	1		1		p-value dataset II		q-value dataset II		Peak dataset II (h)
AT1G77760	NIA1	4776	1968	SVSSPFMNTASK	3	0.013	0.00067	0.42	0.25	24	48
AT2G45820	Remorin fam. pr.	1234, 5319	698, 2343	ALAVVEKPIEEHTPK	13	0.019	0.0045	0.42	0.68	24	24

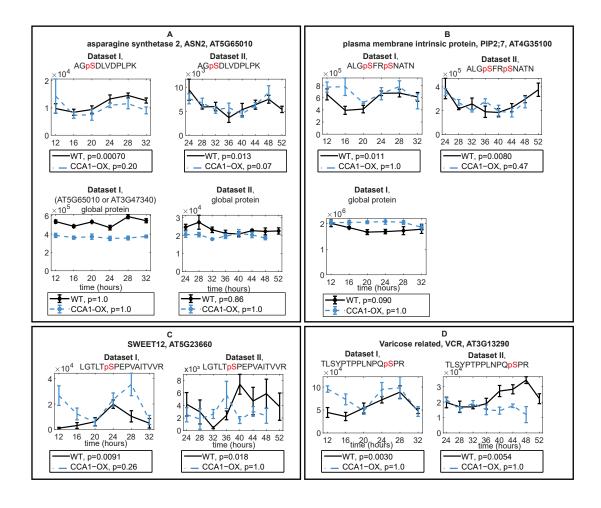
D) Global proteomics, WT

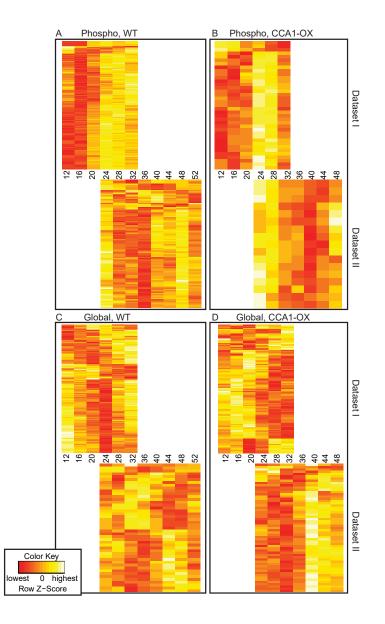
Accession	Description	p-value dataset I	p-value dataset II	q-value dataset I	q-value dataset II	Peak dataset I (h)	Peak dataset II (h)
AT4G39800	MI-1-P SYNTHASE	6.22E-06	8.7E-12	0.00588435	5.78E-09	28	24
AT4G17090	BAM3	0.005602	4.6E-05	0.225379284	0.015428	20	44
AT5G13630	GUN5	0.030091	0.0001	0.427829153	0.027626	32	52
AT1G78570	RHM1	0.00045	0.00059	0.070946877	0.087173	28	48
AT1G15820	LHCB6	0.043966	0.02293	0.516391687	0.926734	12	36
AT4G27440	PORB	0.000255	0.0297	0.06492429	1	12	36

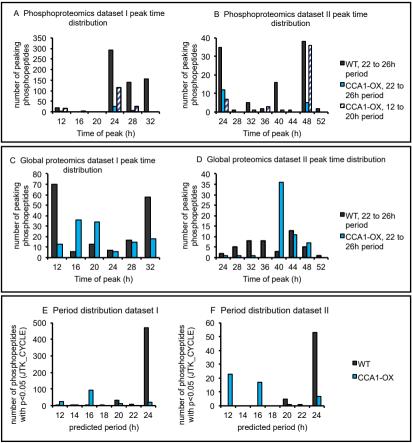
E) Global proteomics, CCA1-OX

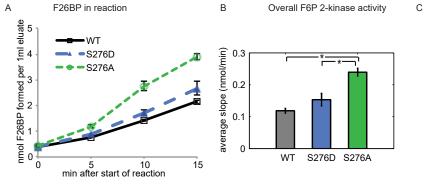

Accession	Description	p-value dataset I	p-value dataset II	q-value dataset I	q-value dataset II	Peak dataset I (h)	Peak dataset II (h)
AT3G47070	unknown	0.034204	0.01201	0.634454201	0.909654	20	40
	O-acyltransferase						
AT3G49190	fam. pr.	0.001556	0.02209	0.24526271	0.916547	32	44
AT4G39800	MI-1-P SYNTHASE	0.000373	0.03406	0.175519785	0.98762	24	24

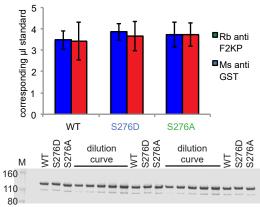

Table 3: Summary of GPS3 kinase prediction followed by Fisher's Exact test. Fisher's exact test p-values for enrichment of each kinase group are shown. a) dataset I, b) dataset II. Foreground groups were chosen with JTK_CYCLE p-values <0.05 and peaks or troughs at indicated ZTs.


		WT, 22	to 26h perio	d	CCA1-C	OX, 22 to 2	26h period	CCA1-OX, 12 to 20h period
	pea	peak		11	peak	trough	11 < 0.05	peak
time point	24h	28h	12h	all p<0.05	24h	12h	all p<0.05	24h
AGC					0.043			
AGC/NDR		0.0072						
Atypical/TAF1	6.50E-06		2.50E-06					
CAMK		0.0012		0.0040		0.00063	0.0090	0.024
CAMK/DAPK								0.029
CMGC/CK2	0.0012		4.70E-06					
CMGC/MAPK				0.027				
Other / ULK			0.040			0.0030	0.0066	
Other/WNK								0.044


B) dataset II


	WT, 22 to 26h period			CCA1-OX per		CCA1-OX, 12 to 20h period
	pea	ık	11	peak	all	peak
time point	24h	48h	all p<0.05	24h	p<0.05	24h
AGC	1.4E-06					
AGC/PDK1	0.0049					
САМК	0.00024		0.0049			0.048
CAMK-L						0.0035
CAMK-Unique	0.057					
CMGC	0.0061			0.040		
CMGC/GSK	0.0078					
CMGC/MAPK		0.040				
Other/PEK				0.028	0.047	
STE/STE7	0.037					





Relative concentration of purified GST-F2KP protein

