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ABSTRACT 19 

Patient-derived expression profiles of cancers can provide insight into transcriptional changes 20 

that underlie reprogrammed metabolism in cancer. These profiles represent the average 21 

expression pattern of all heterogeneous tumor and non-tumor cells present in biopsies of tumor 22 

lesions. Therefore, subtle transcriptional footprints of metabolic processes can be concealed by 23 

other biological processes and experimental artifacts. We, therefore, performed consensus 24 

Independent Component Analyses (c-ICA) with 34,494 bulk expression profiles of patient-derived 25 

tumor biopsies, non-cancer tissues, and cell lines. c-ICA enabled us to create a transcriptional 26 

metabolic landscape in which many robust metabolic transcriptional components and their 27 

activation score in individual samples were defined. Here we demonstrate how this landscape can 28 

be used to explore associations between the metabolic transcriptome and drug sensitivities, 29 

patient outcomes, and the composition of the immune tumor microenvironment. The metabolic 30 

landscape can be explored at http://www.themetaboliclandscapeofcancer.com.  31 
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INTRODUCTION 32 

Reprogrammed energy metabolism is a hallmark of cancer (Hanahan and Weinberg, 2011). 33 

Metabolic reprogramming supports the survival, proliferation, and maintenance of cancer cells 34 

by ensuring sufficient biosynthetic capacity, redox potential, and energy (Pavlova and Thompson, 35 

2016; Vazquez et al., 2016). Additionally, metabolic reprogramming enables tumor cells to adapt 36 

to challenging microenvironmental conditions, such as hypoxia and low nutrient availability, and 37 

become resistant to cancer treatment (Huang et al., 2014; Viale and Draetta, 2016). Moreover, 38 

metabolic reprogramming of cancer cells influences the composition and function of immune 39 

cells present in the tumor microenvironment (TME), affecting the anti-cancer immune response 40 

to immunotherapy (Le Bourgeois et al., 2018; Quail and Joyce, 2013). 41 

Metabolic dependencies have been successfully exploited to treat cancer, as illustrated by 42 

the efficacy of antifolate drugs such as methotrexate (Walling, 2006). More recent knowledge 43 

about cancer cell metabolism has resulted in novel therapeutic targets, such as glutaminase and 44 

mutant forms of IDH1/2, currently being evaluated in pre-clinical models and phase I/II clinical 45 

trials (Shah and Chen, 2020; Tang et al., 2021). However, adverse effects or lack of effectiveness 46 

still hamper the clinical development of most metabolic therapies. A potential reason is that many 47 

metabolic targeting drugs are developed based on insights derived from model systems of human 48 

cancer, which do not fully reflect the complexities of cancer in humans (Ghaffari et al., 2015). In 49 

particular, cell line models lack the immune cells present in the TME (Hynds et al., 2018; Jiang et 50 

al., 2016; Vincent and Postovit, 2017) and often require specific metabolic conditions to grow 51 

(Ben-David et al., 2018; Hynds et al., 2018). 52 
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Evidence is emerging that transcriptional changes play an important role in the metabolic 53 

plasticity of cancer cells: gene expression can influence metabolite levels, and metabolic changes 54 

can result in altered gene expression (Desvergne et al., 2006; Martin-Martin et al., 2018; Peng et 55 

al., 2018). The availability of large numbers of gene expression profiles — from a broad spectrum 56 

of cancer types — in the public domain provides a unique opportunity to study metabolic 57 

reprogramming in patient-derived cancer tissue. 58 

Almost without exception, these gene expression profiles were generated from complex 59 

biopsies that contain tumor cells and cells present in the TME (e.g., immune cells). Accordingly, 60 

these profiles represent the average gene expression pattern of all cells present in the biopsy. 61 

Therefore, detecting metabolic processes relevant to cancer biology in expression profiles from 62 

complex biopsies can be challenging, especially when their transcriptional footprints (TFs) are 63 

subtle and concealed by more pronounced TFs from other biological processes or experimental 64 

artifacts. 65 

In the present study, we used consensus Independent Component Analyses (c-ICA), a 66 

statistical method capable of separating the average gene expression profiles generated from 67 

complex biopsies into additive transcriptional components (TCs). This enabled us to detect both 68 

the pronounced and more subtle transcriptional footprints of metabolic processes. We 69 

performed c-ICA with 32,409 gene expression profiles obtained from the Gene Expression 70 

Omnibus (GEO) and The Cancer Genome Atlas (TCGA), as well as 2,085 gene expression profiles 71 

obtained from the Cancer Cell Line Encyclopedia (CCLE) and the Genomics of Drug Sensitivity in 72 

Cancer portal (GDSC) (Barret et al., 2013; Barretina et al., 2012; Yang et al., 2013). Comprehensive 73 

characterization of the TCs with gene set enrichment analysis (GSEA) identified TCs associated 74 
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with metabolic processes, i.e., metabolic TCs (mTCs). This enabled us to create a metabolic 75 

landscape showing the activity of these mTCs in all 34,494 samples. We demonstrate how this 76 

landscape (www.themetaboliclandscapeofcancer.com) can be used to explore associations 77 

between the metabolic transcriptome and drug sensitivities, patient outcomes, and the 78 

composition of immune cells in the TME. 79 

 80 

RESULTS 81 

A subset of transcriptional components is associated with metabolic processes 82 

Previously, we collected gene expression data from four databases: the Gene Expression Omnibus 83 

(GEO dataset, n = 21,592), The Cancer Genome Atlas (TCGA dataset, n = 10,817), the Cancer Cell 84 

Line Encyclopedia (CCLE dataset, n = 1,067), and the Genomics of Drug Sensitivity in Cancer (GDSC 85 

dataset, n = 1,018) (Figure 1A), totaling 34,494 samples (Bhattacharya et al., 2020). Overall, 86 

28,200 expression profiles originated from patient-derived complex tissue cancer biopsies, 4,209 87 

from complex tissue biopsies of non-cancerous tissue, and 2,085 from cell lines. The samples in 88 

these four databases encompass 89 cancer tissue types and subtypes and 19 non-cancerous 89 

tissue types. For GEO and CCLE data sets, the expression profiles were generated with Affymetrix 90 

HG-U133 Plus 2.0. Expression profiles within the GDSC dataset were generated with Affymetrix 91 

Human Genome U219, and TCGA profiles were generated with RNA sequencing. 92 

Gene expression profiling measures the net expression level of individual genes, thus 93 

reflecting the integrated activity of underlying regulatory factors, including experimental, genetic, 94 

and non-genetic factors. To gain insight into the number and nature of these regulatory factors 95 

and their effects on gene expression levels, i.e., their transcriptional footprints, we previously 96 
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performed consensus-independent component analysis (c-ICA) on each of the abovementioned 97 

four datasets separately (Bhattacharya et al., 2020), resulting in four sets of transcriptional 98 

components (TCs). In every TC, each gene has a specific weight. This weight describes how 99 

strongly and in which direction the underlying transcriptional regulatory factor influences the 100 

expression level of that gene. c-ICA also provides a 'mixing-matrix' per dataset, in which each 101 

column corresponds to a TC and each row corresponds to a sample. Values in the mixing matrix 102 

are interpreted as measurements of the activity of the TCs in an individual sample; we refer to 103 

these as 'activity scores'. Ultimately, the analysis yielded 855, 1383, 466, and 467 TCs for GEO, 104 

TCGA, CCLE, and GDSC datasets, respectively (Figure 1A). 105 

Gene set enrichment analysis (GSEA) with 608 gene sets that describe metabolic processes 106 

was performed to identify TCs enriched for metabolic processes. The gene sets were selected 107 

from the gene set collections Biocarta (n = 7), the Kyoto Encyclopedia of Genes and Genomes 108 

(KEGG, n = 64), the Gene Ontology Consortium (GO, n = 508), and Reactome (n = 29) within the 109 

Molecular Signatures DataBase (MSigDB, v6.1; for the systematic selection strategy see 110 

Methods). We performed consensus clustering on the enrichment scores of the 608 metabolic 111 

gene sets to identify potential biological redundancy in the metabolic gene set definitions (Figure 112 

S1). This resulted in 50 clusters of gene sets, which can be ascribed to different metabolic themes 113 

(Table S1). Based on these 50 enrichment clusters, 132 (GEO), 151 (TCGA), 136 (CCLE), and 136 114 

(GDSC) mTCs were defined (Figure 1A and B); see Methods for the systematic selection strategy). 115 

These mTCs represent the metabolic transcriptional footprints present in our broad set of 116 

samples, i.e., patient-derived samples, cancer cell line samples, and non-cancer samples. 117 

However, some of the identified mTCs may capture the transcriptional footprints of experimental 118 
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factors. Therefore, we investigated how much of the variance in activity scores of each mTC could 119 

be explained by experimental batches. For GEO mTCs, experimental batches were determined by 120 

the provided GSE identifiers (i.e., experiment series identifiers). For TCGA mTCs, experimental 121 

batches were determined by the tissue source site of samples (e.g., 2H, Erasmus MC, esophageal 122 

carcinoma). We observed that 12/132 GEO mTCs showed a potential putative batch effect with 123 

more than 10% explained variance (Figure S2A). However, six of the 12 GEO mTCs with a putative 124 

batch effect also explained more than 10% of the variance in gene expression of samples 125 

belonging to a single tissue subtype (Figure S2A). One of the 151 TCGA mTCs showed a putative 126 

batch effect with 20.5% explained variance (Figure S2B). This mTC, TCGA mTC 43, also showed 127 

tissue-specificity for thymoma, a tissue type that is not present in the GEO dataset. These 128 

observations might indicate that the mTCs showing a putative batch effect in fact describe tissue-129 

specific biology of tissues that are only present in a single experiment in our dataset. 130 

 131 

Metabolic TCs are robust across different datasets and platforms 132 

Pair-wise comparison of mTCs between datasets, based on gene weights, showed that 91-99% of 133 

mTCs per dataset were highly correlated (|rs| ≥ 0.5, P-value < 0.05 as a threshold) with at least 134 

one mTC identified in another dataset (Figure 1C, D and Figure S3A-G). This indicates that most 135 

of the mTCs were cross-platform and cross-dataset robust. 136 

Given the selected correlation threshold (|rs| ≥ 0.5, P-value < 0.05), 72 mTCs could be 137 

identified with a highly similar gene weight pattern in all four datasets (Figure 1D). Thus, these 138 

mTCs capture a transcriptional footprint that is very similar in both patient-derived complex 139 

biopsies and cell lines. As cell lines lack a TME, these 72 mTCs were considered to capture 140 
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metabolic processes that reflect tumor cell characteristics. Six GEO mTCs were identified that 141 

were highly correlated with TCGA mTCs, but not highly correlated with any CCLE or GDSC mTC 142 

(Figure 1D). These mTCs, therefore, might capture transcriptional footprints that are specific for 143 

complex biopsies obtained from patient-derived cancer tissue and may originate from the TME 144 

or capture a transcriptional footprint from tissue only present in the GEO and TCGA datasets. One 145 

pair of mTCs was identified with a gene weight pattern that was highly similar in CCLE and GDSC 146 

datasets only, capturing a metabolic transcriptional footprint that could only be found in cell line 147 

models (Figure 1D). 148 

 149 

Metabolic TCs identify new genes potentially involved in metabolic processes 150 

Among the 'top' genes in every mTC —defined as the genes with an absolute weight > 3 in an mTC 151 

— many genes were member of the 608 metabolic gene sets (Figure 2A and 2B, Figure S4). 152 

However, even for the mTCs with the absolute highest gene set enrichment scores for a metabolic 153 

gene set, at least 20% of top genes were not members of any of the metabolic gene sets. Because 154 

these genes were nevertheless part of an mTC, they may be potentially involved in the metabolic 155 

processes that showed enrichment. 156 

For example, two strongly correlated mTCs, GEO mTC 54 and TCGA mTC 127 (|rs|= 0.77), 157 

both showed enrichment for glycolysis and the metabolic process of ADP (Figure 2C and 2D, Table 158 

S1). GEO mTC 54 contained 262 top genes, of which 155 (59.1%) were also among the top genes 159 

in TCGA mTC 127. Both mTCs contained multiple top genes that are known targets of the HIF-1 160 

complex, and genes previously found to be part of a hypoxic signature (Benita et al., 2009; Ye et 161 

al., 2018). Several top genes of both GEO mTC 54 and TCGA mTC 127 (e.g., FAM162A, C4orf3, 162 
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C4orf47, and ANKRD37) are currently not a member of any of the 608 metabolic gene sets. 163 

However, these data suggest that these four genes are involved in glycolysis and are possibly 164 

hypoxia related. Indeed, several studies have indicated that at least FAM162A and ANKRD37 are 165 

regulated by the transcription factor HIF-1α (Copple et al., 2012; Sørensen et al., 2015). 166 

As a second example, we investigated two highly correlated mTCs, GEO mTC 11 and TCGA 167 

mTC 141 (rs = 0.68), which showed enrichment for mitochondrial metabolic processes such as 168 

oxidative phosphorylation and the TCA cycle (Figure 2E and 2F, Table S1). GEO mTC 11 contained 169 

427 top genes, of which 270 (63.2%) were among the top genes in TCGA mTC 141. In these two 170 

mTCs, C6orf136 and IMMT are top genes currently not assigned to any of the 608 metabolic gene 171 

sets. C6orf136 and IMMT were previously identified in functional mitochondria' proteome 172 

profiles (Lefort et al., 2009). These results suggest that mTCs could assign metabolic functions to 173 

genes currently not members of known gene sets describing metabolic processes. 174 

 175 

Clustering sample activity scores of mTCs reveal multiple metabolic subtypes 176 

To investigate the heterogeneity of the metabolic transcriptome in a broad range of cancer 177 

subtypes, we hierarchically clustered the mixing matrix provided by consensus-ICA that contains 178 

the activity score of mTCs in every sample (Figure 3A, 3B and S5A, S5B). We selected the cutoff 179 

heights of the resulting dendrograms so that every cluster – referred to as metabolic subtype – 180 

contained at least 50 samples (Figure S5C and S5D). This clustering analysis divided the 21,592 181 

GEO samples into 67 metabolic subtypes with a median of 276 samples per subtype (range 54-182 

1,252) and the 10,817 TCGA samples into 58 metabolic subtypes with a median of 167 samples 183 
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per subtype (range 52-536). For an overview of the metabolic subtypes and their sample 184 

composition, see Figure S6, S7, and Table S2. Two types of patterns emerged. 185 

The first pattern consisted of tumor types with samples that belong to one dominant 186 

metabolic subtype. For example, 102/133 (76.7%) of thyroid cancer samples in the GEO dataset 187 

fell into one metabolic subtype (subtype 27, Figure S6, Table S2). Similarly, 446/509 (87.6%) of 188 

thyroid cancer samples in the TCGA dataset fell into metabolic subtype 43 (Figure S7, Table S2). 189 

In line with the biology of thyroid tissue, both GEO metabolic subtype 27 and TCGA metabolic 190 

subtype 43 were characterized by high activity scores of mTCs enriched for thyroid hormone 191 

metabolism (GEO mTC 64 and TCGA mTC 87; Table S1). 192 

The second pattern consisted of several tumor types that were not characterized by a few 193 

dominant metabolic subtypes. Instead, their samples were divided across multiple metabolic 194 

subtypes. For example, the 3,512 breast cancer samples in the GEO dataset were divided across 195 

33 metabolic subtypes (Figure 3C). These metabolic subtypes did not follow the breast cancer 196 

classification based on ER and HER2 receptor status (Figure 3C and Table S2). In line with this 197 

observation in the GEO dataset, the 1,100 breast cancer samples in the TCGA dataset were also 198 

scattered across 29 metabolic subtypes. 199 

Several metabolic subtypes likewise contained samples from multiple tumor types. For 200 

example, GEO metabolic subtype 22 contained samples from 25 tumor types, including 42 ovarian 201 

cancer samples (22% of all ovarian cancer), 33 synovial sarcoma samples (97% of all synovial 202 

sarcoma), and 15 Ewing's sarcoma samples (58% of all Ewing's sarcoma; Figure S6 and Table S2). 203 

GEO mTC 111 had the highest absolute median activity score in GEO metabolic subtype 22 (Table 204 
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S2). This mTC showed enrichment for the metabolism of nicotinamide adenine dinucleotide 205 

phosphate (NADP) and genes involved in the activation of an innate immune response (Table S1). 206 

These results show that the classification of samples based on metabolic subtype yields 207 

different patterns than current classification systems, such as histotype or receptor status in 208 

breast cancer. 209 

 210 

Metabolic subtypes are associated with distant relapse-free survival in breast cancer 211 

We then investigated if metabolic subtypes could have clinical relevance. We had previously 212 

collected distant relapse-free survival (DRFS) data for 1,207 breast cancer samples (Bense et al., 213 

2017). As mentioned earlier, breast cancer samples in the GEO dataset were divided across 33 of 214 

the 67 metabolic subtypes. Of these 33 subtypes, eight contained > 50 breast cancer samples with 215 

data available for DRFS: subtypes 15, 16, 20, 31, 32, 33, 34, and 35. We found that patients from 216 

breast cancer samples assigned to metabolic subtypes 16 and 33 showed the best and worst 217 

DRFS, respectively (P-value = 1.08∙10-23, Log-Rank test; Figure 3D). Distributions of standard 218 

prognostic factors within these eight metabolic subtypes are presented in Table S3. These results 219 

show that metabolic subtypes are associated with disease outcomes in breast cancer. 220 

 221 

The activity of mTCs is associated with drug sensitivity 222 

The CCLE and GDSC databases contain the sensitivities of cell lines to a large panel of drugs 223 

expressed as IC50 values. With a threshold of |rs|>0.2, we observed associations between the 224 

activity scores of 61 CCLE mTCs, 90 GDSC mTCs, and the IC50 values of 238 drugs (Table S4). 225 
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For example, in the GDSC dataset, an increase in activity score of GDSC mTC 3 was 226 

associated with a decrease in IC50 value of (i.e., increased sensitivity to) nutlin-3a (|rs|= 0.42; 227 

Figure 4A and 4B). Nutlin-3a targets the p53 pathway through inhibition of MDM2. In line with 228 

this, GDSC mTC 3 showed strong enrichment for genes involved in the p53 pathway, with MDM2 229 

ranked as the second gene (Table S1). GDSC mTC 3 was strongly correlated with CCLE mTC 4 (|rs|= 230 

0.84), GEO mTC 57 (|rs|= 0.79), and TCGA mTC 110 (|rs|= 0.74) (Figure 4D), suggesting that this 231 

mTC was captured in cell line datasets as well as in the two patient-derived datasets. Indeed, an 232 

increase in activity score of CCLE mTC 4 was associated with a decrease in IC50 value of nutlin-3a 233 

as well (|rs|= 0.25; Figure 4E). Cell lines with wildtype TP53 had a higher activity score of GDSC 234 

mTC 3 (Figure 4C). Also, cell lines with wildtype TP53 had a higher activity score of CCLE mTC 4 235 

(Figure 4F). 236 

In another example, the activity score of GDSC mTC 18 was found to be associated with the 237 

IC50 values of 142 drugs (|rs| range 0.20 – 0.44; Figure 4G). An increase in activity score of GDSC 238 

mTC 18 in a sample was associated with a higher IC50 value (i.e., increased resistance) for 135 of 239 

these drugs, including the widely used DNA synthesis-inhibiting antimetabolites 5-fluorouracil 240 

(|rs| = 0.41) and methotrexate (|rs| = 0.38). GDSC mTC 18 was strongly correlated with CCLE mTC 241 

28 (|rs|= 0.84), GEO mTC 35 (|rs|= 0.59), and TCGA mTC 58 (|rs|= 0.55), indicating that this mTC 242 

is also captured in both cell line datasets and the two patient-derived datasets. In line with this,  243 

CCLE mTC 28 was associated with a higher IC50 value (i.e., increased resistance) for 7 drugs  244 

including topoisomerase inhibitors topotecan (|rs| = 0.35) and irinotecan (|rs| = 0.34) (Figure 4H). 245 

All four of the highly correlated mTCs were enriched for genes involved in glutathione 246 

metabolism, cellular ketones and xenobiotics, and drug detoxification (Table S1). Specifically, 247 
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genes belonging to the aldo-keto reductase family 1 (AKR1) were among the top genes in these 248 

mTCs. Previous studies have reported a role for the glutathione system in resistance to irinotecan 249 

and 5-fluorouracil (Goto et al., 2002), and specifically the AKR1 family in resistance to e.g. 250 

methotrexate and irinotecan (Heibein et al., 2012; Matsunaga et al., 2020; Selga et al., 2008). In 251 

contrast, we observed that an increased activity score of GDSC mTC 18 was associated with a 252 

decrease in IC50 value (i.e., increased sensitivity) for only seven drugs (|rs| range 0.20-0.41; Figure 253 

4G). The drug with the highest negative correlation was tanespimycin (17-AAG), an Hsp90 254 

inhibitor (|rs| = 0.41). An increased activity score of CCLE mTC 28 was associated with decrease 255 

in IC50 value for tanespimycin as well (|rs| = 0.26; Figure 4H). A direct link between the functions 256 

of glutathione and Hsp90 in oxidative stress has been suggested, as well as a relationship between 257 

tanespimycin sensitivity and NQO1 expression, a gene coding for an enzyme reducing quinones 258 

to hydroquinones that is involved in detoxification pathways (Gaspar et al., 2009; Kim et al., 259 

2015). In line with these findings, we found that the NQO1 gene is present near the top of GDSC 260 

mTC 18, CCLE mTC 28, GEO mTC 35, and TCGA mTC 58. 261 

As a final example, increased activity of GDSC mTC 108 was associated with a lower IC50 262 

value (i.e., increased sensitivity) to the MEK inhibitor trametinib (|rs| = 0.48) and a higher IC50 263 

value (i.e., increased resistance) to the histone deacetylase inhibitor vorinostat (|rs| = 0.46; Figure 264 

4I and Table S4). GDSC mTC 108 was correlated with CCLE mTC 97 (|rs|= 0.32). Consistent with 265 

the observation for GDSC mTC 108, we found that increased activity of CCLE mTC 97 was 266 

associated with a lower IC50 value (i.e., increased sensitivity) to the MEK inhibitor mirdametinib 267 

(|rs| = 0.24) and a higher IC50 value (i.e., increased resistance) to the histone deacetylase inhibitor 268 

panobinostat (|rs| = 0.43; Figure 4J and Table S4). This contrasting sensitivity for MEK and histone 269 
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deacetylase inhibition is in line with data from a study that used BRAF-mutated melanoma cell 270 

lines. The authors showed that cell lines with acquired resistance to MEK inhibitors subsequently 271 

became sensitive to treatment with the histone deacetylase inhibitor vorinostat (Wang et al., 272 

2018). They concluded that the MEK-inhibitor resistance mechanism results from the activation 273 

(or reactivation) of MAPK cascades (Wagle et al., 2014). These findings are in line with our 274 

observation that both GDSC mTC 108 and CCLE mTC 97 were enriched for genes involved in the 275 

negative regulation of the MAPK cascade (Table S1). These examples demonstrate how mTCs can 276 

capture cross-dataset robust metabolic transcriptional footprints relevant for drug response. 277 

 278 

The activity of mTCs is associated with the immune composition of the tumor 279 

microenvironment 280 

We determined the association between the activity of mTCs and the immune composition of the 281 

TME (Table S5; see Methods for details). The immune composition for all samples in the GEO and 282 

TCGA dataset was determined by inferring fractions of 22 immune cell types using the CIBERSORT 283 

algorithm (Chen et al., 2018). We observed that the mTCs that were correlated with immune cell 284 

fractions could be divided into two groups. The first group included mTCs that were only identified 285 

in the patient-derived datasets. The second group contained mTCs that were identified in both 286 

the patient-derived and the cell line datasets. 287 

For example, the activity score of GEO mTC 123 was associated with estimated fractions of 288 

CD8+ T cells (|rs| = 0.40), γδ T cells (|rs| = 0.36), activated CD4 memory T cells (|rs| = 0.34), and 289 

regulatory T cells (|rs| = 0.32, Figure 5A). Belonging to the group of mTCs only identified in the 290 

patient-derived datasets, GEO mTC 123 was correlated highly with only TCGA mTC 34 (|rs|= 0.28). 291 
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In line with this, the activity score of TCGA mTC 34 was also associated with CD8+ T cell fractions 292 

(|rs| = 0.58, Figure 5B). Both GEO mTC 123 and TCGA mTC 34 showed enrichment for genes 293 

involved in immunological processes such as leukocyte activation and cytokine metabolism and 294 

metabolic processes such as phosphatidylinositol and phospholipid metabolism (Table S1). The 295 

fact that both GEO mTC 123 and TCGA mTC 34 have no high correlation to mTCs in the cell line 296 

datasets suggests that they indeed capture transcriptional activity from non-cancerous cells in 297 

the immune TME. 298 

GEO mTC 14 is illustrative of the second group of mTCs correlated with immune cell 299 

fractions and identified in both the patient-derived and the cell line datasets. The activity scores 300 

of GEO mTC 14 were correlated with the fractions of M1 macrophages (|rs|= 0.65) and M2 301 

macrophages (|rs|= 0.59; Figure 5C). GEO mTC 14 was correlated with TCGA mTC 70 (|rs|= 0.44) 302 

and with CCLE mTC 124 (|rs|= 0.47), and GDSC mTC 33 (|rs|= 0.33). All four mTCs were enriched 303 

for genes involved in the metabolism of extracellular macromolecules (Tables S1). Genes coding 304 

for several types of collagens were among the top-ranked in these mTCs. This is in line with 305 

previous reports indicating that macrophages can function as collagen-producing cells in the TME 306 

(Schnoor et al., 2008; Vaage and Harlos, 1991). GEO mTC 14 and TCGA mTC 70 showed a high 307 

activity score in subsets of breast cancers, lung cancers, and sarcomas (Figure S8A and S8B). A 308 

negative activity score of GEO mTC 14 and TCGA mTC 70 was observed in a subset of 309 

hematological cancers and hematological cancer cell lines in both GDSC and CCLE mTCs. Because 310 

these mTCs were present in both patient data sets and cell line datasets, this indicates that the 311 

captured metabolic processes reflect tumor cell characteristics, which are associated with the 312 

fraction of macrophages present in the immune TME. 313 
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By correlating inferred immune cell fractions of samples with the activity scores of mTCs in 314 

samples, the relationship between the metabolic transcriptome and the various components of 315 

the immune TME could be assessed. 316 

 317 

DISCUSSION 318 

In the present study, we used consensus-Independent Component Analysis (c-ICA) in combination 319 

with Gene Set Enrichment Analysis (GSEA) to identify a broad set of robust metabolic 320 

Transcriptional Components (mTCs). With these mTCs, the transcriptional metabolic landscape 321 

was defined in patient-derived cancer tissue, cancer cell lines, and non-cancer samples. We also 322 

showed how this metabolic landscape could be used to generate hypotheses by exploring 323 

associations between metabolic processes and drug sensitivities, patient outcomes, and the 324 

composition of the immune tumor microenvironment. 325 

We used the wealth of publicly available pan-cancer transcriptomic data to study human 326 

metabolism on a large scale. Previous work used either single-cell sequencing or bulk cell 327 

transcriptomic profiles to study metabolism in specific cancer types (Hakimi et al., 2016; Xiao et 328 

al., 2019), or pan-cancer, but based on a single platform (Cubuk et al., 2018; Rosario et al., 2018). 329 

Our present study differs from this previous work in two essential aspects. Firstly, we used c-ICA 330 

to segregate the average expression patterns of complex biopsies into statistically independent 331 

components (Biton et al., 2014; Kong et al., 2008). Previous studies investigated average gene 332 

expression profiles of complex biopsies and can therefore only distinguish the gene expression 333 

signature and regulation of more pronounced metabolic processes. With c-ICA it is possible to 334 

identify statistically independent regulatory factors and their transcriptional footprints and 335 
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distinguish both pronounced from more subtle metabolic processes. This enabled us to determine 336 

the association of both pronounced and subtle metabolic processes with, e.g., patient outcome 337 

and the composition of the TME in a complex biopsy. Secondly, the present study is the most 338 

extensive transcriptional analysis of metabolism and the first that integrated patient-derived data 339 

from GEO and TCGA with cell line data from CCLE and GDSC. The samples in these four datasets 340 

were obtained from a multitude of independently constructed, publicly available cohorts, and the 341 

expression profiles were generated using different technologies (microarray or RNA-sequencing). 342 

This integrated dataset enabled us to demonstrate that most of the identified mTCs were robust 343 

and independent from dataset-specific and platform-specific characteristics. The observed 344 

overlap, or lack of overlap, between patient-derived and cell line-derived mTCs can help 345 

researchers understand how metabolic genes and pathways identified in cell lines can be 346 

translated to a patient tissue context and vice versa. 347 

Furthermore, we hypothesize that metabolic processes identified only in patient-derived 348 

samples and not in cell line samples are more likely to originate from cells in the tumor 349 

microenvironment. These microenvironment-specific metabolic processes will not be captured 350 

by mTCs in cell line datasets. This is because bulk expression profiles of cancer cell line samples 351 

do not harbor transcriptional footprints associated with non-cancerous cells. 352 

The metabolic landscape enabled us to classify samples based on the transcriptional activity 353 

of metabolic processes, resulting in metabolic subtypes. However, this metabolic classification 354 

was often not in full alignment with current classification systems based on aspects such as 355 

histotype. We demonstrated that metabolic subtypes were associated with disease outcomes for 356 

breast cancer, emphasizing the relevance of metabolic pathway-based classification in cancer. 357 
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The heterogeneity (metabolic and otherwise) within and between cancer types is well recognized, 358 

and alternative subtyping based on metabolite profiling and the metabolic transcriptome have 359 

been proposed before (Reznik et al., 2018; Rosario et al., 2018; Tang et al., 2014). More 360 

specifically, clinically significant metabolism-based classifications have been proposed in breast 361 

cancer (Cappelletti et al., 2017; Serrano-Carbajal et al., 2020; Wang et al., 2019). The most active 362 

mTCs in a metabolic subtype relevant to disease outcome could thus be used to generate new 363 

hypotheses for treatment targets. Additionally, the association between the activity of mTCs and 364 

drug sensitivity could help to design these future therapeutic strategies. 365 

Metabolic heterogeneity and plasticity are not limited to cancer cells but are also applicable 366 

to the immune cells present in the tumor micro-environment. Immune cells undergo metabolic 367 

changes when activated, and their metabolic status can overlap with the metabolic state of cancer 368 

cells (Andrejeva and Rathmell, 2017). For example, the Warburg effect is classically seen as an 369 

example of a metabolic transformation in cancer cells. However, it is also observed in activated T 370 

cells (Bantug et al., 2018; Patel and Powell, 2017; Wang and Green, 2012). In the context of 371 

metabolism, this complex interplay between cancer cells and immune cells present in the micro-372 

environment gives a new dimension to the use of drugs that target metabolic processes 373 

(O'Sullivan et al., 2019; Patel et al., 2019). For instance, inhibiting glutamine metabolism has been 374 

shown to inhibit tumor growth and increase the sensitivity of triple-negative breast cancers to 375 

immune checkpoint blockade (Oh et al., 2020), and reducing oxidative stress has been shown to 376 

prevent the generation of tumor-associated macrophages (Zhang et al., 2013). Furthermore, 377 

modulating metabolism in T cells from glycolytic to an OXPHOS-weighted profile has been shown 378 

to improve CAR T cell immunotherapy (Fraietta et al., 2018; O'Sullivan and Pearce, 2015; Sukumar 379 
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et al., 2017). Our transcriptional metabolic landscape can contribute to knowledge on 380 

immunometabolism and, combined with the association of mTCs with drug sensitivity, also 381 

contribute to the formulation of new hypotheses on how to metabolically engage the tumor and 382 

its immune microenvironment, thus improving the response to immunotherapy. 383 

Further research to gain an even more comprehensive understanding of metabolism in 384 

patient-derived cancer samples should ideally integrate genomics, transcriptomics, proteomics, 385 

and metabolomics to capture the complexity of metabolic processes within cancer cells (Buescher 386 

and Driggers, 2016). Recent initiatives are the Recon1, Edinburgh Human Metabolic Network 387 

(EHMN), and Human1 projects (Brunk et al., 2018; Ma et al., 2007; Robinson et al., 2020). 388 

However, challenges for these initiatives lie in the limited set of samples for which these high-389 

dimensional multi-omics features are available and the use of predominantly cell line samples. 390 

Paired datasets on a large scale are needed to unleash the full potential of such an integrated 391 

approach. 392 

To facilitate the use of our transcriptional metabolic landscape, we have provided access 393 

to all data via a web portal (www.themetaboliclandscapeofcancer.com). In this portal, users can 394 

explore genes, metabolic processes, and tissue types of interest. We invite researchers and 395 

clinicians to use this portal as a guide to the metabolic transcriptome in cancer or as a starting 396 

point for further research into cancer metabolism. 397 

 398 

MATERIALS AND METHODS 399 

Resource availability 400 
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Further information and requests for resources should be directed to the Lead Contact, Rudolf 401 

S.N. Fehrmann (r.s.n.fehrmann@umcg.nl). 402 

 403 

Data and code availability 404 

Data can be explored at http://themetaboliclandscapeofcancer.com. Code is available at 405 

github.com/MetabolicLandscape/ 406 

 407 

Data acquisition 408 

A detailed description of the data acquisition of the four datasets has been described previously 409 

(Bhattacharya et al., 2020). In short, the GEO dataset contained microarray expression data 410 

generated with Affymetrix HG-U133 Plus 2.0 (accession number GPL570). A two-step search 411 

strategy was applied to select healthy or cancer tissue samples – automatic filtering on keywords 412 

followed by manual curation. Samples from cell lines, cultured human biopsies, and animal-413 

derived tissue were excluded. The TCGA dataset contained the preprocessed and normalized level 414 

3 RNA-seq (version 2) data for 34 cancer datasets available at the Broad GDAC Firehose portal 415 

(https://gdac.broadinstitute.org/). The profiles in the CCLE dataset were generated with 416 

Affymetrix HG-U133 Plus 2.0. The CCLE project conducted a detailed genetic characterization of 417 

a large panel of human cancer cell lines. Expression data within the CCLE project was generated 418 

with Affymetrix HG-U133 Plus 2.0. The GDSC dataset contained expression data generated with 419 

Affymetrix HG-U219. The GDSC project aims to identify molecular features of cancer that predict 420 

response to anti-cancer drugs. 421 

 422 
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Preprocessing, normalization, and quality control 423 

A more detailed description has been provided previously (Bhattacharya et al., 2020). In short, 424 

preprocessing and aggregation of raw expression data (CEL files) within the GEO dataset, CCLE 425 

dataset, and GDSC dataset was performed according to the robust multi-array average algorithm 426 

RMAExpress (version 1.1.0). Quality control was performed on the GEO dataset, CCLE dataset, 427 

and GDSC dataset separately with principal component analysis (PCA). Duplicate CEL files were 428 

removed by generating a message-digest algorithm 5 (MD5) hash for each CEL file. The expression 429 

levels for each probeset (in the GEO dataset, CCLE dataset, and GDSC dataset) or gene (in the 430 

TCGA dataset) were standardized to a mean of zero and variance of one to remove probeset-431 

specific or gene-specific variability in the datasets. 432 

 433 

Consensus independent component analysis 434 

We used consensus independent component analysis (c-ICA) to segregate the average gene 435 

expression patterns of complex biopsies into statistically independent transcriptomic 436 

components. The input gene expression dataset was preprocessed using whitening 437 

transformation, making all profiles uncorrelated and giving them a variance of one. Next, ICA was 438 

performed on the whitened dataset using the FastICA algorithm, resulting in the extraction of 439 

estimated sources (ESs) and a mixing matrix (MM). The number of principal components which 440 

captured 90% of the variance seen in the whitened dataset was chosen as the number of ESs to 441 

extract. Each ES contains all genes with a specific weight. This weight represents the direction and 442 

magnitude of the influence of an underlying transcriptional regulatory process on that gene 443 

expression level. The MM contains the coefficients of ESs in each sample, representing the activity 444 
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of an ES in the corresponding sample. We performed 25 ICA runs with different random 445 

initialization weight factors to assess the robustness of the ESs and exclude ICA results derived 446 

from convergence at local solutions. ESs extracted from these runs were clustered together if the 447 

absolute value of the Pearson correlation between them was > 0.9. We calculated consensus 448 

transcriptional components (TCs) by taking the mean vector of weights in the co-clustering ESs. 449 

We considered a consensus TC robust when clustering included individual TCs from > 50% of the 450 

runs. The consensus TCs, in combination with the original input expression profiles, were used to 451 

obtain the consensus mixing matrix (MM) with the individual activity scores of the consensus TCs 452 

in each sample via matrix inversion. 453 

 454 

Identification of transcriptional components enriched for metabolic processes  455 

First, we selected gene sets defining metabolic processes from five gene set collections obtained 456 

from the Molecular Signatures Database (MSigDb version 6.1); BioCarta, Gene Ontology – 457 

Biological Process (GO-BP), Gene Ontology – Molecular Function (GO-MF), KEGG, and Reactome. 458 

From BioCarta, gene sets were selected manually based on their title. Selected gene sets 459 

described metabolic pathways or regulatory pathways regulated by metabolic processes. From 460 

GO-BP, all gene sets were selected that contained the motif 'METABOLIC_PROCESS' in the title. 461 

Also, gene sets that included the name of a metabolite or class of metabolites combined with the 462 

motif'_TRANSPORT' in the title were selected. 463 

Furthermore, gene sets not containing these title motifs but associated with (cancer) 464 

metabolism were manually selected based on metabolic pathway names. From GO-MF, all gene 465 

sets were selected that included the name of a metabolite or class of metabolites combined with 466 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 26, 2021. ; https://doi.org/10.1101/2020.10.01.321950doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.01.321950


23 
 

the motif '_ACTIVITY' or '_BINDING' in the title. From KEGG, all gene set containing the motif 467 

"METABOLISM" or "BIOSYNTHESIS" in the title in combination with the name of a known 468 

metabolic route was selected. Furthermore, gene sets concerning metabolism-related regulatory 469 

pathways were chosen based on their titles. From Reactome, all gene set that falls within the 470 

hierarchy of the "Metabolism"-pathways were selected (see reactome.org/PathwayBrowser). 471 

The metabolism of Abacavir was not included. A complete list of all metabolic gene sets selected 472 

is presented in Table S1. 473 

To identify transcriptional components enriched for metabolic processes, gene set 474 

enrichment analysis (GSEA) was performed using the selected metabolic gene sets. Enrichment 475 

of each metabolic gene set was tested according to the two-sample Welch's t-test for unequal 476 

variance between the metabolic set of genes under investigation versus the set of genes that was 477 

not under investigation. To compare gene sets of different sizes, we transformed Welch's t 478 

statistic to a Z-score. 479 

A biological process can be captured by multiple gene sets in several gene set collections. 480 

Therefore, it is possible that within the selection of 608 gene sets, multiple gene sets describe the 481 

same metabolic process. These will then show a similar pattern in gene set enrichment scores of 482 

transcriptional components. To reduce this redundancy, consensus clustering was performed 483 

gene set-wise on the GSEA data for the GEO, TCGA, CCLE, and GDSC datasets. Consensus 484 

clustering was performed using the ConsensusClusterPlus-package (v1.51.1) within R, using the 485 

default hierarchical clustering algorithm and Pearson correlation distance, a maximum amount of 486 

clusters (maxK) of 150, 2000 resamplings (reps), with 80% row and 80% column resampling 487 

(pFeature and pItem, respectively). The optimal number of clusters (k) was determined as the k 488 
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at which the relative change in area under the CDF curve was minimized (<0.01). This resulted in 489 

a k of 50 clusters (Figure S1). 490 

The 50 clusters of gene sets were subsequently used to select transcriptional components 491 

based on their enrichment for metabolic processes. Per gene set cluster, the three TCs with the 492 

highest absolute enrichment score for any gene set in that cluster were selected. In addition to 493 

this, the three TCs with the highest absolute mean enrichment score for all gene sets in that 494 

cluster were selected. The selected TCs were then referred to as metabolic Transcriptional 495 

Components (mTCs). In the end, four different sets of mTCs were identified (GEO mTCs, TCGA 496 

mTCs, CCLE mTCs, GDSC mTCs) 497 

 498 

Approximation of batch effects and tissue specificity of mTCs 499 

First, the explained variance of every component from the perspective of a sample (as a 500 

percentage) was estimated using the squares of the mixing matrix weights of a sample divided by 501 

the sum of the squares. This percentage explained variance matrix for samples was then 502 

summarized into a mean explained variance for studies by summarizing samples belonging to the 503 

same study (through the annotated GEO series accession number or TCGA tissue source site 504 

code). In the figures, only the highest explained variance available for any study is given. Similarly, 505 

tissue specificity was approximated by calculating the mean explained variance for tissue types 506 

by summarizing samples belonging to the same tissue subtype. 507 

 508 

Pair-wise gene-level correlations of mTCs between datasets 509 
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To correlate two mTCs of different datasets, the subset of genes with an absolute weight 510 

higher than 3 in two mTCs was selected. Then, the overlap between these two sets of top genes 511 

was determined. Using the gene weights of the overlapping genes in both mTCs, pair-wise 512 

correlations were calculated. Specifically, Spearman correlations were performed in R using the 513 

pspearman-package (v0.3-0) in R, with a t-distribution approximation to determine the P-value. 514 

As the number of genes with an absolute weight above 3 was different for every mTC, the size of 515 

the overlap in genes between two mTCs changed. The significance of the Spearman correlation 516 

found between two mTCs, therefore, was dependent on the number of overlapping genes. Hence, 517 

the significance of the found size of the overlap in genes between mTCs should be determined. 518 

To this end, for a pair of mTCs, two sets of random gene identifiers were selected from all possible 519 

gene identifiers. The amount of randomly selected genes per set corresponded to the number of 520 

genes with a weight >3 in both mTCs. Subsequently, the overlap in gene identifiers between the 521 

two random sets of gene identifiers was determined. By repeating this 10,000 times, the chance 522 

of finding a given overlap between two sets of genes could be determined.  523 

Ultimately, mTCs were said to be concordant when their correlation was > 0.5, with a P-524 

value < 0.05, given that there was a significant overlap in genes (P-value of overlap <0.05). 525 

 526 

Clustering of Metabolic Transcriptional Components, Genes and Samples 527 

For each of the four datasets, the mixing matrix (MM) containing activity scores was clustered 528 

both on samples and mTCs. To this end, hierarchical clustering was performed using ward-D2 as 529 

the method and 1-cor(data) as the distance function. Heatmaps were created using R's gplots 530 

package (v3.0.1). Based on the MM clustering for every dataset, metabolic subtypes were 531 
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defined. To determine the sizes of clusters of samples that would make up a metabolic subtype, 532 

the dendrograms resulting from hierarchical clustering of the samples were systematically cut at 533 

dissimilarity values ranging from 0.0 to 8.0 with increments of 0.2. For each of the four datasets 534 

GEO, TCGA, CCLE, and GDSC, the cutoff was chosen at the dendrogram height at which the 535 

smallest cluster reached a size of 50 samples (Figure S6). 536 

 537 

CIBERSORT 538 

Relative and absolute immune fractions for 22 immune cell types were estimated for all samples 539 

in GEO and TCGA datasets using the CIBERSORT algorithm running with default parameters, 1000 540 

permutations, and selecting 'absolute nosumto1' as output. This output was then associated with 541 

the activity of the mTCs through spearman correlation. 542 

 543 

Statistical Analyses 544 

Univariate OS on breast cancer samples from GEO and univariate DRFS analyses on melanoma 545 

samples from TCGA were performed using a cox regression model through survminer (v0.4.3) and 546 

survival (v2.43-3) packages in R. Confidence intervals were set at 0.95. Significance was tested 547 

through the Log Rank test. Scripts are available at github.com/MetabolicLandscape/.  Pearson 548 

correlations were performed in R using the cor.test()-function from the stats package (v.3.5.1). 549 

Spearman correlations and the corresponding exact P-values were calculated using the 550 

pspearman-package (v0.3-0) in R, with a t-distribution as an approximation. 551 

 552 
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Figure 1 – Identification of metabolic transcriptional components (mTCs). (A) Workflow for 740 

identification of mTCs. Consensus-Independent Component Analysis (c-ICA) applied to identify 741 

transcriptional components (TCs). Subsequent systematic selection of TCs enriched for metabolic 742 

processes resulted in in 132, 151, 136, and 136 mTCs for the GEO, TCGA, CCLE, and GDSC datasets, 743 

respectively. (B) Hierarchically clustered heatmaps showing the enrichment of the 608 metabolic 744 

gene sets of mTCs identified in GEO, TCGA, CCLE, and GDSC datasets. (C) Scatter plot showing 745 

absolute spearman correlation coefficients (x-axis), versus the percentage of overlapping top 746 

genes (genes with absolute weight >3) between GEO mTCs and TCGA mTCs (y-axis). Only 747 

significant pair-wise correlations (with P-values <0.05) are shown. Colored dots show correlations 748 

> 0.5, the size of the dots represent the P-value of these spearman correlations. (D) Venn diagram 749 

quantifying overlap of mTCs between each dataset based on their pair-wise correlations. Two 750 

mTCs are counted as shared between datasets, when they have a high absolute spearman 751 

correlation (|rs|>0.5). Three groups of (shared) mTCs, mentioned in the text, are designated.  752 
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Figure 2 - Metabolic TCs identify new genes potentially involved in metabolic processes. (A-B) 754 

Scatterplots showing the highest metabolic gene set enrichment score for every GEO (A) and 755 

TCGA (B) mTC (x-axis) versus the percentage of metabolically annotated genes among the top 756 

genes (genes with absolute weight >3) in those mTCs. Size of dots correspond to the absolute 757 

amount of metabolically annotated genes in the corresponding mTC. (C-D) Top genes in GEO mTC 758 

54 and TCGA mTC 127. Text colored white shows genes that are a member of at least one of the 759 

608 defined metabolic gene sets. Lines signify genes that are top genes in both GEO and TCGA 760 

mTCs. (E-F) Top genes in GEO mTC 11 and TCGA mTC 141.  761 
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Figure 3 – Clustering activity scores of mTCs reveal multiple metabolic subtypes 763 

(A) 21,592 GEO samples were hierarchically clustered based on mTC activity scores and divided 764 

into 67 metabolic subtypes. (B) 10,817 TCGA samples were hierarchically clustered based on mTC 765 

activity scores and divided into 58 metabolic subtypes. (C) Metabolic landscape of the subset of 766 

breast tissue samples in the GEO dataset. Subtypes with DFS data were selected for survival 767 

analysis are highlighted. Grey labels designate tissue types that are present in other datasets, but 768 

are not present in the given dataset. (D) Distant relapse-free survival of breast cancer patients in 769 

the GEO dataset. Patient-derived samples were stratified per metabolic subtype. Kaplan Meier 770 

curves are shown with a confidence interval of 0.95.  771 
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Figure 4 – Associations between mTCs and drug sensitivity for selected examples. (A) Spearman 773 

correlations between drug IC50 values and the activity of GDSC mTC 3 (B) Scatter plot showing 774 

the association between the (log-transformed) IC50 value of Nutlin-3a and activity of GDSC mTC 775 

3 in samples. (C) Box plot of activity of GDSC mTC 3 across cell lines, colored for their TP53 776 

mutation status. (D) Pair-wise correlations between GDSC mTC 3 and mTCs from GEO, TCGA and 777 

CCLE datasets. Every dot corresponds to an mTC with a correlation to GDSC mTC 3 ≥ 0.5. Dot sizes 778 

correspond to the P-value of the spearman correlation coefficient; the y-axis gives the percentage 779 

of overlapping top genes between the two mTCs involved in the correlation. (E) Spearman 780 

correlations between drug IC50 values and the activity of CCLE mTC 4 (F) Box plot of activity of 781 

CCLE mTC 4 across cell lines, colored for their TP53 mutation status. (G-J) Spearman correlations 782 

between drug IC50 values and the activity of GDSC mTC 18, CCLE mTC 28, GDSC mTC 108 and 783 

CCLE mTC 97.  784 
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Figure 5 – Associations between mTCs and the composition of the immune tumor 786 

microenvironment for selected examples. (A-B) Spearman correlations between CIBERSORT 787 

estimated immune cell fractions and the activity of GEO mTC 123 and TCGA mTC 34. (C-D) 788 

Spearman correlations between CIBERSORT estimated immune cell fractions and the activity of 789 

GEO mTC 14 and TCGA mTC 70.  790 
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SUPPLEMENTARY INFORMATION 791 

Contains supplementary Figures S1 – S8 and their legends. 792 

To accommodate the editorial process, and due to file constraints, Supplementary Tables S1 – S5 793 

are available as excel files but omitted from the generated composite pdf file. 794 
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Figure S1 – Related to Figure 1; 797 

(A) Consensus clustering gene set enrichment scores of all TCs in the GEO dataset. Consensus 798 

matrix for a k of 50 gene set clusters. (B) Consensus clustering gene set enrichment scores of all 799 

TCs in the GEO dataset. Relative change in area under the consensus CDF curve with increasing k. 800 
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Figure S2 – Related to Figure 1; 803 

Scatter plots showing the maximum batch effect and tissue specificity for GEO (A) and TCGA (B) 804 

mTCs. Size of the dots correspond to the highest gene set enrichment score of that mTC. The 805 

magnitude of the batch effect in an mTC is estimated by the maximum fraction of the sample 806 

variance in an experimental batch that is explained by that mTC. Similarly, the tissue specificity 807 

of an mTC is estimated by the maximum fraction of the sample variance in a tissue type that is 808 

explained by that mTC.   809 
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Figure S3 – Related to Figure 1; 811 

Scatter plot showing absolute spearman correlation coefficients (x-axis), versus the percentage 812 

of overlapping top genes (genes with absolute weight >3) between mTCs from different datasets 813 

(y-axis). Only significant pair-wise correlations (with P-value <0.05 and top gene overlap 814 

significance <0.05) are shown. Colored dots show absolute correlations > 0.5, the size of the dots 815 

represent the P-value of these spearman correlations. Scatter plots are shown for correlations 816 

between (A) GEO and TCGA mTCs, (B) GDSC and CCLE mTCs, (C) GEO and GDSC mTCs, (D) TCGA 817 

and GDSC mTCs, (E) GEO and CCLE mTCs, (F) TCGA and CCLE mTCs. (G) Pie graphs quantifying the 818 

amount of mTCs with high correlations for every dataset.  819 
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Figure S4 – Related to Figure 2; Dot plots showing the highest metabolic gene set enrichment 821 

score for every CCLE (A) and GDSC (B) mTC (x-axis) versus the percentage of metabolically 822 

annotated genes in the top genes (genes with absolute weight >3) in those mTCs (y-axis).  823 
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Figure S5 – Related to Figure 3;  825 

(A) Metabolic landscape for CCLE samples. The 1,067 samples were hierarchically clustered and 826 

divided into 38 metabolic subtypes. (B) Metabolic landscape for GDSC samples. The 1,018 827 

samples were hierarchically clustered and divided into 36 clusters metabolic subtypes. Grey labels 828 

designate tissue types that are present in other datasets, but are not present in the given dataset. 829 

(C) Hierarchical clustering of activity scores of mTCs in samples from GEO and TCGA datasets used 830 

in order to define metabolic subtypes. The plot shows the minimum sample size of a cluster 831 

depending on the chosen cutoff height of the dendrogram resulting from hierarchical clustering. 832 

The heights at which the minimum cluster size reaches 50 is given for both GEO and TCGA 833 

datasets. (D) Hierarchical clustering of activity scores of mTCs in samples from CCLE and GDSC 834 

datasets used in order to define metabolic subtypes. The plot shows the minimum sample size of 835 

a cluster depending on the chosen cutoff height of the dendrogram resulting from hierarchical 836 

clustering. The heights at which the minimum cluster size reaches 50 is given for both CCLE and 837 

GDSC datasets. 838 
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Figure S6 – Related to Figure 3; Pie graphs depicting the tissue type composition of the 67 841 

metabolic subtypes defined for the GEO dataset.  842 
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Figure S7 – Related to Figure 3;  Pie graphs depicting the tissue type composition of the 58 844 

metabolic subtypes defined for the TCGA dataset.  845 
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Figure S8 - Related to Figure 5; (A) Activity of GEO mTC 14 in samples, grouped per tissue type. 847 

Tissue types with a higher median activity highlighted in the text are given a red axis label, tissue 848 

types with a lower median activity highlighted in the text are given a blue axis label. (B) Activity 849 

of TCGA mTC 70 in samples, grouped per tissue type. Tissue types with a higher median activity 850 

highlighted in the text are given a red axis label, tissue types with a lower median activity 851 

highlighted in the text are given a blue axis label. 852 
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